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The algebra B of bicomplex numbers is viewed as a complexification of the Archimedean f -algebra of hyperbolic numbers D. This lattice-theoretic approach allows us to establish new properties of the so-called D-norms. In particular, we show that D-norms generate the same topology in B. We develop the D-trigonometric form of a bicomplex number which leads us to a geometric interpretation of the n th roots of a bicomplex number in terms of polyhedral tori. We use the concepts developed, in particular that of Riesz subnorm of a D-norm, to study the uniform convergence of the bicomplex zeta and gamma functions. The main result of this paper is the generalization to the bicomplex case of the Riemann functional equation and Euler's reflection formula.

Introduction

It has been shown in a recent paper [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF] that the unique (up to isomorphism) algebra that is both Clifford algebra and Archimedean f -algebra containing R is the algebra of hyperbolic numbers

D = z = x + jy : x, y ∈ R, j / ∈ R; j 2 = 1 .
This noteworthy fact connects two classical domains of mathematics: Clifford algebras and Riesz spaces. The aim of this paper is to study the complexification of the algebra D in the framework of Riesz space theory.

According to Arnold [START_REF]Arnold: Swimming Against the Tide[END_REF], attempts to complexify and to quaternionize mathematical theories are making clear the fundamental unity of all parts of mathematics...Complexification is an informal operation for which there are no axioms; we should try to guess.

In the same vein, the natural question seems to be the following: is the algebra B = D + iD of bicomplex numbers a simple "multiplication" of the algebra D or is it rather a "good" complexification of the structure of Archimedean f -algebra of D ? In this paper we will give elements of answer to this general question. In particular, we prove that B is a normal complexified f -algebra. This theoretic-lattice consideration allows us to establish D-extensions of well-known properties of complex numbers to B.

Recall that the algebra of bicomplex numbers

B := a + bi + cj + dk : a, b, c, d ∈ R; i 2 = k 2 = -1, j 2 = 1, ik = ki = j},
was introduced in 1892 by Segre [START_REF] Segre | Le Rappresentazioni Reali delle Forme Complesse a Gli Inti Iperalgebrici[END_REF] in his search for special algebras, and since then there was considerable activity in the field for several years. One can cite, for instance, the paper of Scorza Dragoni [START_REF] Scorza Dragoni | Sulle funzioni olomorfe di una variabile bicomplessa[END_REF] in 1934 on holomorphic functions of a bicomplex variable, the work of Morin in 1935 on the algebra of bicomplex numbers [START_REF] Morin | Richerche sull'algebra bicomplessa[END_REF], the series of papers by [START_REF] Spampinato | Estensione nel Campo Bicomplesso di Due Teoremi, del Levi-Civita e del Severi, per le Funzione Olomorfe di Due Variabili Complesse, I, II[END_REF]1936 (see [START_REF] Spampinato | Estensione nel Campo Bicomplesso di Due Teoremi, del Levi-Civita e del Severi, per le Funzione Olomorfe di Due Variabili Complesse, I, II[END_REF], [START_REF] Spampinato | Sulla Rappresentazione delle Funzioni di Variabile Bicomplessa Totalmente Derivabili[END_REF], [START_REF] Spampinato | Sulle Funzione di Variabili bicomplessa o Biduale. Scritte Matematici Offerto a Luigi Berzolari[END_REF]) on functions of a bicomplex variable, and the development of a generalized bicomplex variable du to Takasu [START_REF] Takasu | Theorie der Funktionen einer allgemeinen bikomplexen Veränderlichen[END_REF] in 1943.

Bicomplex numbers has found applications in geometry and quantum physics (see e.g. [START_REF] Bagchi | Bicomplex hamiltonian systems in quantum mechanics[END_REF][START_REF] Castaneda | New applications of pseudoanalytic function theory to the Dirac equation[END_REF]) as a commutative four dimensional algebra that generalizes complex numbers. In fact, the algebra of bicomplex numbers is the unique commutative complex Clifford algebra that is not a division algebra [START_REF] Brackx | Clifford analysis[END_REF]: B ∼ = Cl 1 (C) which has complex numbers C ∼ = Cl R (0, 1) and hyperbolic numbers D ∼ = Cl R (1, 0) as Clifford subalgebras [START_REF] Sobczyk | The hyperbolic number plane[END_REF].

The research on bicomplex and hyperbolic numbers has been revived some decades ago by Yaglom [START_REF] Yaglom | A Simple Non-Euclidean Geometry and It's Physical Basis[END_REF], Riley [START_REF] Riley | Contributions to the theory of functions of a bicomplex variable[END_REF], and Price [START_REF] Price | An Introduction to Multicomplex Spaces and Functions[END_REF]. In recent years, several properties of complex analysis have been generalized for bicomplex numbers. The bicomplex Riemann zeta function is introduced by Rochon in [START_REF] Rochon | A Bicomplex Riemann Zeta Function[END_REF] and bicomplex quantum mechanics is investigated in [START_REF] Rochon | Bicomplex quantum mechanics I. The generalized Schrödinger equation[END_REF][START_REF] Rochon | Bicomplex quantum mechanics II. The Hilbert Space[END_REF]. Kumar et al. studied bicomplex C * -algebras and topological bicomplex modules in [START_REF] Kumar | Bicomplex weighted Hardy spaces and bicomplex C * -algebras[END_REF] and in [START_REF] Kumar | Topological bicomplex modules[END_REF] respectively. Hahn-Banach theorems for bicomplex modules have been proved by Luna-Elizarrarás et al. in [START_REF] Luna-Elizarrarás | On linear functionals and Hahn-Banach theorems for hyperbolic and bicomplex modules[END_REF]. Alpay et al. [START_REF] Alpay | Basics of Functional Analysis with Bicomplex scalars and Bicomplex Schur Analysis[END_REF] developed the functional analysis with bicomplex scalars. Further applications and properties of bicomplex numbers can be found in [START_REF] Colombo | Singularities of functions of one and several bicomplex variables[END_REF][START_REF] Colombo | Bicomplex holomorphic functional calculus[END_REF][START_REF] Lavoie | Finite-dimentional bicomplex Hilbert spaces[END_REF][START_REF] Luna-Elizarrarás | Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers[END_REF].

