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Abstract

This work presents a survey of existing works about “Logics and
abstract argumentation”. This survey covers many different ap-
proaches but is not intended to be totally exhaustive due to the
huge quantity of papers in this scope.
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1 Introduction

The relationship between abstract argumentation and logic has actually been ex-
ploited right from the start, in the seminal article [Dun95] introducing abstract
argumentation where Dung establishes a formal equivalence between argumen-
tation frameworks and logic programs. While one could expect this to be based
on the fact that argumentation involves reasoning of some kind, the relation-
ship at work happens to be different. Instead, a great deal of papers have been
devoted to defining correspondences that permit to use logic to obtain various
results in argumentation. These results can be meta-level, namely properties of
argumentation frameworks, or object-level, for instance, specific extensions of
a given argumentation framework. The other way around, there has also been
some work on translating and interpreting logic programs in terms of abstract
argumentation.

This article is a survey about abstract argumentation papers that have a
strong emphasis on logic. As just mentioned, two categories can be defined de-
pending on how whether such a work (1) is an approach taking advantage of logic
to capture various aspects of abstract argumentation or (2) is an approach em-
bedding structures such as logic programs into abstract argumentation. Again,
the former category gathers a lot of papers whereas the latter category is much
more limited, mostly referring to works which give an argumentative meaning
to logic programs.

Focussing on the many papers that in fact consist of an answer to the ques-
tion “How can logic be used for achieving abstract argumentation?”, we attempt
to follow the same pattern for each work reviewed:

• Since at the heart of these works is a correspondence between argumen-
tation frameworks and logical formulae (or sets thereof), we first identify
the entry points of the correspondence. Indeed, while the main input
is usually an argumentation graph, some approaches handle an extended
argumentation graph, be it bipolar, recursive, weighted, with collective
interactions, and so on. There may also be extra inputs, for instance, spe-
cial requirements and constraints, a distinguished subset of the arguments
in the graph, a given argumentative semantics, . . .

• Second, the aim of the approach reviewed is explicited, whether is it to
provide a logical encoding of an argumentation graph, or to answer a
question such as “is this subset of the arguments a preferred extension of
the argumentation graph?”, . . .

• Third, we have a look at the type of logic employed in the work reviewed.
Propositional logic is the most widely used, either as such or extended
to Quantified Boolean Formulae, but some approaches resort to (possibly
many-sorted) predicate logic, modal logics, as well as constructive log-
ics (including intuitionistic logic) either directly or through a theoretical
account of logic programming.
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• Fourth, we list the auxiliary items involved in the approach at hand, e.g.,
labellings, signed atoms, . . .

• Fifth, we deal with the question: Has the work reviewed been imple-
mented?

In addition, the main topic in each case is of course about the role of logic in
the work reviewed.

We now present the content of our survey in more detail. Section 2 gives the
necessary background about abstract argumentation. Then, as already men-
tioned, the category “embedding logic structures into argumentation” gathers
few works as compared to the other category, and, for this reason, these works
are all reported in a single section, namely Section 9.3. The many works in the
other category are split over several sections, as follows.

Section 3 is devoted to a single approach, Abstract Dialectical Frameworks,
a general formalism for representing complex dependence links between argu-
ments. In our terminology, the input consists of a dependence graph (nodes
represent arguments and edges represent dependence links) together with an
acceptance condition (in the form of a logical formula) attached to each node
and the outputs are the logical models of the acceptance conditions, permitting
to retrieve labellings and extensions.

The approaches reviewed in Section 4 aim at giving a logical theory (in
propositional logic) that encodes an argumentation graph. Multiple approaches
are reviewed, that mainly vary on the logic used for the encoding: propositional
logic, either pure or extended in a number of alternative ways (sorted language,
modal-like language, . . . ). Additional properties may map models to extensions
according to a given semantics.

Section 5 reports on two approaches whose aim is to express properties over a
given argumentation graph, so that these properties can be used to characterize
appropriate labellings of the graph. Thus, the input consists of an argumenta-
tion graph (or an abstract dialectical framework, see Section 3) together with
an extension-based semantics σ. The main feature of both approaches is that
the output is a Quantified Boolean Formula whose models coincide with the
σ-extensions of the graph (i.e., using names of the nodes of the graph as propo-
sitional atoms, the models of the formula are exactly the σ-extensions of the
graph).

Section 6 is mainly devoted to an approach called YALLA, whose language
permits not only to express an argumentation framework by means of specific
formulae of first-order logic but also to express properties of update operators in
dynamic argumentation. As an aside, a distinctive feature of YALLA is that a
reference universe of argumentation is assumed, which makes it possible to cap-
ture cases of incomplete knowledge. The second approach reported in the same
section proposes a propositional logic to specify and to check requirements in
argumentation graphs. The input consists of an argumentation graph together
with constraints (such as: argument a or argument b is acceptable) and the out-
puts are formulae encoding the graph and the constraints, so that the models
of the formulae capture properties of the argumentation graph.
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In Section 7 are reviewed two approaches that, given an extension-based
semantics σ, produce a formula Φσ whose satisfiability answers the σ-extension
problem for the input (usually, an argumentation graph and a candidate subset
of the arguments): given a candidate S, is S an extension according to the
semantics σ?

The purpose of the two approaches reviewed in Section 8 is to encode
labelling-based semantics by means of a set of logical formulae (these express
the different constraints associated with a particular kind of labelling). Thus,
the input is an argumentation graph together with a labelling-based semantics
s and the output is a logical theory characterizing the labelling-based semantics
s (depending on s, it can be that the logic needed is second-order).

The purpose of the works reviewed in Section 9 is to associate a logic program
with an argumentation graph in such a way that logic programming semantics,
applied to the logic program, capture argumentative semantics. Some of these
works encode an argumentation graph into a logic program. Other works encode
a normal logic program into an argumentation graph. The section describes
different mappings which allow to transform an argumentation graph into a
logic program and vice-versa, all of them offering different characterizations of
argumentative semantics in terms of logic programming semantics.

Section 10 reviews three methods for expressing abstract argumentation in
modal logic, two of them taking as input an argumentation graph together with
a labelling (the third method regards argumentative semantics as primitives
of the language) while the output consists of modal formulae expressing the
distinctive properties of a given argumentative semantics.

Section 11 deals with approaches resorting to a constructive logic (either
intuitionistic or Nelson’s), where constructive negation is used to represent an
attack in argumentation graphs and the models of the resulting formulae char-
acterize the argumentative extensions of the input graph.

Lastly, Section 12 is an attempt to wrap all this up with proposing tentative
conclusions suggested by the comparisons discussed throughout Sections 3-11.

Disclaimer. We have adopted (or at least attempted to) a single procedure
to present all the works reviewed in our survey, in order to make it easier for
the reader to compare these works. However, it is not our aim to assess them
in any way, and we are definitely not to claim that such and such approach is
better than another approach.

Finally, we make no claim for exhaustiveness. Some articles on the very
topic of the survey may have gone unnoticed from us, others have been left
out because we felt them having more emphasis on another topic or still other
reasons. Of course, omitting to cite or to discuss these articles bears no quality
assessment whatsoever on our behalf.
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2 Abstract argumentation: definitions and no-
tations

2.1 Argumentation frameworks

According to [Dun95], an abstract argumentation framework consists of a set of
arguments together with a binary relation between arguments.

Def. 1 (AF [Dun95]). An argumentation framework (AF) is a pair (A,R)
where A is a set1 of abstract arguments and R ⊆ A×A is a binary relation on
A, called the attack relation: (a, b) ∈ R means that a attacks b (a is the source
of the interaction and b is the target).

An AF can be represented by a directed graph, called argumentation graph,2

with vertices as arguments and edges as attacks.

Ex. 2.1.1. The AF defined by A = {a, b, c, d} and R = {(a, b), (b, c), (d, b)}
can be represented by the following graph (arguments are given in a circle, and
attacks are denoted by simple arrows):

a b c

d

Many extensions of this framework have been proposed. For instance, bipolar
abstract frameworks have been introduced first in [KP01, Ver03]. They include
a second relation between arguments, the support relation, that is a positive
interaction (in contrast to the attack relation that is a negative one). In [CLS05],
the support relation is left general so that the bipolar framework keeps a high
level of abstraction.

Def. 2 (BAF [CLS05]). A bipolar argumentation framework (BAF) is a triple
(A, Ratt, Rsup) where A is a set of abstract arguments, Ratt ⊆ A×A (resp.
Rsup ⊆ A × A) is a binary relation on A, called the attack (resp. support)
relation.

A BAF can still be represented by a directed graph with vertices as argu-
ments and two kinds of edges (attacks denoted by simple arrows and supports
denoted by double arrows).

Ex. 2.1.2. Consider the following BAF with only one support.

a b

1Generally assumed to be finite.
2We will often use “argumentation graph” in place of “argumentation framework”.
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However, there is no single interpretation of the support, and a number
of researchers proposed specialized variants of the support relation (deduc-
tive support [BGvdTV10], necessary support [NR10, NR11], evidential sup-
port [ON08, ORL10]). These proposals have been developed quite indepen-
dently, based on different intuitions and with different formalizations. [CLS13]
presents a comparative study in order to restate these proposals in a common
setting, the bipolar argumentation framework (see also [CGGS14] for another
survey).

For instance, evidential support is based on the intuition that every argu-
ment must be supported by some chain of supports rooted in special arguments
called prima-facie. Considering a BAF with an evidential understanding of the
support leads to Evidence-Based Argumentation Frameworks (EBAF) which
can be defined as follows [CFFLS18]:3

Def. 3 (EBAF). An Evidence-Based Argumentation Framework (EBAF) is a
4-tuple (A,R, E ,P) where A is a set of arguments, R ⊆ 2A \ {∅} × A is the
attack relation, E ⊆ 2A \ {∅} ×A is the support relation, and P ⊆ A is the set
of distinguished prima-facie arguments.

Another extension of AF is the higher-order AF with the idea of encompass-
ing attacks to attacks in abstract argumentation frameworks (see [BGW05] in
the context of an extended framework handling argument strengths and their
propagation). Then, higher-order attacks have been considered for representing
preferences between arguments (second-order attacks in [Mod09]), or for mod-
elling situations where an attack might be defeated by an argument, without
contesting the acceptability of the source of the attack [BCGG11]. Attacks
to attacks and supports have been first considered in [Gab09a] with higher
level networks, then in [VBGvdT12]; and more generally, [CGGS15] proposes
an Attack-Support Argumentation Framework which allows for nested attacks
and supports, i.e. attacks and supports whose targets can be other attacks or
supports, at any level. Different names are given to these higher-order AF, de-
pending on the kind of interaction that is handled: AFRA or RAF (with only
attacks), ASAF or REBAF (with attacks and supports, necessary supports for
ASAF and evidential supports for REBAF).

For instance, the definition of a RAF is as follows.

Def. 4 (RAF [CFFLS17]). A recursive argumentation framework (RAF) is a
tuple 〈A,R, s, t〉 where A is a finite and non-empty set of arguments, R is a
finite set disjunct from A representing attack names, s is a function from R to
A mapping each interaction to its source, and t is a function from R to (A∪R)
mapping each interaction to its target.

Note that an AF can be viewed as a particular RAF with t being a mapping
from R to A.

A RAF can also be represented graphically.

3The first definition of EBAF was given in [ON08] then modified in [PO14].
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Ex. 2.1.3. The RAF in which an attack named α (with s(α) = a and t(α) =
b ∈ A) being the target of an attack β (with s(β) = c) can be represented by:

a α b

β

c

(arguments are in a circle and attack names are in a square)

Still other extensions exist such as frameworks with collective interactions
(the source of interaction can be a set of arguments and not only one argu-
ment, as in EBAF or REBAF) and frameworks with weights over arguments or
interactions.

2.2 Acceptability semantics

Case of AF Acceptability semantics can be defined in terms of extensions
[Dun95] following basic requirements:

• An extension can “stand together”. This corresponds to the conflict-
freeness principle.

• An extension can “stand on its own”, namely is able to counter all the
attacks it receives. This corresponds to the defence principle.

• Reinstatement is a kind of dual principle. An attacked argument which is
defended by an extension is reinstated by the extension and should belong
to it.

• Stability expresses the fact that each argument that does not belong to
the extension is attacked by the extension.

Standard AF semantics are defined as follows:

Def. 5 (Extension-based semantics [Dun95]). Given (A,R) and S ⊆ A.

• S is conflict-free iff (a, b) 6∈ R for all a, b ∈ S.

• a ∈ A is acceptable wrt S (or equivalently S defends a) iff for each b ∈ A
with (b, a) ∈ R, there is c ∈ S with (c, b) ∈ R.

• The characteristic function of (A,R) is defined by: F(S) = {a ∈ A such
that a is acceptable wrt S}.

• S is admissible iff S is conflict-free and S ⊆ F(S).
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• S is a complete extension of (A,R) iff it is conflict-free and a fixed point
of F .

• S is the grounded extension of (A,R) iff it is the minimal (wrt ⊆) fixed
point4 of F .

• S is a preferred extension of (A,R) iff it is a maximal (wrt ⊆) complete
extension.

• S is a stable extension of (A,R) iff it is conflict-free and for each a 6∈ S,
there is b ∈ S with(b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies
the conflict-freeness, defence and reinstatement principles.

Ex. 2.1.1 (cont’d) In this example, the set {a, c, d} is the grounded, complete,
preferred and stable extension.

Acceptability semantics can also be defined in terms of labellings, as in [BCG11],
for instance.

Def. 6 (Labelling [BCG11]). Let (A,R) be an AF. A labelling for (A,R) is a
total function ` : A → {in, out, und}.
Let ` be a labelling of (A,R).

• An in-labelled argument is said to be legally in iff all its attackers are
labelled out.

• An out-labelled argument is said to be legally out iff at least one of its
attackers is labelled in.

• An und-labelled argument is said to be legally und iff it doesn’t have an
attacker that is labelled in and not all its attackers are labelled out.

Standard labelling-based semantics are defined as follows:

Def. 7 (Labelling-based semantics [BCG11]). Let ` be a labelling for (A,R).

• ` is an admissible labelling iff each in-labelled argument is legally in and
each out-labelled argument is legally out.

• ` is a complete labelling iff each in-labelled argument is legally in, each
out-labelled argument is legally out, and each und-labelled argument is
legally und.

• ` is the grounded labelling iff it is the complete labelling that minimizes
(w.r.t ⊆) the set of in-labelled arguments.

• ` is a preferred labelling iff it is a complete labelling of (A,R) that max-
imizes (w.r.t ⊆) the set of in-labelled arguments.

4It can be proved that the minimal fixed point of F is conflict-free.
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• ` is a stable labelling iff it is a complete labelling with no und-labelled
argument.

Alternative characterizations of complete labellings can be found in [CG09].
Let us recall them as they will be used in the remainder of this document:

Prop. 1 (Characterizing complete labellings). Let ` be a labelling for (A,R).

1. ` is a complete labelling iff for each argument a, it holds that:

• If a is in-labelled, then all its attackers are out-labelled

• If a is out-labelled, then it has at least one attacker that is in-labelled

• If a is und-labelled, then it has at least one attacker that is not out-
labelled and it does not have an attacker that is in-labelled

2. ` is a complete labelling iff for each argument a, it holds that:

• a is in-labelled iff all its attackers are out-labelled

• a is out-labelled iff it has at least one attacker that is in-labelled.

In the case of extended AF (BAF, RAF, . . . ), the associated semantics
are very often defined using a flattening process: the extended AF is turned
into an AF, then the AF semantics are applied (see for instance [BCGG11]).
In recent works (see for instance [CFFLS18]), semantics for extended AF have
been defined directly.
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3 ADF (Abstract Dialectical Frameworks)

The aim of the ADF approach is the definition of a general framework for
representing complex dependence links between arguments (these links impact
the acceptability of the arguments). It is rather a theoretical approach but
several implementations have been proposed.

The input consists of a dependence graph (nodes are arguments and edges
are dependence links) together with an acceptance condition attached to each
node. This condition is a propositional formula expressing the way the status
of the argument is impacted by the status of its parents in the graph. Follow-
ing the acceptance conditions, one can encode an AF, a BAF (with different
meanings for the support relation), a framework with sets of attacking argu-
ments (SETAF), . . . One can also encode an AF with higher-order interactions
through the addition of meta-arguments representing interactions.

The outputs are the interpretations of the set of acceptance conditions.
These interpretations allow to retrieve some labellings and extensions.

In this approach, the logic is used for encoding and interpretating the de-
pendence links.

