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Abstract

We propose a logical encoding of argumentation frameworks with higher-
order interactions (i.e. attacks/supports whose targets are arguments or
other attacks/supports) with an evidential meaning for supports. Our pur-
pose is to separate the logical expression of the meaning of an attack or an
evidential support (simple or higher-order) from the logical expression of
acceptability semantics. We consider semantics which specify the condi-
tions under which the arguments (resp. the attacks/supports) are consid-
ered as accepted, directly on the extended framework, without translating
the original framework into a Dung’s argumentation framework. We char-
acterize the output of a given framework in logical terms (namely as par-
ticular models of a logical theory). Our proposal applies to the particular
case of Dung’s frameworks, enabling to recover standard extensions.
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1 Introduction
Formal argumentation has become an essential paradigm in Artificial Intelligence, e.g.
for reasoning from incomplete and/or contradictory information or for modelling the
interactions between agents [1]. Formal abstract frameworks have greatly eased the
modelling and study of argumentation. The original Dung’s argumentation framework
(AF) [2] consists of a collection of arguments interacting with each other through a
relation reflecting conflicts between them, called attack, and enables to determine ac-
ceptable sets of arguments called extensions.

AF have been extended along different lines, e.g. by enriching them with positive
interactions between arguments (usually expressed by a support relation), or higher-
order interactions (i.e. interactions whose targets are other interactions).

Positive interactions between arguments. They have been first introduced in [3, 4].
In [5], the support relation is left general so that the bipolar framework keeps a high
level of abstraction. The associated semantics are based on the combination of the
attack relation with the support relation which results in new complex attack relations.
However, there is no single interpretation of the support, and a number of researchers
proposed specialized variants of the support relation (deductive support [6], necessary
support [7, 8], evidential support [9, 10]). Each specialization can be associated with
an appropriate modelling using an appropriate complex attack. These proposals have
been developed quite independently, based on different intuitions and with different
formalizations. [11] presents a comparative study in order to restate these proposals
in a common setting, the bipolar argumentation framework (see also [12] for another
survey).

Higher-order interactions. The idea of encompassing attacks to attacks in abstract
argumentation frameworks has been first considered in [13] in the context of an ex-
tended framework handling argument strengths and their propagation. Then, higher-
order attacks have been considered for representing preferences between arguments
(second-order attacks in [14]), or for modelling situations where an attack might be
defeated by an argument, without contesting the acceptability of the source of the at-
tack [15]. Attacks to attacks and supports have been first considered in [16] with higher
level networks, then in [17]; and more generally, [18] proposes an Attack-Support Ar-
gumentation Framework which allows for nested attacks and supports, i.e. attacks and
supports whose targets can be other attacks or supports, at any level.

Here are examples of higher-order interactions in the legal field. The first example
considers only higher-order attacks (this example is borrowed from [19]).

Example 1 The lawyer says that the defendant did not have intention to kill the victim
(argument b). The prosecutor says that the defendant threw a sharp knife towards the
victim (argument a). So, there is an attack from a to b. And the intention to kill should
be inferred. Then the lawyer says that the defendant was in a habit of throwing the
knife at his wife’s foot once drunk. This latter argument (argument c) is better con-
sidered attacking the attack from a to b, than argument a itself. Now the prosecutor’s
argumentation seems no longer sufficient for proving the intention to kill. �
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The second example is a variant of the first one and considers higher-order attacks
and evidential supports.

Example 2 The prosecutor says that the defendant had intention to kill the victim (ar-
gument b). A witness says that she saw the defendant throwing a sharp knife towards
the victim (argument a). Argument a can be considered as a support for argument b.
The lawyer argues back that the defendant was in a habit of throwing the knife at his
wife’s foot once drunk. This latter argument (argument c) is better considered attacking
the support from a to b, than argument a or b themselves. Once again, the prosecutor’s
argumentation seems no longer sufficient for proving the intention to kill. �

We follow here an evidential understanding of the support relation [9] that allows
to distinguish between two different kinds of arguments: prima-facie and standard
arguments. Prima-facie arguments were already present in [4] as those that are justified
whenever they are not defeated. On the other hand, standard arguments are not directly
assumed to be justified and must inherit support from prima-facie arguments through
a chain of supports. For instance, in Example 2, arguments a and c are considered as
prima-facie arguments while b is regarded as a standard argument. Hence, while a and
c can be accepted as in Dung’s argumentation, bmust inherit support from a: this holds
if c is not accepted, but does not otherwise. Indeed, in the latter, the support from a to
b is defeated by c.

A natural idea that has proven useful to define semantics for these extended frame-
works, known as “flattening technique”, consists in turning the original extended frame-
work into an AF, by introducing meta-arguments and a new simple (first-order) attack
relation involving these meta-arguments [15, 18, 20], or by reducing higher-order at-
tacks to first-order joint attacks [21]. More recently, alternative acceptability semantics
have been defined in a direct way for argumentation frameworks with higher-order
attacks [22] or for higher-order attacks and supports (necessary supports: [23], eviden-
tial supports: [24]). The idea is to specify the conditions under which the arguments
(resp. the interactions) are considered as accepted directly on the extended framework,
without translating the original framework into an AF.

In this paper, we propose a logical encoding of argumentation frameworks with
higher-order attacks and evidential supports. Our purpose is (1) to characterize in a
logical way the meaning of an attack or an evidential support (simple or higher-order)
(2) to encode the acceptance conditions for arguments, attacks and supports proposed
in [24] and (3) to characterize the outputs of the framework in logical terms, thus
enabling to use logical tools for computational issues.

The connection between abstract argumentation and logics goes back to the seminal
work of Dung, where a translation from an AF to a logic program was given. This line
of research has been pursued with other kinds of translation e.g. in [25]. In [26], an AF
with first-order joint attacks is encoded in a propositional logic augmented with strong
negation. Other works have encoded acceptance conditions as logical formulae of a
first-order theory e.g. [27], or defined a logical language for expressing the dynamics
of a framework e.g. [28]. To the best of our knowledge, these works do not consider
higher-order attacks.

2



The paper is organized as follows: the necessary background is given in Section 2;
the logical encoding for frameworks with only higher-order attacks (RAF) is presented
in sections 3 and 4 and the logical encoding for frameworks with higher-order attacks
and evidential supports (REBAF) is presented in sections 5 and 6; some related works
are discussed in Section 7, and Section 8 concludes the paper. The proofs are given in
Appendix A.

Note that this paper is an extended version of [29] in which only the case of RAF
was taken into account. First, we extend this previous work on RAF with examples
and proofs, then we consider the case of REBAF using our RAF proposals as basic
components. As REBAF is a much more complex formalism than RAF, starting with
RAF encoding makes the work reported easier to read and understand.

2 Background

2.1 The Standard Abstract Framework
The standard case handles only one kind of interaction: attacks between arguments.

Definition 1 [30] A Dung’s argumentation framework (AF) is a tuple AF = 〈A,R〉,
where A is a finite and non-empty set of arguments and R ⊆ A×A is a binary attack
relation on the arguments, with (a, b) ∈ R indicates that a attacks b.

A graphical representation can be used for an AF.

Example 3 An attack (a, b) ∈ R is represented by two nodes a, b (in a circle) and a
simple edge from a to b:

a b

�

We recall the definitions1 of some well-known extension-based semantics. Such a
semantics specifies the requirements that a set of arguments should satisfy. The basic
requirements are the following ones:

An extension can “stand together”. This corresponds to the conflict-freeness
principle.

An extension can “stand on its own”, namely is able to counter all the attacks it
receives. This corresponds to the defence principle.

Reinstatement is a kind of dual principle. An attacked argument which is de-
fended by an extension is reinstated by the extension and should belong to it.

Stability: an argument that does not belong to an extension must be attacked by
this extension.

1Where “iff” (resp. “w.r.t.”) stands for “if and only if” (resp. “with respect to”).
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Definition 2 [30] Let AF = 〈A,R〉 and S ⊆ A.

S is conflict-free iff (a, b) 6∈ R for all a, b ∈ S.

a ∈ A is acceptable w.r.t. S (or equivalently S defends a) iff for each b ∈ A with
(b, a) ∈ R, there is c ∈ S with (c, b) ∈ R.

The characteristic function F of AF is defined by: F(S) = {a ∈ A such that a
is acceptable w.r.t. S}.

S is admissible iff S is conflict-free and S ⊆ F(S).

S is a complete extension of AF iff it is conflict-free and a fixed point of F .

S is the grounded extension of AF iff it is the minimal (w.r.t. ⊆) fixed point2 of
F .

S is a preferred extension of AF iff it is a maximal (w.r.t. ⊆) complete extension.

S is a stable extension of AF iff it is conflict-free and for each a 6∈ S, there is
b ∈ S with (b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies the
conflict-freeness, defence and reinstatement principles.

2.2 A Framework with Higher-Order Attacks
We consider a framework that allows representing both simple and higher-order at-
tacks, i.e. attacks from an argument to either another argument or another attack. Such
a framework has been usually called “recursive argumentation framework” in literature.
So we keep this latter expression, even it is not completely satisfactory.

Definition 3 [22] A recursive argumentation framework (RAF) is a tuple 〈A,R, s, t〉
where A is a finite and non-empty set of arguments, R is a finite set disjunct from A
representing attack names, s is a function from R to A mapping each interaction to its
source, and t is a function from R to (A ∪R) mapping each interaction to its target.

Note that an AF can be viewed as a particular RAF with t being a mapping from
R to A.

A RAF can also be graphically represented.

Example 4 An attack named α (with s(α) = a and t(α) = b ∈ A) being the target of
an attack β with s(β) = c is represented by:

a α b

c β

(arguments are in a circle and attack names are in a square)
2It can be proved that the minimal fixed point of F is conflict-free.
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Acceptability semantics for argumentation frameworks with higher-order attacks
have been defined in a direct way in [22]. The idea is to specify the conditions under
which the arguments are considered as accepted directly on the extended framework,
without translating the original framework into an AF. Moreover, due to the defeasible
nature of attacks (attacks may be affected by other attacks), conditions under which the
attacks are accepted must also be specified. Indeed, some attacks may not be “valid”,
in the sense that they cannot defeat the argument or attack they are targeting. So,
acceptability conditions for arguments should be given with respect to valid attacks
and conversely attacks should be declared valid with respect to other arguments or
attacks. For instance, the fact that two arguments may be conflicting depends on the
validity of the attack between them. Hence, the notion of extension (set of arguments)
is replaced by a pair of a set of arguments and a set of attacks, called a “structure”.

Definition 4 [22] Consider RAF = 〈A, R, s, t〉. A structure of RAF is a pair (S,Γ)
with S ⊆ A and Γ ⊆ R.

Intuitively, given a structureU = (S,Γ), S contains the arguments that are accepted
“owing to” U and Γ contains the attacks which are valid “owing to” U (the meaning of
“owing to” depending on the considered semantics).

In the following, we recall the acceptability conditions for structures, and the def-
initions of the semantics that are given in [22]. The key notion is the fact that a set of
arguments (resp. attacks) can be “defeated” (resp. “inhibited”) wrt a given structure.

Definition 5 [22] Consider RAF = 〈A, R, s, t〉. Given U = (S,Γ) a structure of
RAF. Let a ∈ A and α ∈ R.

a is defeated w.r.t. U iff there is β ∈ Γ with s(β) ∈ S and t(β) = a,

α is inhibited w.r.t. U iff there is β ∈ Γ with s(β) ∈ S and t(β) = α.

Def(U) (resp. Inh(U)) denotes the set of arguments (resp. attacks) that are defeated
(resp. inhibited) w.r.t. U .

2.2.1 Conflict-free structures

The minimal requirement for a structure (S,Γ) is that two arguments of S cannot be
related by an attack of the structure, and similarly there cannot be an attack grounded
in S and whose target is an element of Γ. Formally:

Definition 6 [22] Consider RAF = 〈A, R, s, t〉. A structure U = (S,Γ) of RAF is
conflict-free iff S ∩Def(U) = ∅ and Γ ∩ Inh(U) = ∅.
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2.2.2 Admissible structures

Acceptability (for an argument or an attack) is also relative to a structure. Intuitively,
an argument (resp. an attack) is acceptable if every attack against it can be considered
as “non-valid” because either the attack is inhibited or its source is defeated.

Definition 7 [22] Consider RAF = 〈A, R, s, t〉. Given a structure U = (S,Γ) of
RAF. Let a ∈ A and α ∈ R.

a (resp. α) is acceptable w.r.t. U iff for each β ∈ R with t(β) = a (resp.
t(β) = α), either β ∈ Inh(U) or s(β) ∈ Def(U).

U is admissible iff it is conflict-free and for each x ∈ (S ∪ Γ), x is acceptable
w.r.t. U .

Acc(U) denotes the set containing all acceptable arguments and attacks w.r.t. U .

Remark: Let α ∈ R with t(α) = b ∈ A (resp. t(α) = β ∈ R). If α and s(α) are
unattacked, there is no admissible structure U = (S,Γ) such that b ∈ S (resp. β ∈ Γ).

Example 4 (cont’d): As a, c, β are not attacked, they are acceptable w.r.t. any struc-
ture. As c, β are not attacked, for any structure U , α cannot be acceptable w.r.t. U .
Moreover, b is acceptable w.r.t. a structure U implies that α is defeated w.r.t. U , and
then U contains β and c.
As a consequence, the admissible structures containing b are ({b, c}, {β}) and ({a, b, c},
{β}).

�

2.2.3 Complete, stable, preferred and grounded structures

For any pair of structures U = (S,Γ) and U ′ = (S′,Γ′), U ⊆ U ′ means that (S∪Γ) ⊆
(S′ ∪ Γ′). The structure U is ⊆-maximal iff every structure U ′ that satisfies U ⊆ U ′

also satisfies U ′ ⊆ U . Similarly, U is ⊆-minimal iff every structure U ′ that satisfies
U ′ ⊆ U also satisfies U ⊆ U ′.

Definition 8 [22] Consider RAF = 〈A, R, s, t〉. A structure U = (S,Γ) of RAF is:

complete iff it is conflict-free and Acc(U) = S ∪ Γ.

stable iff it is conflict-free and satisfies A \ S ⊆ Def(U) and R \ Γ ⊆ Inh(U).

preferred iff it is a ⊆-maximal admissible structure.

grounded iff it is the ⊆-minimal conflict-free structure U = (S,Γ) satisfying
Acc(U) ⊆ S ∪ Γ.3

It has been proved in [22] that usual properties of Dung’s extensions also hold for
structures:

3The definition for the grounded structure has been given in [31] that is an extended version of [22].
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A complete structure contains all the unattacked arguments and all the unattacked
attacks.

Every complete structure is admissible, every preferred structure is also complete
and every stable structure is also preferred.

Moreover, it can be proved that the grounded structure is the ⊆-minimal complete
structure.4

Example 4 (cont’d): There is only one complete (resp. preferred) structure: ({a, b, c},
{β}).

�

Example 5 The RAF depicted by the following figure is a variant of Ex. 4:

a α b

d δ β

c

In this case, for any structure U , β cannot be acceptable w.r.t. U . Moreover, α is
acceptable w.r.t. U implies that U contains δ and d. As a consequence, there is only
one complete (resp. preferred, stable, grounded structure): ({a, c, d}, {α, δ}).

�

2.2.4 D-structures

The notion of structure has been strengthened in order to obtain a conservative gener-
alization of Dung’s frameworks for the conflict-free, admissible, complete, stable and
preferred semantics. It is worth to note that in an AF, each attack is considered as valid,
in the sense that it may affect its target. The next definition strengthens the notion of
structure by adding a condition on attacks that will force every acceptable attack to be
valid.

Definition 9 [22] Given RAF = 〈A, R, s, t〉.

1. A d-structure on RAF is a structure U = (S,Γ) such that (Acc(U) ∩R) ⊆ Γ.

2. A conflict-free (resp. admissible, complete, preferred, stable) d-structure is a
conflict-free (resp. admissible, complete, preferred, stable) structure which is
also a d-structure.

4The proof has been given in [31], the extended version of [22].
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It follows from Def. 8 that every complete (resp. stable, preferred) structure of a
RAF is a d-structure of this RAF. However it is not the case for admissible and conflict-
free structures.
The conservative generalization proved in [22] relies upon a correspondence between a
Dung’s framework (and its extensions) and a “nonrecursive” RAF (and its d-structures),
where a nonrecursive RAF is a RAF in which no attack targets another attack.

2.3 A Framework with Higher-Order Evidential Supports and At-
tacks

In this section, we recall the extension of [22] proposed in [24] for handling recursive
attacks and evidence-based supports.

Definition 10 [24] An evidence-based recursive argumentation framework (REBAF)
is a sextuple 〈A,Ra,Re, s, t,P〉 where A, Ra and Re are three (possible infinite)
pairwise disjunct sets respectively representing arguments, attacks and supports names,
and where P ⊆ A ∪Ra ∪Re is a set representing the prima-facie elements that do not
need to be supported. Functions s : (Ra ∪Re) −→ 2A \ ∅ and t : (Ra ∪Re) −→
(A ∪Ra ∪Re) respectively map each attack and support to its source and its target.

Note that the source of attacks and supports is a set of arguments, the set P may
contain several prima-facie elements (arguments, attacks and supports) and no con-
straint on the prima-facie elements is assumed (they can be attacked or supported).

Example 2 (cont’d): The argumentation framework corresponding to the second
example given in the introduction can be represented as follows (a solid border denotes
prima-facie elements while a dashed border denotes standard elements; supports are
represented by double edges):

a α b

β

c

�

Semantics of REBAF are defined in [24] using the extension of the notion of struc-
ture introduced in [22]. The idea is to characterize which arguments are regarded as
“acceptable”, and which attacks and supports are regarded as “valid”, with respect to
some structure.

Consider a given framework REBAF= 〈A,Ra,Re,s,t,P〉.

Definition 11 [24] A triple U = (S,Γ,∆) is said to be a structure of REBAF iff it
satisfies: S ⊆ A, Γ ⊆ Ra and ∆ ⊆ Re.

Intuitively, the set S represents the set of “acceptable” arguments w.r.t. the structure
U , while Γ and ∆ respectively represent the set of “valid attacks” and “valid supports”

8



w.r.t. U . Any attack5 α ∈ Γ is understood as “non-valid” and, in this sense, it cannot
defeat the element that it is targeting. Similarly, any support β ∈ ∆ is understood as
“non-valid” and it cannot support the element that it is targeting.

The following definitions are extensions of the corresponding ones defined in [22]
in order to take into account the evidential supports.

Definition 12 Given a structure U = (S,Γ,∆),

The sets of defeated elements w.r.t. U are:

Def X(U) def= {x ∈ X|∃α ∈ Γ, s(α) ⊆ S and
t(α) = x}

with X ∈ {A,Ra,Re}
Def (U) def= Def A(U) ∪Def Ra

(U) ∪Def Re
(U)

The set of supported elements Sup(U) is recursively defined as follows:6

Sup(U) def= P∪
{t(α)|∃α ∈ ∆ ∩ Sup(U\{t(α)}),

s(α) ⊆ (S ∩ Sup(U\{t(α)}))}

Note that a standard element is supported if there is a “chain”7 of supported sup-
ports leading to it, rooted in prima-facie arguments. Acceptability is more complex.
Intuitively, an element is acceptable if it supported and in addition, every attack against
it can be considered as “non-valid” because either the source or the attack itself is de-
feated or cannot be supported.
The elements that cannot be supported w.r.t. a structure U are called unsupportable
w.r.t. U . An element is supportable w.r.t. U if there is a support for it which is non-
defeated by U , with its source being non-defeated by U , and the support and its source
being in turn supportable.
The elements that are defeated or unsupportable are called unacceptable.
Then an attack is said unactivable if either some argument in its source or itself is un-
acceptable.

Formally,

The set of unsupportable elements w.r.t. U is:

UnSupp(U) def= Sup(U ′)

with U ′ = (Def A(U),Ra,Def Re
(U)).

The set of unacceptable elements w.r.t. U is:

UnAcc(U) def= Def (U) ∪UnSupp(U)

5By Γ def
= Ra\Γ we denote the set complement of Γ w.r.t. Ra. Similarly, by ∆ def

= Re\∆ we denote
the set complement of ∆ w.r.t. Re.