It is well known that quaternions introduced in 1843 by Hamilton [START_REF] Hamilton | On a new species of imaginaray quantities connected with a theory of quaternions[END_REF] are the only possible four-dimensional real algebra without zero divisors. Quaternions form a field but are not commutative. From a purely algebraic point of view, the loss of commutativity is not such a big problem, but it prevents from developing a viable 1 theory of holomorphic functions of a quaternion variable. In return, and despite the existence of zero divisors, many authors agree (see e.g. [START_REF] Alpay | Basics of Functional Analysis with Bicomplex scalars and Bicomplex Schur Analysis[END_REF][START_REF] Luna-Elizarrarás | Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers[END_REF]) that bicomplex numbers can represent a reasonable alternative to quaternions to build a theory of functions of several complex variables. In the present paper we consider a new direction. It consists in looking at the algebra D, somehow, as an intermediate object between R and C (we show in an upcoming article that it is "closer" to R than to C ). We believe that the fundamental structural difference between R and C is that of Archimedean f -algebra (C can not be endowed with such a structure [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). Therefore, to extend complex analysis in general to higher dimensions with an underlying order structure, the key idea is to extend, in a manner to define, the structure of Archimedean f -algebra. The complexification of D can be seen as the first step in this direction.

Our goal in this paper is twofold. The first, is to give several new concepts of bicompex analysis and geometry based on the structure of normal complexified f -algebra of B. After a brief reminder (section 2) of basic properties of bicomplex and hyperbolic numbers necessary for this article, we introduce in section 3 the notion of D-trigonometric form of bicomplex numbers and some of their properties. For example, we prove that the bicomplex n th roots of unity can be represented by the vertices of a regular polyhedral torus. In section 4 we introduce the notion of D-norm on bicomplex numbers. In particular, we define the notion of Riesz subnorm of a D-norm.

The second goal is to use the obtained lattice-theoretical results to go further in the development of the theory of bicomplex zeta function introduced by Rochon in [START_REF] Rochon | A Bicomplex Riemann Zeta Function[END_REF]. We establish uniform convergence of the bicomplex Riemann zeta function. We define the bicomplex gamma function using an integral representation and prove its absolute convergence. Furthermore, an integral representation of zeta and functional equations are obtained. The main result of this paper is the following theorem.

Theorem 1.1 (Bicomplex Riemann functional equation and Euler's reflection formula). The following statements are satisfied.

(i) Γ(1 + ω) = ωΓ(ω) for ω ∈ Ω -; (ii) Γ(1 -ω)Γ(ω) = π sin πω for ω ∈ Ω; (iii) ζ(ω) = 2(2π) ω-1 sin( π 2 ω)Γ(1 -ω)ζ(1 -ω) for ω ∈ 1 + B * .
The proof of Theorem 1.1 and details of the notations will be given in section 5.

Preliminaries

In this section we present some basic properties of hyperbolic numbers and bicomplex numbers. For more details see [START_REF] Alpay | Basics of Functional Analysis with Bicomplex scalars and Bicomplex Schur Analysis[END_REF], [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF], [START_REF] Luna-Elizarrarás | On the bicomplex Gleason-Kahane Zelazko theorem[END_REF], [START_REF] Rochon | On algebraic properties of bicomplex and hyperbolic numbers[END_REF], [START_REF] Rönn | Bicomplex algebra and function theory[END_REF] and [START_REF] Sobczyk | The hyperbolic number plane[END_REF]. For the used lattice concepts we refer the reader to the standard books [START_REF] Luxemburg | Riesz spaces I[END_REF] and [START_REF] Zaanen | Riesz spaces II[END_REF].

Riesz spaces and f -algebras

An ordered real vector space L is said to be Riesz space or (vector lattice) if the supremum u ∨ v; equivalently, the infumum u ∧ v of two elements u and v exist in L. In this case the absolute value of u ∈ L is defined by |u| = u ∨ (-u).

A Riesz space L is said to be Archimedean if inf{un -1 : n = 1, • • • } = 0 for all u ∈ L + , where L + is the set of all positive elements of L called the positive cone of L. A real algebra A ( associative algebra with usual algebraic operations) is said to be an f -algebra if A is a vector lattice in which the positive cone A + satisfies the properties: a, b ∈ A + then ab ∈ A + ; a ∧ b = 0 implies ac ∧ b = a ∧ cb = 0 for all c ∈ A + . In any f -algebra the squares are positive and the absolute value is multiplicative.

A typical example of f -algebras is the linear space of real valued continuous functions on a topological space. Moreover, Archimedean f -algebras are known to be commutative (see e.g. [START_REF] Huijsmans | Ideal theory in f-algebra[END_REF]) and are even automatically associative [START_REF] Bernau | On semi-normal lattice rings[END_REF]. Of course, the fundamental example of Archimedean f -algebras is the field R of real numbers.

Hyperbolic numbers

In this section we present the results of [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF] used throughout this paper.

The ring of hyperbolic numbers

D := z = x + jy : x, y ∈ R, j / ∈ R; j 2 = 1 ,
defined in the introduction has zero divisors which are the multiples x(1 ± j) with x ∈ R \ {0}. Thus, the group D * of units of D is characterized by all hyperbolic numbers z such that z h = 0 where z h is the hyperbolic square modulus of z = x + jy defined by

z h := z z = x 2 -y 2 ,
where z is the conjugate of z given by z = x -jy.