3.1 Main definitions

An ADF is a directed graph whose nodes represent arguments and edges repre-
sent dependence links. The status of an argument depends on the status of its
parents in the graph following the acceptance condition attached to the argu-
ment. This acceptance condition is a propositional formula. The ideas are the
following ones:

First, the status “accepted” (resp. “rejected”, “unknown”) of an
argument is related to its assignment with the truth value t (resp.
f , u).5

Second, let s be an argument, let par(s) be the set of the parents
of s in the dependence graph, let ϕs be the acceptance condition
associated with s and consider R ⊆ par(s). ϕs(R) denotes the truth
value of ϕs using the truth value of the elements of R. Then ϕs(R)
is used for determining the status of s: if ϕs(R) = t (resp. f , u)
then s is accepted (resp. rejected, unknown).

Note that the dependence links can be extracted from the acceptance condi-
tions so in general the ADF is defined only with the set of arguments and their
acceptance conditions.

ADF semantics In terms of semantics, two operators can be defined, one
for two-values semantics and another one for three-valued semantics. The idea
behind these operators is the following one: starting from a given interpretation,

5t for true, f for false and u for unknown.
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the use of the operator allows to browse the set of possible interpretations (two-
valued or three-valued) taking into account the impact of acceptance conditions
on the interpretations. The aim is to find a fixpoint if it exists (it is always the
case for three-valued operators).

Def. 8 (Two-valued operator). Let D = (S, {ϕs|s ∈ S}) be an ADF. The two-
valued operator GD takes a two-valued interpretation v of each argument and
returns a two-valued interpretation v′ mapping each argument s to the truth
value that is obtained by evaluating its acceptance condition ϕs with v.

In the case of a three-valued operator, the idea is similar. However, due to
the existence of the third value (u for unknown) a specific technique must be
used:

Def. 9 (Three-valued operator). Let D = (S, {ϕs|s ∈ S}) be an ADF. The
three-valued operator ΓD takes a three-valued interpretation v of each argument
and returns a three-valued interpretation v′ corresponding to the consensus truth
value for the acceptance condition where this consensus takes into account all
possible two-valued interpretations w that extend the input interpretation v.

Then semantics for interpretations can be defined using either a two-valued
operator or a three-valued operator and a preordering between interpretations.
Two preorderings can be defined:

Def. 10 (Preordering ≤t on two-valued interpretations). Let (S, {ϕs|s ∈ S})
be an ADF. Let v1 and v2 be two-valued interpretations. v1 ≤t v2 if and only if
∀s ∈ S, v1(s) = t⇒ v2(s) = t.

Def. 11 (Preordering ≤i on three-valued interpretations). Let (S, {ϕs|s ∈ S})
be an ADF. Let v1 and v2 be three-valued interpretations. v1 ≤i v2 if and only
if ∀s ∈ S, v1(s) ∈ {t, f} ⇒ v2(s) = v1(s).

Some semantics can be defined as follows:6

Def. 12. Let D = (S, {ϕs|s ∈ S}) be an ADF. Let v be a three-valued interpre-
tation.

• v is complete for D iff v = ΓD(v).

• v is admissible for D iff v ≤i ΓD(v).

• v is preferred for D iff v is ≤i-maximal admissible.

• v is grounded for D iff v is the ≤i-least fixpoint of ΓD.

Note that the well-known relationships between AF semantics also hold for
ADF semantics:

Prop. 2. Let D = (S, {ϕs|s ∈ S}) be an ADF.

6The definition for the stable models is not given here but can be found in [BES+18] (a
model being an interpretation v such that ∀s ∈ S, v(s) = v(ϕs)).
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• Each stable model of D is a two-valued model of D.

• Each two-valued model of D is a preferred interpretation of D.

• Each preferred interpretation of D is complete.

• Each complete interpretation of D is admissible for D.

• The grounded interpretation of D is complete.7

ADF as a modelling tool An ADF can be used for modelling variants of
abstract argumentation frameworks such as AF, BAF, RAF, . . . A significant
survey can be found in [Pol17].

• Case of AF: Let (A,R) be an AF, its associated ADF is defined by the
pair (A, {ϕa|a ∈ A}) with ϕa =

∧
b∈A,(b,a)∈R ¬b.

Each Dung’s semantics can be retrieved using ADF semantics.

• Case of AF with annotated links and/or preferences: An ADF can be
used for expressing the impact of annotated links representing qualitative
or quantitative preferences and/or preorderings between arguments.

First, consider the case of a weighted AF (i.e. an AF with numeri-
cal weights attached to each interaction representing quantitative pref-
erences).

– A positive (resp. negative) value on a link means that this link is a
support (resp. attack) link;

– A link is said “active” if its source node is accepted;

– A node will be accepted if the sum of the weights of all the active
links pointing to it is positive (strategy sum-of-weights – sow);

– The acceptance notion can also be related to a specific set of argu-
ments that are not the target of a link (neither attacked, nor sup-
ported) and that are considered as accepted.

Example 3.2.6 given in the next section illustrates the above ideas.

Qualitative preference can be handled in a similar way, particularly for the
input arguments. Note also that these kinds of annotated links can be used
for expressing richer interactions such as, for instance, those used in legal
reasoning (notions of “valid”, “strong”, “credible” and “weak” arguments
and principles of “scintilla of evidence”, “preponderance of evidence”, . . . ).

• Case of BAF: An annotated AF can be used for modelling a BAF (par-
ticularly the qualitative version with + on the support links and − on the
attack links). Nevertheless, as different meanings exist for the support,
several encodings can be defined (see Ex. 2.1.2 in the next section).

7Note that the grounded interpretation is unique.
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• Case of AFRA, RAF: In an ADF, no recursive link exists. So in order to
represent an AFRA or a RAF with an ADF, flattening techniques must
be used (for instance, the one described in [BCGG11] for translating an
AFRA into an AF). See Ex. 2.1.3 in the next section.

3.2 Some examples

The previous ADF definitions are illustrated on the following examples.

Ex. 3.2.1. Consider the ADF represented by:

ϕa = > ϕb = b

a b

c d

ϕc = a ∧ b ϕd = ¬b

Intuitively, ϕa states that a should be accepted. Condition ϕb expresses a
kind of self-support for b. ϕc says that c will be accepted if both a and b are
accepted whereas ϕd says that d is attacked by b. Note that strictly speaking, the
attack from b to d is represented by the assertion “If b is accepted then d is not
accepted” or equivalently “If d is accepted then b is not accepted”, which is a
necessary condition for the acceptance of d. The converse condition which writes
“If b is not accepted then d is accepted” expresses a kind of reinstatement. So, at
least for the attack links, the acceptance condition is a necessary and sufficient
condition.

The mechanism used for the two-valued operator is illustrated by Figure 3
(given at the end of this paper) that represents the evolution of interpretations
by the operator GD (nodes = interpretations and edges = the relation between
two interpretations defined by the operator).

Consider for instance v = {a 7→ t, b 7→ t, c 7→ t, d 7→ t}. For each acceptance
condition, it can be seen how the operator produces the updated interpretation
v′:

• ϕa = >: so v′(a) = t (v has no impact since a has no parent in the ADF);

• ϕb = b: so v′(b) = v(b) = t (v has an impact since b is its own parent);

• ϕc = a ∧ b: so v′(c) = v(a) ∧ v(b) = t (v has an impact since a and b are
the parents of c);

• ϕd = ¬b: so v′(d) = ¬v(b) = f (v has an impact since b is the parent of
d).

12



So, the operator applied to v = {a 7→ t, b 7→ t, c 7→ t, d 7→ t} produces the
interpretation GD(v) = v′ = {a 7→ t, b 7→ t, c 7→ t, d 7→ f}.

Consider now v′ = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} and, using the same way,
compute the interpretation GD(v′) = v′′. It is easy to see that v′′ is exactly v′.
So v′ is a fixpoint for the operator GD. Note that, in this example, there exist
2 fixpoints (each fixpoint being by definition a two-valued model).

This example also illustrates the preordering ≤t, see Figure 4 (given at the
end of this paper). Note that the set of two-valued interpretations over ≤t con-
sists of a complete lattice (the top element of the lattice is at the top of the figure
and the bottom element is at the bottom of the figure).

Unfortunately, due to the important number of three-valued interpretations
of this example,8 we do not represent the ≤i preordering and the corresponding
complete meet-lattice. Nevertheless, some interesting three-valued interpreta-
tions can be identified:

• v0 = {a 7→ t, b 7→ u, c 7→ u, d 7→ u},

• v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} that is also a two-valued interpretation
and a fixpoint of GD (so a two-valued model),

• v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t} that is also a two-valued interpretation
and a fixpoint of GD (so a two-valued model),

• v = {a 7→ t, b 7→ f , c 7→ f , d 7→ u}.

Following Def. 12, v0, v1 and v2 are complete (they are the only fixpoints of
ΓD). Moreover v1 and v2 are preferred and v0 is grounded. It can be shown that
v is admissible.9

The next example illustrates the three-valued operator and the ≤i preorder-
ing.

Ex. 3.2.2. Consider the ADF represented by:

ϕa = ⊥ ϕb = a ∨ b ∨ ¬c ϕc = ¬a ∨ ¬b

a b c

Figure 5 (given at the end of this paper) represents the evolution of interpre-
tations by the three-valued operator ΓD for the ADF (nodes = interpretations
and edges = the relation between two interpretations defined by the operator).

834 = 81 three-valued interpretations.
9Moreover, v2 is also the stable model of the ADF.
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First, consider v = {a 7→ u, b 7→ f , c 7→ t}. The two possible two-valued
interpretations that extend v are: w1 = {a 7→ t, b 7→ f , c 7→ t} and w2 = {a 7→
f , b 7→ f , c 7→ t}. Consider now each acceptance condition and let us see how
the operator produces the updated interpretation v′:

• With w1:

– ϕa = ⊥: so w′1(a) = f (w1 has no impact since a has no parent in
the ADF);

– ϕb = a ∨ b ∨ ¬c: so w′1(b) = t (w1 has an impact since b as three
parents – a, b and c –);

– ϕc = ¬a∨¬b: so w′1(c) = t (w1 has an impact since c as two parents
– a and b –);

• With w2:

– ϕa = ⊥: so w′2(a) = f (w2 has no impact since a has no parent in
the ADF);

– ϕb = a ∨ b ∨ ¬c: so w′2(b) = f (w2 has an impact since b as three
parents – a, b and c –);

– ϕc = ¬a∨¬b: so w′2(c) = t (w2 has an impact since c as two parents
– a and b –);

Then, using w′1 and w′2, one can compute the consensus truth value for each
argument: v′(a) = f (since w′1(a) = w′2(a) = f), v′(b) = u (since w′1(b) 6=
w′2(b)), v′(c) = t (since w′1(c) = w′2(c) = t).

Another example of this process can be given with the interpretation v′ =
{a 7→ f , b 7→ u, c 7→ t}. The two possible two-valued interpretations that extend
v′ are: w′1 = {a 7→ f , b 7→ t, c 7→ t} and w′2 = {a 7→ f , b 7→ f , c 7→ t}.

With w′1, we obtain w′′1 (a) = f , w′′1 (b) = t and w′′1 (c) = t.
With w′2, we obtain w′′2 (a) = f , w′′2 (b) = f , w′′2 (c) = t.
Then, using w′′1 and w′′2 , the consensus truth value for each argument is

v′′(a) = f , v′′(b) = u, v′′(c) = t. This three-valued interpretation is one of the
three fixpoints of this example.

In this example, the preordering ≤i is given by Figure 6 (given at the end
of this paper). Note that the set of three-valued interpretations over ≤i consists
of a complete meet-lattice (the top elements of the meet-lattice are at the top of
the figure and the bottom element is at the bottom of the figure).

Here are some interesting three-valued interpretations:

• v0 = {a 7→ f , b 7→ u, c 7→ t},

• v1 = {a 7→ f , b 7→ t, c 7→ t} (that is also a two-model),

• v2 = {a 7→ f , b 7→ f , c 7→ t} (that is also a two-model).

14



v0, v1 and v2 are complete (they are the only fixpoints of ΓD), v1 and v2 are
preferred and v0 is grounded.

The following examples illustrate the use of ADF as a modelling tool.

Ex. 3.2.3. The sequence of two attacks can be translated into the following
ADF:

ϕa = > ϕb = ¬a ϕc = ¬b

a b c

Applying the GD or the ΓD operators gives only one fixpoint: v = {a 7→
t, b 7→ f, c 7→ t}. That corresponds to the complete, preferred and grounded
extension.

Ex. 3.2.4. Two attacks to the same argument can be translated into the fol-
lowing ADF:

ϕa = > ϕb = ¬a ∧ ¬c

a b

c

ϕc = >

Ex. 3.2.5. An even-length cycle of attacks can be translated into the following
ADF:

ϕa = ¬b ϕb = ¬a

a b

Applying the ΓD operator gives three fixpoints: v0 = {a 7→ u, b 7→ u}, v1 =
{a 7→ t, b 7→ f} and v2 = {a 7→ f, b 7→ t}. That corresponds to the complete
extensions, v0 being the grounded one and v1, v2 being the preferred ones.

Ex. 3.2.6. The following graph represents a weighted AF.

a

b d

c

5

2

−6
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Considering that the set {a, c} is the subset of the input arguments that are
accepted (so even if b is an input argument it is not considered as accepted), this
weighted AF by an ADF can be turned into the following ADF:

ϕa = > a

ϕb = ⊥ b d ϕd = (¬c ∧ (a ∨ b)) ∨ (a ∧ b)

ϕc = > c

Ex. 2.1.2 (cont’d) Consider a BAF with only one support from a to b.
If we consider that the support is a deductive one then the meaning of this

support can be described by the following assertion (the target of the support is
impacted by its source):

“if a is accepted then b is accepted”.
If we consider that the support is a necessary one then the meaning of this sup-
port can be described by the following assertion (the target of a support impacts
its source):

“a is accepted if b is accepted”.

In the first case (the deductive meaning of the support), the BAF could be rep-
resented by an ADF with one positive link between a and b with ϕb = a and
ϕa = >. However, a positive link from a to b with ϕb = a expresses a sufficient
condition (the “if part” means “if a is accepted then b is accepted”) and a nec-
essary condition (the “only if” part means “a is accepted if b is accepted”). The
sufficient condition encodes exactly the deductive meaning of the support but the
necessary condition gives an additional constraint and we can easily see that this
additional constraint corresponds to the necessary meaning of the support.

Consider now the necessary meaning of the support, the BAF could be repre-
sented by an ADF with one positive link from b to a with ϕa = b and ϕb = >.10

Once again, a positive link from b to a with ϕa = b expresses a sufficient con-
dition (the “if part” means “if b is accepted then a is accepted”) and a neces-
sary condition (the “only if” part means “b is accepted if a is accepted”). The
sufficient condition encodes exactly the necessary support but the necessary con-
dition gives an additional constraint and we can easily see that this additional
constraint corresponds to the deductive meaning of the support.

So, in both cases, we obtain a formula that encodes both the deductive meaning
of the support (“if a is accepted then b is accepted”) and the necessary meaning
of the support (“a is accepted if b is accepted”). However, the difference between

10This representation is obtained using the duality between deductive and necessary sup-
ports: a deductive support from a to b is exactly a necessary support from b to a and vice-versa.
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the two ADFs is that the formula is attached either to b (deductive support), or
to a (necessary support).
Nevertheless, if there is no other interaction from, or to these two arguments,
the acceptance conditions do not allow to distinguish between the two meanings
of the supports.
A synthesis of the above remarks is given in the following table. Let us consider
a support from a to b, denoted by the pair (a, b):

“if part” “only if part” “if part” “only if part”
of ϕb = a of ϕb = a of ϕa = b of ϕa = b
deductive necessary necessary deductive
meaning meaning meaning meaning
of (a, b) of (a, b) of (a, b) of (a, b)

In conclusion, as the acceptance condition in an ADF reads as a necessary
and sufficient condition, it seems difficult to capture a support which is not both
necessary and deductive.

Ex. 2.1.3 (cont’d) Consider the RAF with an attack named α (from a to b)
attacked by another attack named β whose source is c.

Using the flattening technique, this RAF can be turned into the following
AF:

a α b

β

c

This AF can be in turn represented by the following ADF:

ϕa = > ϕα = ¬β ϕb = ¬α

a α b

ϕβ = > β

ϕc = > c

3.3 Some implementations

Several implementations have been proposed for ADF (see [BWa, BWb]). Here
are some of them:
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DIAMOND (DIAlectictal MOdels eNcoDing) is based on Answer Set Pro-
gramming (ASP). DIAMOND translates an ADF into an ASP program
whose stable models correspond to models of the ADF with respect to
several semantics (i.e. admissible, complete, stable, grounded).

QADF is a system for solving reasoning problems on ADF using Quantified
Boolean Formulae (QBF).11 Given an ADF and a reasoning problem as
input, QADF returns the encoding of the reasoning problem as a QBF for
that ADF. Then, a subsequent QBF solver solves the reasoning task.