6By abuse of notation, we write U\T instead of (S\T,Γ\T,∆\T ) with T ⊆ (A ∪Ra ∪Re).
7Strictly speaking, it is not a chain, as each support may itself be the target of a support. However, we

keep the word “chain” for simplicity.
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The set of unactivable attacks w.r.t. U is:
UnAct(U) def= {α ∈ Ra|α ∈ UnAcc(U) or

s(α) ∩UnAcc(U) 6= ∅}

Definition 13 [24] An element x ∈ A ∪ Ra ∪ Re is said to be acceptable w.r.t. a
structure U iff (i) x ∈ Sup(U) and (ii) every attack α ∈ Ra with t(α) = x is unac-
tivable, that is, α ∈ UnAct(U).

Acc(U) denotes the set containing all arguments, attacks and supports that are ac-
ceptable with respect to U .

The following order relations will help defining preferred structures: for any pair
of structures U = (S,Γ,∆) and U ′ = (S′,Γ′,∆′), we write U ⊆ U ′ iff (S∪Γ∪∆) ⊆
(S′∪Γ′∪∆′). As usual, we say that a structure U is⊆-maximal (resp. ⊆-minimal) iff
every U ′ that satisfies U ⊆ U ′ (resp. U ′ ⊆ U ) also satisfies U ′ ⊆ U (resp. U ⊆ U ′).

Definition 14 [24] A structure U = (S,Γ,∆) is:

1. self-supporting iff (S ∪ Γ ∪∆) ⊆ Sup(U),

2. conflict-free iffX∩Def Y (U)=∅ for any (X,Y ) ∈ {(S,A), (Γ,Ra), (∆,Re)},

3. admissible iff it is conflict-free and S ∪ Γ ∪∆ ⊆ Acc(U),

4. complete iff it is conflict-free and Acc(U) = S ∪ Γ ∪∆,

5. grounded iff it is a ⊆-minimal complete structure,8

6. preferred iff it is a ⊆-maximal admissible structure,

7. stable9 iff (S ∪ Γ ∪∆) = UnAcc(U).

From the above definitions, it follows that if U is a conflict-free structure, unsup-
portable elements w.r.t. U are not supported w.r.t. U , that is UnSupp(U) ⊆ Sup(U).

Note that every admissible structure is also self-supporting. Moreover, the usual
relations between extensions also hold for structures: every complete structure is also
admissible, every preferred structure is also complete, and every stable structure is also
preferred and so admissible. Other properties of REBAF are described in [24], which
enable to prove for instance that there is a unique grounded structure.

Definitions 13 and 14 are illustrated on the following examples. Let us first consider
a framework with no attack and only one support between two arguments. Different
variants are considered depending on the set of prima-facie elements.

Example 6 The support and its source are assumed to be prima-facie. The target is
not prima-facie.

a α b

8The definition for the grounded extension is not given in [24] but can be easily proposed following the
definition used in the AF case.

9Note that this is also equivalent to U is self-supporting, conflict-free and S ∪ Γ ∪∆ ⊆ UnAcc(U).
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In this case, as α (resp. a) is prima-facie and not attacked, it is acceptable w.r.t.
any structure. In contrast, b is not prime-facie, so b is supported w.r.t. a structure U
implies that U contains the support α and its source a.
As a consequence, the structures ({a},∅, {α}) and ({a, b},∅, {α}) are admissible,
whereas the structure ({b},∅, {α}) is not admissible. �

Example 7 Only the source of the support is assumed to be prima-facie.

a α b

In this case, for any structure U , α is not supported w.r.t. U . It is the same for b. So
the only admissible structures are U = (∅,∅,∅) and U = ({a},∅,∅). �

Example 8 Only the support is assumed to be prima-facie.

a α b

In this case, α is acceptable w.r.t. any structure. However, for any structure U ,
a is not supported w.r.t. U . So b cannot be supported. As a consequence, the only
admissible structures are U = (∅,∅,∅) and U = (∅,∅, {α}). �

Example 9 The support and its target are assumed to be prima-facie. The source is
not prima-facie.

a α b

In this case, α (resp. b) is acceptable w.r.t. any structure. In contrast, a cannot be
supported. So there are 4 admissible structures: U = (∅,∅,∅), U = (∅,∅, {α}),
U = ({b},∅,∅) and U = ({b},∅, {α}). �

In the next example, the support is itself the target of an attack.
Example 2 (cont’d): In this framework, which is also a variant of Ex. 6, neither β

nor its source is attacked and β and its source are prima-facie. So, for any structure
U , it holds that neither β nor its source c is unacceptable w.r.t. U . As a consequence,
for any structure U , α is not acceptable w.r.t. U as α is attacked by β and β is not
unactivable w.r.t. U .
As b is not prima-facie, and α is the only support to b, no admissible structure contains
b. As a consequence, there is a unique complete, preferred and stable structure U =
({a, c}, {β},∅). �

Finally, REBAF is a conservative generalization of RAF described in [22] with
the addition of supports and joint attacks. Every RAF can be easily translated into a
corresponding REBAF with no support and where every element (argument or attack)
is prima-facie (see [24]).

3 Logical Description of a RAF
First, we propose a logical description of a RAF, that allows an explicit representation
of arguments, attacks and their properties (accepted argument, attacked argument, valid
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attack, . . . ). We have been inspired by works in bioinformatics (see [32, 33]), where
metabolic networks are used to describe the chemical reactions of cells; these reactions
can be negative (inhibition of a protein) or positive (production of a new protein) and
they can depend on other proteins or other reactions. A translation from metabolic
networks to classical logic has been proposed in [33], which allows for the use of
automated deduction methods for reasoning on these networks.

Given RAF a higher-order argumentation framework, Σ(RAF) will denote the set
of first-order logic formulae describing RAF.

3.1 Vocabulary
The following unary predicate symbols are used: Acc, NAcc, V al, Attack, Arg and
the following unary functions symbols : T , S, with the following meaning:

Acc(x) (resp. NAcc(x)) means “x is accepted” (resp. “x cannot be accepted”),
when x denotes an argument

V al(α) means “α is valid” when α denotes an attack

Attack(x) means “x is an attack”

Arg(x) means “x is an argument”

T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an
attack

The binary equality predicate is also used. Note that the quantifiers ∃ and ∀ range
over some domain D. To restrict them to subsets of D, bounded quantifiers will be
used:
∀x ∈ E (P (x)) means ∀x (x ∈ E → P (x)) or equivalently ∀x(E(x)→ P (x)).
So we will use:

∀x ∈ Attack (Φ(x)) (resp. ∃x ∈ Attack (Φ(x)))

and ∀x ∈ Arg (Φ(x)) (resp. ∃x ∈ Arg (Φ(x))).

Note that the meaning of NAcc(x) is not “x is not accepted” but rather “x cannot
be accepted” (for instance because x is the target of a valid attack whose source is
accepted). Hence, NAcc(x) is not logically equivalent to ¬Acc(x). However, the
logical theory will enable to deduce ¬Acc(x) from NAcc(x), as shown below.

3.2 Logical theory
The formulae describing a given RAF can be partitioned in two sets Π and Π(RAF):

Π denotes the set of formulae describing the general behaviour of an attack,
possibly recursive, in an argumentation framework, i.e. how an attack interacts
with arguments and other attacks related to it.
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Π(RAF) denotes the set of the formulae encoding the specificities of the current
framework.

The meaning of an attack is described under the form of constraints on its source
(an argument) and its target (an argument or an attack). Moreover, as attacks may be
attacked by other attacks, some attacks may not be valid.

If an attack from an argument to an attack is valid, then if its source is accepted,
its target is not valid.

If an attack between two arguments is valid and if its source is accepted, then its
target cannot be accepted. In that case, the target is not accepted.

Using the vocabulary defined above, these constraints can be expressed by the follow-
ing formulae:

(1) ∀x ∈ Attack ∀y ∈ Attack(
(V al(y) ∧ (T (y) = x) ∧Acc(S(y)))
→ ¬V al(x)

)
(2) ∀x ∈ Arg ∀y ∈ Attack(

(V al(y) ∧ (T (y) = x) ∧Acc(S(y)))
→ NAcc(x)

)
(3) ∀x ∈ Arg (NAcc(x)→ ¬Acc(x))

Two other formulae limit the domain to arguments or attacks.

(4) ∀x (Attack(x)→ ¬Arg(x))

(5) ∀x (Arg(x) ∨Attack(x))

The logical theory Π consists of the five above formulae.
Then, the logical encoding of specificities of a given finite RAF leads to the set Π(RAF)
consisting of the following formulae. Let A = {a1, . . . an} and R = {α1, . . . , αm}.

(6) (S(α) = a) ∧ (T (α) = b) for all α ∈ R with s(α) = a and t(α) = b

(7) ∀x (Arg(x)↔ (x = a1) ∨ . . . ∨ (x = an))

(8) ∀x (Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αm))

(9) ai 6= aj for all ai, aj ∈ A with i 6= j
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(10) αi 6= αj for all αi, αj ∈ R with i 6= j

In the remainder of the paper, we will write sα (resp. tα) in place of S(α) (resp.
T (α)) for simplicity.

The logical theory Σ(RAF) is the union of Π and Π(RAF). It is obviously consis-
tent.

Example 5 (cont’d): Using the equality axioms, a simplified version of Σ(RAF)
can be obtained (in particular tautologies are omitted):10

Σ(RAF) = {(V al(β) ∧Acc(c))→ ¬V al(α) (from (1)),
(V al(δ) ∧Acc(d))→ ¬V al(β) (from (1)),
(V al(α) ∧Acc(a))→ NAcc(b) (from (2)),
NAcc(b)→ ¬Acc(b) (from (3)),
NAcc(a)→ ¬Acc(a) (from (3)),
NAcc(c)→ ¬Acc(c) (from (3)),
NAcc(d)→ ¬Acc(d) (from (3))} �

In the particular case of a non-recursive RAF, formula (1) is a tautology. However,
formula (2) cannot be simplified as it cannot be deduced that the attacks are valid.
Indeed, the logical theory Σ(RAF) only captures the description of RAF and is not
concerned with the semantics of the framework (the logical description of the semantics
is handled in the next section).

Example 3 (cont’d): Consider the non-recursive RAF containing only one attack
from a to b.

Σ(RAF) enables to deduce the formula (V al(α) ∧ Acc(a)) → NAcc(b). Note
that if V al(α) is assumed, we obtain Acc(a) → NAcc(b) and from NAcc(b) →
¬Acc(b) it follows that Acc(a) → ¬Acc(b) and so Acc(b) → ¬Acc(a). However, it
cannot be deduced that Acc(b) → NAcc(a). Indeed, the predicate NAcc allows for
the representation of the direction of an attack between two arguments and avoids the
contraposition of the attack. �

4 Logical Formalization of RAF Semantics

4.1 Logical Encoding of RAF Semantics
In presence of higher-order attacks, the conflict-freeness, defence, reinstatement and
stability principles must take into account the fact that attacks might not be valid. More-
over, for each of these principles, two versions will be given, one for arguments and
another one for attacks. Then, for each principle, we give a logical expression, thus
leading to add formulae to the base Σ(RAF) and producing new bases.

10The simplification will be applied for the other examples.
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4.1.1 Conflict-freeness

The conflict-freeness principle is formulated as follows (for arguments and for attacks):

If there is a valid attack between two arguments, they cannot be jointly accepted.

If there is an attack from an accepted argument to an attack, these attacks cannot
be both valid.

Note that these properties are already expressed in Σ(RAF) by the formulae (1),
(2), (3).

4.1.2 Defence

The idea is to claim that an argument a is defended by a set of arguments S if S
weakens each attack α to a, either by attacking the source of α, or by attacking α itself.
Moreover the defence should be obtained with valid attacks. So, the defence principle
is formulated as follows (for arguments and for attacks):

An attacked argument may be accepted only if for each attack to it, either the
source or the attack itself is in turn attacked by a valid attack from an accepted
argument.

An attack may be valid only if for each attack to it, either the source or the attack
itself is in turn attacked by a valid attack from an accepted argument.

These properties are expressed by the following formulae:11

(11) ∀α ∈ Attack Acc(tα)

→
(
∃β ∈ Attack
(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ))

) 
(12) ∀α ∈ Attack ∀δ ∈ Attack ((δ = tα) ∧ V al(δ))

→
(
∃β ∈ Attack
(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ))

) 
These formulae are added to the base Σ(RAF), thus producing the base Σd(RAF).

4.1.3 Reinstatement

Based on the previous notion of defence, the reinstatement principle is formulated as
follows (for arguments and for attacks):

An argument must be accepted provided that, for each attack to it, the source or
the attack itself is in turn attacked by a valid attack from an accepted argument.

11Strictly speaking, tβ ∈ {sα, α} should be written as follows : tβ = sα ∨ tβ = α.
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An attack may be valid provided that, for each attack to it, either the source or
the attack itself is in turn attacked by a valid attack from an accepted argument.

These properties are expressed by the following formulae:

(13) ∀c ∈ Arg
 ∀α ∈ Attack (tα = c
→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ))))


→ Acc(c)


(14) ∀δ ∈ Attack

 ∀α ∈ Attack (tα = δ
→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ))))


→ V al(δ)


These formulae are added to the base Σ(RAF), thus producing the base Σr(RAF).

4.1.4 Stability

The stability requirement can be formulated as follows (one for arguments and one for
attacks):

If an argument is not accepted, it must be attacked by a valid attack from an
accepted argument.

If an attack is not valid, it must be attacked by a valid attack from an accepted
argument.

These properties are expressed by the following formulae:

(15) ∀c ∈ Arg ¬Acc(c)
→
(
∃β ∈ Attack
((tβ = c) ∧ V al(β) ∧Acc(sβ))

) 
(16) ∀α ∈ Attack ¬V al(α)

→
(
∃β ∈ Attack
((tβ = α) ∧ V al(β) ∧Acc(sβ))

) 
These formulae are added to the base Σ(RAF), thus producing the base Σs(RAF).
Example 5 (cont’d): Σd(RAF) is obtained from Σ(RAF) by adding the formulae:

Acc(b)→ (V al(β) ∧Acc(c)),
¬V al(β) and
V al(α)→ (V al(δ) ∧Acc(d)).
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Σr(RAF) is obtained from Σ(RAF) by adding the formulae:
Acc(a),
Acc(c),
Acc(d),
(V al(β) ∧Acc(c))→ Acc(b),
V al(δ) and
(V al(δ) ∧Acc(d))→ V al(α). �

4.2 Characterizing Semantics of a RAF
We propose characterizations of the structures under different semantics in terms of
models of the bases Σ(RAF), Σd(RAF), Σr(RAF), Σs(RAF).

Let RAF = 〈A, R, s, t〉. Given I an interpretation of Σ(RAF), we define:

SI = {x ∈ A|I(Acc(x)) = true}

ΓI = {x ∈ R|I(V al(x)) = true}

Moreover, let I be a model of Σ(RAF):

I is a ⊆-maximal model of Σ(RAF) iff there is no model I ′ of Σ(RAF) with
(SI ∪ ΓI) ⊂ (SI′ ∪ ΓI′).

I is a ⊆-minimal model of Σ(RAF) iff there is no model I ′ of Σ(RAF) with
(SI′ ∪ ΓI′) ⊂ (SI ∪ ΓI).

We have the following characterizations:

Proposition 1 Let RAF = 〈A, R, s, t〉. Let U = (S,Γ) be a structure on RAF.

1. U is conflict-free iff there exists I model of Σ(RAF) with SI = S and ΓI = Γ.

2. U is admissible iff there exists I model of Σd(RAF) with S = SI and ΓI = Γ.

3. U is complete iff there exists I model of Σd(RAF)∪Σr(RAF) with S = SI and
ΓI = Γ.

4. U is a stable structure iff there exists I model of Σs(RAF) with SI = S and
ΓI = Γ.

5. U is a preferred structure iff there exists I ⊆-maximal model of Σd(RAF) with
SI = S and ΓI = Γ.

6. U is the grounded structure iff S = SI and ΓI = Γ where I is a ⊆-minimal
model of Σr(RAF).12

12It also holds that U is the grounded structure iff S = SI and ΓI = Γ where I is a ⊆-minimal model
of Σd(RAF)∪Σr(RAF). Considering Σd(RAF)∪Σr(RAF) instead of Σr(RAF) might be useful from
a computational point of view, when searching for minimal models.
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Example 5 (cont’d): There is only one complete structure: ({a, c, d}, {α, δ}).
Indeed, every model I of Σd(RAF) ∪ Σr(RAF) is such that SI = {a, c, d} and
ΓI = {α, δ}, in other words, every model of Σd(RAF) ∪ Σr(RAF) satisfies Acc(a),
Acc(c), Acc(d), V al(δ), V al(α) and falsifies Acc(b), V al(β). An example of ad-
missible (but not complete) structure is ({a, d}, {δ}). Indeed, there is a model I of
Σd(RAF) with SI = {a, d} and ΓI = {δ}. �

D-structures can also be characterized. Let us recall that d-structures are particular
structures in which acceptable attacks are forced to be valid. So, we consider the base
Σ(RAF) augmented with the formula that expresses the reinstatement principle for
attacks, that is formula (14).

As said before, complete structures are d-structures. So we just have to complete
Proposition 1 with the characterizations of conflict-free and admissible d-structures.

Proposition 2 Let RAF = 〈A, R, s, t〉. Let U = (S,Γ) a structure on RAF.

1. U is a conflict-free d-structure iff there exists I model of Σ(RAF)∪{(14)} with
SI = S and ΓI = Γ.

2. U is an admissible d-structure iff there exists I model of Σd(RAF)∪{(14)} with
S = SI and ΓI = Γ.

Example 5 (cont’d): From (14), the following formulae are obtained: V al(δ) and
(V al(δ) ∧Acc(d))→ V al(α).
An example of admissible (but not complete) d-structure is ({a, d}, {α, δ}). Indeed,
there is a model I of Σd(RAF) ∪ {(14)} with SI = {a, d} and ΓI = {α, δ}. Note
that ({a, d}, {δ}) is an admissible structure but not an admissible d-structure. �

4.3 Case of AF
As said before, an AF can be viewed as a particular RAF. So we can consider the
associated logical theory, which we denote by Σ(AF) for simplicity. Moreover, in the
particular case of an AF, the semantics recalled in Section2.1 assume that each attack is
valid. As a consequence, the logical theory Π can be replaced by a logically equivalent
theory built as follows: For each (a, b) ∈ R, the attack from a to b is described by the
formulae Acc(a)→ NAcc(b) and NAcc(b)→ ¬Acc(b).13

Then, the standard defence, reinstatement and stability principles are encoded with
simplified versions of formulae (11), (13) and (15) (as attacks are never attacked, for-
mulae (12), (14) and (16) would be tautologies). Let AF = 〈A,R〉. For x ∈ A, let
R−(x) denote the set of its attackers. For each principle, a set of formulae is provided,
one for each argument:

Defence: For each x ∈ A,
Acc(x)→ (∧y∈R−(x)(∨z∈R−(y)Acc(z)))

13This is a simplified version of formulae (2) and (3); moreover formula (1) being a tautology in the case
of AF, it does not appear in Σ(AF).
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Reinstatement: For each x ∈ A,
(∧y∈R−(x)(∨z∈R−(y)Acc(z)))→ Acc(x)

Stability: For each x ∈ A,
¬Acc(x)→ (∨y∈R−(x)Acc(y))

We denote by Σd(AF) (resp. Σr(AF), Σs(AF)) the logical theories obtained by
adding all the formulae encoding defence (resp. reinstatement, stability) to Σ(AF).
Given I be an interpretation of Σ(AF), we still denote by SI the set {x ∈ A |
I(Acc(x)) = true}. If I is a model of Σ(AF), I is said to be a ⊆-maximal (resp.
minimal) model of Σ(AF) iff there is no model I ′ of Σ(AF) such that SI ⊂ SI′ (resp.
SI′ ⊂ SI).

Then, the following characterizations can be obtained as a direct consequence of
Proposition 1:

Consequence 1 Let AF = 〈A,R〉. Let S ⊆ A.