The hyperbolic plane has an important basis defined by the two idempotent elements

e 1 := 1 + j 2 and e 2 := 1 -j 2 =⇒ e 1 + e 2 = 1, e 1 e 2 = 0.
It follows that, each hyperbolic number z can be expressed uniquely as

z = π 1 (z)e 1 + π 2 (z)e 2 , (2.1) 
where π 1 (x + jy) = x + y and π 2 (x + jy) = x -y. The representation (2.1), called spectral decomposition [START_REF] Sobczyk | The hyperbolic number plane[END_REF], allows us to reduce algebraic operations into component-wise operations. Moreover, the partial order defined by z, w ∈ D; z ≤ w if and only if π k (z) ≤ π k (w), (k = 1, 2), makes D into Archimedean f -algebra where the lattice operations are given by

z ∨ w = max {π 1 (z), π 1 (w)} e 1 + max {π 2 (z), π 2 (w)} e 2 , (2.2) 
z ∧ w = min {π 1 (z), π 1 (w)} e 1 + min {π 2 (z), π 2 (w)} e 2 .

(2.3) Furthermore, D is Dedekind complete, that is, every nonempty set of D that is bounded from above (resp. from below) has a supremum (resp. a infumum). 

|z| := z ∨ (-z) = |π 1 (z)|e 1 + |π 2 (z)|e 2 .
(2.4)

Thus, the kernel of group homomorphism |.| from D * to D + * is the four Klein group S = {1, -1, j, -j} called group of signs of D. For ε ∈ S, the set 1)-cone is the positive cone D + and the (-1)-cone is the negative cone D -. The absolute value function yields a norm in D given by the formula

D ε := {z ∈ D : |z| = εz} is called the ε-cone of D. The (
z R := min α ∈ R + : α.1 ≥ |z| = |z| ∨ |z| for all z ∈ D, (2.5) 
and satisfying the following properties for all z, w ∈ D:

N 1) z R ≤ w R whenever |z| ≤ |w|; N 2) 1 R = 1, zw R ≤ z R w R .
It follows from the properties above that (D, . R ) is a Banach lattice. Consequently, the exponential of any hyperbolic number z can be defined by the absolute convergent series

e z := ∞ n=0 z n n! = e π 1 (z) e 1 + e π 2 (z) e 2 .
According to the above spectral decomposition of e z one can easily verify that the hyperbolic exponential function exp is a group isomorphism from D to D + * that preserves conjugation and lattice operations : e z = e z ; e z ∧ e w = e z∧w ; e z ∨ e w = e z∨w for all z, w ∈ D.

(2.6)

Thus, the hyperbolic logarithm function ln is defined by the inverse isomorphism of exp.

Bicomplex numbers

The algebra of bicomplex numbers defined in the introduction is the set

B := x + yi + zj + tk : x, y, z, t ∈ R; i, j, k / ∈ R ,
where i, j, k are imaginary units satisfying the following multiplication rules

i 2 = k 2 = -1, j 2 = 1, ik = ki = j.
B contains three two-dimensional real subalgebras: two copies of the field of complex numbers, R(u) := {x + uy : x, y ∈ R}, (u = i, k) and the algebra of hyperbolic numbers R(j) = D. This implies that each bicomplex number ω has three R(u)-algebraic representations, given by

ω = Re u (ω) + π(u)Im u (ω), (2.7) 
where Re u (ω), Im u (ω) ∈ R(u), (u = i, j, k) and π is the permutation π = i j k k i j .

Write ω = Re j (ω) + iIm j (ω) then, from the representation (2.1) one can derive that

ω = P 1 (ω)e 1 + P 2 (ω)e 2 , (2.8) 
where P k is the algebra homomorphism form B to C = R(i), defined by

P k (ω) = π k (Re j (ω)) + iπ k (Im j (ω)), (k = 1, 2).
It follows that each bicomplex number can be viewed (via the map ω → (P 1 (ω), P 2 (ω)) ) as a pair (z 1 , z 2 ) of the product algebra C × C. Thus the group B * of units of B is the set of all bicomplex numbers ω such that P 1 (ω) = 0 and P 2 (ω) = 0. Now, from the representation (2.7) on can define three conjugations of ω ∈ B as follows

ω u = Re u (ω) -π(u)Im u (ω), (u = i, j, k). (2.9)
Therefore from (2.9) and (2.7), ωω u belongs to R(u), (u = i, j, k). In particular, ωω j ∈ D + . Thus, since D is square-root closed [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF] (i.e., every positive hyperbolic number u has a unique positive square root √ u ) the j-modulus |ω| j of ω is given by

|ω| j := ωω j .
(2.10) Some remarkable properties of |.| j are given by the following statements. For the proof we refer to [START_REF] Luna-Elizarrarás | On the bicomplex Gleason-Kahane Zelazko theorem[END_REF] and [START_REF] Rochon | On algebraic properties of bicomplex and hyperbolic numbers[END_REF]. For ω, ψ ∈ B,

M 1) |ω| j = 0 if and only if ω = 0; M 2) |ωψ| j = |ω| j |ψ| j ; M 3) |ω + ψ| j ≤ |ω| j + |ψ| j ; M 4) |ω| j = P 1 (ω) e 1 + P 2 (ω) e 2 ; M 5) ω = Re(|ω| 2 j ),
where . is the Euclidean norm on B which coincides with that in R(u), (u = i, j, k) and with the modulus for u = i, k.

Finally, recall that a function f :

O -→ B defined in the open set O ⊂ B is said to be B-holomophic in O if, for every ω ∈ O there exists a number f (ω) ∈ B such that f (ω) := lim ψ →ω (ψ-ω)∈B * f (ψ) -f (ω) ψ -ω .
For more details concerning bicomplex holomorphicity, we refer the reader to [START_REF] Alpay | Basics of Functional Analysis with Bicomplex scalars and Bicomplex Schur Analysis[END_REF][START_REF] Luna-Elizarrarás | On the bicomplex Gleason-Kahane Zelazko theorem[END_REF][START_REF] Rönn | Bicomplex algebra and function theory[END_REF].

