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Note to Practitioners: This paper was motivated by the problem of proposing a transferable framework dedicated to real time multi-axis and multi-robot control. Most of existing middleware solutions do not unify accesses to the axis level and to the robot control level with a common programming approach and with real time capability. This is a key problem for achieving multi-robot synchronization and reaction times compatible with dynamic collaboration. Our framework is based on open robotics and object-oriented programming and implements the industrial standards for motion control. Multi-robots control experiments with a high number of synchronized axis and heterogeneous hardware demonstrate the efficiency of the approach.
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Institut Pprime, dept. GMSC Université de Poitiers Poitiers-Futuroscope, France Abstract-This paper presents the challenges met in the development of a new framework for multi-axis and multi-robot control. The increasing demand for multi-robot collaboration and robotic assistance, both in industry and service applications, has raised the level of interactions between robots and humans in a shared environment with real-time constraints. Some scientific and technological issues need to be unlocked to ensure safe human-robot interactions: to guarantee the response time during the robot perception-action process, to cope with dynamic interactions with the robot environment, to secure the collaborations between several machines and humans, and to improve the integration of the robots at home and in open zones of production lines. The specifications of a new hardware and software framework are set with respect to these observations. The framework will meet complex research and industrial issues for the future of multi-axis and multi-robot control. Before introducing our approach, a brief survey of existing frameworks and robotic middleware is given.

The foundations of our approach are based on the following requirements: the framework must be real-time, transferable, maintainable and multi-manufacturer. The framework design has also to guarantee the robustness of the machine interactions in a dynamic and collaborative environment. To evaluate the feasibility of our design strategy and assess its performance, we have developed mechatronic devices with a high level of humanmachine collaboration. This paper outlines two robotic applications which require multi-robot real-time synchronization and are based on the proposed framework. A temporal analysis demonstrates its robustness for multi-axis and multi-robot control. INTRODUCTION Manufacturing uses more and more lean and agile solutions to adapt to changes in the marketplace. Innovative technologies must be proposed to meet the demands on production. Traditional automation solutions do not offer such capability in flexibility, and in customizing the products on demand.

During the last four decades, industrial robots have gradually replaced human workers for tedious and routine jobs or in harmful environments which may cause industrial accidents, diseases or MSDs. In this substitution process, although intrinsically flexible, the industrial robot was effectively specialized, working alone in a closed cell, and could only meet one kind of preset task. The robot was tuned for painting, for arc welding, for spot welding, or for grasping one specific product and the end-effector was specially designed with respect to the target task.

Ten years ago, a new type of robot appeared: the collaborative robot (Fig. 1). The collaborative robot aims at assisting the worker. This new interaction feature between human and machine offers many perspectives in working environments and especially in SMEs, as discussed in [START_REF] Nieves | Overview of Collaborative Robots[END_REF]. It introduces a new way of organizing the production lines by associating, in the same workspace, the strength, precision and robustness of the robot and the decision making, problem solving capabilities, and expertise of the human being. The emergence of collaborative robotics does not mean the end of industrial robotics. Both types of robots will coexist and work together in order to address the issues of flexibility and customization in the production flow.

The need for flexibility in the industry of the future requires new software solutions that will enable the development of robotic applications with real-time multi-robot control in a dynamic environment. As these applications may involve industrial robots, collaborative robots and humans in a shared working zone, it is a major challenge to propose a common framework meeting new industry issues. Such a challenge can only be addressed if all the mechatronic components in the production process are able to communicate and exchange data with a dynamically consistent real-time scheduling. Real-time communication and operating systems are needed to ensure the determinism of the application and secure the interactions between robots and humans in a shared environment. Current industrial robots from most manufacturers do not meet these issues; Figure 2 shows that most of them are limited to their own universe; they can only be programmed in the manufacturer language (Kuka uses KRL, Fanuc, KAREL, Stäubli, VAL3 …).

The software components used for programming do not enable reusability and sharing of know-how between robots. It becomes impossible with such an approach to synchronize several robots from different manufacturers in a deterministic scheme in the same robotic cell. Real-time communication and a traversal programming approach are essential to meet flexibility requirements for the development of multi-axis and multi-robot applications.

Hence, this way of working is incompatible with the future of industry. All robots have to communicate and interact with their environment, with other robots and with humans in a dynamic way, under robustness, reactivity and reliability constraints. A common framework is proposed in this paper to meet these requirements and ensure the flexibility of the robotic cell. Our framework is based on open robotics and unifies hardware and software components by using industrial standards and object-oriented programming.

After a brief survey of robotic middleware solutions, we will compare communication performances of ROS and hard real-time Operating System environments in the objective of multi-robot application. From this analysis, we will then draw requirements to design an efficient robotic framework. In the fourth section, the RTRobMultiAxisControl framework is presented. Its different components are described according to open robotic and real-time standards. Sections V and VI will present the multi-robot platforms used to validate the design of the robotic framework and assess the inter-component communication efficiency.