1. S is conflict-free in 〈A,R〉 iff there exists I model of Σ(AF) with SI = S.

2. S is admissible in 〈A,R〉 iff there exists I model of Σd(AF) with S = SI .

3. S is a complete extension of 〈A,R〉 iff there exists I model of Σd(AF)∪Σr(AF)
with S = SI .

4. S is a stable extension of 〈A,R〉 iff there exists I model of Σs(AF) with SI = S.

5. S is a preferred extension of 〈A,R〉 iff there exists I ⊆-maximal model of
Σd(AF) with SI = S.

6. S is the grounded extension iff S = SI where I is a ⊆-minimal model of
Σr(AF).

Example 10 Consider the AF represented by:

a b c

It can be encoded by the following simplified bases:
Σ(AF) = {Acc(a)→ NAcc(b),

NAcc(b)→ ¬Acc(b),
Acc(b)→ NAcc(c),
NAcc(c)→ ¬Acc(c),
NAcc(a)→ ¬Acc(a)}

and Σd(AF) = Σ(AF) ∪
{¬Acc(b),
Acc(c)→ Acc(a)}.

Every⊆-maximal model of Σd(AF) satisfiesAcc(a), Acc(c) and falsifiesAcc(b). That
corresponds to the unique preferred extension {a, c}. �
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5 Logical Description of a REBAF
In the second part of this paper, we propose a logical description of a REBAF, that
allows an explicit representation of arguments, attacks, evidential supports and their
properties. In order to use the same methodology as the one used for RAF, we consider
a variant of REBAF in which interactions are restricted to binary interactions (that is for
any interaction α, s(α) is a singleton) and the support relation is assumed to be acyclic.
As a consequence, the definitions of Def X(U) and Sup(U) given in Definition 12 can
be simplified as follows:

Definition 15 Given a structure U = (S,Γ,∆),

Def X(U) def= {x ∈ X|∃α ∈ Γ, s(α) ∈ S and t(α) = x}withX ∈ {A,Ra,Re}.

Sup(U) def= P ∪ {t(α)|∃α ∈ (∆ ∩ Sup(U)), s(α) ∈ (S ∩ Sup(U))}

Given REBAF a higher-order argumentation framework, Σ(REBAF) will denote
the set of first-order logic formulae describing REBAF.

5.1 Vocabulary
We keep the vocabulary used for RAF (the unary predicate symbolsArg,Attack,Acc,
NAcc, V al, and the unary functions symbols : T , S) as RAF is a particular case of
REBAF. We add the unary predicate symbols ESupport for denoting evidential sup-
ports, and PrimaFacie for denoting prima-facie elements. Then we need symbols for
denoting acceptability of elements. Let us recall that our purpose is to obtain a logical
characterization of structures. As explained before, intuitively, a structure of REBAF
represents the set of acceptable arguments (attacks and supports) w.r.t. the structure.
And following Definition 13, acceptability w.r.t. a structure requires two conditions,
one of them being a support by the structure, the other one making use of the notion
of unsupportability. So we introduce the unary predicate symbols Supp for denoting
supported elements (argument, attack or support), UnSupp for denoting unsupport-
able elements and eAcc (resp. eV al) for denoting acceptability for arguments (resp.
for interactions, attacks or supports). Note that eAcc(x) (“x is e-accepted”) can be
understood as “x is accepted and supported” and similarly eV al(α) (“α is e-valid” )
can be understood as “α is valid and supported”.

The previous remarks about the equality predicate, the quantifiers and the meaning
of NAcc(x) still hold.

5.2 Logical theory
As for the case of RAF, the formulae describing a given REBAF can be partitioned in
two sets:

The first set, still denoted by Π, contains the formulae describing the general
behaviour of an attack, possibly recursive, i.e. how an attack interacts with argu-
ments and other attacks related to it, and also the formulae describing the general
behaviour of an evidential support, possibly recursive, i.e. how a support inter-
acts with arguments and other interactions related to it.
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The second set, denoted by Π(REBAF), contains the formulae encoding the
specificities of the current framework.

The meaning of an attack is similar as in the RAF case except that supports must
be taken into account:14

If an attack from an argument to an attack (or a support) is e-valid, then if its
source is e-accepted, its target is not valid.

If an attack between two arguments is e-valid and if its source is e-accepted, then
its target cannot be accepted. In that case, the target is not accepted.

An evidential support can be described by the following constraints:

If an element (argument or interaction) is prima-facie, it is supported.

If an element is the target of an evidential support, it is supported if the source of
the support is e-accepted and if the support is itself e-valid.

Using the vocabulary defined above,15 these constraints can be expressed by the
following formulae:

(1) ∀x ∈ (Attack ∪ ESupport) ∀y ∈ Attack(
(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ ¬V al(x)

)
(2) ∀x ∈ Arg ∀y ∈ Attack(

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ NAcc(x)

)
(3) ∀x ∈ Arg (NAcc(x)→ ¬Acc(x))

(1bis) ∀x ∈ (Attack ∪ ESupport ∪Arg)
 PrimaFacie(x) ∨
∃y ∈ ESupport

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))


→ Supp(x)


The following formulae define the e-acceptability (resp. e-validity). Recall that

eAcc(x) (resp. eV al) means “x is accepted (resp. valid) and supported”:

(2bis) ∀x ∈ Arg ((Acc(x) ∧ Supp(x))↔ eAcc(x))

(3bis) ∀x ∈ (Attack ∪ ESupport)
((V al(x) ∧ Supp(x))↔ eV al(x))

14The main difference with the RAF case is the use of “e-accepted” (resp. “e-valid”) in place of “accepted”
(resp. “valid”).

15 We recall that sα (resp. tα) is short for S(α) (resp. T (α)).
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Other formulae limit the domain to arguments, attacks, supports.

(4) ∀x (Attack(x)→ ¬Arg(x))

(4bis) ∀x (Attack(x)→ ¬ESupport(x))

(4ter) ∀x (ESupport(x)→ ¬Arg(x))

(5) ∀x (Arg(x) ∨Attack(x) ∨ ESupport(x))

The logical theory Π consists of all the above formulae.
Then the logical encoding of specificities of a given REBAF leads to the set Π(REBAF)
consisting of the following formulae.
Let A = {a1, . . . an}, Ra = {α1, . . . , αk}, Re = {αk+1, . . . , αm} and P = {x1, . . . xl}.
16

(6) (sα = a) ∧ (tα = b) for all α ∈ Ra ∪Re with s(α) = a and t(α) = b

(7) ∀x (Arg(x)↔ (x = a1) ∨ . . . ∨ (x = an))

(8) ∀x (Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αk))

(8bis) ∀x (ESupport(x)↔ (x = αk+1) ∨ . . . ∨ (x = αm))

(8ter) ∀x (PrimaFacie(x)↔ (x = x1) ∨ . . . ∨ (x = xl))

(9) ai 6= aj for all ai, aj ∈ A with i 6= j

(10) αi 6= αj for all αi, αj ∈ Ra ∪Re with i 6= j

The logical theory Σ(REBAF) is the union of Π and Π(REBAF). It is obviously
consistent.

In the following examples, using the equality axioms, a simplified version of Σ(REBAF)
will be given.17

Example 6 (cont’d):
Σ(REBAF) = {Supp(a) (from (1bis), (8ter)),

Supp(α) (from (1bis),(8ter)),
(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),

16We recall that P ⊆ A ∪Ra ∪Re.
17We omit the formulae issued from (4) to (10) and the tautologies.
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(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis))}

�

Example 7 (cont’d):
Σ(REBAF) = {Supp(a) (from (1bis), (8ter)),

(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis))}

�

Example 2 (cont’d): Let us recall that this is a variant of Ex. 6 where the attack β
targeting α has been added.
Σ(REBAF) = {(eV al(β) ∧ eAcc(c))→ ¬V al(α) (from (1)),

Supp(a) (from (1bis), (8ter)),
Supp(c) (from (1bis), (8ter)),
Supp(α) (from (1bis),(8ter)),
Supp(β) (from (1bis), (8ter)),
(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(c) ∧Acc(c))↔ eAcc(c) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis)),
(Supp(β) ∧ V al(β))↔ eV al(β) (from (3bis))}

�

It is worth noting that a RAF can be considered as a particular case of REBAF
with an empty relation Re and such that any argument or attack is prima-facie. In that
particular case, it is easy to prove that the logical base Σ(REBAF) is equivalent to the
base obtained for RAF in Section 3.

6 Logical Formalization of REBAF semantics

6.1 Logical Encoding of REBAF Semantics
In presence of higher-order attacks and supports, the conflict-freeness, defence, rein-
statement and stability principles must take into account the fact that acceptability for
an argument or an interaction requires that any attack against it is unactivable. More-
over acceptability requires support. So, the formulae encoding these principles are
more complex than in RAF case.

6.1.1 Conflict-freeness

The conflict-freeness principle is formulated as follows:
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If there is an e-valid attack between two arguments, these arguments cannot be
jointly e-accepted.

If there is an e-valid attack from an e-accepted argument to an interaction (attack
or support), this interaction cannot be e-valid.

As in RAF case, these properties are already expressed in Σ(REBAF) (by the formulae
(1), (2), (3), (2bis), (3bis)).

6.1.2 Self-supporting

The self-supporting principle states that each supported element must receive evidential
support. It can be formulated as follows:

If an element is supported then, either it is prima-facie, or it is the target of an
e-valid support from an e-accepted source:

(17)
∀x ∈ (Attack ∪ ESupport ∪Arg)
Supp(x)

→

 PrimaFacie(x)∨
∃y ∈ ESupport

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))




Supportability is a weaker notion, as elements that are not supportable (i.e. un-
supportable) cannot be supported. An element is unsupportable iff it is not prima-
facie and for each of its supports, either the support itself or its source is defeated,
or the support or its source is in turn unsupportable:

(18)
∀x ∈ (Attack ∪ ESupport ∪Arg)

UnSupp(x)

↔


¬PrimaFacie(x) ∧
∀y ∈ ESupport(ty = x

→


∃β ∈ Attack(tβ ∈ {sy, y}∧

eV al(β) ∧ eAcc(sβ)))
∨ UnSupp(sy)
∨ UnSupp(y))






Formulae (17) and (18) are added to the base Σ(REBAF), thus producing the base

Σss(REBAF).
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6.1.3 Defence

As stated in Definition 13, an attacked element is acceptable if (i) it is supported and (ii)
for each attack against it, either the source or the attack itself is defeated (by an e-valid
attack from an e-accepted argument), or the source or the attack itself is unsupportable
(w.r.t. e-valid elements and e-accepted arguments).
So, the principle corresponding to the previous item (ii) can be expressed by the fol-
lowing formulae that will be associated with formulae (17) and (18):

(11)
∀α ∈ Attack

Acc(tα)

→


∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)




(12)
∀α ∈ Attack ∀δ ∈ (Attack ∪ ESupport)

((δ = tα) ∧ V al(δ))

→


∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)




Formulae (11) and (12) are added to the base Σss(REBAF), thus producing the
base Σd(REBAF).

6.1.4 Reinstatement

The reinstatement principle can be expressed by the following formulae that will be
associated with formulae (17) and (18):

(13)
∀c ∈ Arg


∀α ∈ Attack

tα = c→
∃β ∈ Attack(tβ ∈ {sα, α} ∧

eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)





→ Acc(c)


(14)
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∀δ ∈ (Attack ∪ ESupport)


(∀α ∈ Attack

tα = δ →
∃β ∈ Attack(tβ ∈ {sα, α} ∧

eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)





→ V al(δ)


Formulae (13) and (14) are added to the base Σss(REBAF), thus producing the

base Σr(REBAF).

6.1.5 Stability

The stability principle can be expressed by the three following formulae that will be
associated with formulae (17) and (18):18

(15) ∀c ∈ Arg ¬Acc(c)
→
(
∃β ∈ Attack(tβ = c ∧

eV al(β) ∧ eAcc(sβ))

) 
(16) ∀α ∈ (Attack ∪ ESupport) ¬V al(α)

→
(
∃β ∈ Attack(tβ = α ∧

eV al(β) ∧ eAcc(sβ))

) 
(19) ∀x ∈ (Arg ∪Attack ∪ ESupport)

(¬Supp(x)→ UnSupp(x))

Formulae (15), (16) and (19) are added to the base Σss(REBAF), thus producing
the base Σs(REBAF).

Example 6 (cont’d): Σss(REBAF) is obtained from Σ(REBAF) by adding the
following formulae:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(α)
Unsupp(b)↔ (UnSupp(a) ∨ UnSupp(α))

As there is no attack, Σd(REBAF) contains nothing more than Σss(REBAF).
And finally Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae:

Acc(a), Acc(b) and V al(α). �

Example 7 (cont’d): Σss(REBAF) is obtained from Σ(REBAF) by adding the
following formulae:

18Let us recall that a stable structure U = (S,Γ,∆) satisfies: S ∪ Γ ∪∆ ⊆ UnAcc(U).
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Supp(b)→ (eAcc(a) ∧ eV al(α))
¬Supp(α)
¬UnSupp(a)
UnSupp(α)
Unsupp(b)↔ (UnSupp(a) ∨ UnSupp(α))

Once again, Σd(REBAF) contains nothing more than Σss(REBAF).
And Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae: Acc(a),

Acc(b) and V al(α). �

Example 2 (cont’d): Σss(REBAF) is obtained from Σ(REBAF) by adding formu-
lae among which:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(c)
¬UnSupp(α)
¬UnSupp(β)

Unsupp(b)↔

 (eV al(β) ∧ eAcc(c))
∨ UnSupp(a)
∨ UnSupp(α)


Then Σd(REBAF) is obtained from Σss(REBAF) by adding formulae among

which:
V al(α)→ (UnSupp(β) ∨ UnSupp(c))

Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae:
Acc(a)
Acc(b)
Acc(c)
V al(β)
(UnSupp(c) ∨ UnSupp(β))→ V al(α)

Σs(REBAF) is obtained from Σss(REBAF) by adding the formulae:
Acc(a)
Acc(b)
Acc(c)
V al(β)
¬V al(α)→ eV al(β) ∧ eAcc(c)
¬Supp(b)→ UnSupp(b) and also
¬Supp(x)→ UnSupp(x) for x ∈ {a, c, α, β} �

6.2 Characterizing Semantics of a REBAF
Similarly as for RAF case, we propose characterizations of the REBAF structures un-
der different semantics in terms of models of the bases Σ(REBAF), Σd(REBAF),
Σr(REBAF), Σs(REBAF). The common idea is that a structure gathers the accept-
able elements w.r.t. it. However, in REBAF, acceptability is encoded with the predicates
eAcc and eV al whereas in RAF, acceptability is encoded with the predicates Acc and
V al.
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Let REBAF = 〈A,Ra,Re,s,t,P〉. Given I an interpretation of Σ(REBAF), we
define:

SI = {x ∈ A|I(eAcc(x)) = true}

ΓI = {x ∈ Ra|I(eV al(x)) = true}

∆I = {x ∈ Re|I(eV al(x)) = true}

Moreover, let I be a model of Σ(REBAF):

I is a ⊆-maximal model of Σ(REBAF) iff there is no model I ′ of Σ(REBAF)
with (SI ∪ ΓI ∪∆I) ⊂ (SI′ ∪ ΓI′ ∪∆I′).

I is a ⊆-minimal model of Σ(REBAF) iff there is no model I ′ of Σ(REBAF)
with (SI′ ∪ ΓI′ ∪∆I′) ⊂ (SI ∪ ΓI ∪∆I).

We have the following characterizations:

Proposition 3 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let U = (S,Γ,∆) be a structure on
REBAF.

1. U is conflict-free iff there exists I model of Σ(REBAF) with SI = S, ΓI = Γ
and ∆I = ∆.

2. U is admissible iff there exists I model of Σd(REBAF) with S = SI , ΓI = Γ
and ∆I = ∆.

3. U is complete iff there exists I model of Σd(REBAF) ∪ Σr(REBAF) with S =
SI , ΓI = Γ and ∆I = ∆.

4. U is a stable structure iff there exists I model of Σs(REBAF) with SI = S,
ΓI = Γ and ∆I = ∆.

5. U is a preferred structure iff there exists I ⊆-maximal model of Σd(REBAF)
with SI = S, ΓI = Γ and ∆I = ∆.

6. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a
⊆-minimal model of Σd(REBAF) ∪ Σr(REBAF).19

The following examples illustrate the above proposition. The first two exemplify
the use of formula (17). The third one exemplifies the case of an element which is
attacked by a supported and unattacked attack (formulae (12) and (18)). The last two
exemplify the case of an element which is attacked by an unattacked but unsupportable
attack (formulae (11) and (18)).

Example 6 (cont’d): From Σd(REBAF) it can be deduced that eAcc(b)→ eAcc(a)
and eAcc(b) → eV al(α). That proves that each model of Σd(REBAF) satisfying
eAcc(b) also satisfies eAcc(a) and eV al(α). In other words, given I a model of

19It also holds that U is the grounded structure iff U = (SI ,ΓI ,∆I) where I is a ⊆-minimal model of
Σr(REBAF).
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Σd(REBAF), if b ∈ SI then a ∈ SI and α ∈ ∆I . That corresponds to the fact
that the structure ({b},∅, {α}) is not admissible.
Moreover, there is a model of Σd(REBAF) satisfying eAcc(b) (and so eAcc(a) and
eV al(α)). That corresponds to the fact that the structure ({a, b},∅, {α}) is admissi-
ble. �

Example 7 (cont’d): From Σd(REBAF) it can be deduced that¬eV al(α), ¬Supp(b)
and ¬eAcc(b). Moreover there is a model of Σd(REBAF) satisfying eAcc(a). That
corresponds to the fact that the unique non-empty admissible structure is ({a},∅,∅).
Note that given I a model of Σd(REBAF), it holds that I satisfies ¬Supp(α) and
¬Supp(b). That corresponds to the fact that no admissible structure contains b (resp.
α) because b (resp. α) lacks support. �

Example 2 (cont’d): From Σd(REBAF) it can be deduced that ¬V al(α) then
¬eV al(α), ¬Supp(b) and ¬eAcc(b). That corresponds to the fact that no admissi-
ble structure contains b (resp. α, though being supported).
Moreover there is a model of Σd(REBAF) satisfying eAcc(a), eAcc(c) and eV al(β).
That corresponds to the fact that ({a, c},∅, {β}) is an admissible structure. �

Example 11 Consider the following argumentation framework.

b α a

δ β d

c

From formula (11), it holds that the formulaAcc(a)→ (UnSupp(α)∨UnSupp(b))
belongs to Σd(REBAF). So it can be deduced that Acc(a) → UnSupp(α) as b is
prima-facie. Then we can obtain the formula eAcc(a) → UnSupp(α). Moreover,
applying formula (18) yields UnSupp(α) ↔ (eV al(β) ∧ eAcc(d)) as δ and c are
prima-facie. As a consequence, we obtain eAcc(a)→ (eV al(β) ∧ eAcc(d)).
Applying formula (12) yields ¬V al(δ), as β and d are prima-facie, and as a conse-
quence ¬eV al(δ).
Finally, applying formula (17), we obtain eAcc(a) → ¬Supp(α) as α is not prima-
facie, and as a consequence eAcc(a)→ ¬eV al(α).
That corresponds to the fact that if an admissible structure contains a, then it also con-
tains d and β and it does not contain α. Moreover no admissible structure contains
δ.

From Σr(REBAF) it can be deduced that eAcc(d), eV al(β) and UnSupp(α) →
Acc(a). So, from Σd(REBAF)∪Σr(REBAF) it can be deduced that Acc(a) and also
eAcc(a) as a is prima-facie. Σr(REBAF) also allows to deduce eAcc(b) and eAcc(c).
That corresponds to the fact that the unique complete structure is ({a, b, c, d}, {β},∅).
�
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Example 12 Consider the following argumentation framework.

b α a

δ β d

c

The same reasoning as the one presented for Ex. 11 can be used, exchanging the
role of b and α.

So from formulae (11) and (18), we obtain the formula eAcc(a) → (eV al(β) ∧
eAcc(d)).
Then applying formula (12) trivially yields the formula ¬eV al(δ).
Finally, applying formula (17), we obtain eAcc(a)→ ¬eAcc(b).
That corresponds to the fact that if an admissible structure contains a, then it also
contains d and β and it does not contain b. Moreover no admissible structure contains
δ.

Considering Σr(REBAF) ∪ Σd(REBAF), we obtain ({a, c, d}, {α, β},∅) as the
unique complete structure. �

As said before, a RAF can be considered as a special case of REBAF with no
support and all elements being prima-facie. Hence, the logical encoding proposed in
Section 6 allows to retrieve the results obtained with Proposition 1.