UNREAL (Uniform Account of Realizability in Abstract Argumentation) is a
system based on ASP for deciding realizability of a given set of interpreta-
tions. It supports AFs, ADFs, the subclass of bipolar ADFs (BADFs), and
frameworks with sets of attacking arguments (SETAFs). For each of these
formalisms, realizability can be tested for the standard semantics, namely
admissible, complete, preferred and two-valued models (stable semantics
for (SET)AFs). In words, given a set of interpretations V , a formalism
F and a semantics σ, UNREAL computes all knowledge bases K of type
F having σ(K) = V . Optionally, the output can be converted into the
format readable by ASPARTIX (see Section 9.5) or DIAMOND.

GrappaVis is a Java tool for specifying and evaluating GRAPPA and ADF
instances (GRAPPA being a semantical framework for graph-based argu-
ment processing – GRAPPA=GRaph-based Argument Processing based
on Patterns of Acceptance). GrappaVis is a graphical tool for specifying
GRAPPA and ADF-instances, evaluating them and visualizing the results
of the evaluation. GrappaVis itself is a JAVA-application based on the
JGraphX framework and therefore provides intuitive tools to draw GRA-
PPA / ADF instances. For the evaluation it makes use of two different
types of ASP encodings.

3.4 Related works

As shown before, the ADF approach is able to encompass several approaches
of abstract argumentation. The main difficulty rests in the choice of the right
acceptance conditions appropriate to a given framework (AF, BAF, . . . ).

The idea to attach an acceptance condition to an AF has also been used
in [CMDM06]. In this approach, a constrained argumentation framework (CAF)
has been defined as an AF associated with an acceptance condition that is a
propositional formula. As in ADF, this propositional formula is defined over a
vocabulary built on the set of arguments. Nevertheless there exist important
differences between a CAF and an ADF:

• the graph used in [CMDM06] is a standard argumentation graph (links
encode attacks) and not a dependence graph,

11These formulae are a generalization of the propositional formulae in which both existential
quantifiers and universal quantifiers can be applied to each variable.

18



• there is a unique acceptance condition in [CMDM06] and not one attached
to each argument,

• [CMDM06] defines new semantics by combining standard semantics with
the satisfaction of the acceptance condition.

The following example illustrates this approach.

Ex. 3.4.1. Consider the CAF built with the following AF and the propositional
formula C = a ∧ ¬e:

a b c d

e

There are 2 preferred extensions {a} and {b, d} for the AF.
Then taking into account the acceptance condition C, only the first one can

be considered as an extension for the CAF.
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4 Translation of AF into propositional logic

The approaches reviewed in this section aim at giving a logical theory (in propo-
sitional logic) that encodes an AF. That is, for each of these approaches, the
input is an AF and the output is a theory in propositional logic. They are
theoretical approaches, but the output theories supplemented with formulae
capturing a given argumentation semantics, can be fed into a SAT solver. In
these approaches, the logic (propositional logic, either pure or extended in a
number of alternative ways: sorted language, modal-like language, . . . ) is used
to encode the AF (nodes of the argumentation graph are injectively mapped to
some items, e.g., indexes, and edges can be injectively mapped to special propo-
sitional atoms doomed to be true). Additional properties may map models to
extensions according to a given semantics.

4.1 The syntactic sugar way

The simplest approach for encoding an AF consists of introducing special propo-
sitional atoms in the language in order to denote the edges of the argumentation
graph (Atta,b in [DHP14], ra,b in [DGLW15], . . . 12).

The description needs not include propositional atoms of the form Arga (or
the like) that would explicitly list the nodes of the argumentation graph.

4.2 The approach by Cayrol et al.

This approach has been presented in several papers [CFLS17, CLS18a, CLS18b].
The definitions presented here are those given in the more recent paper [CLS18b].

In the case of an AF, the atoms are of the form Acc(a) and Nacc(a).
For a node a of the argumentation graph, Acc(a) expresses the status of being
accepted, whereas Nacc(a) expresses that a cannot be accepted (implicitly: with
regard to a given argumentation semantics). Note that the meaning of Nacc(a)
is stronger than “a is not accepted”.

The theory generated by [CLS18b] consists of the following axioms:
For every aRb in the input AF(

Acc(a)→ Nacc(b)
)

For every argument b in the input AF(
Nacc(b)→ ¬Acc(b)

)
Such formulae express (by transitivity of material implication) conflict-freeness

of extension-based semantics: Acc(a)→ ¬Acc(b) whenever aRb. Such formulae
also express that if an argument cannot be accepted then it is not accepted:
Nacc(b)→ ¬Acc(b), or, equivalently, ¬(Acc(b) ∧Nacc(b)).

12See also Section 6. In the YALLA language, a specific predicate has been introduced for
encoding an attack between sets of arguments: x B y.
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In the case of RAFs, the authors use a two-sorted logic with equality.
There are arg a sort for arguments and att a sort for attacks. In addition
to Acc(a) and Nacc(a) as above, the language also admits atoms of the form
V al(e) for attack names in the input RAF (intuitively, V al(e) means that the
attack named e is valid in the input RAF with regard to a given argumentation
semantics). Lastly, two function symbols s and t can be applied to objects of
the sort att to capture source and target of the attack. The target can be either
of sort arg or of sort att and the source can only be of sort arg (as the source
of an attack in a RAF is restricted to a single argument, see Definition 4, in
Section 2).

The generated theory is bigger than for AFs. First, there are the following
conflict-freeness axioms

∀e : att,

((
V al(e) ∧Acc(s(e))

)
→ ¬V al(t(e))

)
if t(e) is of sort att

∀e : att,

((
V al(e) ∧Acc(s(e))

)
→ Nacc(t(e))

)
if t(e) is of sort arg

and the coherence axiom as above

∀a : arg, Nacc(a)→ ¬Acc(a)

Of course, the generated theory includes RAF-dependent axioms (assum-
ing the arguments of the input RAF are a1, . . . , an and the attack names are
e1, . . . , em) as follows:

s(e) = x ∧ t(e) = y for every edge from x to y

∀a : arg, a = a1 ∨ · · · ∨ a = an

∀e : att, e = e1 ∨ · · · ∨ e = em

¬(ai = aj) ∧ ¬(ei = ej) i 6= j

Additional formulae are introduced for encoding the different principles that
govern argumentation semantics. There are formulae for capturing the defence
principle, the reinstatement principle and the stability principle. Then exten-
sions under a given semantics (admissible, complete, preferred, grounded, or
stable semantics) can be characterized by models of logical theories obtained by
combining some of these formulae.

4.3 The approach by Gabbay and Gabbay

[GG15] generates for every AF a theory with the axiom

Na→ ¬a

for all a ∈ A, where Na is a special propositional atom with the same reading
as Nacc(a) in the Cayrol-Fariñas-Lagasquie approach. Also, a is to play here
the same role as Acc(a) in the Cayrol-Fariñas-Lagasquie approach.
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Similarly, a conflict-freeness axiom is needed:

a→ Nb

for all a and b such that aRb.
The theory generated by [GG15] consists of four kinds of formulae:

1. {x|¬∃y(yRx)}

2. {y ↔
∧
z∈R−(y)Nz} for each argument y13

3. {z → Ny|(zRy)}

4. {(
∧
z∈R−(y) ¬z ∧

∨
z∈R−(y) ¬Nz)→ ¬y ∧ ¬Ny} for each argument y14

The complete extensions correspond to the models of the above theory.
Note that the above formulae fail to provide a modular encoding of some

principles of argumentation semantics such as for instance the defence or the
reinstatement principles (so, it is not so easy to characterize, e.g., admissibility).
This is a difference with the Cayrol-Fariñas-Lagasquie approach.

An additional axiom is introduced for characterizing stable semantics

a ∨Na

for all a.
The corresponding stability axiom given in [CLS18b] is

¬Acc(a)→
∨

b∈R−(a)

Acc(b)

Both [CFLS17] and [GG15] prove that the models of the respective the-
ory coincide with the extensions of the AF (the list of semantics dealt with
in [CFLS17] is longer).

4.4 Some implementations

The approach of [CFLS17, CLS18a, CLS18b] has been implemented in Grafix,
a Java software for representing graphically argumentation frameworks with
higher-order interactions (see [CLS]).

13If y is unattacked then this formula is equivalent to y ↔ > as the conjunction of an empty
set of formulae is always true.

14If y is unattacked then the formula
∨

z∈R−(y) ¬Nz is equivalent to ⊥ as the disjunction

of an empty set of formulae is always false.
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5 QBF-formalization of AF

The aim of both approaches [AC12, DWW14] reviewed in this section is to
express properties over a given AF, so that these properties can be used to
characterize extensions of the AF. Thus, the input consists of an AF (or an
ADF [DWW15]) together with an extension-based semantics. The output is a
quantified Boolean formula (QBF)15 whose models coincide with the extensions
of the AF (i.e., using names of the nodes of the argumentation graph as propo-
sitional atoms, the models of the formula are exactly the extensions of the AF).
The definitions are formulated in terms of labellings over the AF, and translated
in a logical language (QBF). The translation is shown to establish a one-to-one
correspondence (i.e., a bijection) between the extensions of the AF and the mod-
els of the resulting quantified Boolean formula. The logic is used to encode the
AF (nodes of the argumentation graph are injectively mapped to propositional
atoms and edges are injectively mapped to special propositional atoms doomed
to be true), with quantification serving to express minimality/maximality wrt
a property (e.g., there exists no complete labelling larger than the current la-
belling). The propositional atoms denoting nodes are duplicated, with a plus
version and a minus version (e.g., for a node of name a, the language at hand in-
cludes a⊕ and a	). These signed atoms are used to encode the truth values t, f ,
u assigned by the labellings (e.g., if a is assigned u by the current labelling then
this is captured by letting both a⊕ and a	 to be false). A general constraint
rules out the possibility for a⊕ and a	 to be both true.

These are theoretical approaches but implementations are afoot using QBF
solvers, and indeed such an implementation is QADF, due to Diller, Wallner &
Woltran [DWW14].

5.1 Main definitions

We first describe the approach due to Arieli and Caminada [AC12, AC13].
Let us recall that a labelling ` for an AF (A,R), is a total function ` :

A → {in, out, und}. We consider complete labellings, characterized by the
following conditions (see Section 2.2):
For each argument a,

• If a is in-labelled, then all its attackers are out-labelled

• If a is out-labelled, then it has at least one attacker that is in-labelled

• If a is und-labelled, then it has at least one attacker that is not out-labelled
and it does not have an attacker that is in-labelled

The set of all complete labellings for AF = (A,R) is denoted by Comp(AF ).

15These formulae are a generalization of the propositional formulae in which both existential
quantifiers and universal quantifiers can be applied to each variable. With this formalism, one
can ask whether a quantified sentential form over a set of Boolean variables is true or false.
An example of QBF formula: ∀x∃y∃z((x ∨ z) ∧ y).
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The assignments of truth values to (name of) nodes are captured syntacti-
cally, that is, through formulae. This is done as follows:

Def. 13. For an unsigned atom a and unsigned formulae φ, ψ, define the fol-
lowing signed formulae:

τ+(a) = a⊕ τ−(a) = a	

τ+(¬φ) = τ−(φ) τ−(¬φ) = τ+(φ)
τ+(φ→ ψ) = ¬τ−(φ) ∨ τ+(ψ) τ−(φ→ ψ) = τ+(φ) ∧ τ−(ψ)

The encoding then expands to

Def. 14. For an unsigned formula φ:

val(φ, t) = τ+(φ) ∧ ¬τ−(φ)
val(φ, f) = ¬τ+(φ) ∧ τ−(φ)
val(φ, u) = ¬τ+(φ) ∧ ¬τ−(φ)

The main definition is:16

Def. 15. Let AF = (A,R) and x ∈ A. Define

LABAF (x) =



val(x, t)→
∧
y∈A

(att(y, x)→ val(y, f))

val(x, f)→
∨
y∈A

(att(y, x) ∧ val(y, t))

val(x, u)→


(
¬
∧
y∈A

(att(y, x)→ val(y, f))

)

∧

(
¬
∨
y∈A

(att(y, x) ∧ val(y, t))

)



The role of LABAF (x) is to ensure that the three conditions for a complete

labelling are satisfied, for x ranging over all arguments of AF. Then, the formula
characterizing complete labellings over AF = (A,R) is:

CMP (AF ) =
⋃
a∈A

LABAF (a) ∪ {¬(a⊕ ∧ a	)}

Also, stable extensions can be captured:

STB(AF ) = CMP (AF ) ∪ {a⊕ ∨ a	 | a ∈ A}
Quantified Boolean formulae enter the picture as minimization or maximiza-

tion is required. For an AF such that A = {a1, . . . , an}, an example is:

∀x⊕1 x
	
1 · · ·x⊕n x	n[
CMP (AF )[x1, . . . , xn]→

( (∧
ai∈A

(
val(xi, t)→ val(ai, t)

))
→
(∧

ai∈A
(
val(ai, t)→ val(xi, t)

)) )]
16att(y, x) means that (y, x) ∈ R.
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This formula can be read as follows. Considering a current labelling a1, . . . , an
for the n arguments in A, look at all labellings x1, . . . , xn so that if one of
them satisfies CMP (AF ) and is smaller than the current labelling (this is what∧
ai∈A

(
val(xi, t)→ val(ai, t)

)
expresses) then the current labelling must be in

fact the same as this labelling. In other words, any model of this formula and of
CMP (AF )[a1, . . . , an] defines a minimal complete extension, so that (accord-
ing to well-known results in abstract argumentation) it defines the grounded
extension.

5.2 An example

Ex. 3.4.1 (cont’d)

d

a b c

e

The corresponding theory is:17

val(a, t)→ val(b, f)
val(b, t)→ val(a, f)
val(c, t)→

(
val(b, f) ∧ val(e, f)

)
val(d, t)→ val(c, f)
val(e, t)→ val(d, f)

val(a, f)→ val(b, t)
val(b, f)→ val(a, t)
val(c, f)→

(
val(b, t) ∨ val(e, t)

)
val(d, f)→ val(c, t)
val(e, f)→ val(d, t)

val(a, u)→
(
¬val(b, f) ∧ ¬val(b, t)

)
val(b, u)→

(
¬val(a, f) ∧ ¬val(a, t)

)
val(c, u)→

(
¬
(
val(b, f) ∧ val(e, f)

)
∧ ¬
(
val(b, t) ∨ val(e, t)

))
val(d, u)→

(
¬val(c, f) ∧ ¬val(c, t)

)
val(e, u)→

(
¬val(d, f) ∧ ¬val(d, t)

)
17This set of rules is partitioned in 3 subsets: rules for assigning to each argument the value

t, then f , then u.
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In the signed language,

(a⊕ ∧ ¬a	)→ (b	 ∧ ¬b⊕)
(b⊕ ∧ ¬b	)→ (a	 ∧ ¬a⊕)

(c⊕ ∧ ¬c	)→
(

(b	 ∧ ¬b⊕) ∧ (e	 ∧ ¬e⊕)
)

(d⊕ ∧ ¬d	)→ (c	 ∧ ¬c⊕)
(e⊕ ∧ ¬e	)→ (d	 ∧ ¬d⊕)

(a	 ∧ ¬a⊕)→ (b⊕ ∧ ¬b	)
(b	 ∧ ¬b⊕)→ (a⊕ ∧ ¬a	)

(c	 ∧ ¬c⊕)→
(

(b⊕ ∧ ¬b	) ∨ (e⊕ ∧ ¬e	)
)

(d	 ∧ ¬d⊕)→ (c⊕ ∧ ¬c	)
(e	 ∧ ¬e⊕)→ (d⊕ ∧ ¬d	)

(¬a⊕ ∧ ¬a	)→
(
¬(b	 ∧ ¬b⊕) ∧ ¬(b⊕ ∧ ¬b	)

)
(¬b⊕ ∧ ¬b	)→

(
¬(a	 ∧ ¬a⊕) ∧ ¬(a⊕ ∧ ¬a	)

)
((¬c⊕ ∧ ¬c	)→

[
¬
(

(b	 ∧ ¬b⊕) ∧ (e	 ∧ ¬e⊕)
)
∧ ¬
(

(b⊕ ∧ ¬b	) ∨ (e⊕ ∧ ¬e	)
)]

¬d⊕ ∧ ¬d	)→
(
¬(c	 ∧ ¬c⊕) ∧ ¬(c⊕ ∧ ¬c	)

)
(¬e⊕ ∧ ¬e	)→

(
¬(d	 ∧ ¬d⊕) ∧ ¬(d⊕ ∧ ¬d	)

)
¬(a⊕ ∧ a	) ∧ ¬(b⊕ ∧ b	) ∧ ¬(c⊕ ∧ c	) ∧ ¬(d⊕ ∧ d	) ∧ ¬(e⊕ ∧ e	)

5.3 A QBF approach for ADF

The QBF-based formalization due to Diller, Wallner and Woltran [DWW14,
DWW15] concerns ADF.