II. OVERVIEW OF ROBOTIC MIDDLEWARE FRAMEWORKS

A difficulty that rises when designing a framework is to manage the hardware heterogeneity while willing to simplify software design by using common rules in the development of a robotic application. Several robotic middleware solutions have been developed worldwide for that purpose such as OPRos, Orca, MIRO, Player, Marie, Aseba, CLARAty, UPNP, RSCA, MRDS, SmartSoft, Skilligent, Webots, Irobotaware, Pyro, Carmen, and RoboFrame.

As discussed in [START_REF] Elkady | Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography[END_REF] and [START_REF] Bakken | Middleware[END_REF], a middleware is defined as a layer of software between the operating system and the application level, which provides a common programming abstraction across a distributed system. In [START_REF] Elkady | Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography[END_REF][START_REF] Kramer | Development environments for autonomous mobile robots: a survey[END_REF][START_REF] Mohamed | Middleware for robotics: a survey[END_REF][START_REF] Mohamed | A review of middleware for networked robots[END_REF], surveys of current robotic middleware frameworks are proposed. Attributes, focusing on the architecture, simulation environment, standards and technologies, security for accessing modules, real-time and coordination capabilities, open-source are discussed. Most of the existing robotic middleware are detailed. We chose to present some of them with regards to our multi robot control purpose.

The architecture of the middleware is the organization of the layers, components, libraries, or modules required for the middleware implementation. For example, MIRO middleware for mobile robotics is based on three layers [START_REF] Gerkey | The player/stage project: Tools for multi-robot and distributed sensor systems[END_REF]: a device layer that is platform dependent, a service layer with service abstractions for sensors and actuators, a framework layer that contains modules like navigation, self-localization, path planning, and visualization. Player/Stage system [9] is also a middleware for mobile robots. It is composed of two components; the first one, Player, is a device repository for robots, sensors and actuators. The second component, Stage is only for the graphical simulator which models devices. ERSP [START_REF]Ersp 3.1 software development kit[END_REF] consists of three layers: a hardware abstraction layer, a behavior execution layer and a task execution layer. Orocos [START_REF] Soetens | Realtime hybrid task-based control for robots and machine tools[END_REF] (Open Robot Controls Software) is a Real-Time Toolkit with an infrastructure and functionalities to develop C++ applications. It consists of the three following components: the Orocos Components Library (OCL) that offers some ready-touse control components, the Orocos Kinematics and Dynamics Library (KDL) that provides real-time calculation of kinematic chains, and the Orocos Bayesian Filtering Library (BFL), with tools such as Kalman Filters and Particle Filters. Another middleware named Orca grew out from Orocos at KTH Stockholm in 2003. Orca developers have replaced CORBA, a communication middleware [START_REF]The Common Object Request Broker: Architecture and Specification Revision 2.2. 492 Old[END_REF], developed since 1991 and used in Orocos with a modern framework named ICE (Internet Communication Engine). RT-Middleware [START_REF] Ando | RT-middleware: distributed component middleware for RT (robot technology)[END_REF], or Robotics Technology Middleware allows the designers to build quickly and efficiently their own robotic product. Each component is called a RT-Component and they can be easily connected to each other. A state machine rules the state of a component, however RT-middleware does not provide a hard-real-time support. ROS middleware [START_REF] Quigley | ROS: an open-source robot operating system[END_REF] is a "metaoperating system" for developing robotics. ROS is probably the most used robotic middleware and proposes many packages able to integrate the widest library of devices. ROS consists of nodes (software modules) which communicate over topics (passed peer to peer) sending messages. For synchronous communication Services are used. New packages for ROS were recently proposed for control: meta-ROS [15] and ROS Control [START_REF] Chitta | ros_control: A generic and simple control framework for ROS[END_REF]; but they do not offer hard real time support for multi-axis or multi-robot control. A new version of ROS, named ROS 2 is currently under heavy development [17] for that purpose. This new version is not compatible with the previous version as it was necessary to review the foundations of ROS to allow hard realtime functionalities. This survey underlines the fact that all middleware solutions relies on distinct architectures. These middleware are mostly based on the three standard communication middleware as shown in table 1: MOM, RPC or CORBA [START_REF] Fischer | An industrial standard based control architecture for multi-robot real time coordination[END_REF]. The components, layers, libraries or modules available are quite different, do not target the same implementations (mobile robotics, artificial intelligence, robot and machine control…), use different programming approaches, and most of them do not offer real-time capabilities or real-time communication. UDP or TCP/IP communication using sockets is often used, inducing temporal indeterminism in the communication flow.

The table 1 highlights different issues of the existing middleware in the field of robotics. These concerns constitute the requirements of an optimal framework. Multi-axis and multi-robot control requires a high level of synchronization and temporal determinism in a dynamic environment. Hence the robotic software framework should provide real-time capability. Besides, the programming approach should be based on industrial standards, which would bring robustness, reusability and support for most of hardware components used in industrial motion control.