Example 5 (cont’d): As each element is prima-facie, the following formulae can be
deduced from Σ(REBAF):
∀x ∈ (Attack ∪ ESupport ∪Arg) (Supp(x))
∀x ∈ Arg (Acc(x)↔ eAcc(x))
∀x ∈ (Attack ∪ ESupport) (V al(x)↔ eV al(x)).

Similarly, from Σd(REBAF), we obtain:
∀x ∈ (Attack ∪ ESupport ∪Arg) (¬UnSupp(x)).

Using these formulae, it is easy to see that Σ(REBAF) is logically equivalent to the
base Σ(RAF) obtained in Section 3 and that the base Σd(REBAF) (resp. Σr(REBAF))
is logically equivalent to the base Σd(RAF) (resp. Σr(RAF)) obtained in Section 4.
As a consequence it holds that every model of Σd(REBAF) ∪ Σr(REBAF)) satisfies
eAcc(a), eAcc(c), eAcc(d), eV al(α), eV al(δ) and falsifies eAcc(b) and eV al(β).
That corresponds to the unique complete REBAF structure ({a, c, d}, {α, δ},∅), which
itself corresponds to the unique RAF structure ({a, c, d}, {α, δ}). �

6.3 The case of REBAF with support cycles
The logical representation proposed in this paper applies to a restricted variant of RE-
BAF in which interactions are assumed to be binary and there is no cycle of support
(see sections 5, 6.1 and 6.2). This restriction allows a direct encoding of the notions
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Sup(U) and UnSupp(U). Nevertheless it is interesting to see what happens in the case
of a REBAF with support cycles. Let us first consider examples of such a REBAF.

Example 13 This first example corresponds to an even-length support cycle in which
interactions are prima-facie and arguments are not.

α

a b

β

From Σss (and so from Σd), the following formulae can be entailed: Supp(a) ↔
eV al(β) ∧ eAcc(b) and Supp(b) ↔ eV al(α) ∧ eAcc(a). There exists a model I of
Σd with SI = {a, b}, ΓI = ∅ and ∆I = {α, β}. The structure (SI ,ΓI ,∆I) is not
admissible since it is not self-supporting in the sense of Definition 12: there is no chain
of support leading to a (resp. to b) rooted in a prima-facie argument. So, Proposition 3
cannot be applied.

�

Example 14 The second example correspond to an odd-length support cycle in which
interactions are prima-facie and arguments are not.

a α b

δ β

c

In this example the same problem appears: there exists a model I of Σd with SI =
{a, b, c}, ΓI = ∅ and ∆I = {α, β, δ} that does not correspond to an admissible
structure, since there is no chain of support leading to a (resp. to b, to c) rooted in a
prima-facie argument. So Proposition 3 cannot be applied.

�

Example 15 The third example corresponds to a support loop in which the interaction
is prima-facie and the argument is not. And the same problem appears: there is a
model of Σd corresponding to the structure ({a},∅, {α}), which is not admissible.

a α
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�

As shown by the above examples, in presence of cycles of support, some of the
structures obtained through the models of Σd(REBAF) are not admissible as there are
not self-supporting w.r.t. the definition of Sup(U) given in Definition 12.

A proposal for solving this problem is to exclude those structures using an appro-
priate selection of models of Σd(REBAF).

Let U be a structure such that U is self-supporting w.r.t. the definition of Sup(U)
given in Definition15. If U is not self-supporting w.r.t. the definition of Sup(U) given
in Definition 12, intuitively, there must exist some element (argument or support) x in
U such that x cannot be supported without itself. For such an argument (resp. support)
x, it should hold that the formula Supp(x) → eAcc(x) (resp. Supp(x) → eV al(x))
is logically entailed by Σss(REBAF).

Example 13 (cont’d): Consider a model I of Σss with SI = {a, b}, ΓI = ∅ and
∆I = {α, β}. It holds that the structure UI = (SI ,ΓI ,∆I) is not self-supporting
w.r.t. Definition 12 (though self-supporting w.r.t. Definition15). As shown above, Σss
entails the formulae Supp(a) → eAcc(b), eAcc(b) → Supp(b) and Supp(b) →
eAcc(a). SoUI contains an argument, a, for which it holds that the formula Supp(a)→
eAcc(a) is entailed by Σss. �

Moreover, if an element (argument or support) x cannot be supported without it-
self, it cannot be supportable w.r.t. a structure. The above remarks suggest to define
“support-founded” interpretations as follows:

Definition 16 I is a support-founded interpretation iff for each argument (resp. sup-
port) x s.t. Σss(REBAF) entails Supp(x) → eAcc(x) (resp. Supp(x) → eV al(x)),
it holds that I(eAcc(x)) = false (resp. I(eV al(x)) = false) and I(UnSupp(x)) =
true.

Then a support-founded model of Σd(REBAF) is a support-founded interpretation
which is a model of Σd(REBAF).

The exact characterization of admissible structures of a given REBAF with support
cycles by a subclass of models of Σd(REBAF) is given by the following result.

Proposition 4 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let U = (S,Γ,∆) be a structure on
REBAF.

1. U is admissible iff there exists I support-founded model of Σd(REBAF) with
SI = S, ΓI = Γ and ∆I = ∆.

2. U is complete iff there exists I support-founded model of the union (Σd(REBAF)∪
Σr(REBAF)) with SI = S, ΓI = Γ and ∆I = ∆.

3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of
Σd(REBAF) with SI = S, ΓI = Γ and ∆I = ∆.

4. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a
⊆-minimal support-founded model of (Σd(REBAF) ∪ Σr(REBAF)).
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Let us illustrate the above results on the previous examples:
Example 13 (cont’d): The support-founded models of Σd yield all the admissible

structures:
(∅,∅,∅)
(∅,∅, {α})
(∅,∅, {β})
(∅,∅, {α, β})

The unique complete structure is (∅,∅, {α, β}).
�

Example 14 (cont’d): The support-founded models of Σd yield all the admissible
structures:

(∅,∅,∅)
(∅,∅, {α})
(∅,∅, {β})
(∅,∅, {δ})
(∅,∅, {α, β})
(∅,∅, {β, δ})
(∅,∅, {α, δ})
(∅,∅, {α, β, δ})

The unique complete structure is (∅,∅, {α, β, δ}).
�

Example 15 (cont’d): The support-founded models of Σd yield all the admissible
structures:

(∅,∅,∅)
(∅,∅, {α})

The unique complete structure is (∅,∅, {α}).
�

7 Related Works
From the seminal work of Dung [30], several works have proposed to connect abstract
argumentation with logic programming (see [25] for recent work and more references).
The issue is to find an appropriate encoding of an AF into a logic program P , so that
applying logic programming semantics to P enables to capture argumentation seman-
tics of the original AF. Dung [30] has proposed an encoding allowing the capture of
(only) grounded and stable semantics. In [25], the encoding allows for the characteriza-
tion of the standard argumentation semantics (grounded, stable, preferred and complete
semantics) through 3-valued models of a logic program.

In the particular case of an AF, the logical representation of [26] is very close to
our proposal. This approach uses the logic called CN , which is classical propositional
logic augmented with strong negation. An attack (a, b) is encoded in CN by the for-
mula a→ Nb, Nb meaning “b being attacked”. So the atom Nb has the same reading
as the literal NAcc(b) in our proposal. In [26], an AF is encoded by a CN theory
whose models correspond to the AF complete extensions. Indeed, the theory encodes
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the requirements defining complete labellings. In contrast, in our proposal, a set of
formulae is associated with each standard principle (defence, reinstatement, stability),
thus providing a modular encoding of AF semantics.
Note that, again in [26], the CN formulae have been extended in order to encode an
AF with joint attacks. Hence, higher-order attacks can be expressed in CN through the
reduction of higher-order attacks to first-order joint attacks, as defined in [21]. Follow-
ing this approach, semantics for RAF could be defined as models of the corresponding
CN theory.
Our proposal follows a different path. Starting with RAF acceptability semantics that
have been defined in a direct way, in terms of structures, we revisit and encode standard
principles with logical formulae, then we characterize semantics in terms of logical
models of appropriate theories.

The issue of logical encoding of abstract argumentation has recently been addressed
for different other purposes.

In [27,34] acceptance conditions and standard semantics are encoded by first-order
logical formulae (given a semantics σ and a set S of arguments, a formula is provided
which is satisfiable iff S is a σ-extension). However, the argumentation framework
itself is not represented. A similar issue is addressed in [35] with a modal logic, con-
sidering that the accessibility relation is the inverse of the attack relation; the same kind
of work is presented in [36] using signed theories and QBF formulae; [37] presents al-
gorithms using particular logical notions (minimal correction sets, backbone) in order
to compute some semantics (semi-stable and eager); [38] translates complete labellings
into logical formulae in order to compute preferred extensions with SAT solvers; [39]
proposes a metalevel analysis of the computation problems related to given semantics
in order to automatically generate solvers adapted to these problems.

In the more general abstract dialectical framework [40], each argument is associ-
ated with a propositional formula which represents the acceptance conditions of the
argument. This logical translation enables to capture easily the stable semantics. How-
ever, recursive interactions are not taken into account.

[28] proposes a complete framework for handling the dynamics on an AF. A first-
order logical language is presented, enabling to describe the structure of an AF, to
express incomplete knowledge on an AF and to encode change operations on an AF.

Moreover in the context of the First International Competition on Computational
Models of Argumentation (ICCMA), different solvers have been proposed and tested
(e.g. [41], or [42]). However, in all these works, the attack relation itself is not logically
encoded, and neither higher-order attacks, nor supports are taken into account.

8 Conclusion and perspectives
In this work, first we have proposed a logical encoding of argumentation frameworks
with higher-order attacks (RAF). Our proposal enables to separate the logical expres-
sion of the meaning of an attack (simple or higher-order) and the logical expression of
acceptability semantics. These semantics (introduced in [22]) specify the conditions
under which the arguments (resp. the attacks) are considered as accepted, directly on
the extended framework, without translating the original framework into an AF.
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Then, we have been able to characterize the output of a given argumentation frame-
work (under the form of structures following a given semantics) in logical terms (namely
as particular models of a logical theory associated with the semantics).

Another feature of our work is its conservative generalization of AF, when d-
structures are considered.

In the second part of this paper, using similar ideas and principles as the ones
used in the first part, we have considered argumentation frameworks with higher-order
attacks and evidential supports (REBAF). We have proposed a logical encoding of
REBAF, separating the meaning of attacks and evidential supports (simple or higher-
order) and the logical expression of the acceptability semantics introduced in [24]. In
the particular case when there is no cycle of support, we have characterized the output
of a given REBAF (under the form of structures following a given semantics) in logical
terms (namely as models of a logical theory associated with the semantics). Then
we have proposed a new kind of models, the support-founded models, for providing
characterizations of admissible (resp. complete) structures in the presence of support
cycles.

Among future works, we plan to complete the logical characterization of REBAF
acceptability semantics. For instance, in the presence of support cycles, a characteri-
zation of stable semantics should be provided. Moreover, in a REBAF as defined in
Definition 10, the source of an interaction may be a set of arguments and not only one
argument. As the current paper only considers a simplified version of REBAF with “bi-
nary interactions”, it remains to extend this work to REBAF with “joint interactions”.

Another line for further research will be to consider other kinds of support (neces-
sary or deductive supports, for instance).

Ongoing work concerns computational issues through the use of logical tools. As
a work in that direction, a software has been yet developed (see [43]) that enables
to represent a RAF, to express the associated logical theories Σ(RAF), Σd(RAF),
. . . , and to compute the structures under different semantics. This software should be
updated in order to integrate the representation and the treatment for REBAF.
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A Proofs

A.1 Proofs for RAF

Proof of Proposition 1.

1. Let us recall that Σ(RAF ) includes formulae (1), (2), (3).

⇒ Assume that the structure U = (S,Γ) is conflict-free. Let us define an
interpretation I of Σ(RAF ) as follows :
- For all x ∈ A ∪R, I(Arg(x)) = true iff x ∈ A and I(Attack(x)) =
true iff x ∈ R
- For all x ∈ A, I(Acc(x)) = true iff x ∈ S and I(NAcc(x)) = true iff
I(Acc(x)) = false.
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- For all x ∈ R, I(V al(x)) = true iff x ∈ Γ.
We have SI = S and ΓI = Γ. It remains to prove that I is a model of
Σ(RAF ).
Obviously I satisfies formula (3).
If I does not satisfy formula (2), there exist x ∈ A and α ∈ R such that
tα = x, I(V al(α)) = true, I(Acc(sα)) = true and I(NAcc(x)) = false.
In other words, α ∈ Γ, sα ∈ S and x ∈ S. That is in contradiction with
(S,Γ) being conflict-free.
If I does not satisfy formula (1), there exist α, β ∈ R such that tα = β,
I(V al(α)) = true, I(Acc(sα)) = true and I(V al(β)) = true.
In other words, α, β ∈ Γ and sα ∈ S. That is in contradiction with (S,Γ)
being conflict-free.
It follows easily that I is a model of Σ(RAF ).

⇐ Let I be a model of Σ(RAF ). We prove that the structure (SI ,ΓI) is
conflict-free.
If it is not the case, either there exist a, b ∈ SI and α ∈ ΓI with sα = a
and tα = b, or there exist α, β ∈ ΓI with sα ∈ SI and tα = β.
In the first case, formula (2) is falsified. In the second case, formula (1) is
falsified. That is in contradiction with I being a model of Σ(RAF ).

2. Let us recall that Σd(RAF ) includes formulae (11), (12).

⇒ Assume that the structure U = (S,Γ) is admissible. Due to the proof of
the first item, ∃I model of Σ(RAF ) with SI = S and ΓI = Γ and such
that:
∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x ∈ A \ S, I(Acc(x)) = false and I(NAcc(x)) = true.
For all x ∈ R, I(V al(x)) = true iff x ∈ Γ

We have to prove that I satisfies formulae (11), (12). Let us first consider
formula (11). Let α ∈ R and x ∈ A such that x = tα and I(Acc(x)) =
true. That means that x ∈ S. As U is an admissible structure, we know
that x is acceptable wrt U . So there exists β ∈ Γ with sβ ∈ S and tβ = sα
or tβ = α. So we have I(Acc(sβ)) = true and I(V al(β)) = true. We
have proved that I satisfies formula (11). Similarly, it is easy to prove that
I satisfies formula (12).

⇐ Let I be a model of Σd(RAF ). We have to prove that the structure UI =
(SI ,ΓI) is admissible.
As Σd(RAF ) contains Σ(RAF ), from the first item, we know that the
structure (SI ,ΓI) is conflict-free. Assume that x ∈ SI is the target of an
attack α. From formula (11) and I(Acc(x)) = true, it follows that there is
β ∈ R with tβ = sα or tβ = α, and I(Acc(sβ)) = true and I(V al(β)) =
true. That means that sβ ∈ SI and β ∈ ΓI . So either α ∈ Inh(UI) or
sα ∈ Def(UI). We have proved that x is acceptable w.r.t. UI . Similarly it
is easy to prove that each attack of ΓI is acceptable w.r.t. UI .

3. Let us recall that Σr(RAF ) includes formulae (13), (14).
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⇒ Assume that the structure U = (S,Γ) is complete. Due to the proof of the
second item, ∃I model of Σd(RAF ) with SI = S and ΓI = Γ and such
that:
∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x ∈ A \ S, I(Acc(x)) = false and I(NAcc(x)) = true.
For all x ∈ R, I(V al(x)) = true iff x ∈ Γ

We have to prove that I satisfies formulae (13), (14). Let us first consider
formula (13). Let c ∈ A such that (∀α ∈ Attack)(tα = c → (∃β ∈
Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))) is satisfied by I. We have
to prove that I(Acc(c)) = true. If I satisfies (∀α ∈ Attack)(tα = c →
(∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))), ∀α ∈ R s.t. tα = c,
∃β ∈ R s.t. I(V al(β)) = true and I(Acc(sβ)) = true and tβ = sα or
tβ = α. In other words, due to the definition of I, ∀α ∈ R s.t. tα = c,
∃β ∈ Γ s.t. sβ ∈ S and tβ = sα or tβ = α. That exactly means that
∀α ∈ R s.t. tα = c, sα ∈ Def(U) or α ∈ Inh(U), or in other words
that c ∈ Acc(U). As U is complete, it follows that c ∈ S, so we obtain
I(Acc(c)) = true. Similarly, it is easy to prove that I satisfies formula
(14).

⇐ Let I be a model of Σd(RAF ) ∪ Σr(RAF ). We know that the structure
(SI ,ΓI) is admissible.
It remains to prove that each x ∈ A (resp. x ∈ R) which is acceptable
w.r.t. (SI ,ΓI) belongs to SI (resp. ΓI). In other words, we have to prove
that each x ∈ A (resp. x ∈ R) which is acceptable w.r.t. (SI ,ΓI) satisfies
I(Acc(x)) = true (resp. I(V al(x)) = true). That follows easily from the
fact that I satisfies formula (13) (resp. (14)) instantiated with c = x (resp.
δ = x).

4. Let us recall that Σs(RAF ) includes formulae (15), (16).

⇒ Assume that the structure (S,Γ) is stable. Due to the proof of the first item,
∃I model of Σ(RAF ) with SI = S and ΓI = Γ and such that:
∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x ∈ A \ S, I(Acc(x)) = false and I(NAcc(x)) = true.
For all x ∈ R, I(V al(x)) = true iff x ∈ Γ

We have to prove that I satisfies formulae (15), (16). Let us first consider
formula (15). Let c ∈ A s.t. I(¬Acc(c)) = true. It means that c ∈ A \ S.
As U is stable, we have that c ∈ Def(U). So there exists β ∈ Γ s.t. tβ = c
and sβ ∈ S. Then we have that I(V al(β)) = true and I(Acc(sβ)) = true
which proves that I satisfies formula (15). Similarly, it is easy to prove that
I satisfies formula (16).

⇐ Let I be a model of Σs(RAF ). As Σs(RAF ) contains Σ(RAF ), from
the first item, we know that the structure (SI ,ΓI) is conflict-free. Then the
fact that I satisfies formulae (15), (16) enables to prove that the structure
(SI ,ΓI) satisfies the two following conditions: ∀a ∈ A\SI , a is defeated
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w.r.t. (SI ,ΓI), and ∀α ∈ R \ ΓI , α is inhibited w.r.t. (SI ,ΓI). So the
structure (SI ,ΓI) is stable.

5. Let I be an interpretation of a set of formulae Σ. Let UI denote the structure
(SI ,ΓI). It is easy to see that I is a ⊆-maximal model of Σ iff the structure UI
is ⊆-maximal among all the structures of the form UJ = (SJ ,ΓJ ), where J
denotes a model of Σ. Then taking Σ = Σd(RAF ), it follows that the preferred
structures correspond to the structures UI where I is a ⊆-maximal model of
Σd(RAF ).

6. Let I be an interpretation of a set of formulae Σ. Let UI denote the structure
(SI ,ΓI). It is easy to see that I is a ⊆-minimal model of Σ iff the structure UI
is⊆-minimal among all the structures of the form UJ , where J denotes a model
of Σ. In particular, it holds for Σ = Σr(RAF ).
From the third item of the current proof, it holds that I satisfies formulae (13),
(14) iff Acc(UI) ⊆ (SI ∪ ΓI). By definition, the grounded structure is the
⊆-minimal conflict-free structure U = (S,Γ) satisfying Acc(U) ⊆ S ∪ Γ. It
follows that the grounded structure corresponds to the structure UI where I is a
⊆-minimal model of Σr(RAF ).

Proof of Proposition 2.

Let U = (S,Γ) be a conflict-free structure. Let us consider the model I of
Σ(RAF ) defined in the first item of the proof of Proposition 1. We have S = SI
and Γ = ΓI . Let us prove that I satisfies formula (14) iff Acc(UI) ∩R ⊆ ΓI . Then,
from this result and Proposition 1, it will follow easily that U is a conflict-free (resp.
admissible) d-structure iff ∃I model of Σ(RAF ) ∪ {(14)} such that SI = S and
ΓI = Γ.