This approach also uses a signed language, with the same atoms as given in
Def. 13, namely a⊕ and a	 for every a ∈ A (interestingly, the notation for these
atoms is the same in both approaches).

The same constraint (see CMP (AF ) above) ruling out a contradictory as-
signment of truth values is enforced, i.e., for every a ∈ A:

¬(a⊕ ∧ a	)

The main difference with the approach due to Arieli and Caminada is that
the existence of the acceptance condition ϕa in ADF is addressed by Boolean
quantification, even prior to any minimization/maximization:

∀x⊕1 x
	
1 · · ·x⊕n x	n[∧
a∈A

((
a⊕ → a

)
∧
(
a	 → ¬a

))
→
∧
a∈A

((
a⊕ → ϕa

)
∧
(
a	 → ¬ϕa

))]
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This formula expresses that the current labelling is admissible. It can then
be used to obtain a formula CMP for complete labellings, again using Boolean
quantification. In turn, Boolean quantification over CMP can be used to obtain,
e.g., a formula characterizing the grounded extension.

5.4 Implementation

The QBF approach has been implemented in the form of the QADF system (see
the description in Section 3.3).
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6 Dedicated languages for abstract argumenta-
tion

6.1 YALLA (Yet Another Logic Language for Argumen-
tation)

The aim of this approach is the definition of a first-order logical theory capable
of describing an AF and its standard semantics. In the basic language YALLA,
an AF is described by specific axioms of the theory and formulae are interpreted
by argumentation graphs. A variant of the basic language called YALLAU has
been defined for describing AFs built on a given universe U. Such a universe is
supposed to specify exactly what arguments and interactions are possible w.r.t.
the studied case.
It is a theoretical approach (no implementation yet) introduced in order to ex-
press the properties of update operators in dynamic argumentation. Moreover,
YALLAU enables to express incomplete knowledge about an AF, and to de-
scribe a set of AFs by one formula (each model of this formula corresponding
to a particular AF).

6.1.1 Main definitions

[DBCL16] has proposed a framework for handling change in argumentation (ad-
dition or removal of arguments or attacks). All the definitions are related to a
specific AF, called universe, setting the set of possible arguments together with
their interactions. This universe is supposed to be finite and is denoted by the
pair (AU,RU). For instance, if the domain is a knowledge base then AU and
RU are the set of all arguments and interactions that may be built from the
formulas of the base. In the following example, it is assumed that AU and RU

are explicitly provided:

Ex. 6.1.1. During a trial concerning a defendant (Mr. X), several arguments
can be involved to determine his guilt. The set of arguments AU and the graph-
ical representation of the relation RU are given below.

a0 Mr. X is not guilty of premeditated murder of Mrs. X, his wife.
a1 Mr. X is guilty of premeditated murder of Mrs. X.
a2 The defendant has an alibi, his business associate has solemnly sworn

that he met him at the time of the murder.
a3 The close working business relationships between Mr. X and his asso-

ciate induce suspicions about his testimony.
a4 Mr. X loves his wife so deeply that he asked her to marry him twice. A

man who loves his wife cannot be her killer.
a5 Mr. X has a reputation for being promiscuous.
a6 The defendant had no interest to kill his wife, since he was not the

beneficiary of the huge life insurance she contracted.
a7 The defendant is a man known to be venal and his “love” for a very

rich woman could be only lure of profit.
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a5 a6 a3 a2

a7 a4 a1 a0

In [DBCL16], an AF is defined w.r.t. to a given universe (AU, RU), so
the definition differs slightly from the definition of [Dun95] in the sense that
arguments and interactions must be built according to the universe.

Def. 16. An AF on (AU,RU) is a pair (A,R) where

• A ⊆ AU and

• R ⊆ RU ∩ (A×A).

The set of AFs that can be built on the universe (AU,RU) is denoted by ΓU.

An example of AF on the universe (AU,RU) described in Ex. 6.1.1 could
be:

Ex. 6.1.2. The prosecutor is trying to make accepted the guilt of Mr. X. She
is not omniscient and knows only a subset of the arguments of the universe
presented in Example 6.1.1 (a subset that is not necessarily shared with other
agents). Moreover, her knowledge being based on the universe, any argument or
attack that does not appear in the universe cannot appear in her graph. Here is
her AF (AFPro):

a2

a7 a4 a1 a0

[DBCL16] has proposed a first-order logical theory capable of describing
abstract AFs built on a given finite universe (AU,RU), where AU = {a1, a2,
· · · , ak} with k being the cardinal of AU. The signature of the associated
language YALLAU is defined as follows:18

Def. 17 (Signature). ΣU = (Vconst, Vf , VP ) where the set of constants Vconst =
{c⊥, c1, . . . , cp} with p = 2k − 1, the set of functions Vf = {union2} and the set
of predicates VP = {on1,B2,⊆2}.

As the logical theory has been built for describing AFs on a given universe,
terms and formulas of the language YALLAU will be interpreted on AFs built
on this universe. Formally, the semantics of YALLAU is defined thanks to
a structure over ΣU, on which terms and formulas will be interpreted. So
a structure is associated with an AF built on the universe (AU,RU) and its
domain is D = 2AU , which is not empty.

18For each function or predicate symbol, the arity is indicated by an exponent attached to
the symbol.
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Def. 18 (Structure). A structure M over the signature ΣU, associated with
(A,R), is a pair (D, I) where D = 2AU is the domain of the structure and I is
an interpretation function associating:

1. a unique element of D to each constant symbol ci (in particular the empty
set is associated with the constant symbol c⊥),

2. the binary set theoretic union operator (function from D2 to D) to the
function symbol union,

3. the characterization of the subsets of A to the predicate symbol on: on(S)
if and only if S ⊆ A,

4. the binary set theoretic inclusion relation (binary relation on D2) to the
predicate symbol ⊆,

5. the binary relation of attack between sets of arguments induced by R, and
defined by S1RS2 if and only if S1 ⊆ A,S2 ⊆ A and ∃x1 ∈ S1, ∃x2 ∈ S2,
such that x1Rx2, to the predicate symbol B.

Among the formulae that can be built on the signature ΣU, we find the
specific axioms of the theory, that will allow to describe AFs on the universe:

Let x, y, z be variables of YALLAU,
Axioms for set inclusion

• ∀x (c⊥ ⊆ x)

• ∀x (x ⊆ x)

• ∀x, y, z ((x ⊆ y ∧ y ⊆ z) =⇒ x ⊆ z).

Axioms for set operators

• ∀x, y (x ⊆ union(x, y))

• ∀x, y (y ⊆ union(x, y))

• ∀x, y, z (((x ⊆ z) ∧ (y ⊆ z)) =⇒ (union(x, y) ⊆ z))

Axioms combining set operators and attack relation

• ∀x, y, z (((x B y) ∧ (x ⊆ z)) =⇒ (z B y))

• ∀x, y, z (((x B y) ∧ (y ⊆ z)) =⇒ (x B z))

• ∀x, y, z ((union(x, y) B z) =⇒ ((x B z) ∨ (y B z)))

• ∀x, y, z ((x B union(y, z)) =⇒ ((x B y) ∨ (x B z)))

Axioms for the predicate on

• on(c⊥)
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• ∀x, y ((on(x) ∧ (y ⊆ x)) =⇒ on(y))

• ∀x, y ((on(x) ∧ on(y)) =⇒ on(union(x, y)))

• ∀x, y ((x B y) =⇒ (on(x) ∧ on(y)))

An AF belonging to ΓU can be described by its characteristic formula in the
language YALLAU.

Def. 19 (Formula describing an AF). Let the function ΦU be defined as
follows:

ΦU : ΓU → YALLAU

(A,R) 7→ on(A) ∧∧
x∈AU\A ¬on({x}) ∧∧
(x,y)∈R ({x} B {y}) ∧∧
(x,y)∈RU\R ¬({x} B {y})

ΦU(A,R) is called the characteristic formula of (A,R).19

Note that (A,R) determines the unique structure (Def. 18) which is a model
of ΦU(A,R).

Some additional notations are used for encoding the argumentation seman-
tics: let t1 and t2 be terms of YALLAU,

t1 = t2
def≡ (t1 ⊆ t2) ∧ (t2 ⊆ t1).

t1 6= t2
def≡ ¬(t1 = t2).

singl(t1)
def≡ (t1 6= c⊥) ∧ ∀t2 (((t2 6= c⊥) ∧ (t2 ⊆ t1)) =⇒ (t1 ⊆ t2)).

The following property obviously holds: (A,R) |= singl(t) if and only if the
term t is interpreted by a singleton of A.
Then the principles used in argumentation semantics can be encoded in terms
of YALLAU formulae:

Prop. 3. Let AU be a set of arguments and (A,R) be an AF such that A ⊆ AU

and R ⊆ A×A. Let t, t1, t2, t3 be terms of YALLAU.

• t is conflict-free in (A,R) if and only if (A,R) |= on(t) ∧ (¬(t B t)). The
latter formula is denoted by F (t).

• t1 defends each element of t2 in (A,R) if and only if (A,R) |= (∀t3
((singl(t3) ∧ (t3 B t2)) =⇒ (t1 B t3))). The latter formula is denoted by
t1 BB t2.

• t is admissible in (A,R) if and only if (A,R) |= (F (t) ∧ (t BB t)). The
latter formula is denoted by A(t).

19When t denotes a term of YALLAU, t is identified with the subset of AU which interprets
t. It is the case for {x} for instance.
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• t is a complete extension of (A,R) if and only if (A,R) |= (A(t) ∧
∀t2 ((singl(t2) ∧ (t BB t2)) =⇒ (t2 ⊆ t))). The latter formula is de-
noted by C(t).

• t is the grounded extension of (A,R) if and only if (A,R) |= (C(t) ∧
∀t2 (C(t2) =⇒ (t ⊆ t2))). The latter formula is denoted by G(t).

• t is a stable extension of (A,R) if and only if (A,R) |= (F (t) ∧ ∀t2
((singl(t2) ∧ ¬(t2 ⊆ t)) =⇒ (t B t2))). The latter formula is denoted by
S(t).

• t is a preferred extension of (A,R) if and only if (A,R) |= (A(t) ∧
∀t2 (((t2 6= t) ∧ (t ⊆ t2)) =⇒ ¬A(t2))). The latter formula is denoted by
P (t).

Due to the finite size of a universe, each YALLAU formula can be viewed as
a propositional formula and the satisfiability problem of a YALLAU base is a
NP-complete problem.

In [DBCL16] YALLAU is used for expressing update in argumentation dy-
namics. For instance, in the case of a debate, classical update amounts to
consider a formula ϕ in YALLAU representing a current state of knowledge
about exchanged arguments (i.e., it may encompass several possible AFs), and
a new piece of information α stating that the debate has evolved in such a way
that α now holds (i.e., the current state of the debate is inside a set of AFs
satisfying α). Updating ϕ by α gives a formula ϕ � α that represents the set of
AFs corresponding to an evolution of the debate where a change has been done
imposing α. Nevertheless, an AF can only evolve by an allowed operation made
by an agent (according to the agent’s own AF and her target). That means that
some transitions are not allowed. So the update operators in argumentation dy-
namics must take into account these constraints: let T be a set of authorized
transitions, an update operator is a mapping from YALLAU × YALLAU to
YALLAU which associates with any formula ϕ and any formula α a formula,
denoted by ϕ♦T α satisfying T . In [DBCL16], a general update operator is de-
fined following this idea. Then refinements are proposed in order to give a logical
translation of previous characterizations proposed in [CDLS10, BCDLS13].

6.1.2 Some examples

Ex. 3.2.4 (cont’d) Let us consider the AF given in Ex. 3.2.4 as the universe
(AU = {a, b, c}, RU = {(a, b), (c, b)}). Let (A1,R1) and (A2,R2) be the two
AFs built the universe (AU,RU) defined by: A1 = {a, b, c}, R1 = {(a, b)},
A2 = {a, b}, R2 = {(a, b)}.

Let ϕ1 be the formula on({a, b, c}) ∧ ({a} B {b}) and ϕ2 be the formula
on({a, b}) ∧ ({a} B {b}).

We have (A1,R1) |= ϕ1, (A1,R1) |= ϕ2, (A2,R2) |= ϕ2. However (A2,R2)
is not a model of ϕ1, as {a, b, c} is not a subset of A2.
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a b c

Universe (AU,RU).

a b c a b

Argumentation graph (A1,R1). Argumentation graph (A2,R2).

Figure 1: An example of argumentation graphs built on a universe

Moreover, following Definition 19, we have:20

ΦU(A1,R1) = on({a, b, c}) ∧ ({a} B {b}) ∧ ¬({c} B {b})
ΦU(A2,R2) = on({a, b}) ∧ ¬(on({c})) ∧ ({a} B {b}) ∧ ¬({c} B {b})

More complex assertions can be expressed in YALLAU, such as, for instance,
the fact that b does not belong to the grounded extension of (A1,R1):

ΦU(A1,R1) ∧ @t(G(t) ∧ ({b} ⊆ t))

YALLAU also enables the expression of incomplete knowledge held by an
agent about AFs built on the universe, as shown by the following example:

Ex. 6.1.1 (cont’d) Let us consider the universe (AU, RU) given in the trial
example. Assume that Agent Aga has only a partial knowledge about the AF
built by Agent Agb. Indeed, Aga hesitates between two possible situations for
Agb’s AF, namely (A1,R1) and (A2,R2) given in Figure 2.

a2

a7 a4 a1 a0

a2

a4 a1 a0

Figure 2: Two possible cases for the argumentation graph of Agent Agb

The knowledge held by Aga can be expressed by the following YALLAU for-
mula:

ϕ = on({a0, a1, a2, a4}) ∧
¬(on({a3})) ∧ ¬(on({a5})) ∧ ¬(on({a6})) ∧

({a4} B {a1}) ∧ ({a1} B {a0}) ∧
¬({a0} B {a1}) ∧ ¬({a3} B {a2}) ∧ ¬({a5} B {a4}) ∧
¬({a6} B {a1}) ∧( (on({a7}) ∧ ({a7} B {a4}) ∧ ({a2} B {a1})) )

∨
(¬(on({a7})) ∧ ¬({a7} B {a4}) ∧ ¬({a2} B {a1}))

20Note that the absence of an attack is expressed only if this attack is in the universe:
¬({c} B {b}) is in ΦU(A1,R1) as c attacks b in U, whereas ¬({b} B {a}) is not in ΦU(A1,R1)
as b does not attack a in U.
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ϕ is satisfied by only two structures which correspond to (A1,R1) and (A2,R2).

Note that ϕ ≡ ΦU(A1,R1) ∨ ΦU(A2,R2).

6.1.3 Related works

Other works propose dedicated logical languages for dealing with dynamics in
argumentation frameworks. See for instance [BKRv13, DHP14, CMKMM14a,
CMKMM14b, DHL+15].

6.2 The approach by Villata et al.

[VBG+12] proposes a propositional logic of argumentation to specify and verify
requirements in AFs. Note that a modal variant of this logic has been proposed
(see Section 10).
The input consists of an AF together with requirements to be satisfied. The
outputs are formulae encoding the framework and formulae encoding the re-
quirements. Examples of such requirements are: Argument a attacks argument
b; argument a defends argument b; argument a or argument b is acceptable; if
argument a is accepted (in an extension) then argument b is accepted too (in
the same extension) and argument c is not accepted.

The basic ideas of the logic for specification and verification are close to
the ideas of YALLA. A model of the logic represents an AF, and such a model
satisfies formulae representing the fact that arguments attack or defend each
other, or whether sets of arguments are extensions. Moreover the models are
built on a given universe of arguments.
Atoms of the language represent sets of arguments. The attack relation is ex-
plicitly encoded by a new logical connective .. The formula p . q is interpreted
in (A, R) as “ there is an argument in p that attacks an argument in q”, where
p, q denote subsets of A. There is also a logical connective for defence, which
can be defined in terms of the attack connective, as follows:

a� b ≡
∧
c⊆A

(
(c . b)→ (a . c)

)
The above connectives allow the specification of requirements related to the

structure of an AF.
In order to specify requirements related to the semantics, new kinds of for-

mulae are considered such as F (p), A(p), or G(p) for instance. The formula F (p)
(resp. A(p), G(p)) is interpreted in (A, R) as “the set of arguments of A denoted
by p is conflict-free (resp. admissible, the grounded extension) in (A, R)”. The
semantics are thus considered as primitives of the language.

Note that all the verifications need a model-theoretic approach, as the logic
has not been axiomatized. So the verifications have to be made at the AF level.