Most of these middleware solutions are also far from the controller base level, and do not offer solutions able to unify the access to the axis control. This is a key problem for achieving multi-robot synchronization with reaction times compatible with dynamic collaboration schemes. The next section analyses the temporal behavior of one of the most popular middleware used for the development of robotic applications: ROS.

III. EVALUATION OF ROS MIDDLEWARE COMMUNICATION FOR MULTI-ROBOT CONTROL

ROS is a widely known robotic middleware which gives access to many robots, sensors and other components from many manufacturers.

ROS is usually implemented on standard PCs with non-Real-Time Operating Systems (RTOS) in many robotic applications. It seemed relevant to us to highlight the limits of this architecture. The tested version is ROS INDIGO; the software is running on the Linux Ubuntu 14.04 operating system on a Intel Quad Core i7 PC (CPU M620 2.7GHz, 4Go RAM).

To evaluate the feasibility of dynamic multi-robot control with ROS we have designed an experimental set-up featuring two modern robots and high-speed Ethernet-based networks.

A high level of coordination and synchronization between several axes or several robots is required to ensure temporal determinism and robustness in a multi-robot cell. For our evaluation purpose, we used the following devices (Fig. 3):

-Component 1: an industrial PC (B&R Automation PC910) that controls a Comau Racer 3 robot and its peripherals (gripper and sensors) over POWERLINK fieldbus;

-Component 2: an industrial PLC (B&R Automation X20CP1586) that controls a Kuka iiwa robot equipped with EtherCAT fieldbus.

The objective of the test is to connect these two complex components with the ROS middleware in order for them to share their respective states at a frequency suitable for cooperation. The data exchanged between the two robots are needed for dynamic collaboration purpose.

A. Evaluation of ROS middleware communication

ROS manages the cell components with "nodes" and "topics" objects. Nodes are processes that perform computations to achieve tasks (e.g. read sensors, control motors, localize or plan paths), while topics are used to identify the contents of messages. The messages are routed via a publish/subscribe transport system. A node sends out a message by publishing it to a topic, and another node reads it by subscribing to that topic.

As we wish to evaluate the communication between two components, one node is defined per component. All nodes are used for communication, one node attends to data emission (component 1) and the other for data reception (component 2) by using streaming topics. To measure the communication consistency, we chose a basic application exchanging one integer data: component 2 needs to know continuously the state of a sensor associated to component 1. Component 1 sends periodically sensor data (blue dots in Figures 4 and5) to component 2 through ROS nodes and topics. Component 2 receives the sensor data (red dots in Figures 4 and5) and the transfer time is evaluated. and5 illustrate the fact that the communication time between the two components is not deterministic whatever the period is. And we also may lose data if the exchange frequency is high. As an example, for a 20ms period data value number 11 was lost (Fig. 4); for a 2ms period, 50% of the sensor values were lost during communication. The loss of data and the lack of determinism may be a cause of failure in a robotic application with response-time constraints. This study concerning ROS middleware evaluation for multi-robot control clearly states the fact that ROS is not made to guarantee temporal determinism in the data flow between robots. However, this condition is crucial to reach a high level of synchronization between axes and robots and to develop reactive control in a dynamic environment.

Therefore, we believe that the first constraint for a unifying framework is to ensure temporal determinism in the perception-action process thanks to hard real-time capability. The definition of a Real-Time System (RTS) can be stated, following [19], as: "a real-time system is a system that satisfies explicit (bounded) response-time constraints or risk severe consequences, including failure". A hard RTS is a system where it is imperative that responses occur within the specified deadlines (for examples, aircraft control or process control applications).

B. Evaluation of ROS 2 middleware communication

ROS 2 has an architecture close to the one of ROS. Indeed, it uses Nodes to perform computation and topics are used to share message between several nodes.

To evaluate ROS 2 we have used the same architecture: one node per component. In our case, the first node receives data and publish it on the topic. The second one subscribes to the topic and sends data through the UDP communication. We have modified the protocol for this test, we now send 2000 communication frames from the component, 1 per 2ms. In this case, we highlight the latency in terms of cycle numbers. The first 500 values are shown in Figure 6. This test has been performed about twenty times and no data was lost. However, there is a latency in the exchange period, which is not constant. These results illustrate the nondeterminism of ROS 2.

C. Evaluation of RTOS communication

As a comparison, we performed a new experimentation with the same components, but the ROS PC was replaced with an industrial PC with a real-time operating system (RTOS) (Fig. 7); and the UDP communication was replaced with a hard-real-time Ethernet communication. Among the five major technologies in industrial Ethernet communication (Profinet, POWERLINK, Ethernet /IP, EtherCAT, Sercos III) [START_REF]Industrial ethernet system comparison : the 5 major technologies, 3 rd Edition of Industrial Ethernet Facts magazine, Ethernet Powerlink Standardization Group[END_REF], only three technologies provide hard real time communication: SERCOS, EtherCAT and POWERLINK. We chose to use the POWERLINK communication as it is a BSD-license opensource solution and has be adopted as an IEEE standard (IEEE 61158).