Hyperbolic valued norm on bicomplex numbers

The notion of D-norm on bicomplex numbers is introduced by Alpay et al. in [START_REF] Alpay | Basics of Functional Analysis with Bicomplex scalars and Bicomplex Schur Analysis[END_REF] and considered by Kumar et al. [START_REF] Kumar | Bicomplex weighted Hardy spaces and bicomplex C * -algebras[END_REF] in the study of bicomplex C * -algebra. In this section we establish additional properties for D-norms on B viewed as the complexification of the f -algebra D. Special attention is paid to the notion of Riesz subnorm of a D-norm that plays a crucial role in the proof of Theorem 1.1.

Definition and properties

Recall that a function N : B → D is called a hyperbolic valued norm or D-norm on B if the following properties are satisfied:

(i) N(ω) = 0 implies ω = 0;

(ii) N(λω) = |λ|N(ω) for all λ ∈ R and for all ω ∈ B;

(iii) N(ω + ψ) ≤ N(ω) + N(ψ) for all ω, ψ ∈ B.
Clearly, every D-norm N is positive, i.e., N(ω) ∈ D + for all ω ∈ B. Moreover, one can see that the second triangular inequality holds.

Proposition 3.1. N(ω) -N(ψ) ≤ N(ω -ψ) for all ω, ψ ∈ B. (3.1)
Proof. Observing that ±(N(ω) -N(ψ)) ≤ N(ω -ψ) one has, passing to supremum from the above,

|N(ω) -N(ψ)| ≤ N(ω -ψ) ≤ N(ω) + N(ψ).
For example, according to the properties M 1), M 2) and M 3), the j-modulus defined in (2.10) is a multiplicative D-norm on B and satisfies the following properties. Proposition 3.2. For all ω ∈ B one has

(i) |ω| j = sup Re j (ω) cos θ + Im j (ω) sin θ : θ ∈ [0, 2π] ; (ii) |ω| j ≥ |Re j (ω)| and |ω| j ≥ |Im j (ω)|.
Proof. (i): Follows from the closure of D for the square mean ([9, Theorem 6.1]) by observing that |ω| j = Re j (ω) 2 + Im j (ω) 2 .

(ii): The identity |ω| 2 j = Re j (ω) 2 +Im j (ω) 2 implies that |ω| 2 j ≥ Re j (ω) 2 and |ω| 2 j ≥ Im j (ω) 2 . So, since the hyperbolic square-root function is increasing and we have

√ z 2 = |z| for every z ∈ D. Then, |ω| j ≥ |Re j (ω)| and |ω| j ≥ |Im j (ω)|.
Recall that if A + iA is the complexification of the unitary Archimedean f -algebra A then for every z = a + ib ∈ A + iA, the supremum

|z| := sup{a cos θ + b sin θ : θ ∈ [0, 2π]} (3.2)
exists in A and is called the modulus of z and satisfies the properties:

(i) |z| = 0 iff z = 0, (ii) |zw| = |z||w|, (iii) |z| ∧ |w| = 0 iff zw = 0.
A + iA is said to be normal if A + iA = {z} ⊥ + {w} ⊥ for all z, w ∈ A + iA such that |z| ∧ |w| = 0, where {u} ⊥ = {v ∈ A + iA : |u| ∧ |v| = 0}. In this case every z ∈ A + iA has a polar-decomposition, i.e., there exists u ∈ A + iA such that z = u|z| and |z| = ūz; here ū is the conjugate of u. More details about complexification of f -algebras can be found in [START_REF] Beukers | Unital embedding and complexification of f -algebras[END_REF]. In the complexification B = D + iD the modulus (3.2) of ω is its j-modulus |ω| j ( Proposition 3.2).

Theorem 3.1. B = D + iD is normal. Proof. Let ω ∈ B and let ψ, ϕ ∈ B be such that |ψ| j ∧ |ϕ| j = 0, i.e., ψϕ = 0. If ψ = 0 we have {ψ} ⊥ = B so for ϕ 1 ∈ {ϕ} ⊥ and ψ 1 ∈ {ψ} ⊥ such that ψ 1 = ω -ϕ 1 we have, ω = ϕ 1 + ψ 1 .
Similarly if ϕ = 0. Assume now that ψ = 0 and ϕ = 0. Therefore, ϕ = ze and ψ = wē for some z, w ∈ C \ {0} and some e = e 1 , e 2 . Thus, {ϕ} ⊥ = {zē : z ∈ C} and {ψ} ⊥ = {ze : z ∈ C}. Which implies from the idempotent representation (2.8) that ω = ϕ 1 + ψ 1 with ψ 1 ∈ {ψ} ⊥ and ϕ 1 ∈ {ϕ} ⊥ .

As mentioned above, normality yields polar decomposition. The following result is a direct consequence of Theorem 3.1. It is easy to verify that ∼ is an equivalence relation. Note that N 1 N 2 when N 1 is integral and N 2 is not. Indeed, suppose the contrary, then there exist a real k > 0 and L ∈ G such that N 1 (ω) ≤ kL(N 2 (ω)) for all ω ∈ B. Since N 2 is not integral then there exist a nonzero ω 0 ∈ B such that N 2 (ω 0 ) h = kL(N 2 (ω 0 )) h = 0. This implies that kL(N 2 (ω 0 )) ∈ eR for some e = e 1 , e 2 . It follows that N 1 (ω 0 ) ∈ eR, since eR is an order ideal in D (see [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). Therefore, N 1 (ω 0 ) h = 0. Which is a contradiction, since N 1 is integral. Proof. Straightforward since real norms are equivalent in finite dimensional vector spaces.

In the following proposition we introduce our main tool in the study of the convergence of the bicomplex zeta and gamma function. 

N (ω) := min{α ∈ R + : α ≥ N(ω)} = N(ω) ∨ N(ω)
is a real norm on B, called Riesz subnorm of N, that satisfies the following properties for all ϕ, ψ ∈ B : (ii) ωψ j ≤ ω j ψ j , with equality whenever ω ∈ R(u) or ψ ∈ R(u), (u = i, k).