Contrastedly, YALLA is a first-order language with more expressivity, able to
encode sets of arguments, set-theoretic properties (inclusion, union) and attacks
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between sets of arguments. Thus, YALLA makes it possible to reason about
extensions, and not only about argument acceptance: for each semantics, there
is a first-order formula in YALLA expressing that a subset of arguments is an
extension under this semantics.
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7 Encoding of extension-based semantics

In this section are reviewed two approaches that, given an extension-based se-
mantics σ, produce a formula Φσ whose satisfiability answers the σ-extension
problem for the input (usually, an AF and a candidate subset of the arguments).
The role of the logic (it is propositional logic) is to specify the semantics —but
there is no encoding of the graph itself. Both approaches are theoretical as well
as practical: implementations exist.

7.1 The approach by Besnard and Doutre

The original proposal is [BD04], extended in [BDH14]. Independently, an equiv-
alent proposal is [WD12].

The idea is as follows. Let σ be an extension-based semantics, (A,R) be an
AF and S be a subset of A. A formula Φ(σ, S) is produced which is satisfiable
iff S is a σ-extension of the AF (“Satisfiability approach”).

A semantics being defined by a set of principles, a formula associated with
each principle is produced, then composing these formulae results in the formula
Φ(σ, S).

Logic is used for specifying the principles of the semantics and the produced
formula is parametrized by S (and by σ of course).

7.1.1 Description of the approach

For a given (A,R), a set of propositional symbols a, b, c, . . . is introduced to
represent the elements of A. For simplicity, the same symbol is used, i.e., a
is regarded as a propositional symbol whenever a ∈ A. An argumentative
semantics σ can then be mapped to a propositional formula (dependent on a
subset S of A) that happens to be satisfiable iff S is a σ-extension of (A,R).

Such a formula is constructed in view of the interpretation for a propositional
symbol a: a is true means that a is in the extension.

Also, the usual conditions underlying admissibility in extension-based se-
mantics are captured:

Conflict-free ∧
aRb

(
a→ ¬b

)
Admissible ∧

bRa

∨
cRb

c

Complete (∧
bRa

∨
cRb

c

)
→ a

and so on . . .
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General test: S ⊆ A is a σ-extension of (A,R) iff the formula below is
satisfiable: ∧

a∈S
a ∧

∧
a∈A\S

¬a ∧ Φσ

In the above formula, Φσ captures the conditions expressing that S is a
σ-extension of (A,R).

For example, in the formula enabling to determine whether S is a stable
extension of (A,R) there is:

Φs =
∧
a∈A

(
a↔

∧
bRa

¬b
)
.

As to the case of complete extensions,

Φc =
∧
a∈A

[(
a→

∧
aRb

¬b

)
∧

(
a↔

∧
bRa

∨
cRb

c

)]
.

7.1.2 Some implementations

Besnard and Doutre’s approach has been used in many different implementa-
tions. Here we focus on four examples.

In [BDHL16, BDH14] and thanks to the project SESAME (see [BBD+]), an
implementation has been proposed under the form of a software allowing the
definition of semantics with logical formulae (aggregation of formulae, each of
them representing a requirement that must be respected by the set of arguments
candidate, such as conflict-freeness, or defence . . . ).

In [WWW13], the encoding proposed by Besnard and Doutre in [BD04]
is extended in order to take into account the semi-stable semantics. Then two
extensions of SAT are used, the minimal correction sets (MCS) and the backbone
(BB): consider a CNF propositional formula Φ, the MCS problem consists in
the computation of the minimal sets of clauses issued from Φ such that, after
their removal, Φ becomes satisfiable; the BB problem consists in identifying the
litterals that are true in each model of Φ. The idea of this paper is to establish
links between the MCS and BB problems and the computation of semi-stable,
eager and ideal extensions.

In [LLM15], the encoding proposed by Besnard and Doutre in [BD04] is used
in two different ways. First, it is used directly in a SAT solver for computing
the semantics that are in the first level of the polynomial hierarchy. Secondly,
it is extended with some weights for computing the semantics that are in the
second or more level of the polynomial hierarchy (with a flavour of constraints
programming techniques) then used in a Partial Max-SAT solver (the Partial
Max-SAT problem is an optimisation problem that consists in satisfying the
more possible clauses of a given formula with respect to the weights given to
each clause). These algorithms have been implemented in a software called
CoQuiAAS.
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In [LNJ18], the encoding proposed by Besnard and Doutre in [BD04] is
extended for the computation of three new problems: find an extension that is
maximal in terms of cardinality, repair a set of arguments in order to transform
it into an extension, and adjust an extension such that it contains (or not) a
given argument. Each of these new problems is encoded in logic and solved
either by an iteration of SAT solver calls, or by a Max-SAT solver call.

7.2 The CEGARTIX approach

In [DJWW12], a specific encoding of some extension-based semantics is pro-
posed, using two propositional symbols for each argument (for an argument a,
the symbols are xa and ya). For instance, the formula corresponding to the
complete semantics is the following one:
For a given (A,R),

Φc =
∧

(a,b)∈R

(¬xa ∨ ¬xb) ∧
∧

(b,a)∈R

(xa →
∨

(c,b)∈R

xc) ∧

∧
b∈A

(yb ↔ (xb ∨
∨

(c,b)∈R

xc)) ∧
∧
a∈A

((
∧

(b,a)∈R

yb)→ ya)

The first line declares the conditions for admissible sets following the def-
inition: any admissible set must be (i) conflict free and (ii) each argument in
the set must be defended by the set. The second line declares (i) the value of
auxiliary atoms ya (ya is true iff either xa is true or some xb is true where b
attacks a in the AF), and that (ii) each argument a defended by the extension
is contained in the extension.

Models of Φc characterize the complete extensions of (A,R) in the sense
that xa is true in a model I (xa ∈ I) iff the argument a is in the extension
characterized by I.

Then this encoding is used in a software called CEGARTIX (see [DJWW])
that computes skeptical and credulous acceptance under given semantics . It is
based on NP-oracles (basically the MiniSAT solver).
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8 Encoding of labelling-based semantics

The purpose of the works reviewed in this section is to encode labelling-based
semantics21 by a set of logical formulae. These formulae express the different
constraints associated with a kind of labelling (complete, grounded, stable, pre-
ferred). One of the approaches has led to implemented systems for computing
semantics.

8.1 The approach by Caminada and Gabbay

In [CG09], metalevel approaches are proposed for talking about argumentation.
A metalevel approach describes an argumentation framework from “above”,
using another language and logic. The metalevel language can be classical logic
or modal logic. The case of modal logic will be presented in Section 10. Here, we
focus on the metalevel approach that uses classical logic for encoding argument
labellings.

The logical language includes the equality predicate (“=”), a binary predi-
cate R and the three unary predicates Q0, Q1 and Q?.

Intuitively, given an AF denoted by (A,R), and a labelling ` , an interpreta-
tion of the language can be obtained: A is taken as the domain, the predicate
R is interpreted by the attack relation R of AF and ` is used to get the inter-
pretation of the predicates Q0, Q1 and Q? as follows : a ∈ Q0 iff ` labels a as
out, a ∈ Q1 iff ` labels a as in; a ∈ Q? iff ` labels a as und.

Let us consider the following classical theory denoted by ∆(R,Q0, Q1, Q?)
(or ∆ for short) :

1. ∀x(Q0(x) ∨Q1(x) ∨Q?(x))

2. ¬∃x(Qi(x) ∧Qj(x)) for i 6= j, i, j ∈ {0, 1, ?}

3. ∀y(∀x(xRy → Q0(x))→ Q1(y))

4. ∀y(∃x(xRy ∧Q1(x))→ Q0(y))

5. ∀y(∀x(xRy → (Q0(x) ∨Q?(x))) ∧ ∃x(xRy ∧Q?(x))→ Q?(y))

Any model of the above theory ∆ with domain D defines an argumentation
framework (A,R) with A = D, R = R and a complete labelling ` defined from
the elements satisfying the predicates Q0, Q1 and Q?.
Then other labellings can be characterized as particular models of ∆. For in-
stance, the grounded labelling is obtained with a model that minimizes Q1,
whereas the preferred labellings are obtained with models that maximize Q1.
Note that second-order formulae are needed in order to express the concept “Q1

is minimal” or “Q1 is maximal”. That leads to the circumscription technique.

When dealing with a specific AF, additional axioms are needed. They use
“=” and constant names for denoting the arguments. Let Θ(AF ) denote the
set of axioms describing AF = (A,R):

21Various definitions have been recalled in Section 2 and Section 5.
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1. ∀x(
∨
a∈A x = a)

2.
∧
a,b∈A,a 6=b a 6= b

3.
∧

(a,b)∈R aRb

Let ∆(AF ) = ∆ ∪ Θ(AF ). It can be shown that characterizing some of the
labellings is easier, since for a given AF, the set of arguments is finite. For
instance, the grounded labelling of AF can be characterized as the set of x such
that ∆(AF ) ` Q1(x). Moreover, as the set of arguments is finite, circumscrip-
tion becomes first-order.

8.2 The approach by Cerutti et al.

In [CDGV14], three propositional symbols are defined for each argument: Ia, Oa
and Ua meaning that the value of a in the labelling is respectively in, out or und.
Moreover, for each value of the labelling, two formulae are given for expressing
the necessary and the sufficient conditions corresponding to the assignment of
this value. For instance, considering an AF denoted by (A,R), we have for the
value in:

(
∨

b|(b,a)∈R

¬Ob) ∨ Ia (sufficient condition for Ia)

∧
b|(b,a)∈R

(Ob ∨ ¬Ia) (necessary condition for Ia)

Other formulae are defined for expressing some constraints about labellings.
For instance, the fact that “an argument has one and only one value in a la-
belling” is expressed by the formula:

∧
a∈A

((Ia ∨Oa ∨ Ua) ∧ (¬Ia ∨ ¬Oa) ∧ (¬Ia ∨ ¬Ua) ∧ (¬Ua ∨ ¬Oa))

or the fact that “unattacked arguments must be in” is encoded by:∧
a|@b,(b,a)∈R

Ia

Several combinations of these formulae are proposed in order to encode com-
plete labellings.

Note that in the case of a finite AF, the encodings of complete labellings
proposed in [CDGV14] and [CG09] can be matched, owing to the equivalence
between the alternative definitions of complete labellings provided in [CG09]
(see Section 2.2).
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8.3 Some implementations

At least three systems have been developped using the approach proposed
in [CDGV14].

In [CDGV14], an algorithm using a SAT solver is proposed for computing
the preferred semantics. This algorithm is called PrefSAT.

In [CGV14], a system called ArgSemSAT is proposed including PrefSAT for
computing the preferred semantics. It also includes an approach proposed by
the same authors using a decomposition of the argumentation graph in its strong
connected components (SCC) and the computation of the preferred extensions
by a propagation process across these SCCs with a call to a SAT solver for each
SCC.

In [BBP15], a software called LabSAT allows the computation of extensions
for several semantics (complete, stable, preferred, grounded) and also the reso-
lution of the credulous and skeptical acceptance problems. It uses the encoding
proposed in [CDGV14].
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9 Argumentation Frameworks and Logic Pro-
gramming

The purpose of the works reviewed in this section is to associate a logic program
with an AF in such a way that logic programming semantics (stable model
semantics, P-stable model semantics, regular model semantics, . . . ), applied to
the logic program capture semantics (stable, complete, preferred, . . . ) of the
AF.
Some of the considered works encode an AF into a logic program. Other works
consider the other way and encode a normal logic program into an AF. There
also exist some generalizations to enriched argumentation frameworks (BAF,
RAF, . . . ).

9.1 Introduction

The close connection between AF semantics and Logic Programming (LP) se-
mantics goes back to Dung’s work [Dun95]. Dung introduced a transformation
from LP to AF, and showed that stable models (resp. the well-founded model)
of a logic program correspond to stable extensions (resp. the grounded exten-
sion) of the associated AF. These results have been extended by connections
between LP 3-valued stable models (resp. regular models) and complete (resp.
preferred) extensions [WCG09, CSAD15].

Roughly speaking, the purpose of these works is to provide an argumentative
semantics for logic programs.

On the other side, Dung introduced a converse transformation from AF
to LP, and showed that stable extensions (resp. the grounded extension) of
an AF can be obtained as stable models (resp. the well-founded model) of
the associated logic program. These results have also been extended to relate
other AF semantics to LP semantics [EGW10, CNO09, ONS13, CSAD15, ON17,
SR17].

In that case, the purpose is rather to apply computational techniques of
Logic Programming to argumentation.

The different works reviewed in this section can be distinguished according
to the following features:

• The transformation is from AF to LP, or from LP to AF.

• AF semantics can be encoded under the form of extension-based semantics
as in [Dun95, ONS13], or under the form of labelling-based semantics (as
for instance in [CSAD15, SR17]).

• Different semantics of AF correspond to different semantics of a same
logic program as in [Dun95, CSAD15] or different semantics of AF are all
characterized by the single 2-valued stable model semantics of different
transformed programs as in [SR17].
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Moreover, some of these works have considered the issue of using ASP-solvers
to compute the extensions of AFs under different semantics [EGW10, Gag10].

The relationship between argumentation and logic programming has been
the subject of intensive research. Currently, there are different mappings which
allow to transform an AF into a logic program and vice-versa, all of them
offering different characterizations of argumentation semantics in terms of LP
semantics. A summary of these characterizations can be found in [ON17] with
all the associated references.

In the following, we first consider some works relating an AF and Logic
Programs, divided in two types:

1. Encoding an AF into a logic program.

2. Encoding a normal logic program into an AF.

Then we consider generalizations to enriched argumentation frameworks
(BAF, RAF).

Note that all the logic programs that we consider below are normal logic
programs, that is logic programs whose rules may contain weak negation (i.e.
negation as failure, with the symbol not) but not strong negation (i.e. the
classical negation of classical logic), and where the head of each rule is a single
atom. From now, normal logic programs will be called logic programs. Atoms
of the form not a will be called weak atoms and the weak part of a rule consists
in the set of its weak atoms.

9.2 From an AF to a logic program

The input is an AF. The output consists of a logic program P together with the
characterization of some of the standard argumentation semantics (at least the
grounded semantics and the stable semantics) using the models of P (two-valued
or three-valued models depending on the considered approach).

The logical formalism enables to encode attacks. Moreover, depending of the
approaches, the concept of attack is encoded in an explicit way (as for instance
in [Dun95, CNO09, ONS13]) or in an implicit way (as for instance in [CSAD15]).

Two kinds of work can be distinguished. The first kind lies in the spirit
of Dung’s work and concerns works using two-valued models for LP semantics.
The second kind of works uses three-valued models for LP semantics.

Towards logic programs under 2-valued semantics Let us start by the
initial approach of [Dun95]. Given an AF (A,R), the associated logic program
consists of three parts:

• The rules describing the attacks in R: {attack(x, y)← |(x, y) ∈ R}.

• The rules defining acceptability: acc(x)← not d(x).

• The rules defining defeat: d(x)← attack(y, x), acc(y).
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where acc(x) stands for “the argument x is acceptable” and d(x) stands for “the
argument x is defeated”.

The approaches described in [CNO09], [ONS13], [ON17] propose an alter-
native transformation considering not only attackers but also defenders. The
common idea is to encode attack in an explicit way through a literal “def(x)”
meaning “x cannot belong to an admissible set”. So the logic program P con-
tains rules that define “def(x)” given the attackers of x.

The characteristic features of these approaches are:

• The logic program includes weak negation (i.e. negation as failure, with
the symbol not).

• The encoding captures both conflict-freeness and admissibility principles.

• The predicate def is used. def(x) means “x is defeated” or equivalently
“x cannot belong to an admissible set”.

• The logic program P contains two parts P− and P+ : P− encodes conflict-
freeness and P+ encodes admissibility.

– P− contains rules of the form def(x) ← not def(y) if y attacks x.
So, P− defines def(x) given the attackers of x.

– P+ contains rules of the form def(x) ← def(z1), . . . , def(zn) if z1,
. . . , zn are all the attackers of some y attacker of x. Such a rule
defines def(x) given the defenders of x against y.

• Then, acceptability can be encoded through the predicate acc, where
acc(x) means “x can be considered as accepted”, with the rule acc(x) ←
not def(x).

• There are correspondences between standard argumentation semantics
(grounded, stable, preferred, complete) and two-valued models of the logic
program (well-founded, stable, p-stable, supported models).

Note that acceptability is defined by default. That is close to the reinstate-
ment principle. In particular, if an argument x is not attacked, it does not
appear as the head of any rule, so x will be accepted.

