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Failures to replicate the results of scientific studies are often attributed to misinterpretations of the p value. The p value may be interpreted as an approximate posterior probability, not that the null hypothesis is true but rather that it explains the data as well as the datagenerating distribution. That posterior probability modifies the p value in the following two broad areas of application, leading to new methods of hypothesis testing and effect size estimation. First, when corrected for multiple comparisons, the posterior probability that the null hypothesis adequately explains the data overcomes both the conservative bias of corrected p values and the anti-conservative bias of commonly used false discovery rate methods. Second, the posterior probability that the null hypothesis adequately explains the data, conditional on a parameter restriction, transforms the p value in such a way as to overcome difficulties in restricted parameter spaces.

Introduction

As seen in Wasserstein and Lazar (2016) and Wasserstein et al. (2019), failed attempts to replicate the results of scientific studies are often attributed to misinterpretations of the p value. [START_REF] Cox | The role of significance tests[END_REF] considered two physical interpretations of the p value. First, the p value is the probability of rejecting a true null hypothesis in the hypothetical situation that the significance level of the test is just high enough to barely permit rejection. When "hypothetical" is dropped, that becomes the routinely criticized misinterpretation of the p value as an error probability (e.g., Greenland, 2019, §3). The second physical interpretation is that the p value is a random variable having a uniform distribution between 0 and 1 under the null hypothesis [START_REF] Cox | The role of significance tests[END_REF]. While that interpretation is less confusing once grasped, it is not directly relevant to scientific applications [START_REF] Bickel | Genomics Data Analysis: False Discovery Rates and Empirical Bayes Methods[END_REF].

Fortunately, one-sided p values may be interpreted instead as approximations of posterior probabilities under general conditions [START_REF] Casella | Reconciling Bayesian and frequentist evidence in the one-sided testing problem[END_REF][START_REF] Dudley | Asymptotic normality with small relative errors of posterior probabilities of half-spaces[END_REF]. [START_REF] Shi | Reconnecting p-value and posterior probability under one-and two-sided tests[END_REF] similarly interpreted a two-sided p value as an approximate two-sided posterior probability. The current paper generalizes that approach to vector parameters by interpreting the p value as an approximate posterior probability that the null hypothesis has at least as much explanatory power as the data-generating distribution. Here, the explanatory power is the ability of a hypothesis to explain some aspect of the observed data.

Unlike interpretations in terms of the posterior probability that the null hypothesis is true, the proposed interpretation applies even if the null hypothesis is known to be false, for a hypothesis can serve as a potential explanation of data without being the true distribution that generated the data. If the p value is sufficiently low, the null hypothesis is rejected for not explaining the data well enough. Otherwise, there is a sufficiently high probability that the null hypothesis explains the data as well as would the data generating distribution, in which case there is no need to reject the null hypothesis.

The interpretation is made more precise in Section 2, which defines what is meant by explanatory power, in the traditions of inference to the best explanation and critical rationalism. While the probability that the null hypothesis has sufficient explanatory power is approximately equal to a p value in many cases, it leads to new methods in two broad areas of application. First, it generates multiple-testing p values that are as simple as common corrections for multiple testing (e.g., Dudoit and van der Laan, 2008) but without the excessive conservatism of controlling family-wise error rates (Sec. 3). They are applicable to making inferences about individual hypotheses without the anti-conservative bias that Hong et al. (2009, Fig. 3), Bickel and[START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF]Bickel (2019, 1 Chap. 6) observed in standard false discovery rate methods. Second, restricted parameter spaces (Zhang and Woodroofe, 2003;[START_REF] Marchand | Estimation in restricted parameter spaces: A review[END_REF][START_REF] Wang | Modified p-value of two-sided test for normal distribution with restricted parameter space[END_REF]Wang, , 2007;;Marchand andStrawderman, 2013, 2006;Bickel, 2020a) have the problem of confidence intervals that overlap with the forbidden region [START_REF] Mandelkern | Setting confidence intervals for bounded parameters[END_REF][START_REF] Fraser | Is Bayes posterior just quick and dirty confidence[END_REF], with the extreme of empty confidence intervals in the allowed region (see [START_REF] Ball | Empty confidence sets for epidemics, branching processes and brownian motion[END_REF][START_REF] Bickel | Self-consistent confidence sets and tests of composite hypotheses applicable to restricted parameters[END_REF]. Such problems may be solved by replacing the usual p value with the conditional probability that the null hypothesis has sufficient explanatory power given the parameter restriction (Sec. 4). It will be seen in Sections 3-4 that inverting the multiple-testing and restricted-parameter p values results not only in new hypothesis tests but also in new interval estimates of effect sizes.