(i) N (ϕ) ≤ N (ψ) whenever N(ϕ) ≤ N(ψ); (ii) N(ϕ) ≤ N (ϕ).
Proof. For the proof we will use the following two elementary properties that hold in any f -algebra. For u, v ≥ 0,

P 1) (u ∨ v) 2 = u 2 ∨ v 2 ; P 2) u ∨ v ≤ u + v. (i) Let ω ∈ B.
By definition of ω j (Proposition 3.4), property P 1) implies that

ω 2 j = |ω| 2 j ∨ |ω| j 2 . (3.4) 
So, since the mapping z → Re(z) is a positive operator from D to R (i.e., a linear form such that Re(z) ≤ Re(w) for all z, w ∈ D with z ≤ w) then from Eq(3.4) and M 5) (Section 2) one has

ω 2 j ≥ Re(|ω| 2 j ) = ω 2 .
For the second inequality, Eq (3.4) together with P 2) yields that ω 2 j ≤ |ω| 2 j + |ω| j 2 and then ω 2 j ≤ 2Re(|ω| 2 j ). Hence, again by M 5) we obtain

ω 2 j ≤ 2 ω 2 .
(ii) Let ψ, ω ∈ B. It follows by N 2) (section 2) and by ωψ j = |ωψ| j R that we have ωψ j ≤ ω j ψ j .

Suppose now that ω ∈ R(u), (u = i, k). Then ω = a + ε u ib where a, b ∈ R and ε u be such that ε i = 1 and ε k = j. Then |ω| j = √ a 2 + b 2 = ω . Which implies that ωψ j = ω j ψ j . Remark 3.2. Let S and S j be the unit spheres in (B, . ) and (B, . j ), respectively. We have that √ 2e 1 j = √ 2 and 1 = 1 with √ 2e 1 ∈ S and 1 ∈ S j . This implies by inequality (i) (Proposition (3.5)) that √ 2 = sup ω∈S ω j and 1 = sup

ω∈S j ω .
Property (ii) of proposition 3.5 means that (B, +, ., . j ) is a real Banach algebra. Thus, for every bicomplex number ω the exponential of ω can be defined as the absolute convergence series given by

e ω := ∞ n=0 ω n n! = e P 1 (ω) e 1 + e P 2 (ω) e 2 . (3.5) 
The bicomplex exponential function Exp is a group homomorphism from the additive group B to the multiplicative group B * with ker(Exp) = 2iπZ, where

Z := Ze 1 + Ze 2 . (3.6) 
Z is a sublattice and subring of D, called the ring of hyperbolic integers [START_REF] Gargoubi | On hyperbolic integers[END_REF].

Topology of Bicomplex numbers

Let N be a D-norm on B and let ω 0 ∈ B and τ 0. Define the open D-ball B o N (ω 0 , τ ) and the closed D-ball B N (ω 0 , τ ) centered at ω 0 with hyperbolic radius τ by

B o N (ω 0 , τ ) : = ω ∈ B : N(ω -ω 0 ) τ ; B N (ω 0 , τ ) : = ω ∈ B : N(ω -ω 0 ) ≤ τ .
If N is a real function (i.e., N(ω) = N(w) for all ω ∈ B) so that N is a real norm then B o N (ω 0 , τ )) and B N (ω 0 , τ ) are usual balls in the normed space (B, N) with radius r = τ ∧ τ ∈ R + * . Theorem 3. From this topology the limit in bicomplex numbers can be formulated by Proposition 3.6. Let f : (B, T N 1 ) -→ (B, T N 2 ). Then, a bicomplex number ψ is the limit of f at the point ω 0 ∈ B if and only if for every hyperbolic number ξ 0 there exists a hyperbolic number η 0 such that Proof. Let N be a D-norm on B. Since all real norms on finite dimensional real vector space are topologically equivalent it suffices to prove that T N is equivalent to T N . One has to prove that Id : (B, T N ) -→ (B, T N ) and its inverse Id -1 : (B, T N ) -→ (B, T N ) are continuous. Let ψ, ϕ ∈ B. For ∈ R + * take η = we have

N 2 (f (ω) -ψ) ≤ ξ whenever N 1 (ω -ω 0 ) ≤ η.
N(ψ -ϕ) ≤ η implies N (ψ -ϕ) = N(ψ -ϕ) R ≤ .
Conversely, For ξ 0, put η = ξ ∧ ξ ∈ R + * . Thus one has 

N (ω -ψ) ≤ η implies N(ω -ψ) ≤ ξ.

Bicomplex trigonometry

In this section we develop the concept of D-trigonometric form of a nonzero bicomplex number introduced by Luna-Elizarrarás et al. [START_REF] Luna-Elizarrarás | Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers[END_REF]Chapitre 3]. Using the f -algebra structure of D one is able to select a specified D-valued modulus and argument of bicomplex numbers.

Basic concepts and properties

As in complex numbers, bicomplex trigonometry in his basic form is the study of the properties of hyperbolic cosine and sine functions. From the Banach algebra structure of D, circular functions can be defined for all z ∈ D as

cos(z) := ∞ 0 (-1) n z 2n 2n! = cos(π 1 (z))e 1 + cos(π 2 (z))e 2 , sin(z) := ∞ 0 (-1) n z 2n+1 (2n + 1)! = sin(π 1 (z))e 1 + sin(π 2 (z))e 2 .
We will give some of the properties of cosine and sine. The proof follows immediately from usual properties of the real cosine and sine functions, using the above spectral decompositions. For z, w ∈ D; ε ∈ S; h ∈ Z, C1) e iz = cos z + i sin z .

C2) cos(z + 2πh) = cos(z) and cos(z + 2πh) = cos(z) .

C3) cos(εz) = cos(z) and sin(εz) = ε sin(z) .

C4) z 2 + w 2 = 1 if and only if z = cos θ and w = sin θ for some θ ∈ D.

C5) The restriction of the cosine function to [0, π] D establish a bijection with [-1, 1] D , its inverse is denoted arccos.