Formula (14) writes:

(∀δ ∈ Attack)(((∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈
{sα, α} ∧ V al(β) ∧Acc(sβ))))→ V al(δ))

1. Assume that I satisfies formula (14). Let δ ∈ Acc(UI)∩R. If δ is not attacked,
the formula (∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈ {sα, α}∧V al(β)∧
Acc(sβ))) is trivially true. So, V al(δ) must also be satisfied by I. That means
δ ∈ ΓI . If δ is attacked, as δ ∈ Acc(UI), for each α attacking δ, either α ∈
Inh(UI) or sα ∈ Def(UI). So, for each α attacking δ, there is β ∈ ΓI such
that sβ ∈ SI and tβ ∈ {α, sα}. In other words, for each α attacking δ, there is
β ∈ R such that I satisfies the formulae V al(β), Acc(sβ) and tβ ∈ {α, sα}.
So, V al(δ) must also be satisfied by I. That means δ ∈ ΓI .

2. Assume that Acc(UI)∩R ⊆ ΓI . Let us prove that I satisfies formula (14). Let
δ be an attack such that I satisfies the formula (∀α ∈ Attack)(tα = δ → (∃β ∈
Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ))). Then for each attack α attacking
δ, there is an attack β such that I satisfies the formula tβ ∈ {sα, α} ∧ V al(β)∧
Acc(sβ). As I satisfies V al(β) ∧Acc(sβ) means that β ∈ ΓI and sβ ∈ SI , we
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have that δ ∈ Acc(UI) ∩R. By hypothesis Acc(UI) ∩R ⊆ ΓI , so δ ∈ ΓI and
then I satisfies V al(δ). We have proved that I satisfies formula (14).

A.2 Preliminary results for REBAF

For the proofs for REBAF, a new notation and two lemmas are needed.

Notation 1 Let U = (S,Γ,∆) be a structure of REBAF, and x ∈ A ∪Ra ∪Re. x
will be said to be defended by U , iff every attack α ∈ Ra with t(α) = x is unactivable
w.r.t. U . Defended(U) will denote the set of elements that are defended by U .
Note that x ∈ Acc(U) iff x ∈ Sup(U) and x ∈ Defended(U).

Lemma 1 [24] Any conflit-free self-supporting structure U satisfies:
Acc(U) ⊆ UnAcc(U) ⊆ Def(U).

Lemma 2 Any stable structure U satisfies: Sup(U) = UnSupp(U).

Proof of Lemma2
Assume that U is a stable structure. As U is conflict-free, we already know that
UnSupp(U) ⊆ Sup(U). It remains to prove the reverse inclusion.
Let us recall that UnSupp(U) = Sup(U ′) where U ′ = (Def A(U),Ra,Def Re

(U)).
So we have to prove that Sup(U ′) ⊆ Sup(U).
Let x ∈ Sup(U ′). If x ∈ P, then x ∈ Sup(U). If x /∈ P, by definition of Sup(U ′), x
is the target of a support α such that α ∈ Def(U), sα ∈ Def(U), α ∈ Sup(U ′ \ {x})
and sα ∈ Sup(U ′ \{x}). As U ′ \{x} ⊆ U ′, it follows that Sup(U ′ \{x}) ⊆ Sup(U ′)
(see [24]). So, α (resp. sα) ∈ Sup(U ′). Hence α (resp. sα) /∈ Unsupp(U) by defini-
tion of UnSupp(U), and α (resp. sα) /∈ Def(U).
As U is stable, it follows that α (resp. sα) ∈ U . Any stable structure is self-supporting,
so α (resp. sα) ∈ Sup(U). Hence we have proved that x ∈ Sup(U).

A.3 Proofs for REBAF without support cycle

In the case of REBAF without support cycle, Definition 15 is used for Sup(U).

Proof of Proposition 3.

Let REBAF = 〈A,Ra,Re, s, t,P〉.

1. ⇒ Assume that the structure U = (S,Γ,∆) is conflict-free w.r.t. REBAF. Let
us define an interpretation I of Σ(REBAF) as follows:
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For all x ∈ A ∪Ra ∪Re,
I(Arg(x)) = true iff x ∈ A,
I(Attack(x)) = true iff x ∈ Ra and
I(ESupport(x)) = true iff x ∈ Re.

For all x ∈ A ∪Ra ∪Re, I(PrimaFacie(x)) = true iff x ∈ P.
For all x ∈ A ∪Ra ∪Re,

I(Supp(x)) = true20 and
I(UnSupp(x)) = false.

For all x ∈ A, I(Acc(x)) = true iff x ∈ S.
For all x ∈ A, I(NAcc(x)) = true iff I(Acc(x)) = false.
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true iff x ∈ Γ (resp. ∈ ∆).
For all x ∈ A, I(eAcc(x)) = true iff

(I(Acc(x)) = true and I(Supp(x)) = true).
For all x ∈ Ra ∪Re, I(eV al(x)) = true iff

(I(V al(x)) = true and I(Supp(x)) = true).
It is easy to see that SI = S, ΓI = Γ, ∆I = ∆ and that I satisfies
formulae (3), (1bis), (2bis), (3bis). It remains to prove that I satisfies the
formulae (1), (2).
If I does not satisfy formula (2), there exist x ∈ A and y ∈ Ra such
that ty = x, I(eV al(y)) = true, I(eAcc(sy)) = true and I(NAcc(x)) =
false. In other words, y ∈ Γ, sy ∈ S and x ∈ S (as I(NAcc(x)) = false
iff I(Acc(x)) = true iff x ∈ S). That is in contradiction with (S,Γ,∆)
being conflict-free w.r.t. REBAF.
If I does not satisfy formula (1), there exist x ∈ Ra∪Re and y ∈ Ra such
that ty = x, I(eV al(y)) = true, I(eAcc(sy)) = true and I(V al(x)) =
true.
In other words, y ∈ Γ, sy ∈ S and x ∈ Γ ∪ ∆ (as I(V al(x)) = true iff
x ∈ Γ∪∆). That is in contradiction with (S,Γ,∆) being conflict-free w.r.t.
REBAF.

⇐ Let I be a model of Σ(REBAF). We prove that the structure (SI ,ΓI ,∆I)
is conflict-free w.r.t. REBAF.
If it is not the case, there exist x ∈ SI∪ΓI∪∆I and y ∈ ΓI , with sy ∈ SI
and ty = x.
By definition, it holds that I(eAcc(sy)) = true and I(eV al(y)) = true.
Moreover, in the case when x ∈ SI , it holds that I(eAcc(x)) = true
and so I(Acc(x)) = true (as I satisfies formula (2bis)). Then it holds
that I(NAcc(x)) = false (as I satisfies formula (3)). As a consequence,
formula (2) is falsified.
In the case when x ∈ ΓI ∪ ∆I , it holds that I(eV al(x)) = true and
so I(V al(x)) = true (as I satisfies formula (3bis)). As a consequence,

20Note that a structure U = (S,Γ,∆) is conflict-free w.r.t. REBAF iff it is conflict-free w.r.t. the REBAF
〈A,Ra,Re, s, t,A ∪ Ra ∪ Re〉 as the notion of support has no involvement in conflict-freeness. That
means that we may consider a model in which each element of the REBAF receives evidential support.
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formula (1) is falsified.
In both cases, there is a contradiction with I being a model of Σ(REBAF).

2. ⇒ Assume that the structure U = (S,Γ,∆) is admissible. Let us define an
interpretation I of Σd(REBAF). The idea is to define I by successively
adding constraints that I should satisfy:

The assignments for Arg, Attack, ESupport, PrimaFacie, eAcc,
eV al and NAcc in the interpretation I are identical to those used in
item 1 of the current proof.
For all x ∈ A ∪Ra ∪Re, I(Supp(x)) = true iff x ∈ Sup(U).
For all x ∈ A∪Ra∪Re, I(UnSupp(x)) = true iff x ∈ UnSupp(U).
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x /∈ S, x /∈ Sup(U)
and x ∈ Defended(U)).
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true if and only x ∈ Γ
(resp. ∆) or (x /∈ Γ (resp. ∆), x /∈ Sup(U) and x ∈ Defended(U)).

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is a model
of Σd(REBAF).
Let x ∈ SI . By definition of SI , I(eAcc(x)) = true, that is I(Acc(x)) =
true and I(Supp(x)) = true. By definition of I(Acc) and I(Supp) it fol-
lows that x ∈ S. Conversely, given x ∈ S, it holds that I(Acc(x)) = true.
As U is admissible, U is self-supporting, so x ∈ Sup(U), then it holds that
I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ SI .
Proving that ΓI = Γ and ∆I = ∆ is similar.
For proving that I is a model of Σd(REBAF) it is sufficient to prove that I
satisfies the formulae (1), (2), (3), (1bis), (2bis), (3bis) and (17), (18), (11),
(12).
Obviously I satisfies formulae (3), (2bis), (3bis).
Let us first consider formula (2). Let y ∈ Ra and x ∈ A with x = ty ,
I(eV al(y)) = true and I(eAcc(sy)) = true. Then sy ∈ S and y ∈ Γ.
Let us assume that I(NAcc(x)) = false. Then I(Acc(x)) = true, by def-
inition of I(NAcc). As U is admissible, U is conflict-free, so x cannot
belong to S, and, by definition of I(Acc), it follows that y ∈ UnAct(U),
that is y or sy belongs to UnAcc(U). However, y and sy being elements
of the admissible structure U , due to Lemma 1, we obtain a contradiction.
Hence, we have proved that I(NAcc(x)) = true and formula (2) is satis-
fied by I. Proving that formula (1) is satisfied by I is similar.
Let us consider formula (1bis). Let x ∈ A∪Ra∪Re. If I(PrimaFacie(x))
= true, x ∈ P so x ∈ Sup(U) and I(Supp(x)) = true. Consider y ∈ Re

with x = ty , I(eV al(y)) = true and I(eAcc(sy)) = true. Then sy ∈ S
and y ∈ Γ. As U is admissible, U is self-supporting, so y and sy belong
to Sup(U). From the definition of Sup(U), it follows that x ∈ Sup(U)
and then I(Supp(x)) = true. Hence we have proved that formula (1bis) is
satisfied by I.
Then we consider formulae (17), (18), (11), (12).
The fact that I satisfies formula (17) follows directly from the definition of
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Sup(U), the fact that for an argument (resp. a support) x, I(eAcc(x)) =
true (resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ ∆) and the fact that U
is admissible hence self-supporting.
The fact that I satisfies formula (18) follows directly from the definition
of UnSupp(U), the fact that I(UnSupp(x)) = true iff x ∈ UnSupp(U),
and the fact that for an argument (resp. an attack) x, I(eAcc(x)) = true
(resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ Γ).
Let us now consider formula (11). Let α ∈ Ra and x ∈ A such that
x = tα and I(Acc(x)) = true. By definition of I(Acc), either x ∈ S
or (x /∈ S, x /∈ Sup(U) and x ∈ Defended(U)). As U is admissible,
in both cases, it holds that α ∈ UnAct(U). Then the fact that I satisfies
formula (11) follows directly from the definition of UnAct(U), the defini-
tion of I(Unsupp) and the fact that for an argument (resp. an attack) x,
I(eAcc(x)) = true (resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ Γ).
Proving that formula (12) is satisfied by I is similar.

⇐ Let I be a model of Σd(REBAF). We have to prove that the structure
U = (SI ,ΓI ,∆I) is admissible.
As Σd(REBAF) contains Σ(REBAF), from the first item of the current
proof, we know that the structure (SI ,ΓI ,∆I) is conflict-free.
It remains to prove that U is self-supporting (i) and for each element x of
the structure, if x is the target of an attack α, then α is unactivable w.r.t. U
(ii).
Assume that x ∈ SI (resp. x ∈ ΓI ∪ ∆I). By definition, it holds that
I(eAcc(x)) = true (resp. I(eV al(x)) = true). As I satisfies formula
(2bis), I(Supp(x)) = true. As I satisfies formula (17), it holds that either
x ∈ P or x is the target of a support y1 of source x1 such that y1 ∈ ∆I and
x1 ∈ SI . In the first case, it holds that x ∈ Sup(U). In the other case, it
holds that I(eAcc(x1)) = true and I(eV al(y1)) = true, and formula (17)
can still be used. As it is assumed that there is no cycle of support, this
process will end with yk ∈ P and xl ∈ P. So x ∈ Sup(U) by definition
of Sup(U). We have proved that U is self-supporting.
Similarly, it can be proved from formula (18) that the following result
holds:21

I(Unsupp(x)) = false iff x /∈ UnSupp(U) (∗)
Indeed, I(Unsupp(x)) = false iff either x ∈ P or there exists y ∈ Re such
that ty = x, I(UnSupp(y)) = false, I(UnSupp(sy)) = false, and neither
y nor sy belongs to Def(U).

It remains to prove that, given x an element of the structure, if x is the tar-
get of an attack α, then α is unactivable w.r.t. U . Assume that x ∈ SI is the
target of an attack α. By definition, it holds that I(eAcc(x)) = true. From
the definition of I(eAcc), it follows that I(Acc(x)) = true. As I satisfies
formula (11), it follows that either I satisfies UnSupp(α), or I satisfies

21In order to reuse this result further in the proof, it will be denoted with the expression (∗).
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UnSupp(sα), or there exists an attack β targeting α (or sα) with β ∈ ΓI
and sβ ∈ SI .
In the first two cases, as I satisfies formula (18) and following (∗), it fol-
lows that α (resp. sα) belongs to UnSupp(U).
In the latter case, it holds that α (resp. sα) belongs to Def(U). So, we
have proved that α is unactivable wrt U . The same reasoning can be done
for x ∈ ΓI ∪∆I using formula (12), hence proving (ii).

3. ⇒ Assume that the structure U = (S,Γ,∆) is complete. Let us define an
interpretation I of Σd(REBAF) ∪ Σr(REBAF) as follows:

We keep the same interpretation as the one used in item 2 of the current
proof except for Acc, V al.
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x /∈ S and x ∈
Defended(U)).
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true if and only x ∈ Γ
(resp. ∆) or (x /∈ Γ (resp. ∆) and x ∈ Defended(U)).

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is a model
of Σd(REBAF) ∪ Σr(REBAF).

Note that if U is complete, for all x ∈ A ∪ Ra ∪ Re, if x /∈ S and
x ∈ Defended(U) then x /∈ Sup(U). So the above constraint expressed
for the definition of I(Acc) (resp. I(V al)), x /∈ S and x ∈ Defended(U),
is stronger than the one used for defining a model of an admissible structure
(x /∈ S, x /∈ Sup(U) and x ∈ Defended(U)).
Due to the above remark and the proof of item 2 of this proof, it holds that I
satisfies SI = S, ΓI = Γ, ∆I = ∆, and that I is a model of Σd(REBAF).
It remains to prove that I satisfies formulae (13) and (14). Let us con-
sider formula (13). Let x ∈ A such that for each attack α targeting x,
either I(UnSupp(α)) = true, or I(UnSupp(sα)) = true, or α (or sα)
is attacked by β with β ∈ ΓI and sβ ∈ SI . Due to the definition of
I(UnSupp), for each attack α targeting x, either α ∈ UnSupp(U), or
sα ∈ UnSupp(U), or α (or sα) belongs to Def(U). In other words, for
each attackα targeting x, α ∈ UnAct(U), or equivalently x ∈ Defended(U).
Now, by definition of I(Acc), it holds that I(Acc(x)) = true. We have
proved that I satisfies formula (13). Proving that I satisfies formula (14)
is similar.
So I is a model of Σd(REBAF) ∪ Σr(REBAF).

⇐ Let I be a model of Σd(REBAF) ∪ Σr(REBAF). We have to prove that
the structure U = (SI ,ΓI ,∆I) is complete.
From item 2 of the current proof, we already know that U is admissible. It
remains to prove that Acc(U) is included in SI ∪ ΓI ∪∆I .
As I satisfies formula (18), we also know that I(UnSupp(x)) = true iff
x ∈ UnSupp(U), for all x ∈ A ∪Ra ∪Re ((∗), again from item 2 of the
current proof).

46



Consider x ∈ A∩Acc(U). It holds that x ∈ Sup(U) and x ∈ Defended(U).
The first condition implies that I(Supp(x)) = true, as I satisfies for-
mula (1bis) and following the definition of Sup(U). The second condi-
tion means that for each attack α targeting x, either α ∈ UnSupp(U), or
sα ∈ UnSupp(U), or α (or sα) belongs to Def(U) (i.e. α –or sα– is
attacked by β ∈ U with sβ ∈ U ). So, following (∗) and the fact that if
an element β (resp. sβ) belongs to the structure then I(eV al(β)) (resp.
I(eAcc(sβ))) is also true, the premisse of formula (13) is true, and as I
satisfies formula (13), it follows that I(Acc(x)) = true. As I satisfies for-
mula (2bis) it holds that I(eAcc(x)) = true, so x ∈ SI . Similarly, it can
be proved that for all x ∈ Ra ∩Acc(U) (resp. x ∈ Re ∩Acc(U)), x ∈ ΓI
(resp. x ∈ ∆I). We have proved that U is a complete structure.

4. ⇒ Assume that the structure U = (S,Γ,∆) is stable. Let us define an inter-
pretation I of Σs(REBAF) as follows:

Once again, we keep the same interpretation as the one used in item 2
of the current proof except for Acc, V al.
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or x /∈ Def(U).
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true if and only x ∈ Γ
(resp. ∆) or x /∈ Def(U).

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is a model
of Σs(REBAF).
Let x ∈ SI . By definition, I(Acc(x)) = true and I(Supp(x)) = true. By
definition of I(Acc) and I(Supp), it follows that x ∈ Sup(U) and (x ∈ S
or x /∈ Def(U)). As U is conflict-free, it follows that x /∈ UnSupp(U)
and (x ∈ S or x /∈ Def(U)). If x /∈ S, as U is stable, it follows that
x ∈ Def(U) or x ∈ UnSupp(U). We obtain a contradiction, hence
x ∈ S.
Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is stable, U
is self-supporting, so x ∈ Sup(U), then it holds that I(Supp(x)) = true.
As a consequence, I(eAcc(x)) = true and x ∈ SI . Proving that ΓI = Γ
and ∆I = ∆ is similar.
For proving that I is a model of Σs(REBAF) it is sufficient to prove that
I satisfies formulae (1), (2), (3), (1bis), (2bis), (3bis) and (17), (18), (15),
(16), (19).
Obviously I satisfies formulae (3), (2bis), (3bis).
Let us first consider formula (2). Let y ∈ Ra and x ∈ A with x = ty ,
I(eV al(y) = true and I(eAcc(sy) = true. Then sy ∈ S and y ∈ Γ, and
it holds that x ∈ Def(U). As U is stable, U is conflict-free, so x cannot
belong to S. Hence we have x /∈ S and x ∈ Def(U), or equivalently
I(Acc(x)) = false, by definition of I(Acc) and then I(NAcc(x)) = true,
by definition of I(NAcc). We have proved that I satisfies formula (2).
Proving that formula (1) is satisfied by I is similar.
Proving that I satisfies formulae (1bis), (17), (18) can be done with ex-
actly the same reasoning as the one used in the second item of the proof of
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Proposition 3 for the admissible case.
Let us now consider formula (15). Let x ∈ A such that I(Acc(x)) = false.
By definition of I(Acc), it holds that x /∈ S and x ∈ Def(U). So, there is
y ∈ Γ with x = ty and sy ∈ S. Hence, there is y ∈ ΓI with x = ty and
sy ∈ SI , or equivalently, there is y ∈ Ra with x = ty and I(eV al(y)) =
true and I(eAcc(sy)) = true. We have proved that I satisfies formula (15).
Proving that formula (16) is satisfied by I is similar.
Lastly, we consider formula (19). Let x ∈ A∪Ra∪Re such that I(Supp(x))
= false. By definition of I(Supp), x /∈ Sup(u). Due to Lemma 2, it fol-
lows that x ∈ UnSupp(U), hence I(UnSupp(x)) = true, by definition
of I(UnSupp). We have proved that I satisfies formula (19). So I is a
model of Σs(REBAF).