Ex. 3.2.3 (cont’d) The associated logic program is:
def(b)← not def(a)
def(c)← not def(b)
def(b)← >
def(c)← def(a)
acc(x)← not def(x)

Ex. 3.2.4 (cont’d) The associated logic program is:
def(b)← not def(a)
def(b)← not def(c)
def(b)← >
acc(x)← not def(x)
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Ex. 9.2.1. Consider the following AF:

a b

c

The associated logic program is:
def(b)← not def(a)
def(a)← not def(b)
def(a)← not def(c)
def(b)← def(b), def(c)
def(a)← def(a)
def(a)← >
acc(x)← not def(x)

Ex. 9.2.2. Consider the following AF:

a b

c

The associated logic program is:
def(b)← not def(a)
def(a)← not def(b)
def(c)← not def(a)
def(b)← def(b)
def(a)← def(a)
def(c)← def(b)
acc(x)← not def(x)

Ex. 3.4.1 (cont’d) The associated logic program is:
def(a)← not def(b)
def(b)← not def(a)
def(c)← not def(b)
def(c)← not def(e)
def(d)← not def(c)
def(e)← not def(d)
def(a)← def(a)
def(b)← def(b)
def(c)← def(a)
def(c)← def(d)
def(d)← def(b), def(e)
def(e)← def(c)
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acc(x)← not def(x)
The unique stable model is {def(a), def(c), def(e), acc(b), acc(d)}. That char-
acterizes the unique stable extension of the AF {b, d}.

The approach of [SR17] is rather different in the sense that it proposes
several transformations of an AF in different logic programs, each one encoding
a labelling-based semantics. These semantics are all characterized by the single
2-valued stable model semantics.

Given an AF, each logic program consists of two parts:

• the rules encoding admissibility, which will belong to all the different pro-
grams,

• the rules specific to each semantics.

For instance, let us give the program representing the grounded semantics.
The first part contains rules defined as follows:

• in(x)← out(y1), . . . , out(yn), where y1, . . . , yn are all the attackers of x.

• out(x)← in(y) for each y attacker of x.

• ← in(x), not out(y) for each y attacker of x.

• ← out(x), not in(y1), . . . , not in(yn), where y1, . . . , yn are all the attackers
of x.

The part specific to the grounded semantics contains rules of the form:
und(x)← not in(x), not out(x).

Ex. 3.2.3 (cont’d) The associated logic program under the grounded semantics
is:

in(c)← out(b); in(b)← out(a); in(a)←;
out(b)← in(a); out(c)← in(b);
← in(c), not out(b); ← in(b), not out(a);
← out(c), not in(b); ← out(b), not in(a); ← out(a);
und(x)← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {in(a), out(b), in(c)}.

Ex. 3.2.4 (cont’d) The associated logic program under the grounded semantics
is:

in(c)←; in(b)← out(a), out(c); in(a)←;
out(b)← in(a); out(b)← in(c);
← in(b), not out(a); ← in(b), not out(c);
← out(c), not in(b); ← out(b), not in(a), not in(c);
← out(a); ← out(c);
und(x)← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {in(a), out(b), in(c)}.

Ex. 9.2.1 (cont’d) The associated logic program under the grounded semantics
is:
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in(a)← out(b), out(c); in(b)← out(a); in(c)←;
out(a)← in(b); out(a)← in(c);
out(b)← in(a); ← in(a), not out(b);
← in(a), not out(c); ← in(b), not out(a);
← out(a), not in(b), not in(c); ← out(b), not in(a); ← out(c);
und(x)← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {out(a), in(b), in(c)}.

Ex. 9.2.2 (cont’d) The associated logic program under the grounded semantics
is:

in(a)← out(b); in(b)← out(a); in(c)← out(a);
out(a)← in(b); out(b)← in(a); out(c)← in(a);
← in(a), not out(b); ← in(b), not out(a); ← in(c), not out(a);
← out(a), not in(b); ← out(b), not in(a); ← out(c), not in(a);
und(x)← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {und(a), und(b), und(c)}.

Towards logic programs under 3-valued semantics Let us consider the
approach described in [CSAD15]. The idea is to encode attack in an implicit
way, that is as a rule of the logic program, without any additional predicate.
Each argument generates a rule with the name of the argument as its head
and the name of the attackers in the weak part of its body. The characteristic
features of this approach are:

• No predicate is needed.

• Each argument becomes an atom of the program P.

• The logic program includes weak negation (i.e. negation as failure, with
the symbol not).

• The logic program contains rules of the form x← not y1, . . . , not yn, where
y1, . . . , yn are all the attackers of x.

• The logic program is a simple program, that is a program with at most
one rule with head x for each argument x. Moreover for each rule of the
program the body only contains weak atoms (atoms of the form not a).

• There are correspondences between standard argumentation semantics
(complete, stable, grounded, preferred) and three-valued models (3-valued
stable, 2-valued stable, well-founded, regular) of the logic program.

Ex. 3.2.3 (cont’d) The associated logic program is:
b← not a
c← not b
a←

Ex. 3.2.4 (cont’d) The associated logic program is:
b← not a, not c
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a←
c←

Ex. 9.2.1 (cont’d) The associated logic program is:
b← not a
a← not b, not c
c←

Ex. 9.2.2 (cont’d) The associated logic program is:
b← not a
a← not b
c← not a

This logic program has three 3-valued stable models: (∅,∅), ({a}, {b, c}), ({b, c}, {a})
corresponding respectively to the three complete extensions of the AF: ∅, {a}
and {b, c}.

Ex. 3.4.1 (cont’d) The associated logic program is:
b← not a
a← not b
c← not b, not e
d← not c
e← not d

Ex. 9.2.3. Consider the following AF:

a b c d

The associated logic program is:
a← not a, not b
b← not b, not a, not c
c← not d
d← not c

9.3 From a logic program to an AF

The input is a logic program. The output consists of an AF together with
the characterization of some of the standard argumentation semantics using the
models of the original logic program.

Note that, in contrast with the other works reported in this survey, the
resulting argumentation framework is not, strictly speaking, abstract.

The characteristic features of the approach described in [CSAD15] are:

• From a logic program P, an instantiated AF is produced where an argu-
ment is built from rules of P, and has a conclusion.
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• From standard argumentation semantics, new semantics are defined for
selecting argument conclusions in the instantiated AF.

• Correspondences between those new semantics and three-valued models
of the original program are given.

Let us first detail the construction of the AF.
An argument built from the logic program P can be seen as a tree-like structure
of rules, obtained by chaining a subset of rules of P. An argument involves a set
of rules, a conclusion (the head of the last used rule), a set of “vulnerabilities”
(the atoms appearing in the weak part of the rules involved in the argument)
and a set of sub-arguments. Then an attack is defined from an argument A to
an argument B if the conclusion of A belongs to the set of vulnerabilities of B.

Ex. 9.3.1. Consider the following normal logic program P with rules r1, r2:
r1 : a← b; r2 : b← a.

The following arguments are constructed:
A1 : a← (A2); A2 : b← (A1).

As there is no weak part in the rules, there is no attack between the arguments.

Ex. 9.3.2. Consider the following normal logic program P with rules r1, . . . r6:
r1 : b← c, not a; r2 : a← not b; r3 : p← c, d, not p;
r4 : p← not a; r5 : c← d; r6 : d← .

The following arguments are constructed:
A1 : d←; A2 : c← (A1); A3 : p← (A2), (A1), not p;
A4 : a← not b; A5 : p← not a; A6 : b← (A2), not a.

Note that the set of vulnerabilities of A1 (resp. A2, A3, A4, A5 , A6) is ∅ (resp.
∅, {p}, {b}, {a}, {a}).
The attacks are as follows:

A3 attacks A3; A6 attacks A4; A4 attacks A5 and A6; A5 attacks A3.

Then, labelling-based semantics are converted into conclusion labellings.
The idea is for each conclusion to identify the “best” argument that yields
it, that is the argument with the highest label. If there is no argument for a
particular atom, this atom is labelled “out”. Formally, a conclusion labelling is
defined as follows :
Let P be a logic program, H be the set of atoms occurring in P and AF be
the instantiated argumentation framework associated with P. Let ArgL be an
argument labelling of AF. The conclusion labelling associated with ArgL is
the function ConcL from H to the set of labels {in, out, undec} such that for
each c ∈ H, it holds that ConcL(c) = max({ArgL(A)|c is the conclusion of A}
∪{out}) where in > undec > out.

Ex. 9.3.2 (cont’d) There are three complete argument labellings of the AF.
One if them is such that in(ArgL) = {A1, A2, A5, A6}, out(ArgL) = {A3, A4},
undec(ArgL) = {}.
The atom p is the conclusion of arguments A3 and A5. So the label of p in the
associated conclusion labelling is max(in, out) = in.
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Similarly, we obtain that in(ConcL) = {c, d, b, p}, out(ConcL) = {a} and
undec(ConcL) = {}.

Note that if the original program P is simple (at most one rule whose head
is a for each atom a of the program), and is such that each rule has only a weak
part, then each argument constructed consists of exactly one rule.

Ex. 9.3.3. Consider the following normal logic program P with rules r1, . . . r4:
r1 : a← not a, not b; r2 : c← not d;
r3 : d← not c; r4 : b← not b, not a, not c.

As P is simple, each argument constructed consists of exactly one rule. The
attacks are as follows:
A attacks A; B attacks B; A attacks B;
B attacks A; C attacks B and D; D attacks C.

Note that we obtain the framework pictured in Example 9.2.3.

Moreover, given an AF, let P denote the logic program obtained with the
approach of [CSAD15] described in Section 9.2. Then consider the instantiated
argumentation framework AF′ obtained from P with the approach of [CSAD15]
described in Section 9.3. As P is a simple program whose rules have only a
weak part, each argument of AF′ is reduced to one rule and the attack relation
of AF′ is the same as the attack relation of the original framework AF. So it
was proved in [CSAD15] that both argumentation frameworks AF and AF′ are
isomorphic. This point is illustrated by both Example 9.2.3 and Example 9.3.3.

9.4 Generalizations to enriched frameworks

Now we consider generalizations to enriched argumentation frameworks: a frame-
work accounting for both attack and support interactions, called AFN, and a
framework accounting for higher-order interactions.

AFNs and logic programs Let us briefly review the work done by F.
Nouioua (unpublished report, private communication). That work examines
the connections between an Argumentation Framework with Necessities (AFN)
and logic programs under three-valued semantics. Both directions are consid-
ered.

An AFN [Nou13] is a kind of BAF, where the support is collective and is
interpreted as a “necessary support”: Given E a non-empty set of arguments
and a an argument, E is a “necessary support” for a means that the accep-
tance of a requires the acceptance of at least one argument of E. Note that in
AFN semantics, acyclicity of the support relation is required among accepted
arguments. In other words, in a given extension, support for each argument
is provided by at least one of its necessary arguments and there is no risk of
deadlock due to necessity cycles.

(1) An AFN is encoded into a logic program as follows:

• For each argument a, an atom a and a rule ra of head a are created.
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• For each set of arguments E that necessary supports an argument, an
atom e is created.

• The body of the rule ra contains all the weak atoms not bi, with bi attacks
a, and all the strong atoms ej , with Ej supports a.

• For each support E, there is a rule e← x for each x ∈ E.

• There are correspondences between AFN labelling-based semantics and
three-valued semantics of the program which is obtained.

Ex. 3.2.3 (cont’d) The associated logic program is:
b← not a
c← not b
a←

Ex. 3.2.4 (cont’d) The associated logic program is:
b← not a, not c
a←
c←

Ex. 3.4.1 (cont’d) The associated logic program is:
b← not a
a← not b
c← not b, not e
d← not c
e← not d

Ex. 9.4.1. Consider the following AFN:

a b c

The associated logic program is:
b← e1
a← e2
c← not b
e1 ← a
e2 ← b

Ex. 9.4.2. Consider the following AFN:

a b c d e f g
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The associated logic program is:
a← not b
b← not a
c← e1, not e
d← not c
e← not d
f ← e2, not e
g ← not g
e1 ← b
e2 ← g

This program has three 3-valued stable models : (∅,∅), ({b, e1}, {a}), ({a, d}, {b, c, e, e1})
corresponding respectively to the three complete labellings of the AFN.

Ex. 9.4.3. Consider the following AFN with a collective support:

a d

{a, b}

b c

The associated logic program is:
c← e
b← not c
a← not d
d←
e← b
e← a

Ex. 9.4.4. Consider the following AFN with collective supports:

b d

{a, b} {c, d}
a c

The associated logic program is:
a← not c, not d
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b← e2
c← e1
d← not a, not b
e1 ← a
e1 ← b
e2 ← c
e2 ← d

(2) A logic program is encoded into an AFN as follows:

• An argument is associated with each rule of the program.

• The supports are created: if E is a set of rules with the same head h, and
h is a strong atom of a rule r, then a necessary support from E to r is
created.

• The attacks are created: if the head of r1 appears in a weak atom of r2,
then an attack from r1 to r2 is created.

• There are correspondences between the three-valued of the program and
the labelling-based semantics of the AFN (except for semi-stable seman-
tics).

Ex. 9.3.1 (cont’d) The logic program is encoded by the following AFN. An
argument ri is associated with each rule. There is no attack. The supports are
as follows:

{r1} supports r2; {r2} supports r1.

Ex. 9.3.2 (cont’d) The logic program is encoded by the following AFN. An
argument ri is associated with each rule.
The attacks are as follows:
r3 attacks r3; r1 attacks r2; r2 attacks r1;
r2 attacks r4; r4 attacks r3.

The supports are as follows:
{r5} supports r1 and r3; {r6} supports r5.

Ex. 9.4.5. Consider the following normal logic program P with rules r1, . . . r3:
r1 : p← q; r2 : q ← p; r3 : s← not q.

An argument ri is associated with each rule. There is one attack:
r2 attacks r3,

and two supports:
{r1} supports r2, {r2} supports r1.

Note that we obtain the framework pictured in Example 9.4.1.

Ex. 9.4.6. Consider the following normal logic program P with rules r1, . . . r7:
r1 : p← not q; r2 : q ← not p; r3 : s← q, not u;
r4 : t← not s; r5 : u← not t; r6 : v ← w, not u;
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r7 : w ← not w.
An argument ri is associated with each rule. It can be checked that the framework
pictured in Example 9.4.2 is obtained.

Ex. 9.4.7. Consider the following normal logic program P with rules r1, . . . r4:
r1 : p← q; r2 : q ← not p; r3 : q ← not s; r4 : s←.

An argument ri is associated with each rule. There are two attacks:
r1 attacks r2, r4 attacks r3

and one support:
{r2, r3} supports r1.

Note that we obtain the framework pictured in Example 9.4.3.

Ex. 9.4.8. Consider the following normal logic program P with rules r1, . . . r4:
r1 : p← not q; r2 : p← q; r3 : q ← not p; r4 : q ← p.

An argument ri is associated with each rule. It can be checked that the framework
pictured in Example 9.4.4 is obtained.

Note that if the original program P is simple (at most one rule whose head
is a for each atom a of the program), and is such that each rule has only weak
atoms, the encoding proposed by [CSAD15] is recovered.

The above remark is illustrated on the following example.

Ex. 9.3.3 (cont’d) The logic program is encoded by the following AFN. An
argument ri is associated with each rule. The attacks are as follows:
r1 attacks r1 and r4 ; r2 attacks r3 and r4 ;
r3 attacks r2; r4 attacks r1 and r4.

There are no supports.

In contrast, when the logic program is not simple or when some rules have
a strong part, the encoding by an AFN, using necessary supports, avoids the
construction of complex arguments. The transformation from a program to an
AFN is performed at the abstract level.

REBAF and logic programs Connections between a Recursive Evidence-
Based Argumentation Framework (REBAF) and a logic program can also be
considered (private communication by J. Fandinno).

A REBAF [CFFLS18] is a generalization of AF that allows the representation
of both recursive attacks and evidential supports. It is also a generalization of
EBAF (see Section 2) with attacks and supports targeting other attacks or
supports. Let us recall that evidential support is based on the intuition that
every argument must be supported by some chain of supports from some special
arguments called prima-facie.

A logic program can be encoded into a REBAF as follows:
Let r be the rule h ← b1, . . . , bn, not c1, . . . , not cm. The following REBAF

is created:

• The arguments h, b1, . . . , bn, c1, . . . , cm are created.
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• Let E = {b1, . . . bn}. An evidential support named αr is created from E
to h. The source of αr is the set of arguments E and the target of αr is
the argument h.

• For each i = 1, . . . ,m, an attack named βi is created, such that the source
of βi is {ci} and the target of βi is αr.

• All the attacks and supports are prima-facie. In contrast, no argument is
prima-facie.

Preliminary work suggests that a correspondence between the stable models
of the original program and the stable structures of the obtained REBAF could
be obtained.

Up to now, the other direction (from a REBAF to a logic program) has not
been considered.

The following particular case is worth of interest : Consider a simple logical
program such that each rule has only a weak part.
In that case, each argument is considered as prima-facie (as a support would be
created with an empty source).
Moreover, given the rule r = h← not c1, . . . , not cm, each attack βi should be
created with the target h. Note that in that particular case, with the encoding
proposed in [CSAD15], each argument which is created consists of exactly one
rule. In contrast, in the encoding proposed above, arguments are exactly atoms
of the program.