2 Probability that the null hypothesis is as useful as the truth 2.1 Usefulness probability and explanatory probability ". . . our models are not the reality-a point well made by George Box in his oft-cited remark that 'all models are wrong, but some are useful'" [START_REF] Hand | Wonderful examples, but let's not close our eyes[END_REF]. "In applying mathematics to subjects such as physics or statistics we make tentative assumptions about the real world which we know are false but which we believe may be useful nonetheless" [START_REF] Box | Science and statistics[END_REF].

Accordingly, for each possible value θ of the parameter of interest in some parameter space Θ, let u (θ) denote a real number called the usefulness of θ. Consider the null hypothesis that the parameter is equal to θ H 0 for a θ H 0 ∈ Θ. The usefulness probability is Pr (u (θ H 0 ) ≥ u (ϑ)), the posterior probability that the null hypothesis is at least as useful as ϑ, the unknown true value of the parameter of interest. Other tail-area posterior probabilities in the literature include the evidence value of [START_REF] Pereira | Evidence and credibility: Full Bayesian significance test for precise hypotheses[END_REF], the likelihood-ratio posterior probability of Aitkin (2010, p. 42), and the strength of evidence of Evans (2015, p. 114). They are special cases of the extended evidence value of Bickel (2020b), as Bickel (2021a) noted.

Example 1. Suppose that if θ H 0 were sufficiently close to the true value ϑ, then the null hypothesis that ϑ = θ H 0 would be considered useful. In other words, the usefulness of that null hypothesis is the indicator

u (θ H 0 ) = χ (D (θ H 0 , ϑ) ≤ ∆) =        1 if D (θ H 0 , ϑ) ≤ ∆ 0 if D (θ H 0 , ϑ) > ∆
for a ∆ > 0, where D is a metric, and where χ is the characteristic function that is equal to 1 if its argument is true and equal to 0 if it is false. Then the usefulness probability is

Pr (χ (D (θ H 0 , ϑ) ≤ ∆) ≥ χ (D (ϑ, ϑ) ≤ ∆)) = Pr (χ (D (θ H 0 , ϑ) ≤ ∆) ≥ 1) = Pr (D (θ H 0 , ϑ) ≤ ∆) ,
which is the posterior probability that the null hypothesis is sufficiently close to the data-generating distribution.

One application of usefulness probability is explanatory inference according to which a hypothesis is considered useful to the extent that it, if true, could explain why the observed data occurred (cf. [START_REF] Lipton | Inference to the Best Explanation[END_REF]. The usefulness u (θ) is the potential explanatory power of θ if u (θ) is strictly monotonically increasing with Pr (τ θ (Y ) = τ θ (y) |ϑ = θ) for some function τ • (•) and for the observed sample y modeled as a realization of the random sample Y .

For example, Pr (τ θ (Y ) = τ θ (y) |ϑ = θ) is a likelihood if τ θ (y) = y for all θ or, more generally, is a marginal likelihood if τ θ (y) does not depend on θ. Those τ θ (y) = y versions are closely related to the likelihood-based measures of explanatory power under critical rationalism described in Popper (2002, Appendix IX, pp. 416, 420-421) and [START_REF] Niiniluoto | Induction and Deduction in the Sciences[END_REF]. The definition can be extended to likelihood functions and marginal likelihood functions of a continuous θ by allowing u (θ) to be strictly monotonically increasing with a probability density of τ θ (y). Those measures of potential explanatory power are generalized to pseudo-likelihoods such as integrated likelihoods, profile likelihoods, and conditional likelihoods [START_REF] Bickel | The strength of statistical evidence for composite hypotheses: Inference to the best explanation[END_REF][START_REF] Bickel | Pseudo-likelihood, explanatory power, and Bayes's theorem [comment on "A likelihood paradigm for clinical trials[END_REF].