The industrial PLC is built on CPU ATOM 1.6 GHz with 512 MB DDR2 RAM and is running a proprietary runtime based on VxWorks Operating System.

The results with this architecture are illustrated in Fig. 8 with a 2ms sending period. They show no loss of sensor data and the total communication time remains the same whatever the exchange frequency; it means that responses occur within the specified period. This behavior is typical for a hard-realtime system, since it is a requirement for RTOS design specification. This section showed that the ROS temporal behavior will not enable the level of synchronization required for multi-axis control in the field of production machine design. Temporal determinism is a major requirement when designing motion controllers. The next section introduces our new framework and describes its architecture.

IV. RTROBMULTIAXISCONTROL : A REAL-TIME FRAMEWORK FOR OPEN ROBOTICS AND MULTI-AXIS CONTROL

A. A standard-based strategy

The success of a given middleware design approach will depend on the ability to transfer the framework outside the lab for multi-axis machine control applications. In [START_REF] Gerkey | Sold!: Auction Methods for Multirobot Coordination[END_REF], the authors develop MURDOCH, a novel method of dynamic task allocation built on publish/subscribe, and they optimize the task completion time. In [START_REF] Sandholm | An implementation of the contract net protocol based on marginal cost calculations[END_REF] and [START_REF] Ramos | A holonic approach for task scheduling in manufacturing systems[END_REF], the importance of managing time constraints with the use of Contract Net Protocol is emphasized. We also believe that it is necessary to guarantee completion time and robust communication to achieve cooperation between robots operating in dynamic environments.

As an example, a method with dynamic task allocation for groups of robots [START_REF] Parker | ALLIANCE: An architecture for fault-tolerant multirobot cooperation[END_REF] will not be efficient to ensure a high level of synchronization and a deterministic behavior if the robots do not provide real-time data exchange or if their controllers do not give real-time access to low level control loops (position, velocity, or torque control loops). The goal of our framework is to unify the access to robot resources from an exterior RTOS manager.

Currently, the programming of industrial machines relies on the IEC 61131 standard which is a viable alternative to the extensive use of proprietary languages for each robot brand. Efficiency and robustness of machine and process control software are also increased using a real-time communication between motion controllers and robot controllers. Unfortunately hard-real-time Ethernet protocol is not an option available on most of the control cabinets of the leading industrial robot manufacturers.

A wide variety of systems and solutions can be found on the motion control market, but most of them are incompatible with one another. This leads to additional costs, even for the endusers. Without reusable software, developing an application with new hardware begins with a white paper. In the area of PLC programming, the first goal of PLCopen international organization is to provide widely accepted industrial standards such as PLCopen Motion for motion control applications. A recent add-on of PLCopen guidelines concerns the creation of function block libraries [START_REF]Creating PLCopen compliant libraries[END_REF]. These recommendations aim at shortening the development time and at easing software use and maintenance. The hardware choice becomes less important because the libraries are reusable, the development cost and time, and the support cost decrease.

A compromise must be found between performance, functionality and standardization to have an appropriate solution. There are three kinds of development strategies. The first one consists in developing programs closely coupled to the hardware. Thanks to this, high performance is expected, but the program cannot be reused, so the cost and the time of the next development will not be reduced.

The second one is to develop numerous functionalities, which is helpful but at the expense of performance. The last one focuses on the standardization and the reusability of the project components. For axis control, most of the automation manufacturers integrate PLCopen Motion libraries applied to their hardware solutions.

B. Software architecture

The previous subsection introduced the different design constraints of our new framework. They consist in using:

• IEC 61131: the widely-available and standardized IEC 61131-3 languages or a consistent ANSI C / C++ integration in the IEC world ensure the development of reusable components; • PLCopen Motion: this provides all useful single-axis functions and makes it possible to use hardware configurations from any manufacturers (Siemens, Beckoff, Schneider, B&R,…);

• Hard Real-Time communication standard [START_REF]Industrial ethernet system comparison : the 5 major technologies, 3 rd Edition of Industrial Ethernet Facts magazine, Ethernet Powerlink Standardization Group[END_REF]: both POWERLINK IEEE 61158 and EtherCAT meet this hard-real-time capability. The use of industrial Ethernet protocols is the keystone of our hard-real-time middleware. As an example, POWERLNK open source standard sets a real-time communication, with adjustable period, between automation components or CPUs and it respects IEEE 802.3 Ethernet standard with no modified Ethernet media access. By using such protocols, the real-time scheduling of the complete robotic cell is guaranteed at every stage of software development.

1) Basic objects for a real-time implementation

Modern software development needs to adopt a structured approach and re-usable codes to deal with the increasing complexity of programs. The 3 rd edition of IEC61131-3 includes the aspects of Object-Oriented Programming (OOP) to meet these objectives. OOP compartmentalizes data into objects (data fields) and describes object contents and behaviors through the declaration of classes (methods). Our framework benefits the core concepts of OPP, namely encapsulation, polymorphism and inheritance.