C6) The restriction of the sine function to [ -π 2 , π 2 ] D establish a bijection with [-1, 1] D , its inverse is denoted arcsin. Proof. Let ω be a nonzero bicomplex number. If ω is invertible then from polar decomposition theorem (Theorem 3.2) , ω can be written as

ω = |ω| j υ,
where υ ∈ B with |υ| j = 1 that is, Re j (υ) 2 + Im j (υ) 2 = 1 which implies from property C5) above that υ = cos φ + i sin φ for some φ ∈ D. If ω is noninvertible, i.e., ω = ze for some nonzero complex number z and some e ∈ {e 1 , e 2 }, then there exists φ ∈ R ⊂ D such that ω = z (cos φ + i sin φ)e = |ω| j (cos φ + i sin φ). 

if i(φ 1 -φ 2 ) ∈ ker(Exp) = i2πZ. Hence arg D (ω) = φ 0 + 2πZ, for some φ 0 ∈ arg D (ω).
It follows that arg D (ω) has a unique element φ p satisfying -π φ p ≤ π.

The principal D-argument of ω ∈ B * is determined by the solution of the equations

cos φ = Re j (ω) |ω| j and sin φ = Im j (ω) |ω| j , φ ∈ (-π, π] D . (4.1) 
For example, Arg D (1) = 0, Arg D (i) = π 2 , Arg D (j) = πe 1 and Arg D (k) = -π 2 j. Notice that the existence of the principal D-argument is not guaranteed when ω is a zero divisor. For example, the two D-arguments 0 and πe 1 of e 1 belongs to (-π, π] D . The following properties are direct consequence of proposition 4.2 ( equalities are modulo 2πZ). 

A1) Arg D (ϕ i ) = Arg D (ϕ), Arg D (ϕ k ) = -Arg D (ϕ), Arg D (ϕ j ) = -Arg D (ϕ). A2) Arg D (ϕ -1 ) = -Arg D (ϕ), Arg D (ϕψ) = Arg D (ϕ) + Arg D (ψ).
One can now give the following definition. 

L1) Log(ϕ u ) = Log(ϕ) u . L2) Log(ϕ -1 ) = -Log(ϕ), Log(ϕψ) = Log(ϕ) + Log(ψ). L3) ω -α = 1 ω α , ω α ω β = ω α+β and (ϕψ) α = ϕ α ψ α if and only if α ∈ Z. Proof. L3
) is straightforward. L1) and L2) follows from A1) and A2).

In order to give a geometrical interpretation of the principal D-argument, we introduce the function < ., . > j : B × B -→ D defined by < ϕ, ψ > j := Re j ϕ ψ j . The inner product < ., . > j is symmetric, D-bilinear, positive-definite, i.e., < ω, ω > j ≥ 0 with equality if and only if ω = 0, and satisfies the hyperbolic Cauchy-Schwartz inequality: 

| < ϕ, ψ > j | ≤ |ϕ| j |ψ| j for all ϕ, ψ ∈ B. (4.3) 
(ω) = 1-ε 2 π. Proof. Let ε ∈ S and ω ∈ B * . Since φ ε =: 1-ε 2 π satisfies -π φ ε ≤ π, then from C3) and Eq (4.1), ω ∈ D ε if and only if cos φ ε = Re j (ω) |ω| j and sin φ ε = Im j (ω) |ω| j , i.e. if and only if Arg D (ω) = φ ε .

4.2

The n th roots of a bicomplex number.

Let n ≥ 1. Then each bicomplex number ω = z 1 e 1 + z 2 e 2 , (z 1 , z 2 ∈ C) has n (2-ν(ω)) n th roots, where ν(ω) is the number of k ∈ {1, 2} such that z k = 0. If ω is invertible, i.e. z k = 0, (k = 1, 2) then the n 2 n th roots are the numbers

ω (h 1 ,h 2 ) = n |z 1 |e i( 2πh 1 +Arg(z 1 )) n e 1 + n |z 2 |e i( 2πh 2 +Arg(z 2 )) n e 2 ; h 1 , h 2 = 0, • • • , n -1. Write h = h 1 e 1 + h 2 e 2 .
Then the n 2 n th roots are given by

ω h = n |ω| j e i( 2πh+Arg D (ω) n ) : h ∈ Z, 0 ≤ h ≤ n -1.
In particular, the n th -roots of unity are described by the following proposition. 

U n := υ h = e 2iπh n : h ∈ Z, 0 ≤ h ≤ n -1 .
It is a subgroup of the unit D-sphere S D := {ω ∈ B : |ω| j = 1} of the D-normed space (B, |.| j ).

(ii) υ p -υ q = 2 sin (p-q)π n for all υ p , υ q ∈ U n ;

(iii) We have

σ n = n 0≤h 1 ≤n-1 h 1 e 1 + n 0≤h 2 ≤n-1 h 2 e 2 = n 2 (n -1) 2 e 1 + n 2 (n -1) 2 e 2 = n 2 (n -1) 2 .
Hence u∈Un u = e n(n-1)iπ = 1.

In the complex plane the n th roots of unity are the vertices of a regular polygon inscribed in the euclidean circle S 1 R/Z. For bicomplex numbers the n th roots of unity are in the unit D-sphere S D which has the following topological structure. 2iπ Log(ω) for all ω ∈ S D . Recall that a toroid is an ordinary polyhedron, topologically torus-like. Its Euler number is then v -e + f = 0. A toroid is said to be regular if the same number of edges meet at each vertex, and each face has the same number of edges. A toroid is in class T 2 if each face has four edges and at each vertex exactly four edges meet. For regular toroids and their classification see [START_REF] Szilassi | Regular Toroids. Structural topology[END_REF] and references therein. Let n ≥ 3. In view of Proposition 4.6 the bicomplex n th -roots of unity can be identified with the vertices of a regular toroid in class T 2 that has n 2 quadrilateral faces. In particular, a regular toroid with minimal faces in class T 2 has 3 × 3 quadrilateral faces. It corresponds to the group U 3 illustrated by Figure 1(a). 