A usefulness probability with potential explanatory power as the usefulness is called explanatory probability.

The p value as an explanatory probability

Recall that a p value testing the null hypothesis that ϑ = θ is

p (θ) = Pr (t θ (Y ) ≥ t θ (y) |ϑ = θ)
where each t θ (y ) is a test statistic for a possible sample y . To connect that to explanatory probability, consider the special case of potential explanatory power defined according to

τ θ (y ) = χ (t θ (y ) ≥ t θ (y)) (1) 
for every possible sample y . In that way, each τ θ (y ) indicates whether or not y is as extreme as the observed sample, and the potential explanatory power of θ is its ability to predict the observation that τ θ (Y ) = τ θ (y) (cf. [START_REF] Davies | On p-values[END_REF][START_REF] Bickel | Self-consistent confidence sets and tests of composite hypotheses applicable to restricted parameters[END_REF].

Lemma 1. If u (θ) is the potential explanatory potential of θ on the basis of equation (1), then u (θ) is strictly monotonically increasing with p (θ).

Proof. By equation (1),

Pr (τ θ (Y ) = τ θ (y) |ϑ = θ) = Pr (χ (t θ (Y ) ≥ t θ (y)) = χ (t θ (y) ≥ t θ (y)) |ϑ = θ) = Pr (χ (t θ (Y ) ≥ t θ (y)) = 1|ϑ = θ) = Pr (t θ (Y ) ≥ t θ (y) |ϑ = θ) = p (θ) .
Therefore, since u (θ), as the potential explanatory potential of θ, is strictly monotonically increasing with Pr (τ θ (Y ) = τ θ (y) |ϑ = θ), so it is with p (θ).

If, to some order of approximation denoted by . =, the posterior distribution of ϑ satisfies

Pr (p (ϑ) ≤ α) . = α (2) 
for any α between 0 and 1, then that posterior distribution is called an approximate confidence distribution (Bickel, 2020b;cf. Schweder and Hjort, 2016). For example, the order of approximation could be defined in a sense of [START_REF] Dudley | Asymptotic normality with small relative errors of posterior probabilities of half-spaces[END_REF], who prove under broad conditions the approximate equality of likelihood-ratio test p values and posterior probabilities of half-spaces. A non-Bayesian justification is also available: ϑ has an approximate confidence distribution if the joint distribution of Y and τ ϑ (Y ) (or an analogous pivotal quantity) maximizes the entropy subject to the constraint that their marginal distributions are fixed [START_REF] Bickel | The classical theory of errors derived from the maximum entropy principle[END_REF].

Definition 1. Let ξ (θ H 0 ), called the ξ value of the null hypothesis that ϑ = θ H 0 , denote the explanatory probability under the above conditions, namely, that 1. The posterior distribution of ϑ is an approximate confidence distribution.

2. The usefulness of θ is the potential explanatory power of θ defined according to equation (1).

The p value may be interpreted as an approximate ξ value.

Theorem 1. To the same order of approximation as the approximate confidence distribution,

ξ (θ H 0 ) . = p (θ H 0 ).
Proof. Since, by Lemma 1, u (θ) is strictly monotonically increasing with p (θ),

Pr (u (θ H 0 ) ≥ u (ϑ)) = Pr (p (ϑ) ≤ p (θ H 0 )) .
By the definition of an approximate confidence distribution,

Pr (p (ϑ) ≤ p (θ H 0 )) . = p (θ H 0 ). It follows that Pr (u (θ H 0 ) ≥ u (ϑ)) . = p (θ H 0 ) .

Effect-size estimation

For any α between 0 and 1 and a parameter space Θ, the α (100%) usefulness region is the set of all parameter values of usefulness probability of at least α:

{θ H 0 ∈ Θ : Pr (u (θ H 0 ) ≥ u (ϑ)) ≥ α} .
In the case that the usefulness is potential explanatory power, it is called the α (100%) explanatory region. If, in addition, the conditions of Definition 1 hold, then it is called the α (100%) ξ region.

The regions are typically intervals when θ H 0 is a scalar. For example, if α = 0.05, then a 5% ξ set of scalar parameter values would typically be a 5% ξ interval.

