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Abstract—Face recognition has reached a high accuracy in re-
cent years by adopting convolutional neural networks. However,
it suffers from presentation attacks such as 2D face photos, and
3D masks. The vulnerability of face recognition and presentation
attacks detection (PAD) attract numerous researchers in recent
years. Most studies have only focused on PAD algorithms by
analyzing texture information, depth information or thermal
images. On the other hand, hyperspectral reflectance, which
benefits from the development of line-scan HSI sensors, makes
it possible to detect information about the inner structure
of materials. Our research proposes an auxiliary method to
support face recognition by analyzing hyperspectral reflectance.
Combined with biological facts of human skin, we trained a
neural network with pigmentation fractions inside human skin
and corresponding reflectance. The results show high accuracy
in identifying skin and non-skin.

Index Terms—presentation attack detection, hyperspectral re-
flectance, neural network

I. INTRODUCTION

Face recognition is widely used in biometric domain con-
sidering its nearly perfect performance. This technique brings
much convenience to people’s daily life, such as entrance
authentication, or paying with your face. The earliest study
on face recognition started in the 1950s in psychology and
the classification method has evolved from PCA, SVM to
ANN [1]. Particularly, deep learning techniques are applied
like FaceNet [2], VGG-Face [3], and LightCNN [4]. These
face recognition systems achieve high recognition accuracy.
However, presentation attacks that can spoof face recognition
systems have been developed at the same time and become
major security issues. To our best knowledge, the main pre-
sentation attacks are printed face photos, face videos and 3D
masks of authenticated users.

The vulnerability of face recognition against these spoofing
attacks makes PAD especially important. In recent years,
PAD has gained increasing interest from researchers in order
to guarantee the safety and suitability of face recognition
systems. Ramachandra and Busch provided a complete review
of face PAD techniques, available databases and extensive
analysis on state-of-the-art approaches [5]. Generally speak-
ing, PAD algorithms can be divided into two types in terms
of data acquisitions: 2D and 3D. 2D-PAD algorithms aim to
identify printed face photos or videos from bona-fide presen-
tations and are separated into three main categories based on

the information analyzed: motion analysis, texture analysis,
and life sign detection [6]. 3D-PAD algorithms address more
complicated information involved with depth and reach higher
accuracy while the devices are not cost-effective. A new
countermeasure based on foreground and background motion
correlation together with the optical flow is tested on the
PHOTO-ATTACK database and reaches an equal-error rate
of 1.52% [7]. Based on wavelet, Wild et al. propose an
approach that extracts texture information from the grey level
co-occurrence matrix of face photos for liveness detection
without installing any extra equipment [8]. Some research
considering eyes blinking, head movement or dynamic fre-
quency information as visual rhythms [9], also shows a superb
performance in PAD. Wen et al. study on an efficient and
robust PAD algorithm based on image distortion analysis to
separate genuine and spoof faces [10]. Despite these significant
progress, presentation attacks techniques are also changing
rapidly. With the appearance of custom made face masks
and deepfake videos trained by generative adversarial network
[11], PAD meets new challenges. A recent study shows that
CNN based face recognition systems are vulnerable to custom
silicone masks [12] and several PAD techniques are validated
on custom masks database [13].

On the other hand, spectral reflectance is an efficient in-
dicator to detect presentation attacks due to its difference
among materials. Zhang et al. propose a novel liveness de-
tection method by analyzing multispectral reflectance based
on the Lambertian model [14]. Two spectral bands 850nm
and 1450nm are chosen to differentiate between genuine faces
and artefacts. Furthermore, Kose and Dugelay decompose the
image into illumination and reflectance components using the
variational retinex algorithm, then the reflectance component
is reshaped as a feature vector for classification [15]. Since
existing research only considers several independent spectral
bands and the variance between genuine faces and artefacts
in long-wavelength bands especially NIR, we propose a novel
method derived from light-skin interaction and skin structure.
A skin model has been built in the viewpoint of tissue optics.
Subsequently, skin hyperspectral reflectance (SHSR) database
was generated by Monte-Carlo simulations and a skin-network
was trained. By fitting the reflectance curve over the ensemble
of spectral bands of objects and analyzing the performance,



Fig. 1. Absorption coefficients of several pigments inside skin

which differentiates real skin from other materials, we can
effectively identify genuine faces.