Proof of Theorem 1.1

To prove Theorem 1.1 we need some preliminary notations and properties. Let us introduce two functions defined on B with values in R by s R (ω) = Re j (ω) ∨ Re j (ω) and i R (ω) = Re j (ω) ∧ Re j (ω).

(5.1)

Proposition 5.1. For ω ∈ B and λ ∈ R , R1) s R and i R are continuous and surjective.

R2) s R (λω) = λ + s R (ω) -λ -i R (ω) and i R (λω) = λ + i R (ω) -λ -s R (ω). R3) i R (ω + λ) = i R (ω) + λ and s R (ω + λ) = s R (ω) + λ R4) i R (ω) > λ in R if and only if Re j (ω) λ in D.
Proof. R1) The continuity follows from the continuity of Re j (.). The surjectivity holds since [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). R3) Deduced from the identities: u+(z ∨w) = (u+z)∨(u+w) and u+(z ∧w) = u+(z ∧w) that hold in any Riesz space. R4) From Eq (2.

s R (x) = i R (x) = x for all x ∈ R. R2) Follows from the identities: uz ∨ uw = u + (z ∨ w) -u -(z ∧ w) and uz ∧ uw = u + (z ∧ w) -u -(z ∧ w) that hold in D (see
3) we have i R (ω) -λ = min{π 1 (Re j (ω)) -λ, π 2 (Re j (ω)) -λ}.

Then i R (ω) -λ > 0 if and only if π 1 (Re j (ω)) -λ > 0 and π 2 (Re j (ω)) -λ > 0, i.e. if and only if Re j (ω) λ in D.

Bicomplex Riemann zeta function

The bicomplex Riemann zeta function is defined in [START_REF] Rochon | A Bicomplex Riemann Zeta Function[END_REF] as the sum of the convergent series

ζ(ω) := ∞ n=1 1 n ω
on the open set U := {ω ∈ B : Re(P 1 (ω)) > 1 and Re(P 2 (ω)) > 1}. It's clear that ω ∈ U if and only if Re j (ω) 0. Following our notations one has

U = {ω ∈ B : i R (ω) > 1}. (5.2)
Let us recall the main results of [START_REF] Rochon | A Bicomplex Riemann Zeta Function[END_REF].

The bicomplex Euler product formula :

ζ(ω) = p∈P 1 1 -1 p ω for all ω ∈ U.
Where P is the set of all prime numbers. (5.

3)

The set of the trivial zeros for the the bicomplex Riemann zeta function is given by

O = {ω ∈ B; ω = (-n -p) + j(-n + p) : n, p ∈ N \ {0}}.
Note that using the notion of hyperbolic integers introduced in definition 3.6 one can see that the trivial zeros of the bicomplex Riemann zeta function are

O = {ν = -2h : h ∈ Z, h ≥ 1}.
Riemann hypothesis (RH) is generalized to a bicomplex Riemann hypothesis (BRH).

It is shown that (BRH) is equivalent to (RH).

In the sequel we will use the Riesz subnorm . j defined by equation 3.3.

Theorem 5.1. (i) The series ∞ n=1 1 n ω is absolutely convergent if and only if ω ∈ U . Moreover, ∞ n=1 1 n ω j ≤ ζ[i R (ω)]. (ii) The series ∞ n=1 1 
n ω is uniformly convergent on each compact subset of U .

Proof. (i) Let ω ∈ B and an integer n ≥ 1. We have Arg D (n) = 0 then Eq (4.2) implies that 1 n ω = e -ω ln(n) . Therefore 1 n ω j = e -Re j (ω). ln(n) . Since the hyperbolic exponential preserves lattice and conjugation operations (2.6) then by the identity -z∨-w = -(z∧w) we obtain 1 

n ω j = e s R (-ln(n)ω) . But s R (-ln(n)ω) = -ln(n)i R (ω) (by R3)). Hence 1 n ω j = 1 n i R (ω) .

This proves that the series

ω ∈ U . Moreover, ∞ n=1 1 n ω j ≤ ∞ n=1 1 n ω j = ζ[i R (ω)]. (ii) Let K be a compact subset of U . Then, i R (K) is a compact of i R (U ) = i R [i -1 R [(1, ∞)]] = (1, ∞), since i R : B -→ R
is a surjective and continuous function. Which implies that i R (K) ⊂ [1 + α, ∞) for some real α > 0 and then

K ⊂ i -1 R i R (K) ⊂ i -1 R [{[1 + α, ∞)}] = U α .
Therefore 

a n = sup ω∈K 1 n ω j ≤ sup ω∈Uα 1 n ω j ≤ sup ω∈Uα 1 n i R (ω) ≤ 1 n 1+α .

This means that

Bicomplex gamma function

We introduce the bicomplex gamma function, and finish the proof of Theorem 1.1. Proof. We have that |e -t t ω-1 | j = e -t e ln(t)(Re j (ω)-1) and then e -t t ω-1 j = e -t e s R [ln(t)(ω-1)] . From R3) we have s R [ln(t)(ω -1)] = (ln t) + (s R (ω) -1) -(ln t) -(i R (ω) -1). Thus e -t t ω-1 j ∼ t i R (ω)-1 as t -→ 0 + and e -t t ω-1 j ∼ e -t t s R (ω)-1 as t -→ ∞ Assume that Re j (ω) 0. So, i R (ω), s R (ω) > 0, since D + * is closed under conjugation and lattice operations. It follows that the integral defining Γ(ω) is absolute convergent. The above integrals are absolutely convergent for Re j (ω) 1. Since, i R (ω), s R (ω) > 1 and for every integer N ≥ 0 we have

s ω-1 e s -1 e -N s j =      s i R (ω)-1
e s -1 e -N s if 0 < s ≤ 1

s s R (ω)-1
e s -1 e -N s if s ≥ 1 Set

I N (ω) = ∞ 0 s ω-1 e s -1 e -N s ds = ∞ 0
s ω-2 s e s -1 e -N s ds.