According to Theorem 1, the α (100%) ξ region is an approximate (1 -α) (100%) confidence region. However, that relation between ξ regions and confidence regions breaks down in cases of multiple testing and restricted parameter spaces, as seen in Sections 3.4 and 4.3, respectively.

3 Corrections for multiple testing

Corrected usefulness probability and corrected explanatory probability

Let m be the number of parameters of interest about which simultaneous claims of statistical significance will be considered in the form of flagging all of their null hypotheses as "inadequate" or "useless" as opposed to the usual "false." In our approximate Bayesian framework, m may depend on the data and may be less than the total number of parameters considered in a study. For example, the data and background knowledge might lead a researcher to consider whether the m = 2 null hypotheses corresponding to blood pressure and heart rate are both relatively useless.

For each of the unknown parameter values ϑ 1 , . . . , ϑ m and their null hypothesis values θ 1 , . . . , θ m , consider testing the null hypothesis that ϑ i = θ i . To extend the framework of Section 2 to the problem of testing whether all m of the null hypotheses are useless, define the corrected usefulness probability by the posterior probability that at least one of them is as useful as its corresponding true value:

Pr (u (θ 1 ) ≥ u (ϑ 1 ) or • • • or u (θ m ) ≥ u (ϑ m )) = 1 -Pr (u (θ m ) < u (ϑ m ) , . . . , u (θ m ) < u (ϑ m )) = 1 - m i=1 Pr (u (θ i ) < u (ϑ i )) = 1 - m i=1 (1 -Pr (u (θ i ) ≥ u (ϑ i ))) , (3) 
the last line of which holds under the posterior mutual independence of ϑ 1 , . . . , ϑ m . In applications, if the corrected usefulness probability is sufficiently low, all of the null hypotheses are rejected in the sense of being judged unsuitable for further use as working hypotheses. If the usefulness of a hypothesis is its potential explanatory probability as defined in Section 2.1, then the corrected usefulness probability is the corrected explanatory probability.

Corrected ξ values

Let p i (θ i ) denote a p value for testing the null hypothesis that ϑ i = θ i . If the conditions of Definition 1 hold for each ϑ i with respect to each p value function p i of the i th parameter of interest, then the corrected explanatory probability is called the multiple-test ξ value and is denoted by ξ (θ 1 , . . . , θ m ).

A related quantity is

ξ ⊥ (θ 1 , . . . , θ m ) = 1 - m i=1 (1 -p i (θ i )) . (4) 
Calling it the independence ξ value of θ 1 , . . . , θ m is justified by the next result.

Corollary 1. If ϑ 1 , . . . , ϑ m are mutually independent, then ξ ⊥ (θ 1 , . . . , θ m ) is approximately equal to ξ (θ 1 , . . . , θ m ) in the sense that

(1 -ξ ⊥ (θ 1 , . . . , θ m )) 1 m . = (1 -ξ (θ 1 , . . . , θ m )) 1 m ,
where the order of approximation is the same as that of equation (2).

Proof. Since ϑ 1 , . . . , ϑ m are mutually independent, equation (3) yields

ξ (θ 1 , . . . , θ m ) = 1 - m i=1 (1 -ξ (θ i )) (1 -ξ (θ 1 , . . . , θ m )) 1 m = m i=1 (1 -ξ (θ i )) 1 m . ( 5 
)
By Theorem 1, ξ (θ i ) . = p (θ i ) for all i = 1, . . . , m. It follows that 1 -ξ (θ i ) . = 1 -p (θ i ) for all i = 1, . . . , m and thus that m i=1

(1 -ξ (θ i ))

1 m . = m i=1 (1 -p (θ i )) 1 m = (1 -ξ ⊥ (θ 1 , . . . , θ m )) 1 m , (6) 
in which the exact equality is implied by equation ( 4). The left-hand side of equation ( 6) is the right-hand side of equation ( 5).

If

p (θ i ) ≈ 0 for all i = 1, . . . , m, then ξ ⊥ (θ 1 , . . . , θ m ) is approximately equal to ξ ≈ (θ 1 , . . . , θ m ) = m i=1 p i (θ i ) , (7) 
which is called the approximate ξ value of θ 1 , . . . , θ m .