II. SKIN MODEL AND DATABASE

Human skin consists of the epidermis, the dermis, and
the subcutaneous tissue generally. And inside skin, pigments
such as melanin, play the main role in the color appearance.
The absorption coefficients of these pigments change as the
wavelength changes as shown in Fig. 1, and that is the key
factor why we can find out real skin among artefacts. The
uniqueness of these absorption coefficients makes it possible
to build a skin model interacting with light. Considering the
effect of wavelength on penetration in light-skin interaction
[16], a two-layered skin model that consists of the epider-
mis and the dermis has been built. 8 parameters including
melanin volume fraction Cm, pheomelanin and eumelanin
ratio ratioph eu, blood volume fraction Cbl, oxygen saturation
S, water volume fraction in both the epidermis and the dermis
Cw epi, Cw der, and thickness of the epidermis and the dermis
depi, dder are chosen to describe this skin model. With a
more complicated skin model, it comes more details and more
computational resources. Here, a two-layered skin structure is
adequate to distinguish from other materials. Afterward, we
need to figure out the relation between these parameters and
the optical coefficients including the absorption coefficient and
the scattering coefficient in each layer.

A. Epidermis

As the outermost layer of skin, the epidermis has melanin,
a broad term for a group of natural pigments that causes
human skin to darken. Hence, the absorption coefficient of
the epidermis µa epi is dominated by melanin:

µa epi = Cm ∗ (µa ph ∗ ratioph eu

+ µa eu ∗ (1− ratioph eu))

+ (1− Cm) ∗ Cw epi ∗ µa water
+ (1− Cm) ∗ (1− Cw epi) ∗ µa baseline

(1)

where µa ph and µa eu are the absorption coefficients of
pheomelanin and eumelanin respectively; µa baseline is the

absorption coefficient of skin tissue without any pigments.
The melanin volume fraction Cm varies from 0.013 (lightly
pigmented) to 0.43 (darkly pigmented) [17]. The ratio between
the fraction of two types of melanin ratioph eu varies from
0.049 to 0.36 which is much too diverse among individuals
[18].

The scattering coefficient is defined by a wavelength depen-
dent equation:

µs epi = 66.7(cm−1) ∗ (fRay ∗ (
λ

500(nm)
)−4

+ (1− fRay) ∗ (
λ

500(nm)
)−0.689)

(2)

where fRay is the fraction of Rayleigh scattering.

B. Dermis

The dermis that consists of dense irregular connective tissue
is adjacent to the epidermis. Blood vessels are deposited in this
layer, which means hemoglobin, another important pigment
inside human skin, primarily locates here. The absorption and
scattering coefficients are shown respectively below:

µa der = Cbl ∗ (µa oxy ∗ S + µa deoxy ∗ (1− S))

+ (1− Cbl) ∗ Cw der ∗ µa water
+ (1− Cbl) ∗ (1− Cw der) ∗ µa baseline

(3)

µs der = 43.6(cm−1) ∗ (fRay ∗ (
λ

500(nm)
)−4

+ (1− fRay) ∗ (
λ

500(nm)
)−0.562)

(4)

where µoxy , µdeoxy represent the absorption coefficients of
oxy-hemoglobin and deoxy-hemoglobin.

C. Database

With the help of the skin model, Monte Carlo simulations
are carried out to acquire the hyperspectral reflectance. Fig. 2
explains how it works in a single photon cycle. 8 parameters
are randomly assigned values within the scope of Table I which
is in line with biological facts. In total, 50000 samples are
generated in SHSR database with wavelength varying from
450nm to 700nm in about 18.58 hours.

TABLE I
LOWER BOUNDS (LB) AND UPPER BOUNDS (UB) OF 8 PARAMETERS

Cm ratioph eu Cw epi Cbl der

LB 1.3% 4.9% 10% 0.2%
UB 43% 36% 20% 7%

S Cw der depi dder
LB 70% 40% 0.027mm 0.6mm
UB 95% 90% 0.15mm 3mm
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Fig. 2. Flowchart of Monte Carlo simulations