⇐ Let I be a model of Σs(REBAF). We have to prove that the structure
U = (SI ,ΓI ,∆I) is stable.
As noted in Definition 14, it is sufficient to prove that U is conflict-free,
self-supporting and satisfies U ⊆ UnAcc(U).
As Σs(REBAF) contains Σ(REBAF), from the first item of the current
proof, we know that the structureU is conflict-free. Moreover, Σs(REBAF)
contains formulae (17, 18). So, with exactly the same reasoning as the
one used in the second item of the proof of Proposition 3 for the ad-
missible case, it can be proved that U is self-supporting and also that
I(UnSupp(x)) = false iff x /∈ UnSupp(U) (∗).
It remains to prove that U ⊆ UnAcc(U). Let x ∈ A such that x ∈ U .
So x /∈ SI and by definition of SI , I(eAcc(x)) = false. As I satisfies
formula (2bis), it follows that I(Acc(x)) = false or I(Supp(x)) = false.
In the case when I(Acc(x)) = false, as I satisfies formula (15), it follows
that x ∈ Def(U). If I(Acc(x)) = true, it holds that I(Supp(x)) = false.
As I satisfies formula (19), it follows that I(UnSupp(x)) = true, so x ∈
UnSupp(U) (following (∗)). In both cases, we have that x ∈ UnAcc(U).
We have proved that U is stable.

5. Let I be an interpretation of a set of formulae Σ. Let UI denote the structure
(SI ,ΓI ,∆I). It is easy to see that I is a⊆-maximal model of Σ iff the structure
UI is ⊆-maximal among all the structures of the form UJ = (SJ ,ΓJ ,∆J ),
where J denotes a model of Σ. Then taking Σ = Σd(REBAF), it follows that
the preferred structures correspond to the structures UI where I is a ⊆-maximal
model of Σd(REBAF).

6. Let I be an interpretation of a set of formulae Σ. Let UI denote the structure
(SI ,ΓI ,∆I). It is easy to see that I is a ⊆-minimal model of Σ iff the structure
UI is ⊆-minimal among all the structures of the form UJ , where J denotes
a model of Σ. Taking Σ = Σd(REBAF) ∪ Σr(REBAF), it follows that the
grounded structure correspond to the structureUI where I is a⊆-minimal model
of Σd(REBAF) ∪ Σr(REBAF).
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It can also be proved that U is the grounded structure iff U = (SI ,ΓI ,∆I)
where I is a ⊆-minimal model of Σr(REBAF).

⇐ Assume that I is a ⊆-minimal model of Σr(REBAF). Let U = (SI , ΓI ,
∆I). Let us consider J a model of Σr(REBAF) such that SI = SJ ,
ΓI = ΓJ , ∆I = ∆J , and the set of eAcc(x) satisfied by J is ⊆-minimal.
We first prove that J is a model of Σd(REBAF). If it is not the case, for-
mula (11) or formula (12) is not satisfied byJ . Assume that formula (11) is
not satisfied by J (the reasoning would be similar for formula (12)). There
exists x ∈ A with J (Acc(x)) = true and an attack α targeting x such that
α is unactivable w.r.t. the structure (SJ ,ΓJ ,∆J ) = U . So, it holds that
x is not acceptable w.r.t. U and that x /∈ SJ = SI . Then, we can build
another interpretation J ′ of Σr(REBAF) as follows: J ′ satisfies the same
literals as J except that J ′(Acc(x)) = false. It is easy to see that J ′ is still
a model of Σr(REBAF) (we just have to reconsider formulae (3), (2bis),
(13)). Moreover, as J and J ′ only differ by the interpretation of Acc(x)
which is satisfied by J and not by J ′, we obtain a contradiction with the
definition of J . So the assumption “formula (11) is not satisfied by J ” is
false. We have proved that J is a model of Σd(REBAF), hence a model of
Σr(REBAF) ∪ Σd(REBAF).
Now, we prove thatJ is a⊆-minimal model of Σr(REBAF)∪Σd(REBAF).
If it is not the case, there exists J ′ model of Σr(REBAF) ∪ Σd(REBAF)
such that (SJ ′ ∪ ΓJ ′ ∪ ∆J ′) ⊂ (SJ ∪ ΓJ ∪ ∆J ) = (SI ∪ ΓI ∪ ∆I).
We obtain a contradiction with the fact that I is a ⊆-minimal model of
Σr(REBAF).
Hence we have proved that the structure (SJ ,ΓJ ,∆J ) =U is the grounded
structure of REBAF, due to item 6 of the current proof.

⇒ Assume that U is the grounded structure of REBAF. There is I ⊆-minimal
model of Σr(REBAF) ∪ Σd(REBAF) with U = (SI ,ΓI ,∆I). Obvi-
ously, I is a model of Σr(REBAF). If I is not a ⊆-minimal model of
Σr(REBAF), there exists I ′ model of Σr(REBAF) with (SI′ ∪ ΓI′ ∪
∆I′) ⊂ (SI ∪ ΓI ∪ ∆I). As done before, we consider a model J ′ of
Σr(REBAF) such that SI′ = SJ ′ , ΓI′ = ΓJ ′ , ∆I′ = ∆J ′ , and the set of
eAcc(x) satisfied byJ ′ is⊆-minimal. From the first part of the proof of the
current item, it holds that J ′ is a model of Σd(REBAF). So J ′ is a model
of Σr(REBAF)∪Σd(REBAF) with (SJ ′∪ΓJ ′∪∆J ′) ⊂ (SI∪ΓI∪∆I).
That is in contradiction with the definition of I. Hence, I is a ⊆-minimal
model of Σr(REBAF).

A.4 Proofs for REBAF with support cycles

First of all, let us note that U being a structure, according to Definition 12, x ∈
Sup(U) iff there is at least one “chain” of supported supports (i.e. the support and
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its source belong to U ∩ Sup(U)) leading to x and rooted in prima-facie elements
(arguments or supports).
Moreover, as UnSupp(U) = Sup(U ′), it holds that x ∈ UnSupp(U) iff x /∈ P and
there is no chain of supported supports leading to x, rooted in prima-facie elements
such that each support (and its source) on the chain is not defeated by U .

Lemma 3 Let U = (S,Γ,∆) be a structure and x /∈ P be the target of a support y
such that y ∈ ∆ ∩ Sup(U) and sy ∈ S ∩ Sup(U). Then, there exists a support z such
that tz = x, z ∈ ∆∩ Sup(U \ {x}) and sz ∈ S ∩ Sup(U \ {x}) and so x ∈ Sup(U).

Proof of Lemma 3
Assume that x = ty with y ∈ ∆∩Sup(U) and sy ∈ S∩Sup(U). If y ∈ Sup(U \{x})
and sy ∈ Sup(U \ {x}), the result is proved with z = y. In the other case, without
loss of generality, it can be assumed that sy /∈ Sup(U \ {x}) (the reasoning with
y /∈ Sup(U \ {x}) would be similar). So sy ∈ Sup(U) \ Sup(U \ {x}). As sy ∈
Sup(U), there is a chain of supported supports (i.e. the support and its source belong to
U ∩Sup(U)) leading to sy and rooted in prima-facie elements. As sy /∈ Sup(U \{x}),
at least one support in this chain has x as its source. Then let us consider the shortest
sub-chain of this chain that is rooted in prima-facie elements and ends with x. It follows
that this subchain contains supported supports, is rooted in prima-facie elements and
does not contain x. Taking z as the support targeting x in this subchain will end the
proof.

Proof of Proposition 4.

Let REBAF = 〈A,Ra,Re, s, t,P〉.

1. ⇒ Assume that the structure U = (S,Γ,∆) is admissible. Let us build an
interpretation I of Σd(REBAF) exactly in the same way as for the inter-
pretation used in item 2 of the proof of Proposition 3. Note that in the
current case, Sup(U) refers to Definition 12.
We have to prove that SI = S, ΓI = Γ, ∆I = ∆, and that I is a support-
founded model of Σd(REBAF).
The proofs for SI = S, ΓI = Γ, ∆I = ∆ and for the fact that I satisfies
formulae (1), (2), (3), (2bis), (3bis), (11), (12) is the same as the proofs
written in item 2 of the proof of Proposition 3. So, it remains to prove that
I satisfies formulae (1bis), (17), (18), and that I is support-founded.
Let us first consider formula (17). Let x such that I(Supp(x)) = true.
By definition of I(Supp), x ∈ Sup(U). By definition of Sup(U), either
x ∈ P or x is the target of a support α such that α ∈ ∆, α ∈ Sup(U \{x}),
sα ∈ S and sα ∈ Sup(U \ {x}). In the first case, formula (17) is trivially
satisfied by I. In the second case, as S = SI and ∆ = ∆I it holds that
I(eAcc(sα)) = true and I(eV al(α)) = true. Hence formula (17) is satis-
fied by I.
Let us consider formula (1bis). In the case when I(PrimaFacie(x)) =
true, x ∈ P, so x ∈ Sup(U), hence I(Supp(x)) = true. Then let us con-
sider the case when x is the target of a support y such that I(eAcc(sy)) =
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true and I(eV al(y)) = true. We have to prove that I(Supp(x)) = true.
As SI = S and ∆I = ∆ it holds that y ∈ ∆ and sy ∈ S. Moreover,
as U is admissible, U is self-supporting, so y and sy belong to Sup(U).
From Lemma 3, it follows that x ∈ Sup(U) hence I(Supp(x)) = true. So
formula (1bis) is satisfied by I.
Let us now consider formula (18) and consider x such that I(UnSupp(x))
= true. By definition of I(UnSupp), x ∈ UnSupp(U) = Sup(U ′)
(where U ′ = (Def A(U),Ra,Def Re

(U))). So x /∈ P and using the con-
trapositive of Lemma 3 applied to the structure U ′, it follows that for each
support leading to x, either the support or its source is defeated by U , or
the support or its source is itself not supported by U ′, hence belongs to
UnSupp(U). So the “only if” part of formula (18) is satisfied by I.
For the “if” part, let us consider x such that x /∈ P and for each support
leading to x, either the support or its source is defeated by (SI ,ΓI ,∆I) =
U , or the support or its source belongs to UnSupp(U) = Sup(U ′). As
U ′ \ {x} ⊆ U ′, it holds that Sup(U ′) ⊆ Sup(U ′ \ {x}). Hence, from
Definition 12, it holds that x /∈ Sup(U ′), that is x ∈ UnSupp(U) and so
I(UnSupp(x)) = true.

Finally, we have to prove that I is support-founded. Let x ∈ A such
that Σss(REBAF) entails Supp(x) → eAcc(x). We have to prove that
I(eAcc(x)) = false and I(UnSupp(x)) = true, that is by definition of I,
x /∈ SI (i) and x ∈ UnSupp(U) (ii). We prove the contrapositive.

For (i), let us assume that x ∈ SI . We must prove that Σss(REBAF)
does not entail Supp(x) → eAcc(x) or equivalently that there is a
model J of Σss(REBAF) s.t. J (Supp(x)) = true and J (Acc(x)) =
false. As SI = S, and U is self-supporting, it holds that x ∈ Sup(U).
Hence, either x ∈ P or there is a is a chain of supported supports
leading to x, rooted in prima-facie elements and which does not con-
tain x. Then let us consider an interpretation J defined exactly as I
except that J (Acc(x)) = false. If x ∈ P, obviously, J is a model
of Σss(REBAF). In the other case, using the set considered above,
it holds that J satisfies formula (17). Indeed, any argument y in the
set being different from x, it holds that y ∈ SI iff J (eAcc(y)) = true.

For (ii), let us assume that x /∈ UnSupp(U), or equivalently x ∈
Sup(U ′). Hence, either x ∈ P or there is a is a chain of supported
supports leading to x, rooted in prima-facie elements and which does
not contain x. The difference with (i) is that here elements of the chain
are not supported by U , but only not defeated by U . However, as for
(i), it is possible to build an interpretation J such that J (Supp(x)) =
true, J (Acc(x)) = false, and J is a model of Σss(REBAF). The idea
is to define J such that for each y different from x, J (Acc(y)) = true
if y is not defeated by U .

The proof for x ∈ Re is similar.
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⇐ Let I be a support-founded model of Σd(REBAF). We have to prove that
the structure U = (SI ,ΓI ,∆I) is admissible.
As the notion of support has no involvement in conflict-freeness, the proof
used in the first item of Proposition 3 can still be used for proving that U is
conflict-free.
Let us prove that U is self-supporting. Assume that x ∈ SI (resp. x ∈ ΓI∪
∆I). By definition, it holds that I(eAcc(x)) = true (resp. I(eV al(x)) =
true). As I satisfies formula (2bis), I(Supp(x)) = true. As I satisfies
formula (17), it holds that either x ∈ P or x is the target of a support
y1 of source x1 such that y1 ∈ ∆I and x1 ∈ SI . In the first case, it
holds that x ∈ Sup(U). In the other case, it holds that I(eAcc(x1)) =
true and I(eV al(y1)) = true, and formula (17) can still be used, thus en-
abling to build a chain of supports. As U is finite, this process will end
with yk ∈ P and either xl ∈ P or xl = xi with i < l. And so it
can still be proved that x ∈ Sup(U) w.r.t. Definition 15. Assume that
x /∈ Sup(U) w.r.t. Definition 12. Then it holds that some xi is equal
to x. Σss(REBAF) (using formulae (17) and (2bis)) enables to prove
Supp(x)→ Acc(x1) ∧ Supp(x1) ∧ V al(y1) ∧ Supp(y1) and similar for-
mulae for all the other elements involved in the chain of supports. It follows
that Σss(REBAF) enables to prove Supp(x) → Acc(xi) = Acc(x). That
is in contradiction with the fact that I is support-founded. So we have
proved that x ∈ Sup(U) (w.r.t. Definition 12), hence U is self-supporting.
It remains to prove that, given x an element of the structure, if x is the
target of an attack α, then α is unactivable w.r.t. U . Assume that x ∈ SI
is the target of an attack α. By definition, it holds that I(eAcc(x)) = true.
It follows that I(Acc(x)) = true. As I satisfies formula (11), it follows
that either there exists an attack β targeting α (or sα) with β ∈ ∆I and
sβ ∈ SI , or I satisfies UnSupp(α) (or I satisfies UnSupp(sα)).

In the first case, it holds that α (resp. sα) belongs to Def(U).
In the second case, we prove that α (resp. sα) belongs to UnSupp(U).
For that purpose, we must prove that for any element x, if I satisfies
UnSupp(x), then x ∈ UnSupp(U), or equivalently, if x ∈ Sup(U ′)
then I does not satisfy UnSupp(x). Let us consider x ∈ Sup(U ′).
There is a chain of supports leading to x, rooted in prima-facie ele-
ments such that each support (and its source) in the chain is not de-
feated by U . As I satisfies formula (18), the contrapositive of the
“only if” part of formula (18) can be used for proving that each sup-
ported element y in this chain is such that I(UnSupp(y)) = false.
The proof starts with the prima-facie elements of the set, and goes on
by induction. Thus it can be proved that I(UnSupp(x)) = false.

So, in both cases, α is unactivable w.r.t. U .
The same reasoning can be done for x ∈ ΓI ∪ ∆I using formula (12).
Hence, we can prove that U is admissible.

2. ⇒ Assume that the structure U = (S,Γ,∆) is complete. Let us build an
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interpretation I of Σd(REBAF)∪Σr(REBAF) exactly in the same way as
for the interpretation used in item 3 of the proof of Proposition 3. Moreover,
the proofs used in this item can still be used to prove that SI = S, ΓI = Γ,
∆I = ∆ and I is a model of Σd(REBAF) ∪ Σr(REBAF). It remains to
prove that I is support-founded. For that purpose, the proof written in the
item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σd(REBAF) ∪ Σr(REBAF). We
have to prove that the structure U = (SI ,ΓI ,∆I) is complete. For that
purpose, it is enough to prove that Acc(U) is included in SI ∪ ΓI ∪∆I .
The proof written in item 3 of the proof of Proposition 3 can be used if
we prove that x ∈ A ∩ Sup(U) implies I(Supp(x)) = true and that
x ∈ UnSupp(U) implies I(UnSupp(x)) = true.
Let us consider x ∈ A ∩ Sup(U). From the definition of U , the defini-
tion of Sup(U) and the fact that I satisfies formula (1bis), it follows that
I(Supp(x)) = true.
Then we prove that if x ∈ UnSupp(U) then I(UnSupp(x)) = true, or
equivalently if I(UnSupp(x)) = false, then x ∈ Sup(U ′). Consider x
with I(UnSupp(x)) = false. From formula (18), it holds that x ∈ P or
x is the target of a support y1 of source x1 such that y1 and x1 are not de-
feated by U (i), and I(UnSupp(y1)) = false (ii) and I(UnSupp(x1)) =
false (iii).
If x ∈ P, it holds that x ∈ Sup(U ′). Assume that x /∈ P. With
(ii) (resp. (iii)), and formula (18) again, a chain of supports can be built
such that each element z on the chain (support or source of support) sat-
isfies I(UnSupp(z)) = false. Assume that the process that builds this
chain cannot end with prima-facie elements. That means that for at least
one element zk, it holds that zk cannot receive support without itself, so
I(UnSupp(zk)) = true, as I is support-founded. There is a contradiction
(as each element z on the chain satisfies I(UnSupp(z)) = false). So, we
have obtained a chain of supports leading to x, rooted in prima-facie ele-
ments, such that each element on the chain receives no attack from U . By
definition of U ′ it follows that x ∈ Sup(U ′).
The proof is similar for any support or attack in Acc(U).

3. The proof is similar as in the case of REBAF without support cycle.

4. The proof is similar as in the case of REBAF without support cycle.

B Examples

B.1 Examples of REBAF without cycles of support
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Example 6 (cont’d): Consider a REBAF with only one support which is prima-facie
and whose source is also prima-facie.

a α b

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
→ Supp(a)
→ Supp(α)
eV al(α) eAcc(a)→ Supp(b) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
UnSupp(a)→
UnSupp(α)→
UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α) }

In this case, since α is not attacked, it can be valid and since it is also prima-facie,
it is supported and so it is e-valid. As consequence of this, b can be considered as
e-accepted (not attacked and supported). So the structure U = 〈{a, b},∅, {α}〉 is an
admissible structure among several ones.

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:
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[]
[alpha]
[a]
[a, alpha]
[a, b, alpha]

Preferred structures:

[a, b, alpha]

Grounded structure:

[a, b, alpha]

Complete structures:

[a, b, alpha]

Stable structures:

[a, b, alpha]

�

Example 7 (cont’d): Consider a REBAF with only one support which is not prima-
facie but whose source is prima-facie.

a α b

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
→ Supp(a)
eV al(α) eAcc(a)→ Supp(b) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(α)→
UnSupp(a)→
→ UnSupp(α)
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UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α) }

In this case, α is not attacked so it can be valid but it is not supported and so it is
not e-valid. As consequence of this, even if b can be considered as accepted, it is not e-
accepted. So the only admissible structures are U = 〈∅,∅,∅〉 and U = 〈{a},∅,∅〉.

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[a]

Preferred structures:

[a]

Grounded structure:

[a]

Complete structures:

[a]

Stable structures:

[a]

�

Example 8 (cont’d): Consider a REBAF with only one support which is prima-facie
but whose source is not prima-facie.
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a α b

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
→ Supp(α)
eV al(α) eAcc(a)→ Supp(b) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(a)→
UnSupp(α)→
→ UnSupp(a)
UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α) }

In this case, α is e-valid (not attacked and supported) but a is not supported. As
consequence of this, b is not e-accepted. Here, the only admissible structures are U =
〈∅,∅,∅〉 and U = 〈∅,∅, {α}〉.

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[alpha]
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Preferred structures:

[alpha]

Grounded structure:

[alpha]

Complete structures:

[alpha]

Stable structures:

[alpha]

�

Example 9 (cont’d): Consider a REBAF with only one support which is prima-facie
whose target is also prima-facie but whose source is not prima-facie.

a α b

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
→ Supp(α)
→ Supp(b) }

Σss = Σ ∪ {
Supp(a)→
UnSupp(α)→
→ UnSupp(a)
UnSupp(b)→ }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
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→ Acc(b)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α) }

In this case, α and b are e-valid (not attacked and supported) but a is not supported.
Here, there are 4 admissible structures: U = 〈∅,∅,∅〉, U = 〈∅,∅, {α}〉, U =
〈{b},∅,∅〉 and U = 〈{b},∅, {α}〉.

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[b]
[b, alpha]
[alpha]

Preferred structures:

[b, alpha]

Grounded structure:

[b, alpha]

Complete structures:

[b, alpha]

Stable structures:

[b, alpha]

�

Example 16 Consider the REBAF presented in Ex. 6 in which an additional non prima-
facie argument is added without any other interaction.

a α b

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
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Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
→ Supp(a)
→ Supp(α)
eV al(α) eAcc(a)→ Supp(b) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(c)→
UnSupp(a)→
UnSupp(α)→
→ UnSupp(c)
UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α) }

In this case, c cannot be e-accepted since it is not supported. An admissible struc-
ture is U = 〈{a, b},∅, {α}〉.