A quantity is a corrected ξ value if it is a multiple-test ξ value, an independence ξ value, or a an approximate ξ value. That umbrella term is patterned after the concept of correcting p values for multiple testing.

Relations to corrected p values

Equations ( 4) and ( 7) resemble the maximum corrected p values of [START_REF] Sidak | Rectangular confidence regions for means of multivariate normal distributions[END_REF] and Bonferroni, respectively:

p ⊥ (θ 1 , . . . , θ m ) = max i=1,...,m 1 -(1 -p i (θ i )) m (8) p ≈ (θ 1 , . . . , θ m ) = max i=1,...,m m p i (θ i ) . ( 9 
)
The procedure of rejecting all m null hypotheses if and only if p ⊥ (θ 1 , . . . , θ m ) ≤ α controls the family-wise error rate at level α under the mutual independence of the samples. If p (θ i ) ≈ 0 for all i = 1, . . . , m, then p ⊥ (θ 1 , . . . , θ m ) is approximately equal to p ≈ (θ 1 , . . . , θ m ). The resemblance may be formalized as inequalities: Here, m (α), the number of null hypotheses rejected at uncorrected level α, is used as m in equations ( 9), ( 8), ( 7), and (4).

Proposition 1. For all p values, ξ ⊥ (θ 1 , . . . , θ m ) ≤ p ⊥ (θ 1 , . . . , θ m ).

Proof.

1 -ξ ⊥ (θ 1 , . . . , θ m ) = m i=1 (1 -p i (θ i )) ≥ min i=1,...,m (1 -p i (θ i )) m and p ⊥ (θ 1 , . . . , θ m ) = 1 -min i=1,...,m (1 -p i (θ i )) m .
Proposition 2. For all p values, ξ ≈ (θ 1 , . . . , θ m ) ≤ p ≈ (θ 1 , . . . , θ m ).

Proof. ξ ≈ (θ 1 , . . . , θ m ) = m i=1 p i (θ i ) ≤ m max i=1,...,m p i (θ i ) and p ≈ (θ 1 , . . . , θ m ) = m max i=1,...,m p i (θ i ) .
Those results say the independence ξ value and the corrected ξ value are no more conservative than the Sidak and Bonferroni p values when used to determine whether to reject the same m null hypotheses. In practice, the corrected ξ values tend to be much less conservative than the corrected p values.

Example 2. [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] considered 15 p values from [START_REF] Neuhaus | Improved thrombolysis in acute myocardial infarction with front-loaded administration of alteplase: results of the rt-PA-APSAC patency study (TAPS)[END_REF] for testing thrombolytic-treatment outcomes. For deciding whether to reject only the uncorrected p values less than or equal to some significance level α, the corrected ξ values and corrected p values are displayed in Figure 1 Example 3. This example uses order statistics to achieve a level of generality while suppressing sampling error. Suppose, following much of the statistics literature, that the distribution of the standard normal quantiles of m independent one-sided p values is N 0, σ 2 , the normal distribution of mean 0 and standard deviation σ. Note that σ = 1 under the null hypothesis, for in that case the p values have the U (0, 1) distribution. For any q between 0 and 1, let p q denote the qth quantile of the corresponding two-sided p value.

The ideal sample of m two-sided p values based on expected order statistics of a sample of m independent draws from the U (0, 1) distribution is p 1/(m +1) , . . . , p m /(m +1) . Setting the Type I error rate α (the probability that a two-sided p value is greater than α given σ = 1) at α = 0.05 as the significance threshold for the two-sided p values, let β (σ) denote the Type II error rate (the probability that the two-sided p value is less than α) at each value of σ = 1.

For each of the four ideal samples of m = 2, 4, 8, 16 two-sided p values on the basis of various values of σ, the corrected ξ values and corrected p values are displayed in Figure 2 as functions of β (σ), which is 1 minus the power of the test given σ.