The software architecture of the framework is based on two virtual and abstract objects. The first one, the 'RbParam' class, manages all static data, which are the parameters of a robot, a component or a task. The other, 'RbFbAbstract', handles the real-time and deterministic control of the robotic cell components. These classes are derived to model all hardware components, from low-level sensors to complex systems, such as a robot or a robotic cell.

The parameters associated with each object are represented by a structure ensuring the compatibility of the robot manager software with other programs written in any IEC 61131-3 language. This structure is the template of the C++ abstract virtual class 'RbParam<Param_typ>'. It is composed of three virtual public methods: Verify, Read, and Write as shown in Fig. 9. All functions of real-time multi-axis control software are based on the abstract classes "RbFbAbstract" and "RbFbAbstractParam". The "RbFbAbstract" class has a public cyclic method that implements the state chart represented in Fig. 10. This state chart is compatible with PLCopen's compliant library writing recommendations [START_REF]PLCopen Motion: standard for single axis and multi axis control[END_REF]. It includes the two modes 'Edge triggered FBs' and 'Level controlled FBs' described in the standard (the first one is illustrated in Fig. 11). These two basic models of Function Blocks (FBs) with the minimum inputs and outputs have two options for activation:

• "Execute" input triggers the execution of the FB, and "Done" signals that the FB has completed the command; • "Enable" input is level sensitive, and "Valid" expresses that the other outputs can be safely used. 

2) A unified and standard axis control

The foundations of the framework offer the programmer nine evolutive packages enabling the management of all multiaxis control applications. The useful FBs for motion control are implemented in the framework by using virtual classes inheriting from 'RbFbAbstractParam' or 'RbFbAbstract'. These virtual classes the access to the hierarchicallysuperior complex objects. With such an approach, inputs and outputs of the PLCopen Motion standard FBs are identical whatever the hardware and topologies. This standard approach provides a unified access to the different components (robots, controllers) in the higher-level.

Motion FBs are included in the 'RbMcPart1' package, while the axis control is ensured by the 'RbRegul' and 'RbMcAxe' packages. These motion control FBs are compliant to PLCopen Motion Parts 1 & 4 [START_REF]PLCopen Motion: standard for single axis and multi axis control[END_REF]. Figure 12 The package "RbRegul" contains utility classes for control such as: trajectory interpolation, prediction, PI regulation, feedforward. The online trajectory planning is based on the interpolation strategy proposed in [START_REF] Biagiotti | Time-optimal regulation of a chain of integrators with saturated input and internal variables: an application to trajectory planning[END_REF].

The virtual class "RbMcAxe" ensures the axis control and sequentially performs the following tasks:

• Error check;

• Management of the PLCopen Motion generic state machine detailed in Fig. 13; • Trajectory planning; • Position, velocity, and torque control. According to the axis controller characteristics, "RbMcAxe" provides the management and access to various levels of control. Four types of physical topologies can be used, as described in Figure 14. The hardware may be accessed through: The framework is also able to handle off the shelf industrial axis controllers; as an example, B&R Automation ACOPOS controllers can be used with the same unified access to the hardware using the PLCopen Motion FBs provided by the manufacturer.

•
The low-level packages "RbRegul", "RbMcAxe" and "RbMcPart1" provide a unified and standard interface to control any axis. All higher-level objects can be developed by the user regardless of the type or the manufacturer of the axis.

3) An open robotic solution

The virtual class 'RbMC_AxeRob'is designed to manage the different axes of a whole robotic system. This class enables the use of unified command and information data flow generic structures as described in Fig. 15.

Thanks to the framework standard FBs (Fig. 12), "RbMC_AxeRob" manages the operating modes and ensure the axis safety. All robot axes can be controlled manually or automatically in position, velocity, or torque. The virtual class enables to dynamically switch between these three control strategies, without stopping the axis. All control approaches commonly used in robotics can be easily implemented by means of the RTRobMultiAxisControl framework, whose structure is presented in Fig. 16. The framework is a standard and unified foundation for all multiaxis systems and can be used within any hardware architecture. A virtual class "RbRobot" is currently under development to integrate high-level FBs such as axis synchronization, operational space force and position control or on-line trajectory generation. In this section, RTRobMultiAxisControl, a novel framework based on a hard-real-time Operating System and industrial standards, has been detailed. PLCopen Motion and IEC 61131 programming are used to seamlessly transfer the framework on different targets for multi-axis control. This standard approach eases the evolutions of the framework components. The framework introduces a new way to unify hardware and software, as will be illustrated with the experiments in the next section.

V. DEXTROBC : A ROBOTIC PLATFORM FOR INDUSTRY 4.0 As a validation test bench, the framework is implemented on the targets of the French national robotic platform "DextRobC" which is dedicated to Industry 4.0. The objective of this technical platform is to demonstrate innovative robotic solutions and designs that may be transferred into the industry of the future. To prove the efficiency of the proposed framework, two complex robotic cells, involving the coordination of several robots, have been used. They are presented in this section.