We have

I N (ω) j ≤ ∞ 0 s ω-2 e -N s j ds = 1 N ∞ 0 e -t ( t N
) ω-2 j dt.

By ( t N ) ω-2 j = ( t N ) i R (ω)-2 for 0 < t ≤ 1 and ( t N ) ω-2 j = ( t N ) s R (ω)-2 for t ≥ 1 we obtain Proof. Using idempotent decomposition of B, for each ω = z 1 e 1 + z 2 e 2 we have e -t t ω-1 = e -t t z 1 e 1 +e -t t z 2 -1 e 2 . Thus, for Re j (ω) 0 we have Re(z 1 ) > 0 and Re(z 2 ) > 0. Therefore Γ(z 1 e 2 + z 2 e 2 ) = Γ(z 1 )e 1 + Γ(z 2 )e 2 .

(5.4)

Knowing that the classical complex gamma function is extended, by analytic continuation, to a holomorphic function on C \ Z -, the representation (5.4) allows us to extend the bicomplex gamma function Γ to a B-holomorphic function on Ω as follows Γ(ω) = Γ(P 1 (ω))e 1 + Γ(P 2 (ω))e 2 .

(5.5)

  For z, w ∈ D write: z < v when (w -z) ∈ D + \ {0} and z w when (w -z) ∈ D + * . So that, z, w ∈ R implies z < w in R if and only if z w in D. Let a, b ∈ D be such that a ≤ b. The set [a, b] D = {z ∈ D : a ≤ z ≤ b} is called hyperbolic closed interval. Similarly, one can define open interval (a, b) D or semi-open intervals (a, b] D and [a, b) D , replacing ≤ by in left-right and left/right, respectively. From (2.2) the absolute value of an hyperbolic number z is given by
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Proposition 3 . 3 .

 33 Two integral D-norms on B are equivalent.

Proposition 3 . 4 (
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 3 Every D-norm N on B generate a topology T N defined as follows: a nonempty subset O of B is said to be open if, each point of O is the center of some D-ball. Proof. For the proof, it suffice to shows that the intersection of finite open sets is an open set. This follows from the closure of D + * under the lattice operation ∧ by observing that n i=1 B N (ω, τ i ) = B N (ω,
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  Thus from C5) and (4.3) we can define the D-angle between two invertible bicomplex numbers ψ and ϕ, by the formula angl D (ϕ, ψ) := arccos < ϕ, ψ > j |ϕ| j |ψ| j . Let ω ∈ B * . By (Theorem of signs [9] ) we can write Arg D (ω) = ε|Arg D (ω)| for some ε ∈ S. So, by C3) cos(|Arg D (ω)|) = cos(Arg D (ω)) with |Arg D (ω)| ∈ [0, π] D which implies from Eq (4.1) and the above formula that |Arg D (ω)| = angl D (ω, 1). For example, angl D (i, 1) = angl D (k, 1) = π 2 and angl D (j, 1) = πe 1 . Proposition 4.4. Let ε ∈ S and ω ∈ B * then ω ∈ D ε if and only if Arg D
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 12 Proof. (i) Straightforward. (ii) Follows from M 5) using the identity: e iz -e iw = 2ie i (z+w)
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 46 The unit D-sphere S D = {ω ∈ B : |ω| j = 1} is homeomorphic to the two dimensional torus T 2 = S 1 × S 1 . Proof. It follows from D/Z R/Z×R/Z that S D is the two-dimensional torus T 2 = S 1 ×S 1 via the homeomorphism f : D/Z -→ S D : ẑ → f (z) where f is the continuous group homomorphism from D to B * defined by f (z) = e 2πiz , with ker(f ) = Z, Im(f ) = S D and ( f ) -1 (ω) = 1

Figure 1 :

 1 Figure 1: Toroids (a), (b) and (c) represent in class T 2 the groups U 3 , U 4 and U 5 , respectively.

  The analytic continuation of the bicomplex zeta Riemann function to the connected open set 1 + B * is defined byζ(ω) = ζ(P 1 (ω))e 1 + ζ(P 2 (ω))e 2 .

∞ n=1 1 n

 1 ω is absolutely convergent if and only if i R (ω) > 1, i.e. ( by Eq (5.2)) if and only if

∞a

  n=1 n is convergent and hence∞ n=1 1 n ω is uniformly convergent in K.

Proposition 5 . 2 (e

 52 Bicomplex gamma function). Let ω ∈ B be such that Re j (ω) -t t ω-1 dt called bicomplex gamma function, is absolute convergent.

Theorem 5 . 2 (

 52 Integral representation of zeta). For Re j (ω) 1 we have the following integral representation of bicomplex zeta functionζ(ω)Γ(ω) = ∞ 0 t ω-1 e t -1 dt.Proof. Put t = ns in the integral representation of Γ, one getsζ(ω)Γ(ω) = lim

1 NTheorem 5 . 3 (

 153 i R (ω)-1 Γ(i R (ω) -1) + 1 N s R (ω)-1 Γ(s R (ω) -1).Therefore, limN →∞ I N (ω) = 0 and hence ζ(ω)Γ(ω) = lim Analytic continuation). By analytic continuation the bicomplex gamma function is B-holomorphic on Ω -:= {ω ∈ B; P 1 (ω) / ∈ Z -and P 2 (ω) / ∈ Z -}.

Regardless of the existence of several successful theories on holomorphicity in the quaternionic sitting such as the theory of "regular functions" initiated by Fueter in 1936.

(2n + 1)! = sin(P 1 (ω))e 1 + sin(P 2 (ω))e 2 .

(5.6)

Note that sin(πω) is invertible if and only if ω ∈ Ω := {ω ∈ B; P 1 (ω) / ∈ Z and P 2 (ω) / ∈ Z}. Then, Theorem 1.1 follows immediately from usual complex functional equations, using the idempotent representations of the bicomplex zeta, gamma and sine functions given by (5.3), (5.5) and (5.6).