Effect-size estimation under multiple testing

In analogy with Section 2.3, the α (100%) corrected usefulness (corrected explanatory, corrected ξ) given by equations ( 9), ( 8), ( 7), and (4), respectively. The headings of the four plots correspond to m = 2, 4, 8, 16, respectively. Expected order statistics are used to generate the uncorrected p values that the other quantities depend on, as described in Example 3.

region
4 Restricted parameter spaces

Conditional usefulness probability and conditional explanatory probability

Let the restriction set R be a subset of Θ, the parameter space. The conditional usefulness probability of θ H 0 , given that ϑ ∈ R, is the posterior probability that the null hypothesis is as useful as the data-generating distribution, conditional on the restriction:

Pr (u (θ H 0 ) ≥ u (ϑ) |ϑ ∈ R) = Pr (u (θ H 0 ) ≥ u (ϑ) , ϑ ∈ R) Pr (ϑ ∈ R) , (10) 
assuming that Pr (ϑ ∈ R) > 0.

Example 4. If Θ is the real line and the parameter of interest is restricted to non-negative values,

then the relevant restriction set is R = [0, ∞[. Assume that Pr (ϑ ≥ 0) > 0. The conditional usefulness probability of θ H 0 , given that ϑ ≥ 0, is Pr (u (θ H 0 ) ≥ u (ϑ) |ϑ ≥ 0) = Pr (u (θ H 0 ) ≥ u (ϑ) , ϑ ≥ 0) Pr (ϑ ≥ 0) .
In the case that the usefulness is the potential explanatory power, Pr (u (θ

H 0 ) ≥ u (ϑ) |ϑ ∈ R)
is called the conditional explanatory probability, given that ϑ ∈ R.

Conditional ξ values

Restricted parameter space

If the conditions of Definition 1 hold, then the conditional usefulness probability of θ H 0 , given that ϑ ∈ R, is called the conditional ξ value, given that ϑ ∈ R, and is denoted by

ξ (θ H 0 |R). Lemma 2. If Pr (ϑ ∈ R) > 0, then the conditional ξ value of θ H 0 , given that ϑ ∈ R, is ξ (θ H 0 |R) = Pr (p (ϑ) ≤ p (θ H 0 ) |ϑ ∈ R) = Pr (p (ϑ) ≤ p (θ H 0 ) , ϑ ∈ R) Pr (ϑ ∈ R) .
Proof. Since, by Lemma 1, u (θ) is strictly monotonically increasing with p (θ), 2) and the assumption that p > (θ) monotonically increases with θ. 

Pr (u (θ H 0 ) ≥ u (ϑ) |ϑ ∈ R) = Pr (p (ϑ) ≤ p (θ H 0 ) |ϑ ∈ R) .
1. If p > (0) < p = (θ H 0 ) /2, then ξ = (θ H 0 | [0, ∞[) . = p = (θ H 0 ) /2 -p > (0) + 1 -1 -p = (θ H 0 ) /2 1 -p > (0) = p = (θ H 0 ) -p > (0) 1 -p > (0) .

Effect-size estimation under restricted parameter spaces

The definitions of Section 2.3 extend by analogy to their conditional counterparts. Thus, the α (100%) conditional usefulness region, given that ϑ ∈ R, is the set of all parameter values of conditional usefulness probability of at least α:

{θ H 0 ∈ Θ : Pr (u (θ H 0 ) ≥ u (ϑ) |ϑ ∈ R) ≥ α} .
In the case that the usefulness is potential explanatory power, it is called the α (100%) conditional explanatory region, given that ϑ ∈ R.

Likewise, the α (100%) conditional ξ region, given that ϑ ∈ R, is the set of all parameter values of conditional ξ values of at least α:

{θ H 0 ∈ Θ : ξ (θ H 0 |R) ≥ α} .
That is not necessarily a (1 -α) (100%) confidence region, as may be seen from Theorem 2. In fact, Figures 34illustrate that even when a confidence region is entirely in the forbidden region, the conditional ξ region is not.