A. A dexterous manipulator for flexible and fine tasks

To increase the flexibility of robots, it becomes necessary to design new grippers able to meet a wide range of tasks. However, reproducing the dexterity of the human hand remains a key challenge. With this objective in mind, the new RoBioSS dexterous hand was developed and patented (CNRS Patent FR 1459956, 10 16, 2014) [START_REF] Mnyusiwalla | A New Dexterous Hand Based on Bio-Inspired Finger Design for Inside-Hand Manipulation[END_REF][START_REF] Vulliez | Focus on the mechatronics design of a new dexterous robotic hand for inside hand manipulation[END_REF]. The hand has been designed as an end-effector for industrial robots or collaborative robots. The integration of a fully actuated dexterous robotic hand requires the control of a high number of actuators. As each finger behaves like a robot, a high level of synchronization is needed between them to achieve proper inside hand manipulation tasks.

A deterministic and robust communication is a necessary element to fulfill this requirement. The RoBioSS hand with its multi-axis control software and reliable mechanical design encompasses the high capabilities required for fine manipulation tasks. The hardware architecture of the manipulation cell is detailed in Fig. 17. The hand is mounted on a TX60 6-axis Stäubli serial robot powered by a uniVAL drive industrial robotic controller. This controller offers the innovative feature of a possible integration with an external controller. All 22 axes -16 axes of the hand and 6 axes of the Stäubli robot -are driven by a B&R industrial PC. Communication between the robot controller, the DC motor power stage and the PC runs through a high-speed POWERLINK fieldbus which guaranties the real-time requirement. Low-level control loops for the hand motors also run on the industrial PC.

As described in Fig. 18, the robot-level software of the manipulation cell is relies on the RTRobMultiAxisControl framework. The main program implements the state machine of the task while the axis manager generates the axis commands for the application. All commands are set thanks to motion and control FBs integrated into the packages of RTRobMultiAxisControl. The framework manages all 22 axes of the manipulation cell. The use of standards during the development of the libraries enabled have a unique control software for this multi-axis robotic cell regardless of various hardware and industrial components used. The finger motors are powered by H-bridges whereas the uniVAL drive cabinet provides the robot joint commands with respect to the controller set values. For the hand control, all axes of the fingers are given 0.4ms periodic position commands while the period for the 6-DOF Stäubli axes is 2ms. 

B. A collaborative cell integrating human expertise

RoBioSS team also explores how humans can interact with machines in the industry context. Different approaches are studied to include the human behavior within a production line. The developed schemes aim at improving the biomechanical comfort and the safety of the human operator. A robotic cell was developed for this purpose; it creates a scene where a high level of collaboration between human and machine can be tested. Two types of human-robot interactions are investigated: the human may be in contact with a cooperative robot acting as an assistant or the human can teleoperate a distant robot through a haptic device. The haptic control system makes it possible to accurately achieve tasks with a proper kinesthetic sense. The main program plans dynamic trajectories with respect to the task while the axis manager yields the axis commands thanks to motion and control FBs integrated into the framework packages. As the iiwa robot has a closed controller, the proprietary Kuka Sunrise packages must be used to drive the robot and programs are written within the manufacturer's development suite. A specific library was developed to manage the high-level control of the iiwa and to access to the Sunrise packages; this library is based on the RTRobMultiAxisControl basic objects to homogenize the control of all the components in the collaborative cell.

All the cell components must cooperate in real-time under several control schemes:

• The teleoperating mode between the Comau robot and the Delthaptic;

• The motion control of the Racer when following preset CNC trajectories;

• An exchange task between the Racer and the iiwa;

• A collaborative task between the human and the iiwa.

Each cell component needs to share its state and timedependent data with others. A robust communication with a wide bandwidth is required to provide these control modes and guarantee the safety of the human within the cell. The choice of hard real-time communication is the only solution able to synchronize our robots. The iiwa robot uses EtherCAT communication standard whereas the Delthaptic and Racer 3 are included into a POWERLINK communication network. A PLC gateway had to be inserted to exchange data between POWERLINK and EtherCAT networks.

VI. EXPERIMENTAL RESULTS

The RTRobMultiAxisControl framework has been used to control different multi-axis systems in two applications, as presented in the previous section. These very different implementation cases demonstrate the versatility, the robustness, and how the real-time behavior of the base components is kept at the machine level.

A. Synchronization of the fingers for accurate inside hand manipulation

The robustness of the dexterous hand was validated through demonstrations, proposed continuously during three days at SPS IPC Drives 2016 international exhibition in Nuremberg. The video link [32] illustrates the hand efficiency. Different tasks were performed, such as grasping a glass, switching-on a lamp or led ribbons with different kinds of buttons, or screwing a light bulb. A second video illustrates the inside hand manipulation capability of the hand [START_REF]Le Monde[END_REF]. The gripper must be able to generate fine object motions with respect to its palm. The fingers thus need to collaborate to produce the desired inside-hand motion while ensuring the object stability. The accuracy of the motion has been assessed and the synchronization is clearly visible in the video during the translational and rotational motions of the bottle cap.