III. EXPERIMENTS AND RESULTS

While the database has been built, we train a neural network
between 8 parameters and the hyperspectral reflectance. The
Skin-Net is trained respectively by varying hidden layers from
1 to 3 with alternate neurons from 35 to 55 (an increment 10).
To verify that it matches well with tissue optics, 30 hyper-
spectral reflectance samples of genuine skin are validated. All
8 parameters must be assigned within the realistic range to
ensure its applicability. Fig. 3 shows the validation flowchart,
and the error is computed as the mean square error (MSE):

MSE =

∑λfinal

λinitial
(Preλ − Tarλ)

2

Nbwavelength
(5)

where Preλ and Tarλ are hyperspectral reflectance predicted
and targeted;Nbwavelength is the number of spectral bands.
The validation process is iterated to reach the minimum error
by adjusting 8 parameters and fitting reflectance predicted into
genuine skin reflectance. This curve-fitting process is executed
using ”fmincon” built-in interior-point algorithm in MATLAB
2018a.

The results show that Skin-Net can estimate very similar
reflectance. The mean error of all 30 samples validations is
3.66e−05. In Fig. 4, hyperspectral reflectance of genuine skin
no.2 and the one predicted by Skin-Net are illustrated. These
two reflectance curves are quite close among 450nm-700nm.
Skin-Net characteristics are listed below:

• Skin model is assumed to be two-layered structure
• Reflectance predicted only concerns in the visible light

range
• Network is trained in database generated by Monte Carlo

simulations
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Fig. 3. Flowchart of Skin-Net validation: fitting the hyperspectral reflectance
predicted to genuine skin

Fig. 4. Validation of genuine skin no.2

As we mentioned above, other materials cannot interact with
light in the same way skin does. Therefore, we take Skin-Net
and curve-fitting process to do liveness detection tasks. 270
hyperspectral reflectance of objects including colored papers
and newsprint which comes from the public database of the
University of Eastern Finland together with 30 samples of
genuine skin are classified. All MSE and STD are computed
as the basis when the curve-fitting process reaches an optimal
solution. For the reason that Skin-Net has a great performance
in fitting the genuine skin reflectance curve when it refers to
other materials, the results are significantly different. Here, we
identify genuine skin by setting thresholds of MSE and STD.
We define two categories: (a) at least one of them is less than
the threshold; (b) MSE and STD are less than the thresholds
at the same time. 0.001 and 0.05 are separately assigned to
MSE and STD. Table II reveals the classification results. For
category (a), skin objects are all classified in the correct group,
while 24 objects (near 8.9%) are wrongly accepted. And we
find that even in a more strict situation, there is a paper object
accepted. Fig. 5 shows the STD-MSE distribution of 300
samples. Compared to the existing research, the spectral band
930nm has shown the lowest error rate: 6% and 8.5% attack
presentation classification error rate (APCER), 3% and 0%
bona-fide presentation attack classification error rate (BPCER)
with the classification method LBP-SVM and BSIF-SVM [19].
Our results still need to be improved. By analyzing the fitting



hyperspectral reflectance of the paper object accepted, we
decide to focus on the spectral bands 500nm-600nm. As shown
in Fig. 6, the main variance occurs from 500nm to 600nm.
The wavelength scope for calculating MSE is adjusted, and
”fmincon” is applied once again to get new results.

TABLE II
CLASSIFICATION RESULTS IN TWO CATEGORIES

MSE ≤ 0.001 Acceptance Rejection
or STD ≤ 0.05

Non-skin 24 246
Skin 30 0

MSE ≤ 0.001 Acceptance Rejection
and STD ≤ 0.05

Non-skin 1 269
Skin 28 2

The mean error of all 30 skin samples validations has
decreased to 3.51e−06. In contrast, MSE of non-skin sam-
ples augments. Because one important pigment of skin,
hemoglobin, has a unique curve of the absorption coefficients
from 500nm to 600nm. It is similar to ”W” in shape, which is

Fig. 5. MSE and STD values of 300 samples are calculated after finishing
curve-fitting process. Blue squares, green circles and red points denote paper,
newsprint and skin respectively. The bottom right sub-figure is a zoom in for
MSE varying from 0 to 0.02.

Fig. 6. Fitting process on paper object no.59

, , ,

Fig. 7. face photo and genuine face at 400nm, 500nm, 600nm, 700nm

called ”W” pattern [20]. After applying this new wavelength
range, both the APCER and the BCER reach 0%. With
an appropriate wavelength range, the validation performance
becomes much better. The wavelength range selection means
that finding the range in which the significant difference
between genuine skin and other materials locates. From the
view of the skin, we simply need to check the unique patterns
like ”W” shape in hyperspectral reflectance curve. On the other
hand, multi-validation with multi-wavelength ranges can reach
satisfying results as well.