Let us compare both proposals on the following example:

Ex. 9.3.3 (cont’d) Let us first consider the normal logic program P reduced to
the rule

r1 : a← not a, not b.
With the encoding of [CSAD15], only one argument A1 is created, consisting of
the unique rule r1. There is only one attack:

A1 attacks A1.
In contrast, with the REBAF approach, two prima-facie arguments a and b are
created with two attacks:

a attacks a b attacks a.

Let us now consider the whole logic program consisting of the four rules
r1, . . . r4:

r1 : a← not a, not b; r2 : c← not d;
r3 : d← not c; r4 : b← not b, not a, not c.

With the encoding of [CSAD15], four arguments are created (one per rule) with
the following attacks:

A attacks A; B attacks B; A attacks B;
B attacks A; C attacks B; D; D attacks C.

With the REBAF approach, four prima-facie arguments a, b, c, d are created
(one per atom). It can be checked that the obtained AF is the same as the one
obtained above with the encoding of [CSAD15], that is the framework pictured
in Example 9.2.3.
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Argumentation Frameworks with Higher Level Attacks and Logic
Programs by Gabbay In [Gab09b] higher level extended argumentation
frameworks are considered, where attacks on other attacks are allowed, at any
level. A translation from a higher level framework into a logic program is sug-
gested, as follows:

• The atoms of the logic program are all the arguments and all the attacks.

• For each e, argument or attack, if e is not attacked, the rule e← is created.

• Assume that e is attacked by the arguments a1, . . . , ak through the attacks
named α1, . . . , αk. Assume that each αi is itself attacked by the arguments

b1i , . . . , b
k(i)
i through the attacks named β1

i , . . . , β
k(i)
i . Then the following

formula is created: e←
∧
i=1,k(not ai ∨

∨
j=1,k(i)(β

j
i ∧ b

j
i )).

• The above formula must be turned into several clauses in order to get a
normal logic program.

[Gab09b] proposes to define the semantics of a higher level extended argu-
mentation framework through known semantics for logic programs, using the
above transformation.

However, to the best of our knowledge, this way was not pursued by the
author. Instead, [Gab13] proposes to give up the logic programming approach
for defining the semantics of higher level argumentation frameworks. Indeed,
the new approach consists in rewriting higher level attacks as frameworks with
a special kind of collective attacks (called joint attacks).

9.5 Some implementations

Some implementations using logic programming have been proposed. The first
one uses a translation of an AF into a logic program. The other ones rely on
other kinds of translation and then use logic programming for computational
issues.

ASPARTIX (Answer Set Programming Argumentation Reasoning Tool) sup-
ports reasoning in AFs using the ASP formalism (see [DGW] for the de-
scription of the tool and many references).

The core of ASPARTIX handles AFs. It provides encodings for computing
extensions or performing credulous/skeptical reasoning in AFs. A broad
range of argumentation semantics is dealt with.

ASPARTIX also handles several other frameworks built on top of AFs,
including for instance AFs augmented with preferences (PAFs), BAFS,
AFRAs, SETAFs (AFs where attacks are carried by sets of arguments).

[DDLN10] presents dialectical proofs for the credulous acceptance problem in
constrained argumentation frameworks (CAF, see Section 3.4). A CAF
is a generalization of AF that allows additional constraint on arguments
to be taken into account in the definition of admissible sets of arguments.
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A dialectical proof is formalized by a dialogue between two players, the
proponent and the opponent. Dialectical proofs are computed by an ASP
program which consists of facts encoding a CAF and rules encoding what
a dialectical proof is (that is the legal-move function of the dialogue). The
models of the logic program correspond to the dialectical proofs of the
CAF (see [LN] for the description of the ASP solver ASPeRiX and its
application to the credulous acceptance problem in a CAF).

[PLJ17] proposes a Boolean algebra to encode acceptability semantics for AFs.
A subset of arguments is represented by a Boolean vector and the attack
relation is represented by a Boolean matrix. Then series of Boolean opera-
tions on vectors and matrices are introduced so that acceptability seman-
tics (namely the admissible, stable and complete semantics) can be en-
coded by Boolean constraints. These constraints are translated into logic
programs and solved using a Constraint Logic Programming over Boolean
variables (CLPB) system, which is an instance of the general CLP scheme
that extends logic programming with reasoning over Boolean domains.
The implementation uses SWI-Prolog, a Prolog system equipped with a
CLPB system. Experiments have been conducted, with a comparison with
the approach using the solver ArgSemSAT [CGV14] (see Section 8.3).
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10 Argumentation Frameworks and Modal Logic

As outlined in [CG09], there exist several methods for expressing argumenta-
tion in modal logic, among which the object-level approach and the meta-level
approach. Roughly speaking, in the object-level approach, an AF and its logical
translation share the same language (each argument becomes a logical atom),
whereas a meta-level approach talks about an AF from “above”, using another
language and logic (for instance a modal logic).

We first recall some modal logic background. Then, we present three ex-
amples of meta-level approaches. In the first two, the input consists of an AF
together with a labelling. The output consists of modal formulae that express
the characteristic properties of complete and stable semantics.

Finally, we briefly present an object-level approach.

10.1 Modal Logic Preliminaries

The modal logic K is a propositional system with the modal operator � (and its
dual ♦), the usual logical connectives, the symbols >, ⊥ and atomic propositions
q1, q2, . . .

Models for K have the form (S,R, h) where S 6= ∅ is the set of possible
worlds, R ⊆ (S × S), and h is the assignment function giving for each atomic
proposition q a subset h(q) of S.

Satisfaction is defined as follows:

• t � q iff t ∈ h(q)

• t � (A ∧B), (¬A), (A ∨B), (A→ B) as usual

• t � (�A) iff for all s such that tRs, s � A

• A holds in (S,R, h) iff for all t ∈ S, t � A

The system K can be axiomatized as follows:

• propositional tautologies

• �(A→ B)→ (�A→ �B)

• If � A then � �A

10.2 The approach by Grossi

In [Gro10] a well-known modal logic (the extension of K with universal modality)
is used to formalize basic notions of argumentation theory.

Let AF = (A,R). AF is viewed as a modal frame, where the set of possible
worlds is the set of arguments A and the accessibility relation is the inverse of
the attack relation (intuitively the “being attacked” relation).
An assignment I on (A,R) is a function from a set of propositional atoms to
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the subsets of arguments.22 The fact that an argument a belongs to I(p) can
be interpreted as “argument a has property p”.
An argumentation model has the form (AF, I) where I is an assignment on AF .
As an example of assignment, we find the labellings: A labelling function ` on A
can be viewed as an assignment on the propositional symbols 1, 0, ? (intuitively
in, out, und).

The following statements are interesting in argumentation theory:

• “argument a is attacked by the set of arguments E”;

• “argument a is defended by the set of arguments E”;

• “the set of arguments E attacks an attacker of argument a”.

In order to express these statements, two modal operators are used:

• 〈←〉 whose intuitive reading is “there exists an argument attacking the
current one such that”, and

• 〈∀〉 whose intuitive reading is “there exists an argument such that”.

As usual, there are also the dual operators [←] and [∀].
The semantics is as follows: In a given model (AF, I):

• a � 〈←〉φ iff there exists s such that s attacks a in AF and s � φ.

• a � 〈∀〉φ iff there exists s such that s � φ.

Consider for instance the particular case of a labelling. Let a be an argument.
a � 〈←〉1 reads “there exists at least one attacker of a labelled in”.

Given an argumentation model (AF, I), the statement “argument a is at-
tacked by an argument in the set of arguments of A that satisfy the property
φ” can be encoded as a � 〈←〉φ. As s � φ reads “s belongs to the set of ar-
guments in A that satisfy φ”, it follows that a � 〈←〉φ encodes the statement
“argument a is attacked by the set of arguments in A that satisfy φ”. Similarly,
the statement a � 〈←〉〈←〉φ encodes the statement “argument a is defended by
the set of arguments in A that satisfy φ”.

The modal logic that is obtained is an extension of the modal logic K, de-
noted by K∀. It enables to capture basic principles of argumentation semantics,
as for instance:

• [∀](φ→ [←K¬φ) encodes that JφK 23 is conflict-free.

• [∀](φ→ [←]〈←〉ψ) encodes that JφK is acceptable wrt JψK.

• [∀](φ↔ [←]¬φ) encodes that JφK is stable.

22That is, the codomain of I is the powerset of A.
23JφK denotes the set of arguments in G that satisfy φ.

59



Consider the particular case of a labelling. A labelling ` is a complete
labelling for AF iff the model (AF, `) satisfies the following formula:

[∀]
(
(1↔ [←]0) ∧ (0↔ 〈←〉1) ∧ Label

)
where Label is the formula (1∧¬0∧¬?)∨ (¬1∧ 0∧¬?)∨ (¬1∧¬0∧?), meaning
that each argument can get at most one label.

Then model-checking can be used in order to determine whether a given
formula is conflict-free, admissible, stable.

Furthermore, [Gro10] presents a game-theoretic proof procedure based on
model-checking games for the logic K∀. In such a game, a proponent tries to
prove that a � φ holds in a given model (AF, I) while an opponent tries to
disprove it.

Note that an additional modal machinery including a least fixpoint operator
is needed to capture the notion of grounded extension.

10.3 The meta-level approach of Caminada and Gabbay

The meta-level approach of [CG09] is close to the approach of [Gro10]. It can
be summarized as follows. Given AF = (A,R),

• Arguments are viewed as possible worlds; so AF becomes a modal frame
for the modal logic K.

• The attack relation becomes the accessibility relation.

• A labelling becomes an assignment of three propositional atoms q0, q1, q?.

More precisely, given ` a labelling on AF , the associated assignment I is
defined as follows:

t ∈ I(q0) (or t � q0) iff `(t) = out;
t ∈ I(q1) (or t � q1) iff `(t) = in;
t ∈ I(q?) (or t � q?) iff `(t) = und.

The modality � means “being attacked by”, namely a � �φ iff for all s such
that s attacks a in AF , s � φ. As usual, ♦ denotes the dual modality.

Note that the modality � corresponds to the modality [←] of [Gro10]. How-
ever there is no modality corresponding to [∀].

Complete labellings can be characterized with a set of axioms including for
instance:

�q0 → q1 (if all attackers of t are out then t is in)
♦q1 → q0 (if t is attacked by an argument which is in then t is out).

Then, stable and complete extensions are characterized by the following
equations. Let E be a propositional letter denoting a set of arguments.

• E is stable iff E = �¬E.

• E is a complete extension iff E = �(¬E ∧ ♦E).

The extensions can be obtained as fixed point solutions for the above equations.
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10.4 The modal setting of Villata et al.

The purpose of the work reported in [VBG+12] is to define a logic for spec-
ifying and verifying requirements for AFs. A propositional variant has been
presented in Section 6. Here we consider the modal variant, which allows the
expression that some semantics admit multiple extensions and also the expres-
sion of properties of the attack relation (such as irreflexivity, or symmetry for
instance).

The main difference with the modal approaches of [CG09] and [Gro10] is
that these works describe semantics in the modal language, whereas [VBG+12]
considers semantics as primitives of the language.

The approach of [VBG+12] presents the following features:

• Sets of arguments are viewed as possible worlds.

• The attack relation is interpreted as an accessibility relation among worlds.
That implies that the attack relation represents a collective attack (a set
of arguments taken together may attack another set of arguments).

• There are two modal operators : �1 and �2. The modality �1 means
“attacks”, namely p � �1φ iff for all q such that p attacks q in the AF,
q � φ. �2 is a universal modality (as [∀] in [Gro10]).

As in the propositional variant, primitives of the modal language (such as
F (p), A(p)) represent semantics. Moreover, in order to abbreviate formulae, a
connective for collective attack is defined as follows : p . q ≡ �2(p→ �1¬q).

The modal logic that is obtained enables to express characterizations such
as:

• For any pair (p, q) of sets of arguments such that p attacks q, they cannot
be subsets of a conflict-free extension: �2(p . q)→ F (¬p ∨ ¬q)

• The grounded semantics admits a single extension:
� (G(p) ∧G(q))→ �2(p↔ q)

10.5 The object-level approach of Caminada and Gabbay

The object-level approach of [CG09] can be summarized as follows. Given AF =
(A,R),

• Arguments are viewed as atomic propositions in the modal provability
logic LN3.

• The content of AF is represented by a formula M(AF ) of the logic LN3.

• The possible world models of M(AF ) are in one-to-one correspondence
with the labellings of AF .
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The modal formula M(AF ) is as follows:

M(AF ) =


(
G((�⊥) ∨ (

∧
y has attackers yi

(y ↔
∧
i ♦¬yi)))

)∧
(
∧
x is not attacked Gx)


where GA stands for A ∧�A.

The provability logic LN3 has the following axioms and rules:

1. axioms and rules of modal logic K

2. ♦A→ ♦(A ∧�¬A)

3. �A→ ��A

4. (♦A ∧ ♦B)→ ♦(A ∧B) ∨ ♦(A ∧ ♦B) ∨ ♦(B ∧ ♦A)

5. ���⊥
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11 Translation of an AF into intuitionistic logic

The translation of an AF into an intuitionistic logic theory has been first con-
sidered in [GG16]. The idea is to use intuitionistic negation to model an attack.
The intuitionistic models of the obtained theory characterize the complete ex-
tensions.
More recently, [FF18] presents a translation of an AF into Nelson’s constructive
logic, an extension of intuitionistic logic including the notion of strong negation
as a means to deal with constructive falsity. This logic allows to capture an AF
under the stable semantics, at the object level, in the sense that arguments in
AF become atoms in the corresponding logical theory and interactions between
arguments are expressed by logical connectives. Moreover the translation al-
lows to deal with enriched argumentation frameworks such as frameworks with
collective attacks, and frameworks with attacks and evidential supports.

11.1 Background about intuitionistic logic

Let us recall that :

• Intuitionistic implication φ1 → φ2 can be understood as a means to con-
struct a proof of the truth of φ2 in terms of a proof of the truth of φ1.

• Strong negation ∼ φ can be understood as the existence of a proof of the
falsity of φ.

• Intuitionistic negation is defined as ¬φ ≡ (φ→ ⊥). It can be understood
as a means to obtain a proof of a contradiction from a proof of the truth
of φ (or roughly speaking as “there cannot be a proof of the truth of φ”).

Then, a new implication connective,⇒, allows the formalization of the “non
contradictory” inference principle (NC) : “no belief can be held based on con-
tradictory evidence”.

φ1 ⇒ φ2 ≡ (¬ ∼ φ1 ∧ φ1)→ φ2

Intuitively, φ1 ⇒ φ2 can be understood as a means to construct a proof of
the truth of φ2 given a proof of the truth of φ1 and the fact that there cannot
be a proof of its falsity (or in other words given a “consistent” proof of φ1).

11.2 Abstract argumentation and intuitionistic logic

In [FF18], intuitionistic logic is used for translating an AF or an EBAF.

Translation of an AF The translation presented in [FF18] relies on the fol-
lowing intuition : under the constructive logic point of view, an attack is a
“means to construct a proof of the falsity of the attacked argument based on
the acceptability of the attacker”. Moreover, the acceptability of φ is identified
with having a consistent proof of it (i.e. there is a proof of the truth of φ and
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there cannot be a proof of the falsity of φ).
Then the above intuition of the notion of attack is formalized by a new connec-
tive:

φ1  φ2 ≡ φ1 ⇒ ∼ φ2
In other words, φ1  φ2 says that the acceptability of φ1 allows to construct

a proof of the falsity of φ2, and a proof of the falsity of φ2 is identified with φ2
being defeated.

Given AF = (A,R), the associated theory in constructive logic is:

C(AF ) ≡ A ∪ {a b|(a, b) ∈ R}

[FF18] proves that there is a one-to-one correspondence between the stable
extensions of AF and the equilibrium models of the theory C(AF ), where the
equilibrium models of a theory are a particular selection of constructive logic
models of this theory.

Regarding how other extension-based semantics could be characterized in
constructive logic is an open topic.

Translation of Evidential Argumentation Frameworks In the case of
an argumentation framework with collective attacks and evidential supports
(EBAF) the translation uses the connectives

∧
,  and ⇒.

Let EBAF = (A,R, E ,P). Recall that the attack relation R is a subset of
2A \∅×A, the support relation E is a subset of 2A \∅×A, and P ⊆ A is the
set of distinguished prima-facie arguments (see Section 2.1).

Using the notation
∧
B that denotes “the conjunction of the elements of B”,

the associated theory in constructive logic is:

C(EBAF ) ≡ P ∪ {
∧
B  b|(B, b) ∈ R} ∪ {

∧
B ⇒ b|(B, b) ∈ E}

Note that the support from the set of arguments B to an argument b is
translated by the formula

∧
B ⇒ b which says that the acceptability of B en-

ables to construct a proof of the truth of b.