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
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[alpha]
[a, alpha]
[a]
[a, b, alpha]

Preferred structures:

[a, b, alpha]

Grounded structure:

[a, b, alpha]

Complete structures:

[a, b, alpha]

Stable structures:

[a, b, alpha]

�

Example 2 (cont’d): Consider now a more complex REBAF with a support that is
the target of an attack.

a α b

β

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
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eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(c)→
→ Supp(a)
→ Supp(α)
eV al(α) eAcc(a)→ Supp(b)
→ Supp(c)
→ Supp(β) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
UnSupp(a)→
UnSupp(α)→
UnSupp(c)→
UnSupp(β)→
UnSupp(b)→ eV al(β) UnSupp(a) UnSupp(α)
UnSupp(b)→ eAcc(c) UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b)
eV al(β) eAcc(c)→ UnSupp(b) }

Σd = Σss ∪ {
V al(α)→ UnSupp(c) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
UnSupp(β)→ V al(α)
UnSupp(c)→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ eV al(β) V al(α)
→ eAcc(c) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

In the case, α is not valid since it is not defended. So, even if α is supported, it
is not e-valid and is not able to support b. So b is not e-accepted. So neither α, nor
b can belong to an admissible structure. In this example, there is only one complete,
preferred and stable structure: ({a, c}, {β},∅).

Prop 3 produces the following structures:
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Conflict-free structures: all structures are conflict-free except those containing
together c, α and β (so 4 structures are not conflict-free).

Admissible structures:

[]
[c]
[beta]
[c, beta]
[a, c, beta]
[a]
[a, c]
[a, beta]

Preferred structures:

[a, c, beta]

Grounded structure:

[a, c, beta]

Complete structures:

[a, c, beta]

Stable structures:

[a, c, beta]

�

Example 17 Consider the same example as Ex. 2 but with the support that is not
prima-facie.

a α b

β

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
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eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(c)→
→ Supp(a)
eV al(α) eAcc(a)→ Supp(b)
→ Supp(c)
→ Supp(β) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(α)→
UnSupp(a)→
→ UnSupp(α)
UnSupp(c)→
UnSupp(β)→
UnSupp(b)→ eV al(β) UnSupp(a) UnSupp(α)
UnSupp(b)→ eAcc(c) UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b)
eV al(β) eAcc(c)→ UnSupp(b) }

Σd = Σss ∪ {
V al(α)→ UnSupp(c) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
UnSupp(β)→ V al(α)
UnSupp(c)→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ eV al(β) V al(α)
→ eAcc(c) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
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→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

In the case, α is not valid since it is not defended. Moreover α is not supported.
So it is not e-valid and is not able to support b. So b is not e-accepted (even if it is
accepted). So neither α, nor b can belong to an admissible structure. In this example,
as in Ex. 2, there is only one complete, preferred and stable structure: ({a, c}, {β},∅).

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free except those containing
together c, α and β (so 4 structures are not conflict-free).

Admissible structures:

[]
[c]
[c, beta]
[beta]
[a, c, beta]
[a]
[a, c]
[a, beta]

Preferred structures:

[a, c, beta]

Grounded structure:

[a, c, beta]

Complete structures:

[a, c, beta]

Stable structures:

[a, c, beta]

�

Example 18 Consider another version of Example 2 in which all elements are prima-
facie except c.

a α b

β

c
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Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(c)→
→ Supp(a)
→ Supp(b)
→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
Supp(c)→
UnSupp(a)→
UnSupp(b)→
UnSupp(α)→
UnSupp(β)→
→ UnSupp(c) }

Σd = Σss ∪ {
V al(α)→ UnSupp(c) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
UnSupp(β)→ V al(α)
UnSupp(c)→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ eV al(β) V al(α)
→ eAcc(c) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
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→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free except those containing
together c, α and β (so 4 structures are not conflict-free).

Admissible structures:

[]
[b]
[b, alpha]
[alpha]
[alpha, beta]
[beta]
[b, beta]
[b, alpha, beta]
[a, alpha, beta]
[a]
[a, b]
[a, b, alpha]
[a, alpha]
[a, beta]
[a, b, beta]
[a, b, alpha, beta]

Preferred structures:

[a, b, alpha, beta]

Grounded structure:

[a, b, alpha, beta]

Complete structures:

[a, b, alpha, beta]

Stable structures:

[a, b, alpha, beta]

�
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Example 19 Consider another version of Example 2 in which all elements are prima-
facie except β.

a α b

β

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(c)→
→ Supp(a)
→ Supp(b)
→ Supp(c)
→ Supp(α) }

Σss = Σ ∪ {
Supp(β)→
UnSupp(a)→
UnSupp(b)→
UnSupp(c)→
UnSupp(α)→
→ UnSupp(β) }

Σd = Σss ∪ {
V al(α)→ UnSupp(c) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
UnSupp(β)→ V al(α)
UnSupp(c)→ V al(α)
→ V al(β) }
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Σs = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ eV al(β) V al(α)
→ eAcc(c) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free except those containing
together c, α and β (so 4 structures are not conflict-free).

Admissible structures:

[]
[b]
[b, c]
[c]
[b, c, alpha]
[alpha]
[b, alpha]
[c, alpha]
[a, c, alpha]
[a]
[a, b]
[a, b, c]
[a, c]
[a, b, c, alpha]
[a, alpha]
[a, b, alpha]

Preferred structures:

[a, b, c, alpha]

Grounded structure:

[a, b, c, alpha]

Complete structures:

[a, b, c, alpha]
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Stable structures:

[a, b, c, alpha]

�

Example 11 (cont’d):
Consider the following REBAF.

b α a

δ β d

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(d) Acc(d)→ eAcc(d)
eAcc(d)→ Acc(d)
eAcc(d)→ Supp(d)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
V al(δ) eV al(β) eAcc(d)→
eV al(α) eAcc(b)→ NAcc(a)
NAcc(a) Acc(a)→
→ Supp(a)
→ Supp(b)
→ Supp(c)
→ Supp(d)
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→ Supp(β)
→ Supp(δ)
eV al(δ) eAcc(c)→ Supp(α) }

Σss = Σ ∪ {
Supp(α)→ eV al(δ)
Supp(α)→ eAcc(c)
UnSupp(a)→
UnSupp(b)→
UnSupp(c)→
UnSupp(d)→
UnSupp(β)→
UnSupp(δ)→
UnSupp(α)→ eV al(β) UnSupp(c) UnSupp(δ)
UnSupp(α)→ eAcc(d) UnSupp(c) UnSupp(δ)
UnSupp(δ)→ UnSupp(α)
UnSupp(c)→ UnSupp(α)
eV al(β) eAcc(d)→ UnSupp(α) }

Σd = Σss ∪ {
Acc(a)→ UnSupp(b) UnSupp(α)
V al(δ)→ UnSupp(d) UnSupp(β) }

Σr = Σss ∪ {
UnSupp(α)→ Acc(a)
UnSupp(b)→ Acc(a)
→ Acc(b)
→ Acc(c)
→ Acc(d)
UnSupp(β)→ V al(δ)
UnSupp(d)→ V al(δ)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ eV al(α) Acc(a)
→ eAcc(b) Acc(a)
→ Acc(b)
→ Acc(c)
→ Acc(d)
→ eV al(β) V al(δ)
→ eAcc(d) V al(δ)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(d) UnSupp(d)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
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→ Supp(δ) UnSupp(δ) }
Prop 3 produces the following structures:

Conflict-free structures: 98 structures are conflict-free among the 128 possible
structures; are not conflict-free structures containing together a, b and α, or those
containing d, β, δ.

Admissible structures:

[]
[b]
[b, c]
[c]
[b, c, d]
[d]
[b, d]
[c, d]
[c, beta]
[beta]
[b, beta]
[b, c, beta]
[c, d, beta]
[d, beta]
[b, d, beta]
[b, c, d, beta]
[a, c, d, beta]
[a, d, beta]
[a, b, d, beta]
[a, b, c, d, beta]

Preferred structures:

[a, b, c, d, beta]

Grounded structure:

[a, b, c, d, beta]

Complete structures:

[a, b, c, d, beta]

Stable structures:

[a, b, c, d, beta]
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Example 12 (cont’d):
Consider the following REBAF.

b α a

δ β d

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(d) Acc(d)→ eAcc(d)
eAcc(d)→ Acc(d)
eAcc(d)→ Supp(d)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
V al(δ) eV al(β) eAcc(d)→
eV al(α) eAcc(b)→ NAcc(a)
NAcc(a) Acc(a)→
→ Supp(a)
eV al(δ) eAcc(c)→ Supp(b)
→ Supp(c)
→ Supp(d)
→ Supp(β)
→ Supp(δ)
→ Supp(α) }

Σss = Σ ∪ {
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Supp(b)→ eV al(δ)
Supp(b)→ eAcc(c)
UnSupp(a)→
UnSupp(b)→ eV al(β) UnSupp(c) UnSupp(δ)
UnSupp(b)→ eAcc(d) UnSupp(c) UnSupp(δ)
UnSupp(δ)→ UnSupp(b)
UnSupp(c)→ UnSupp(b)
eV al(β) eAcc(d)→ UnSupp(b)
UnSupp(c)→
UnSupp(d)→
UnSupp(α)→
UnSupp(β)→
UnSupp(δ)→ }

Σd = Σss ∪ {
Acc(a)→ UnSupp(b) UnSupp(α)
V al(δ)→ UnSupp(d) UnSupp(β) }

Σr = Σss ∪ {
UnSupp(α)→ Acc(a)
UnSupp(b)→ Acc(a)
→ Acc(b)
→ Acc(c)
→ Acc(d)
UnSupp(β)→ V al(δ)
UnSupp(d)→ V al(δ)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ eV al(α) Acc(a)
→ eAcc(b) Acc(a)
→ Acc(b)
→ Acc(c)
→ Acc(d)
→ eV al(β) V al(δ)
→ eAcc(d) V al(δ)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(d) UnSupp(d)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
→ Supp(δ) UnSupp(δ) }

Prop 3 produces the following structures:

Conflict-free structures: there are 98 among the 128 possible structures; are not
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conflict-free structures that contain together a, b and α, or those containing d, β,
δ.

Admissible structures:

[]
[c]
[c, d]
[d]
[c, d, alpha]
[alpha]
[c, alpha]
[d, alpha]
[c, alpha, beta]
[beta]
[c, beta]
[alpha, beta]
[d, alpha, beta]
[d, beta]
[c, d, beta]
[c, d, alpha, beta]
[a, c, d, alpha, beta]
[a, d, beta]
[a, c, d, beta]
[a, d, alpha, beta]

Preferred structures:

[a, c, d, alpha, beta]

Grounded structure:

[a, c, d, alpha, beta]

Complete structures:

[a, c, d, alpha, beta]

Stable structures:

[a, c, d, alpha, beta]

�
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B.2 Examples of RAF (with or without cycles)

Example 4 (cont’d):

a α b

c β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(c)→
eV al(α) eAcc(a)→ NAcc(b)
NAcc(b) Acc(b)→
→ Supp(a)
→ Supp(b)
→ Supp(c)
→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
UnSupp(a)→
UnSupp(b)→
UnSupp(c)→
UnSupp(α)→
UnSupp(β)→ }

Σd = Σss ∪ {
V al(α)→ UnSupp(c) UnSupp(β)
Acc(b)→ eV al(β) UnSupp(a) UnSupp(α)
Acc(b)→ eAcc(c) UnSupp(a) UnSupp(α) }

Σr = Σss ∪ {
→ Acc(a)
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→ Acc(c)
UnSupp(α)→ Acc(b)
UnSupp(a)→ Acc(b)
eV al(β) eAcc(c)→ Acc(b)
→ V al(β)
UnSupp(β)→ V al(α)
UnSupp(c)→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ Acc(c)
→ eV al(β) V al(α)
→ eAcc(c) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

In this example, a, b, c, α, β are all supported since they are prima-facie. Moreover
a, c, (resp. β) are not attacked and so are e-accepted (resp. e-valid). α is attacked
and not defended so it is not e-valid. And finally, since α is not e-valid and even if its
source is e-accepted, b can be accepted and so it is e-accepted. In this example, there
is only one complete, preferred and stable structure: ({a, b, c}, {β},∅).

Prop 3 produces the following structures:

Conflict-free structures: there are 25 among the 32 possible structures; are not
conflict-free structures that contain together a, b and α, or those containing c, β,
α.

Admissible structures:

[]
[c]
[c, beta]
[beta]
[b, c, beta]
[a, beta]
[a]
[a, c]
[a, c, beta]
[a, b, c, beta]

Preferred structures:

[a, b, c, beta]
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Grounded structure:

[a, b, c, beta]

Complete structures:

[a, b, c, beta]

Stable structures:

[a, b, c, beta]

�

Example 5 (cont’d):

a α b

d δ β

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(d) Acc(d)→ eAcc(d)
eAcc(d)→ Acc(d)
eAcc(d)→ Supp(d)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
V al(α) eV al(β) eAcc(c)→
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V al(β) eV al(δ) eAcc(d)→
eV al(α) eAcc(a)→ NAcc(b)
NAcc(b) Acc(b)→
→ Supp(a)
→ Supp(b)
→ Supp(c)
→ Supp(d)
→ Supp(α)
→ Supp(β)
→ Supp(δ) }

Σss = Σ ∪ {
UnSupp(a)→
UnSupp(b)→
UnSupp(c)→
UnSupp(d)→
UnSupp(α)→
UnSupp(β)→
UnSupp(δ)→ }

Σd = Σss ∪ {
V al(β)→ UnSupp(d) UnSupp(δ)
V al(α)→ eV al(δ) UnSupp(c) UnSupp(β)
V al(α)→ eAcc(d) UnSupp(c) UnSupp(β)
Acc(b)→ eV al(β) UnSupp(a) UnSupp(α)
Acc(b)→ eAcc(c) UnSupp(a) UnSupp(α) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(c)
→ Acc(d)
UnSupp(α)→ Acc(b)
UnSupp(a)→ Acc(b)
eV al(β) eAcc(c)→ Acc(b)
→ V al(δ)
UnSupp(δ)→ V al(β)
UnSupp(d)→ V al(β)
UnSupp(β)→ V al(α)
UnSupp(c)→ V al(α)
eV al(δ) eAcc(d)→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ Acc(c)
→ Acc(d)
→ eV al(β) V al(α)
→ eAcc(c) V al(α)
→ eV al(δ) V al(β)

79



→ eAcc(d) V al(β)
→ V al(δ)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(d) UnSupp(d)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
→ Supp(δ) UnSupp(δ) }

In this example, a, b, c, d, α, β, δ are all supported since they are prima-facie.
Moreover a, c, d (resp. δ) are not attacked and so are e-accepted (resp. e-valid). β is
attacked and not defended so it is e-valid. α is attacked but it is defended by an e-valid
attack from an e-accepted argument, so it is e-valid. And finally, since α is e-valid and
its source is e-accepted, b cannot be accepted and so it is not e-accepted. In this exam-
ple, there is only one complete, preferred and stable structure: ({a, c, d}, {α, δ},∅).

Prop 3 produces the following structures:

Conflict-free structures: there are 89 among the 128 possible structures; are not
conflict-free structures that contain together a, b and α, or those containing c, β,
α, or those containing d, β, δ.

Admissible structures:

[]
[c]
[c, d]
[d]
[c, d, delta]
[delta]
[c, delta]
[d, delta]
[d, alpha, delta]
[c, d, alpha, delta]
[a, c, d, alpha, delta]
[a]
[a, c]
[a, c, d]
[a, d]
[a, c, d, delta]
[a, delta]
[a, c, delta]
[a, d, delta]
[a, d, alpha, delta]

Preferred structures:

[a, c, d, alpha, delta]
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Grounded structure:

[a, c, d, alpha, delta]

Complete structures:

[a, c, d, alpha, delta]

Stable structures:

[a, c, d, alpha, delta]

�

Example 10 (cont’d): Consider the AF represented by:

a α b β c

It can be encoded by the following simplified bases:
Σ = {

Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
eV al(α) eAcc(a)→ NAcc(b)
eV al(β) eAcc(b)→ NAcc(c)
NAcc(b) Acc(b)→
NAcc(c) Acc(c)→
→ Supp(a)
→ Supp(b)
→ Supp(c)
→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
UnSupp(a)→
UnSupp(b)→
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UnSupp(c)→
UnSupp(α)→
UnSupp(β)→ }

Σd = Σss ∪ {
Acc(b)→ UnSupp(a) UnSupp(α)
Acc(c)→ eV al(α) UnSupp(b) UnSupp(β)
Acc(c)→ eAcc(a) UnSupp(b) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
UnSupp(α)→ Acc(b)
UnSupp(a)→ Acc(b)
UnSupp(β)→ Acc(c)
UnSupp(b)→ Acc(c)
eV al(α) eAcc(a)→ Acc(c)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(a)
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ eV al(β) Acc(c)
→ eAcc(b) Acc(c)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Prop 3 produces the following structures:

Conflict-free structures: there are 25 among the 32 possible structures; are not
conflict-free structures that contain together a, b and α, or those containing b, c,
β.

Admissible structures:

[]
[alpha]
[alpha, beta]
[beta]
[a, beta]
[a]
[a, alpha]
[a, c, alpha]
[a, c, alpha, beta]
[a, alpha, beta]
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Preferred structures:

[a, c, alpha, beta]

Grounded structure:

[a, c, alpha, beta]

Complete structures:

[a, c, alpha, beta]

Stable structures:

[a, c, alpha, beta]

�

Example 20 Consider the following RAF.

α

a b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
eV al(α) eAcc(a)→ NAcc(b)
eV al(β) eAcc(b)→ NAcc(a)
NAcc(b) Acc(b)→
NAcc(a) Acc(a)→
→ Supp(a)
→ Supp(b)
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→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
UnSupp(a)→
UnSupp(b)→
UnSupp(α)→
UnSupp(β)→ }

Σd = Σss ∪ {
Acc(a)→ eV al(α) UnSupp(b) UnSupp(β)
Acc(a)→ eAcc(a) UnSupp(b) UnSupp(β)
Acc(b)→ eV al(β) UnSupp(a) UnSupp(α)
Acc(b)→ eAcc(b) UnSupp(a) UnSupp(α) }

Σr = Σss ∪ {
UnSupp(β)→ Acc(a)
UnSupp(b)→ Acc(a)
eV al(α) eAcc(a)→ Acc(a)
UnSupp(α)→ Acc(b)
UnSupp(a)→ Acc(b)
eV al(β) eAcc(b)→ Acc(b)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ eV al(β) Acc(a)
→ eAcc(b) Acc(a)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Prop 3 produces the following structures:

Conflict-free structures: there are 13 among the 16 possible structures; are not
conflict-free structures that contain together a, b and α, or those containing a, b,
β.