The development of such a complex manipulation cell became possible because the mechanical design meets the grasping and manipulation objectives. Fine manipulation tasks can only be achieved thanks to a robust and hard real-time controller. The command motions of the 6-axis industrial robot and the 16 joints of the hand are simultaneously set during the process. The deterministic approach of the framework ensures that the axis commands (position, velocity or torque) are periodically sent, even though the networks run at two different periods (0.4ms and 2ms), without latency. The unified approach allows to seamlessly synchronize axes of different hardware topologies with the same software function blocks. This manipulation cell, as a whole, shows that the framework can be implemented at different levels of control (Fig. 18). If the robot hardware architecture includes an internal axis controller, such as the uniVAL Drive of the Stäubli robot, the framework only generates trajectories for the task. Otherwise, the framework will also handles all the control loops. This is the case for the hand controller where all the control levels of the RTRobMultiAxisControl are running. The hand control part of the software exhibits a very small computation time of 40μs for the managing all four fully actuated fingers.

B. Real-time cooperation between robots and humans

A typical application of collaborative robotics has been developed to demonstrate the benefits of a collaborative platform for Industry 4.0, with the idea of relocating the human worker at the heart of the production process.

Such a cooperation level between several robots and human operators requires hard real-time communication between all the cell components and real-time Operating Systems. This deterministic behavior of the robotic cell is paramount to provide a proper functioning of the demonstration set-up and to ensure safety of the human operator. For this purpose, POWERLINK and EtherCAT hard real-time communication protocols are used between the Delthaptic, the Comau and the iiwa robots. Four data flow structures where created to exchange significant data for the process (state information, robot dynamic data, sensor data…).

The use of a safety PLC to secure the Comau robot motions sets the communication rate to 1.6ms for all exchanges between the components over POWERLINK networks. The EtherCAT communication rate of the iiwa robot is fixed by Kuka to 4ms. A repetitive delay alternates between 17.6ms and 19.2ms for a poll request cycle from the POWERLINK network (Racer3 and Delthaptic) to the iiwa. This delay originates from the two communication rates, from the application cycle time, and from the POWERLINK -EtherCAT data conversion in the PLC gateway. The variation in the latency is due to non-consistent cycle times of the two networks.

Both Racer 3 and Delthaptic controllers are fully based on the RTRobMultiAxisControl framework (Fig. 19). The programs cyclically compute the robot models and control schemes for the application. All computation times of the main programs and the axis managers are very small and they are compatible with the communication rate of the network. Although the Kuka controller is based on Sunrise, a closed programming environment, the specific motion FBs developed for the iiwa robot rely on the framework basic objects. The use of virtual and abstract objects guarantees that all the function blocks used in the controllers of the cell components share a deterministic behavior. In this way, the real-time feature of the Operating Systems are transferred to all software components.

In the cobotic demonstration scenario, each robot controller switches between the different control modes introduced in the previous section. The application is based on the following cycle: a cylinder part is grasped by Racer 3 remotely piloted by the operator through the haptic device. Then, the Racer transmits the part to the iiwa cobot to be handled and visually inspected by a second operator. The video link [START_REF][END_REF] shows this cobotic application. The whole cycle is composed of 6 steps:

• The human operator teleoperates the Racer robot through the haptic device to grab the part. A torque control of the Delthaptic interface compensates for its own gravity and provide the haptic feedback in operational space.

• Delthaptic returns to the origin of its workspace under position control. During this step, Racer still tracks the position of the haptic device. The tracking of Delthaptic in real-time is accurate, the tracking error being mostly due to the joint kinematic limits of the Racer.

• The Comau robot executes a CNC trajectory to go to the exchange position.

• Step 4 consists in the exchange of the part between the robots: the iiwa moves to the exchange point, grips the part, and asks Racer to release the part by opening its gripper.

• The Comau robot returns to its home position. Iiwa cooperates with the second operator who visually checks the part. This collaborative mode integrates different cooperation functions. The detection of a contact, measured through a force threshold at the endeffector, stops the robot motion for the safety of the operator. A gravity compensation mode allows the operator to move freely the part hold by the robot without carrying its weight. These cooperation functions ensure the safety of the operator and redefine the robot's role as an assistant for the human. Once the part is controlled by the operator, iiwa autonomously adjusts its end-point to the height of the receptacle, drops it and returns to its home position.

• In the last step, the Racer robot waits for the operator to grab the handle of Delthaptic to begin a new cycle.

The programming of the three robots in the cell is based on the presented framework even though their software and hardware are provided by different manufacturers. The framework unifies the access to the management of these robots with a hard real-time behavior. Thanks to this approach, the temporal determinism in the data flow communication and the real-time determinism in the perception-action process enable the implementation of robust and secured interactions between robots and humans in a shared environment.