Limited to the spectra database, it needs more hyperspectral
images data to validate. To our best knowledge, there isn’t
yet a public database about hyperspectral face images. We
found a set of hyperspectral face images that only concern
one person from CAVE [21] as shown in Fig. 7. These images
vary from 400nm to 700nm with a step 10nm captured by
a cooled CCD camera (Apogee Alta U260) under the light
source CIE Standard Illuminant D65. As a start, we apply our
Skin-Net to identify these images. All 31 images are in format
PNG (16bit), and consists of 512*512 pixels. We denote a
tensor Ii,j,k which represents these 31 images, where i,j,k
are the height (H), the width (W), and the spectra bands (S)
respectively. Considering the hyperspectral reflectance, k is
expanded from 31 to 301 by using the interpolation algorithm.
Then, Ii,j,k should locate on faces, in other words, i and j are
restricted. Several points are randomly taken in the faces range
including face photo and genuine face defined by Ph,w. The
metric to validate these points is shown below:

MSE =

∑∑h+1,w+1
h−1,w−1(Ref(Ph,w)− Pre(Ph,w))

9
(6)

where Ref() is the hyperspectral reflectance of point Ph,w;
Pre() represents the reflectance predicted by Skin-Net of point
Ph,w.

TABLE III
MSE RESULTS IN TWO WAVELENGTH RANGE

P1 P2 P3
450nm-700nm 1.80e−05 1.40e−05 1.37e−05

500nm-600nm 2.70e−06 1.38e−05 3.30e−06

P4 P5 P6
450nm-700nm 1.91e−04 1.66e−04 1.58e−04

500nm-600nm 6.31e−05 5.43e−05 5.17e−05

That is to say, a 3*3*301 reflectance tensor is fitted by Skin-
Net, and the mean square error is returned back to validate the
performance. Pixel points in both face photo and genuine face
are taken into the fitting process. Results are calculated in two
wavelength range: 450nm-700nm and 500nm-600nm. From



Table III, we can find that the former three points have fewer
errors than the latter three. Generally, the errors are in different
orders of magnitude, like the latter three are about 10 times
larger than the former three. The fact is that the former three
points are taken from the genuine face, and the latter three
belong to face photos. Regardless of from which sources these
points are taken, the errors for range 450nm-700nm show signs
of having greater difference than range 500nm-600nm. This
may be not only because of a larger wavelength range adopted,
but also the degree of skin pigmented. This means that the
degree of skin pigmented influences fitting results. For skin
lightly-pigmented, the melanin volume fraction varies between
1.3% and 3%, and the effect of blood to skin appearance
becomes more significant. Thus, it is better to choose the range
500nm-600nm where the absorption coefficient of hemoglobin
changes rapidly. As for skin darkly-pigmented, due to the
substantial melanin volume fraction and its smooth change
over the spectra, it’s necessary to adopt a larger wavelength
range.

IV. CONCLUSIONS

Our research proposes an auxiliary method for PAD by
analyzing the hyperspectral reflectance. We firstly trained a
network Skin-Net with a spectra database generated by Monte
Carlo simulations. Unlike the Lambertian model, Monte Carlo
simulations are closer to reality. Then, Skin-Net is applied
to detect if the spectra belong to the skin or not with the
help of curve-fitting. Two spectra ranges are studied for
better performance and robustness. Based on tissue optics
and biological facts of skin, it’s much efficient to detect
artefacts. Due to a lack of hyperspectral face image database,
we only check this method on hyperspectral photos of one
person. The results between face photos and genuine face are
quite different. That would be used as an indicator to detect
presentation attacks. We also discuss the wavelength range
selection. Our proposed method has the potential to develop,
and it requires more hyperspectral face images to validate
the suitability. Our perspective is to collect hyperspectral face
images with a snap-scan VNIR range system integrating a
linescan HSI sensor (IMEC CMV2K LS150+VNIR) and an
image sensor (CMOSIS CMV2000). With more images data
to validate, we’ll apply our method to face recognition system
for supporting PAD.
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