As for the case of an AF, [FF18] proves that there is a one-to-one correspon-
dence between the stable extensions of an EBAF (defined in [CFFLS18]) and
the equilibrium models of the theory C(EBAF ).
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12 Analysis

In this section, we first compare the reviewed approaches according to several
criteria. Then, we illustrate the associated encodings on an example.

12.1 Comparison criteria

The first question is: “Is argumentation used for doing logic?” or “Is logic used
for doing argumentation?”. So, two kinds of approaches can be identified:

• Some approaches (most of the rewiewed ones) are “from argumentation
to logic” (they use logic for doing argumentation);

• Some other approaches are “from logic to argumentation” (they give an
argumentative meaning to a logic program).

The second kind of approaches being very specific (see [Dun95, WCG09,
CSAD15]), we focus on the first kind in the following.

1. The first comparison criterion is about the input taken into account by
the different approaches. In each case, the input consists at least of a
graph. Except in the ADF approach, this graph usually represents an AF.
Moreover, in some approaches, the AF is extended into either a bipolar
AF, or a recursive AF, or an AF with collective interactions, or with
weighted arguments/interactions, or with preferences, or built on a given
universe.
In some approaches, an additional input is needed: either constraints or
requirements that must be satisfied by the output or “candidates” that
must be studied in order to satisfy some properties. Table 1 synthetizes
all these cases.

2. The second criterion is about the aim of the approaches that use logic for
doing argumentation and is related to the produced output. Two kinds of
aim can be encountered:

• Either the aim is to obtain a logical encoding of the input AF; in this
case, the output is a set of formulae;

• Or the aim is to encode argumentative semantics; in this case, the
ouput is a set of logical formulae whose models correspond to ex-
tensions or labellings for a given argumentation semantics possibly
with additional constraints; sometimes, it is also possible to check
whether some “candidates” are actual extensions or labellings for a
given semantics.

It is worth noting that if an approach covers the first aim, it also covers
at least part of the second one. Indeed, it is very difficult to encode an
argumentation graph without taking into account the meaning attached
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Input graph Approaches

Case of an input graph that represents an AF

Dung [CFLS17], [GG15], [DHP14], [CMDM06], [BDH14],
[BD04], [DJWW12], [CG09], [AC12], [AC13],
[DWW14], [DWW15], [CDGV14], [VBG+12],
[Dun95], [CNO09], [ONS13], [CSAD15], [ON17],
[SR17], [Gro10], [Gab09b], [DBCL16]

Bipolar [FF18]
Recursive [CLS18a], [Gab09b]
Weighted none
With preference [DGLW15]
With collective in-
teractions

[FF18], [DBCL16]

On a universe [DBCL16]

Case of an input graph that does not represent an AF

Dependence graph ADF approach [BES+17, BES+18]

Other input Approaches

Acceptance condi-
tions

• (on each argument) ADF approach [BES+17,
BES+18]: depending on the chosen acceptance con-
ditions, the dependence graph can represent any
type of AF, from Dung AFs to AFs with collective
interactions
• (on the AF) Constrained AF [CMDM06]: the ac-
ceptance condition is used only for removing some
extensions

Requirements On the AF or the semantics [VBG+12]: the require-
ments are used for constraining the structure of the
AF or the resulting labellings

Candidates Are these candidates actual extensions or labellings
for the given semantics? [CG09], [Gro10], [BDH14],
[BD04], [CDGV14], [DJWW12]

Table 1: The first comparison criterion: the input

to the notion of attack (at least the notion of conflict-freeness). Table 2
synthetizes the aims of the reviewed approaches.

3. The third criterion is about logic. Several logics are encountered: propo-
sitional logic, first-order logic, QBF formalism, logic programming, modal
logic, intuitionistic logic. Table 3 synthetizes the different cases.

Note that the complexity of the chosen logic must be taken into account:
it is more or less difficult to compute models and to establish the link
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Aim Approaches

Translation of an AF [CLS18a], [CFLS17], [GG15], [DHP14],
[DGLW15], [DBCL16], [CNO09], [ONS13],
[CSAD15]

Encoding of semantics
Case of extension-based semantics

[BDH14], [BD04], [DJWW12], [CG09],
[CLS18a], [CFLS17], [GG15], [DHP14],
[DGLW15], [DBCL16], [VBG+12], [Dun95],
[CNO09], [ONS13], [CSAD15], [ON17],
[SR17], [Nou13], [Gab09b], [FF18]

Case of labelling-based semantics
[CG09], [CDGV14], [AC12], [AC13],
[DWW14], [DWW15], [CG09], [Gro10]

Table 2: The second comparison criterion: the aim

Used logics Approaches

Propositional [BES+17], [BES+18], [CMDM06], [DHP14], [DGLW15],
[GG15], [BDH14], [BD04], [DJWW12]

First-order (with fi-
nite domains)

[CLS18a], [CFLS17], [CG09], [CDGV14], [DBCL16],
[VBG+12]

QBF [AC12], [AC13], [DWW14], [DWW15]
Logic programming [Dun95], [CNO09], [ONS13], [CSAD15], [ON17], [SR17],

[Nou13], [Gab09b]
Modal [CG09], [Gro10], [VBG+12]
Intuitionistic [FF18]

Table 3: The third comparison criterion: the used logic

between these models and the output that must be produced. This point
is related to the next criterion.

4. The fourth criterion is about the existence of implementations: some ap-
proaches are yet to be implemented, whereas some others have led to differ-
ent implementations, some of them being used in the ICCMA competition
(see for instance [LLM15]). Table 4 synthetizes all these implementations.
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Some existing implementations Approaches

none [CMDM06], [VBG+12], [GG15],
[DBCL16], [CG09], [Gro10], [FF18]

DIAMOND, UNREAL, GrappaVis [BES+17], [BES+18]
GRAFIX [CLS18a], [CFLS17]
SESAME, CoQuiAAS, . . . [BDH14], [BDHL16], [WWW13],

[LLM15], [LNJ18], [BD04]
CEGARTIX [DJWW12]
QADF [BES+17], [BES+18], [DWW14],

[DWW15]
PrefSAT, ArgSemSAT [CDGV14], [CGV14]
LabSAT [BBP15], [BBP15]
ASPARTIX, ASPeRiX, ASP-solvers,
. . .

[Dun95], [CNO09], [ONS13], [CSAD15],
[ON17], [SR17], [EGW10], [Gag10],
[DDLN10], [PLJ17]

Table 4: The fourth comparison criterion: the implementations

12.2 An illustrating example

The following example illustrates the different encodings that can be obtained.

Ex. 2.1.1 (cont’d) The AF is a simple Dung’s framework that has only one
complete extension: {a, d, c}.

a b c

d

With ADF approach (translation of the AF into a dependence graph):
See Section 3. The AF is encoded by the following dependence formulae:

ϕa = >, ϕb = ¬a ∧ ¬d, ϕc = ¬b, ϕd = >.

The language is propositional with the vocabulary V = {a, b, c, d}. Then,
using the ADF machinery (the computation of the fixpoints of the ΓD
operator) a 3-valued model is produced, which corresponds to the complete
extension {a, d, c}.

Translation of the AF into a logical base: Several approaches exist, each
of them including an encoding of semantics.

[CLS18a, CFLS17, CLS18b]: See Section 4.2. The vocabulary is de-
fined as follows:

V = {Acc(a), NAcc(a), Acc(b), NAcc(b), Acc(c), NAcc(c), Acc(d),
NAcc(d)}. Note that it is a first-order approach whose term models
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are finite so it is equivalent to a propositional approach.
The AF is encoded by the set of formulae:

Σ = {Acc(a)→ NAcc(b), Acc(d)→ NAcc(b),
Acc(b)→ NAcc(c),
NAcc(a)→ ¬Acc(a), NAcc(b)→ ¬Acc(b),
NAcc(c)→ ¬Acc(c), NAcc(d)→ ¬Acc(d)}.

The different requirements of the standard semantics are also logically
encoded. For instance, for the complete semantics, the defence and
the reinstatement principles are respectively encoded by:

Σd = {¬Acc(b), Acc(c)→ (Acc(a) ∨Acc(d))}
Σr = {Acc(a), Acc(d), Acc(a)→ Acc(c), Acc(d)→ Acc(c)}.

Then, the models of Σ∪Σd∪Σr characterize the complete extensions
(here there is only one model corresponding to the unique complete
extension {a, d, c}).

[GG15]: See Section 4.3. The language is propositional with the vocab-
ulary V = {a, b, c, d, Na,Nb,Nc,Nd}. The AF and some require-
ments corresponding to the semantics are logically encoded. How-
ever, the logical encoding mixes the part issued from the input AF
and the part issued from the encoding of semantics. Moreover, it is
not possible to identify the part issued from each principle in the log-
ical encoding of a semantics. For the considered AF, the resulting
base is:24

{Na→ ¬a, Nb→ ¬b, Nc→ ¬c, Nd→ ¬d,
a, d, a→ Nb, d→ Nb, b→ Nc,
a↔ >, d↔ >, b↔ (Na ∧Nd), c↔ Nb,
(¬a ∧ ¬d ∧ (¬Na ∨ ¬Nd))→ (¬b ∧ ¬Nb),
(¬b ∧ ¬Nb)→ (¬c ∧ ¬Nc)}.

The models of this base characterize the complete extensions (here
there is only one model corresponding to the unique complete exten-
sion {a, d, c}).

[DBCL16]: See Section 6.1. The language is first-order. Considering
that the input AF is also the universe, the encoding produces the
formula Φ:

(on({a, b, c, d})) ∧ ({a} B {b}) ∧ ({d} B {b}) ∧ ({b} B {c}).
Then, considering a set of arguments t, one can check whether t is
an extension for the given semantics. For instance, t is a complete
extension if the following formula is a tautology:

Φ→


on(t)
∧¬(t B t)
∧(t BB t)
∧∀t2((singl(t2) ∧ (t BB t2))→ (t2 ⊆ t))


[CNO09, ONS13, ON17]: See Section 9.2. The approach uses logic

programming. The AF is encoded by the following logic program:

24Without trivial formulae such as, for instance, (> ∧⊥) → (¬a ∧ ¬Na)

69



def(b)← not def(a)
def(b)← not def(d)
def(c)← not def(b)
def(c)← def(a), def(d)
def(b)← >
acc(a)← not def(a)
acc(b)← not def(b)
acc(c)← not def(c)
acc(d)← not def(d)

The complete extensions are characterized by the supported mod-
els of the logic program. Here, there is only one supported model
({acc(a), acc(c), accc(d), def(b)}) corresponding to the unique com-
plete extension ({a, c, d}).

[CSAD15]: See Section 9.2. The approach also uses logic programming,
with propositional symbols. The AF is encoded by the following logic
program:

b← not a, not d
c← not b
a←
d←

There are correspondences between 3-valued models of the logic pro-
gram and argumentation semantics. For instance, the complete ex-
tensions of the AF are characterized by the 3-valued stable models of
the associated logic program.

[FF18]: See Section 11. The logic is equilibrium logic, with the vocabulary
V = {a, b, c, d}. The AF is encoded by the base:

a
b
c
d
a b
d b
b c

However, only the stable semantics has been characterized in terms
of equilibrium models.

Encoding of semantics The approaches presented above allow the characteri-
zation of some semantics, given the logical encoding of the AF. Some other
approaches give a characterization of semantics without encoding the in-
put AF. They try to identify and to encode some principles governing the
input semantics. In some cases, the produced formulae can be instantiated
on a given AF, particularly in order to compute the extensions/labellings,
or to check whether a given set of arguments is an extension (or whether
a given labelling is correct w.r.t. the input semantics).
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[BD04]: See Section 7.1. The language is propositional with the vocabu-
lary V = {a, b, c, d}. For the considered AF, the complete extensions
are characterized by the following formula Φ:

[(a→ ¬b) ∧ (a↔ >)]∧
[(d→ ¬b) ∧ (d↔ >)]∧
[(b→ ¬c) ∧ (b↔ ⊥)]∧
[(c→ >) ∧ (c↔ (a ∨ d))]

Then, given a set of arguments S, it can be checked whether S is a
complete extension.

[DJWW12]: See Section 7.2. The language is propositional with the
vocabulary V = {xa, ya, xb, yb, xc, yc, xd, yd}. For the considered AF,
the complete extensions are characterized by the following formula Φ:

[(¬xa ∨ ¬xb) ∧ (¬xd ∨ ¬xb) ∧ (¬xb ∨ ¬xc)]∧
[(¬xb) ∧ (xc → (xa ∨ xd))]∧
[(ya ↔ xa) ∧ (yd ↔ xd)]∧
[yb ↔ (xb ∨ xa ∨ xd)]∧
[yc ↔ (xc ∨ xb)]∧
[ya ∧ yd ∧ ((ya ∧ yd)→ yb)]∧
[yb → yc]

Models of Φ characterize the complete extensions of the AF (xi is
true in the model iff the argument i belongs to the extension).

[AC12, AC13]: See Section 5. The logic uses quantified Boolean formu-
lae (QBF formalism). The formulas can be instantiated on a given
AF. For the considered AF, the complete labellings are characterized
by the following formula:

[val(a, t) ∧ ¬val(a, f) ∧ ¬val(a, u)]∧
[val(d, t) ∧ ¬val(d, f) ∧ ¬val(d, u)]∧
[val(b, t)→ (val(a, f) ∧ val(d, f))]∧
[val(b, f)→ (val(a, t) ∨ val(d, t))]∧[
val(b, u)→

(
¬(val(a, f) ∧ val(d, f))
∧(¬(val(a, t) ∨ val(d, t)))

)]
∧

[val(c, t)→ val(b, f)]∧
[val(c, f)→ val(b, t)]∧
[val(c, u)→ (¬val(b, f) ∧ ¬val(b, t))]∧
[¬(a⊕ ∧ a	)]∧
[¬(b⊕ ∧ b	)]∧
[¬(c⊕ ∧ c	)]∧
[¬(d⊕ ∧ d	)]

[CG09] with first-order logic: See Section 8.1. For the considered AF,
the complete labellings are characterized by the following formula:

[Q0(a) ∨Q1(a) ∨Q?(a)]∧
[Q0(b) ∨Q1(b) ∨Q?(b)]∧
[Q0(c) ∨Q1(c) ∨Q?(c)]∧
[Q0(d) ∨Q1(d) ∨Q?(d)]∧
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[¬(Q0(a) ∧Q1(a)) ∧ ¬(Q0(a) ∧Q?(a)) ∧ ¬(Q?(a) ∧Q1(a))]∧
[¬(Q0(b) ∧Q1(b)) ∧ ¬(Q0(b) ∧Q?(b)) ∧ ¬(Q?(b) ∧Q1(b))]∧
[¬(Q0(c) ∧Q1(c)) ∧ ¬(Q0(c) ∧Q?(c)) ∧ ¬(Q?(c) ∧Q1(c))]∧
[¬(Q0(d) ∧Q1(d)) ∧ ¬(Q0(d) ∧Q?(d)) ∧ ¬(Q?(d) ∧Q1(d))]∧
[(Q0(a)→ Q1(b)) ∧ (Q0(d)→ Q1(b)) ∧Q1(a) ∧Q1(d)]∧
[Q0(b)→ Q1(c)]∧
[((Q1(a) ∨Q1(d))→ Q0(b)) ∧ (Q1(b)→ Q0(c))]∧
[((Q0(b) ∨Q?(b)) ∧Q?(b))→ Q?(c)]∧ (Q0(a) ∨Q?(a))

∧(Q0(d) ∨Q?(d))
∧(Q?(a) ∨Q?(d))

→ Q?(b)


[CG09] with modal logic: See Section 10.3. The modal formula char-

acterizing the complete extensions is quite simple. The difficulty lies
in computational issues.

E is a complete extension iff E = �(¬E ∧ ♦E)

[Gro10]: See Section 10.2. The logic is a modal logic. The modal formula
characterizing the complete extensions is the following one:

[∀]

 (1↔ [←]0)
∧(0↔ 〈←〉1)
∧[(1 ∧ ¬0 ∧ ¬?) ∨ (¬1 ∧ 0 ∧ ¬?) ∨ (¬1 ∧ ¬0∧ ?)]


Here again, the difficulty lies in computational issues.
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Figure 3: ADF approach, Example 3.2.1: Set of two-valued interpretations and
GD operator
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Figure 4: ADF approach, Example 3.2.1: the complete lattice built from the
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Figure 5: ADF approach, Example 3.2.2: Set of three-valued interpretations
and ΓD operator
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Figure 6: ADF approach, Example 3.2.2: the complete meet-lattice built from
the set of three-valued interpretations and the ≤i preordering
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