Figure 1 :

 1 Figure 1: The maximum Bonferroni p value, the maximum Sidak p value, the approximate ξ value, and the independence ξ value as functions of the significance level α for the 15 real-data hypothesis tests specified in Example 2. Here, m (α), the number of null hypotheses rejected at uncorrected level α, is used as m in equations (9), (8), (7), and (4).

  is the set of all parameter values of corrected usefulness probability (corrected explanatory probability, corrected ξ value, respectively) of at least α. The α (100%) corrected ξ region may be the α (100%) multiple test ξ region{(θ 1 , . . . , θ m ) : ξ (θ 1 , . . . , θ m ) ≥ α} , the α (100%) independence ξ region {(θ 1 , . . . , θ m ) : ξ ⊥ (θ 1 , . . . , θ m ) ≥ α} , or the α (100%) approximate ξ region {(θ 1 , . . . , θ m ) : ξ ≈ (θ 1 , . . . , θ m ) ≥ α} .The latter two regions are subsets of the corresponding (1 -α) (100%) confidence regions according to Propositions 1 and 2.

Figure 2 :

 2 Figure2: The maximum Bonferroni p value, the maximum Sidak p value, the approximate ξ value, the independence ξ value, and the uncorrected two-sided p value as functions of β, the probability of a Type II error, given α = 0.05 as the probability of a Type I error. The first four quantities are given by equations (9), (8), (7), and (4), respectively. The headings of the four plots correspond to m = 2, 4, 8, 16, respectively. Expected order statistics are used to generate the uncorrected p values that the other quantities depend on, as described in Example 3.

Figure 3 :

 3 Figure3: The two-sided conditional ξ value of θ H 0 , given that ϑ ≥ 0, as a function of p > (0) according to Theorem 2, with the two-sided p value held fixed at p = (θ H 0 ) = 0.05. The one-sided p value p > (0) is the observed confidence level[START_REF] Polansky | Observed Confidence Levels: Theory and Application[END_REF] of the forbidden region (ϑ < 0) in the sense that Pr (ϑ < 0) = Pr (p > (ϑ) < p > (0)) . = p > (0) by equation (2) and the assumption that p > (θ) monotonically increases with θ.

2.

  If p = (θ H 0 ) /2 ≤ p > (0) < 1 -p = (θ H 0 ) /2, then ξ = (θ H 0 | [0, ∞[) . = 0 + 1 -1 -p = (θ H 0 ) /2 1 -p > (0) = p = (θ H 0 ) /2 1 -p > (0) . 3. If p > (0) ≥ 1 -p = (θ H 0 ) /2, then ξ = (θ H 0 | [0, ∞[) . = 0 + (1 -p > (0)) 1 -p > (0) = 1.The three cases of ξ = (θ H 0 | [0, ∞[) can be seen in Figure3, in which θ H 0 is varied in order to leave p = (θ H 0 ) constant at 0.05 as p > (0) varies. Figure4instead displays ξ = (0| [0, ∞[) with θ H 0 held constant at 0 in order to show the effect of p > (0) on the conditional ξ value for the same null hypothesis, that ϑ = 0. Both figures indicate that as confidence regions overlap more and more with the forbidden region (ϑ < 0), the conditional ξ value gets closer and closer to 1.

Figure 4 :

 4 Figure4: The two-sided conditional ξ value of θ H 0 = 0, given that ϑ ≥ 0, as a function of p > (0) according to Theorem 2. The sense in which p > (0) may be interpreted as the confidence of the forbidden region is given in the caption of Figure3.
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The claim then follows from equation (10).

The evidential equivalent of ξ (θ H 0 |R) first appeared in Bickel (2020a).

Nonnegative parameter value

This section uses the setting of a real-valued parameter of interest restricted to be non-negative.

Theorem 2. Assume the setting of Example 4. The following statements hold for any real value θ H 0 . Let p > (θ H 0 ) denote a one-sided p value for testing the null hypothesis that ϑ = θ H 0 with the alternative hypothesis that ϑ > θ H 0 , and let

denote the corresponding two-sided p value for testing the null hypothesis that ϑ = θ H 0 with the alternative hypothesis that ϑ = θ H 0 . If p > (θ H 0 ) increases monotonically with θ H 0 and if the conditions of Definition 1 hold for p > (θ H 0 ) and p = (θ H 0 ), then the two-sided conditional ξ value of θ H 0 , given that ϑ ≥ 0, is

Proof. From Lemma 2 and the assumption that p > (θ H 0 ) increases monotonically with θ H 0 ,

with the approximate equality following from equation (2). By equation ( 11),

Using Pr (p > (ϑ) ≤ α) . = α from equation (2), the three cases of that are