VII. CONCLUSION

Within the context of the DextRobC technological platform, we aim at developing innovative robotic devices and at implementing Industry 4.0 principles. Interoperability is a key challenge in the industry of future. As we wish to secure interaction humans and machine in an open space, the temporal determinism of software architecture and communication between all the components of an industrial environment is required. This paper focuses on a software development approach that meets this issue. The foundation of our approach is based on strong requirements: unify the programming of the components, use hard-real-time communication and operating system, use motion control standards.

The framework we developed is fundamentally multilevel, multi-agent and manufacturer-independent. The strategy is based on the integration of modern and robust industrial standards: PLCopen Motion (at the axis and coordinated motion levels) and hard real-time communication (POWERLINK or EtherCAT). These standards guarantee the temporal coordination of all agents in the scene, without dependence on the manufacturers. We also chose to benefit from the possibilities offered by the most recent automation software to use Object-Oriented programming.

The RTRobMultiAxisControl framework has been evaluated in a multi-robot and multi-manufacturer environment: on one hand for the coordination of 16-dof RoBioSS dexterous hand with an industrial Staubli 6-dof robot, and on the second hand for the development of a complete cobotic cell with three different robots and two types of human-robot interactions. The implementation of the framework demonstrates its robustness and performances. Future developments will consist in adding low-level autonomous reflex behaviors to the robots to be able to adapt to dynamic events occurring in the cell. Such a unified framework used for the coordination of multi-agents systems may support recent coordination strategies such as self-organization or shared-autonomy [35].
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 1 Fig. 1. Industrial collaborative robot (with courtesy of Kuka, ABB, Rethink Robotics and Universal Robot)

Fig. 2 .

 2 ABB ROBOT : RAPID Language

Fig. 3 .

 3 Fig. 3. Architecture used for the evaluation of ROS communication

Fig. 4 .

 4 Fig. 4. Data received with a ROS-based architecture with a 20ms sending period Figures 4 and 5illustrate the fact that the communication time between the two components is not deterministic whatever the period is. And we also may lose data if the exchange frequency is high. As an example, for a 20ms period data value number 11 was lost (Fig.4); for a 2ms period, 50% of the sensor values were lost during communication. The loss of data and the lack of determinism may be a cause of failure in a robotic application with response-time constraints.

Fig. 5 .

 5 Fig. 5. Data received with a ROS-based architecture with a 2ms sending period
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 6 Fig. 6. Delay in cycle between the data sent and the data receive with ROS2 with a 2ms sending period
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 78 Fig. 7. Architecture used for the evaluation of the RTOS communication
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 10 Fig. 10. Real-time function generic block state chart (complying with PLCopen recommandations)
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 16 Fig. 16. Structure of the RTRobMultiAxisControl framework
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 17 Fig. 17. Dexterous hand-arm system hardware architecture
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 18 Fig. 18. Hardware and software architectures of the multi-robot collaborative cell
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 19 Fig. 19. Collaborative multi-robot cell hardware and software set-up Figure 19 presents the implementations of the two interaction types. An iiwa cobot with its Kuka controller plays the role of an assistant for the operator in a shared environment. A Comau Racer 3 industrial robot is remotely controlled by the operator thanks to the Delthaptic, a novel haptic device designed in the lab [31]. Both the Comau robot and the Delthaptic are driven by B&R industrial PCs and ACOPOS servo drives. The iiwa cobot is driven by the proprietary Kuka Sunrise cabinet. The Comau robot and the Delthaptic software architectures are similar, as presented in Fig. 19. Both robot controllers implement the RTRobMultiAxisControl framework and use internal control functions of the servo-drives.

Table 1 :

 1 Characteristics of the main robotics middleware

		Communication	Hard	Motion		Installation	
	Middleware	Technology:	Real time	Control	OS	& development	Layers or modules
		framework used	support	Standard			
	RT-	CORBA	No	No	Linux	Needs loader RTC-Daemon	1)low level layer: motors, sensors
	Middleware				Windows	for RTC components management C++ / Java / Python	2) middle level layer: vision and image processing 3)high level layer: robot modeling
						programming	
	Orocos	CORBA	Yes, by	No	Linux	Orogen (language for	1)Components Library
			using Xenomai		Windows Mac OS X	components management) Needs RTT (Real Time	2)Kinematics and Dynamics Library 3)Bayesian Filtering Library
						Toolkit) for components	
						management by using	
						scripts language)	
						Four C++ libraries	
	ROS	MOM RPC	No	No	Linux	Needs loader ROS-Run for	12 versions, 7 unmaintained versions,
					Windows (Cygwin)	nodes and topics management C++ / Java / Python	1600 packages, modules (robots, peripherals, sensors, motion planning, …)
						programming	
	ROS2.0	MOM RPC	Yes, by	No	Linux		
			using		Windows		
			Xenomai		Mac OS X		

Needs loader ROS-Run for nodes and topics management C++ / Java / Python programming Small number of packages
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