Admissible structures:

[]
[alpha]
[alpha, beta]
[beta]
[b, alpha, beta]
[b, beta]
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[a, alpha, beta]
[a, alpha]

Preferred structures:

[b, alpha, beta]
[a, alpha, beta]

Grounded structure:

[alpha, beta]

Complete structures:

[alpha, beta]
[b, alpha, beta]
[a, alpha, beta]

Stable structures:

[b, alpha, beta]
[a, alpha, beta]

�

Example 21 Consider the following RAF.

a α b

δ β

c

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
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eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
eV al(α) eAcc(a)→ NAcc(b)
eV al(β) eAcc(b)→ NAcc(c)
eV al(δ) eAcc(c)→ NAcc(a)
NAcc(b) Acc(b)→
NAcc(c) Acc(c)→
NAcc(a) Acc(a)→
→ Supp(a)
→ Supp(b)
→ Supp(c)
→ Supp(α)
→ Supp(β)
→ Supp(δ) }

Σss = Σ ∪ {
UnSupp(a)→
UnSupp(b)→
UnSupp(c)→
UnSupp(α)→
UnSupp(β)→
UnSupp(δ)→ }

Σd = Σss ∪ {
Acc(a)→ eV al(β) UnSupp(c) UnSupp(δ)
Acc(a)→ eAcc(b) UnSupp(c) UnSupp(δ)
Acc(b)→ eV al(δ) UnSupp(a) UnSupp(α)
Acc(b)→ eAcc(c) UnSupp(a) UnSupp(α)
Acc(c)→ eV al(α) UnSupp(b) UnSupp(β)
Acc(c)→ eAcc(a) UnSupp(b) UnSupp(β) }

Σr = Σss ∪ {
UnSupp(δ)→ Acc(a)
UnSupp(c)→ Acc(a)
eV al(β) eAcc(b)→ Acc(a)
UnSupp(α)→ Acc(b)
UnSupp(a)→ Acc(b)
eV al(δ) eAcc(c)→ Acc(b)
UnSupp(β)→ Acc(c)
UnSupp(b)→ Acc(c)
eV al(α) eAcc(a)→ Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ) }
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Σs = Σss ∪ {
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ eV al(δ) Acc(a)
→ eAcc(c) Acc(a)
→ eV al(β) Acc(c)
→ eAcc(b) Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
→ Supp(δ) UnSupp(δ) }

Prop 3 produces the following structures:

Conflict-free structures: there are 45 among the 64 possible structures; are not
conflict-free structures that contain together a, b and α, or those containing b, c
and β, or those containing a, c and δ.

Admissible structures:

[]
[alpha]
[alpha, beta]
[beta]
[alpha, beta, delta]
[delta]
[alpha, delta]
[beta, delta]

Preferred structures:

[alpha, beta, delta]

Grounded structure:

[alpha, beta, delta]

Complete structures:

[alpha, beta, delta]

Stable structures:
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none

�

Example 22 Consider the following RAF.

a α

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
eV al(α) eAcc(a)→ NAcc(a)
NAcc(a) Acc(a)→
→ Supp(a)
→ Supp(α) }

Σss = Σ ∪ {
UnSupp(a)→
UnSupp(α)→ }

Σd = Σss ∪ {
Acc(a)→ eV al(α) UnSupp(a) UnSupp(α)
Acc(a)→ eAcc(a) UnSupp(a) UnSupp(α) }

Σr = Σss ∪ {
UnSupp(α)→ Acc(a)
UnSupp(a)→ Acc(a)
eV al(α) eAcc(a)→ Acc(a)
→ V al(α) }

Σs = Σss ∪ {
→ eV al(α) Acc(a)
→ eAcc(a) Acc(a)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(α) UnSupp(α) }

Prop 3 produces the following structures:

Conflict-free structures: there are 3 among the 4 possible structures; is not
conflict-free the structure that contains together a and α.

[]
[alpha]
[a]
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Admissible structures:

[]
[alpha]

Preferred structures:

[alpha]

Grounded structure:

[alpha]

Complete structures:

[alpha]

Stable structures:

none

�

B.3 Examples of REBAF with cycles of support

In this section, due to the presence of support cycles, we can see that Prop 3 pro-
duces structures that do not respect the admissibility property. This problem is solved
using Proposition 4.

Example 13 (cont’d):
Consider the following REBAF.

α

a b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
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Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
eV al(α) eAcc(a)→ Supp(b)
eV al(β) eAcc(b)→ Supp(a)
→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(a)→ eV al(β)
Supp(a)→ eAcc(b)
UnSupp(α)→
UnSupp(β)→
UnSupp(a)→ UnSupp(b) UnSupp(β)
UnSupp(β)→ UnSupp(a)
UnSupp(b)→ UnSupp(a)
UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(b)
→ Acc(a)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[alpha]
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[alpha, beta]
[beta]
[a, b, alpha, beta]

Nevertheless, this last structure is not admissible. And so the following results
will not be correct.

Preferred structures:

[a, b, alpha, beta]

Grounded structure:

[alpha, beta]

Complete structures:

[alpha, beta]
[a, b, alpha, beta]

Stable structures:

[alpha, beta]
[a, b, alpha, beta]

Prop 4 produces the following admissible structures:

[]
[alpha]
[alpha, beta]
[beta]

And the complete, grounded and preferred structure is:

[alpha, beta]

�

Example 14 (cont’d):
Consider the following REBAF.

a α b

δ β

c
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Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
eV al(α) eAcc(a)→ Supp(b)
eV al(β) eAcc(b)→ Supp(c)
eV al(δ) eAcc(c)→ Supp(a)
→ Supp(α)
→ Supp(β)
→ Supp(δ) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(c)→ eV al(β)
Supp(c)→ eAcc(b)
Supp(a)→ eV al(δ)
Supp(a)→ eAcc(c)
UnSupp(α)→
UnSupp(β)→
UnSupp(δ)→
UnSupp(a)→ UnSupp(c) UnSupp(δ)
UnSupp(δ)→ UnSupp(a)
UnSupp(c)→ UnSupp(a)
UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b)
UnSupp(c)→ UnSupp(b) UnSupp(β)
UnSupp(β)→ UnSupp(c)
UnSupp(b)→ UnSupp(c) }

Σd = Σss ∪∅
Σr = Σss ∪ {
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→ Acc(a)
→ Acc(b)
→ Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ) }

Σs = Σss ∪ {
→ Acc(b)
→ Acc(a)
→ Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
→ Supp(δ) UnSupp(δ) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[alpha]
[alpha, beta]
[beta]
[alpha, beta, delta]
[delta]
[alpha, delta]
[beta, delta]
[a, b, c, alpha, beta, delta]

Nevertheless, this last structure is not admissible. And so the following results
will not be correct.

Preferred structures:

[a, b, c, alpha, beta, delta]

Grounded structure:

[alpha, beta, delta]

Complete structures:
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[alpha, beta, delta]
[a, b, c, alpha, beta, delta]

Stable structures:

[alpha, beta, delta]
[a, b, c, alpha, beta, delta]

Prop 4 produces the following admissible structures:

[]
[alpha]
[alpha, beta]
[beta]
[alpha, beta, delta]
[delta]
[alpha, delta]
[beta, delta]

And the complete, grounded and preferred structure is:

[alpha, beta, delta]

�

Example 15 (cont’d):
Consider the following REBAF.

a α

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
eV al(α) eAcc(a)→ Supp(a)
→ Supp(α) }

Σss = Σ ∪ {
Supp(a)→ eV al(α)
Supp(a)→ eAcc(a)
UnSupp(α)→
UnSupp(a)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(a)
UnSupp(a)→ UnSupp(a) }
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Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(α) UnSupp(α) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[alpha]
[a, alpha]

Nevertheless, this last structure is not admissible. And so the following results
will not be correct.

Preferred structures:

[a, alpha]

Grounded structure:

[alpha]

Complete structures:

[alpha]
[a, alpha]

Stable structures:

[alpha]
[a, alpha]

Prop 4 produces the following admissible structures:

[]
[alpha]

And the complete, grounded and preferred structure is:

[alpha]
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Example 23 Consider the following REBAF.

α

c δ a b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
eV al(α) eAcc(a)→ Supp(b)
eV al(β) eAcc(b)→ Supp(a)
eV al(δ) eAcc(a)→ Supp(c)
→ Supp(α)
→ Supp(β)
→ Supp(δ) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(a)→ eV al(β)
Supp(a)→ eAcc(b)
Supp(c)→ eV al(α)
Supp(c)→ eAcc(a)
UnSupp(α)→
UnSupp(β)→
UnSupp(δ)→
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UnSupp(a)→ UnSupp(b) UnSupp(β)
UnSupp(β)→ UnSupp(a)
UnSupp(b)→ UnSupp(a)
UnSupp(b)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b)
UnSupp(c)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(c)
UnSupp(a)→ UnSupp(c) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ) }

Σs = Σss ∪ {
→ Acc(b)
→ Acc(a)
→ Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
→ Supp(δ) UnSupp(δ) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[ ]
[ alpha ]
[ alpha, beta ]
[ beta ]
[ alpha, beta, delta ]
[ delta ]
[ alpha, delta ]
[ beta, delta ]
[ a, b, alpha, beta ]
[ a, b, c, alpha, beta ]
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[ a, b, c, alpha, beta, delta ]
[ a, b, alpha, beta, delta ]

Nevertheless, the four last structures are not admissible. And so the following
results will not be correct.

Preferred structures:

[ a, b, c, alpha, beta, delta ]

Grounded structure:

[ alpha, beta, delta ]

Complete structures:

[ alpha, beta, delta ]
[ a, b, c, alpha, beta, delta ]

Stable structures:

[ alpha, beta, delta ]
[ a, b, c, alpha, beta, delta ]

Prop 4 produces the following admissible structures:

[ ]
[ alpha ]
[ alpha, beta ]
[ beta ]
[ alpha, beta, delta ]
[ delta ]
[ alpha, delta ]
[ beta, delta ]

And the complete, grounded and preferred structure is:

[alpha, beta, delta]

�

Example 24 Consider the following REBAF.

a α
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Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
eV al(α) eAcc(a)→ Supp(α)
→ Supp(a) }

Σss = Σ ∪ {
Supp(α)→ eV al(α)
Supp(α)→ eAcc(a)
UnSupp(a)→
UnSupp(α)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(α)
UnSupp(a)→ UnSupp(α) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ V al(α) }

Σs = Σss ∪ {
→ Acc(a)
→ V al(α)
→ Supp(a) UnSupp(a)
→ Supp(α) UnSupp(α) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[a]
[a, alpha]

Nevertheless, this last structure is not admissible. And so the following results
will not be correct.

Preferred structures:

[a, alpha]

Grounded structure:

[a]

Complete structures:
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[a]
[a, alpha]

Stable structures:

[a]
[a, alpha]

Prop 4 produces the following admissible structures:

[]
[a]

And the complete, grounded and preferred structure is:

[a]

�

Example 25 Consider the following REBAF.

b

α β

a

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
eV al(α) eAcc(a)→ Supp(β)
eV al(β) eAcc(b)→ Supp(α)
→ Supp(a)
→ Supp(b) }

Σss = Σ ∪ {
Supp(β)→ eV al(α)
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Supp(β)→ eAcc(a)
Supp(α)→ eV al(β)
Supp(α)→ eAcc(b)
UnSupp(a)→
UnSupp(b)→
UnSupp(α)→ UnSupp(b) UnSupp(β)
UnSupp(β)→ UnSupp(α)
UnSupp(b)→ UnSupp(α)
UnSupp(β)→ UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(β)
UnSupp(a)→ UnSupp(β) }

Σd = Σss ∪∅
Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(b)
→ Acc(a)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Prop 3 produces the following structures:

Conflict-free structures: all structures are conflict-free.

Admissible structures:

[]
[b]
[a]
[a, b]
[a, b, alpha, beta]

Nevertheless, this last structure is not admissible. And so the following results
will not be correct.

Preferred structures:

[a, b, alpha, beta]

Grounded structure:
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[a, b]

Complete structures:

[a, b]
[a, b, alpha, beta]

Stable structures:

[a, b]
[a, b, alpha, beta]

Prop 4 produces the following admissible structures:

[]
[b]
[a]
[a, b]

And the complete, grounded and preferred structure is:

[a, b]

�

B.4 Examples of REBAF with mixed cycles (support-attack)

Example 26 Consider the following REBAF.

a α b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
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eV al(β)→ V al(β)
eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(b)→
eV al(α) eAcc(a)→ Supp(b)
→ Supp(a)
→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
UnSupp(a)→
UnSupp(α)→
UnSupp(β)→
UnSupp(b)→ eV al(β) UnSupp(a) UnSupp(α)
UnSupp(b)→ eAcc(b) UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b)
eV al(β) eAcc(b)→ UnSupp(b) }

Σd = Σss ∪ {
V al(α)→ UnSupp(b) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
UnSupp(β)→ V al(α)
UnSupp(b)→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(b)
→ Acc(a)
→ eV al(β) V al(α)
→ eAcc(b) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Here α belongs neither to Def(U) (since b, the source of the attack to α, does not
belong to an admissible structure) nor to UnSupp(U) (since α is prima-facie), for any
admissible structure U . That explains why there is no stable structure.

Prop 3 produces the following structures:

Conflict-free structures:there are 14 conflict-free structures among the 16 possi-
ble structures (are not conflict-free those that contain together b, α and β).

Admissible structures:

[]
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[beta]
[a, beta]
[a]

Preferred structures:

[a, beta]

Grounded structure:

[a, beta]

Complete structures:

[a, beta]

Stable structures:

none

�

Example 27 Consider the following REBAF.

a α b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
eV al(α) eAcc(a)→ NAcc(b)
NAcc(b) Acc(b)→
→ Supp(b)
→ Supp(a)
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eV al(β) eAcc(b)→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
Supp(α)→ eV al(β)
Supp(α)→ eAcc(b)
UnSupp(a)→
UnSupp(b)→
UnSupp(β)→
UnSupp(α)→ UnSupp(b) UnSupp(β)
UnSupp(β)→ UnSupp(α)
UnSupp(b)→ UnSupp(α) }

Σd = Σss ∪ {
Acc(b)→ UnSupp(a) UnSupp(α) }

Σr = Σss ∪ {
→ Acc(a)
UnSupp(α)→ Acc(b)
UnSupp(a)→ Acc(b)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(a)
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Here b belongs neither to Def(U) (since α, the source of the attack to b, does not
belong to an admissible structure) nor to UnSupp(U) (since b is prima-facie), for any
admissible structure U . That explains why there is no stable structure.

Prop 3 produces the following structures:

Conflict-free structures: there are 14 conflict-free structures among the 16 pos-
sible structures (are not conflict-free those that contain together a, b and α).

Admissible structures:

[]
[beta]
[a, beta]
[a]

Preferred structures:

[a, beta]
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Grounded structure:

[a, beta]

Complete structures:

[a, beta]

Stable structures:

none

�

Example 28 Consider the following REBAF.

a α b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
V al(α) eV al(β) eAcc(b)→
eV al(α) eAcc(a)→ Supp(b)
→ Supp(a)
→ Supp(β) }

Σss = Σ ∪ {
Supp(b)→ eV al(α)
Supp(b)→ eAcc(a)
Supp(α)→
UnSupp(a)→
→ UnSupp(α)
UnSupp(β)→
UnSupp(b)→ eV al(β) UnSupp(a) UnSupp(α)
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UnSupp(b)→ eAcc(b) UnSupp(a) UnSupp(α)
UnSupp(α)→ UnSupp(b)
UnSupp(a)→ UnSupp(b)
eV al(β) eAcc(b)→ UnSupp(b) }

Σd = Σss ∪ {
V al(α)→ UnSupp(b) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
→ Acc(b)
UnSupp(β)→ V al(α)
UnSupp(b)→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(b)
→ Acc(a)
→ eV al(β) V al(α)
→ eAcc(b) V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Here there exists a stable structure since α belongs to UnSupp(U).
Prop 3 produces the following structures:

Conflict-free structures: there are 14 conflict-free structures among the 16 pos-
sible structures (are not conflict-free those that contain together b, α and β).

Admissible structures:

[]
[beta]
[a, beta]
[a]

Preferred structures:

[a, beta]

Grounded structure:

[a, beta]

Complete structures:

[a, beta]
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Stable structures:

[a, beta]

�

Example 29 Consider the following REBAF.

a α b

β

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
eV al(α) eAcc(a)→ NAcc(b)
NAcc(b) Acc(b)→
→ Supp(a)
eV al(β) eAcc(b)→ Supp(α)
→ Supp(β) }

Σss = Σ ∪ {
Supp(α)→ eV al(β)
Supp(α)→ eAcc(b)
Supp(b)→
UnSupp(a)→
→ UnSupp(b)
UnSupp(β)→
UnSupp(α)→ UnSupp(b) UnSupp(β)
UnSupp(β)→ UnSupp(α)
UnSupp(b)→ UnSupp(α) }

Σd = Σss ∪ {
Acc(b)→ UnSupp(a) UnSupp(α) }

Σr = Σss ∪ {
→ Acc(a)
UnSupp(α)→ Acc(b)
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UnSupp(a)→ Acc(b)
→ V al(α)
→ V al(β) }

Σs = Σss ∪ {
→ Acc(a)
→ eV al(α) Acc(b)
→ eAcc(a) Acc(b)
→ V al(α)
→ V al(β)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β) }

Here there exists a stable structure since b belongs to UnSupp(U).
Prop 3 produces the following structures:

Conflict-free structures: there are 14 conflict-free structures among the 16 pos-
sible structures (are not conflict-free those that contain together a, b and α).

Admissible structures:

[]
[beta]
[a, beta]
[a]

Preferred structures:

[a, beta]

Grounded structure:

[a, beta]

Complete structures:

[a, beta]

Stable structures:

[a, beta]

�

Example 30 Consider the following REBAF.
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a α b β c

δ

Σ = {
Supp(a) Acc(a)→ eAcc(a)
eAcc(a)→ Acc(a)
eAcc(a)→ Supp(a)
Supp(b) Acc(b)→ eAcc(b)
eAcc(b)→ Acc(b)
eAcc(b)→ Supp(b)
Supp(c) Acc(c)→ eAcc(c)
eAcc(c)→ Acc(c)
eAcc(c)→ Supp(c)
Supp(α) V al(α)→ eV al(α)
eV al(α)→ V al(α)
eV al(α)→ Supp(α)
Supp(β) V al(β)→ eV al(β)
eV al(β)→ V al(β)
eV al(β)→ Supp(β)
Supp(δ) V al(δ)→ eV al(δ)
eV al(δ)→ V al(δ)
eV al(δ)→ Supp(δ)
eV al(δ) eAcc(a)→ NAcc(c)
NAcc(c) Acc(c)→
eV al(β) eAcc(c)→ NAcc(b)
NAcc(b) Acc(b)→
→ Supp(b)
→ Supp(c)
eV al(α) eAcc(b)→ Supp(a)
→ Supp(α)
→ Supp(β)
→ Supp(δ) }

Σss = Σ ∪ {
Supp(a)→ eV al(α)
Supp(a)→ eAcc(b)
UnSupp(b)→
UnSupp(c)→
UnSupp(a)→ eV al(β) UnSupp(b) UnSupp(α)
UnSupp(a)→ eAcc(c) UnSupp(b) UnSupp(α)
UnSupp(α)→ UnSupp(a)
UnSupp(b)→ UnSupp(a)
eV al(β) eAcc(c)→ UnSupp(a)
UnSupp(α)→
UnSupp(β)→
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UnSupp(δ)→ }
Σd = Σss ∪ {

Acc(c)→ UnSupp(a) UnSupp(δ)
Acc(b)→ eV al(δ) UnSupp(c) UnSupp(β)
Acc(b)→ eAcc(a) UnSupp(c) UnSupp(β) }

Σr = Σss ∪ {
→ Acc(a)
UnSupp(β)→ Acc(b)
UnSupp(c)→ Acc(b)
eV al(δ) eAcc(a)→ Acc(b)
UnSupp(δ)→ Acc(c)
UnSupp(a)→ Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ) }

Σs = Σss ∪ {
→ Acc(a)
→ eV al(β) Acc(b)
→ eAcc(c) Acc(b)
→ eV al(δ) Acc(c)
→ eAcc(a) Acc(c)
→ V al(α)
→ V al(β)
→ V al(δ)
→ Supp(a) UnSupp(a)
→ Supp(b) UnSupp(b)
→ Supp(c) UnSupp(c)
→ Supp(α) UnSupp(α)
→ Supp(β) UnSupp(β)
→ Supp(δ) UnSupp(δ) }

Prop 3 produces the following structures:

Conflict-free structures: there are 50 conflict-free structures among the 64 pos-
sible structures (are not conflict-free those that contain together a, c and δ, or b,
c and β).

Admissible structures:

[ ]
[ alpha ]
[ alpha, beta ]
[ beta ]
[ alpha, beta, delta ]
[ delta ]
[ alpha, delta ]
[ beta, delta ]
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[ c, beta, delta ]
[ c, beta ]
[ c, alpha, beta ]
[ c, alpha, beta, delta ]
[ a, b, alpha, beta, delta ]
[ a, b, alpha, delta ]

Preferred structures:

[ c, alpha, beta, delta ]
[ a, b, alpha, beta, delta ]

Grounded structure:

[ alpha, beta, delta ]

Complete structures:

[ alpha, beta, delta ]
[ c, alpha, beta, delta ]
[ a, b, alpha, beta, delta ]

Stable structures:

[ c, alpha, beta, delta ]
[ a, b, alpha, beta, delta ]

�
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