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IMAG, Université de Montpellier, CNRS

Montpellier, France
joseph.salmon@umontpellier.fr

Abstract

Non-convex sparse regularizers are common tools for learning with high-
dimensional data. For accelerating convergence of optimization problems involv-
ing those regularizers, a working set strategy addresses the optimization problem
through an iterative algorithm by gradually incrementing the number of variables
to optimize until the identification of the solution support. While working set
methods have been theoretically supported only for convex regularizers, this pa-
per proposes a working set algorithm for non-convex sparse regularizers with con-
vergence guarantees. The algorithm, named FireWorks, is based on a non-convex
reformulation of a recent primal-dual approach and leverages on the geometry of
the residuals. Our theoretical guarantees build upon a lower bound of the objective
function decrease between two inner solver iterations and shows the convergence
to a stationary point of the problem. More importantly, we also show that conver-
gence is preserved even when the inner solver is inexact, under sufficient decay
of the error across iterations. Our experimental results demonstrate strong com-
putational gain when using our working set strategy compared to the full problem
solver for both block-coordinate descent or a proximal gradient solver.

1 Introduction

Many real-world learning problems are of (very) high dimension. This is the case for natural lan-
guage processing problems with very large vocabulary or recommendation problems involving mil-
lion of items. In such cases, one way of addressing the learning problem is to consider sparsity-
inducing penalties. Likewise, when the solution of a learning problem is known to be sparse, using
those penalties yield to models that can leverage this prior knowledge. The Lasso [29] and the Basis
pursuit [6, 5] where the first approaches that have employed `1-norm penalty for inducing sparsity.

The Lasso model has enjoyed large practical successes in the machine learning and signal pro-
cessing communities [27, 9, 20, 34]. Nonetheless, it suffers from theoretical drawbacks (e.g., bi-
ased estimates for large coefficients of the model) which can be overcome by considering non-
convex sparsity-inducing penalties. Those penalties provide continuous approximations of the `0-
(pseudo)norm which is the true measure of sparsity. There exists a flurry of different penalties like
the Smoothly Clipped Absolute Deviation (SCAD) [10], the Log Sum penalty (LSP) [4], the capped-
`1 penalty [36], the Minimax Concave Penalty (MCP) [35]. We refer the interested reader to [28]
for a discussion on the pros and cons of such non-convex formulations.
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Penalty rλ(|w|) ∂rλ(|w|)

Log sum λ log(1 + |w|/θ)

{ [−λ
θ
, λ
θ

]
if w = 0{

λ sign(w)
θ+|w|

}
if w 6= 0

MCP
{
λ|w| − w2

2θ
if |w| ≤ λθ

θλ2/2 if |w| > θλ

 [−λ, λ] if w = 0
{λ sign(w)− w

θ
} if 0 < |w| ≤ λθ

{0} if |w| > θλ

SCAD


λ|w| if |w| ≤ λ
−w2+2θλ|w|−λ2

2(θ−1)
if λ < |w| ≤ λθ

λ2(1+θ)
2

if |w| > θλ


[−λ, λ] if w = 0
{λ sign(w)} if 0 < |w| ≤ λ{
−w+θλ sign(w)

θ−1

}
if 0 < |w| ≤ λθ

{0} if |w| > θλ

Table 1: Common non-convex penalties with their sub-differentials. Here λ > 0, θ > 0 (θ > 1 for
MCP, θ > 2 for SCAD).

In addition to theoretical statistical analyses, efforts have also been made for developing computa-
tionally efficient algorithms for non-convex regularized optimization problems. This includes coor-
dinate descent algorithms [3], proximal gradient descent [16] or Newton method [33, 24]. However,
all these methods share one kind of inefficiency in the sense that they spend a similar computational
effort for each variable, even when those variables will end up being irrelevant (zero weight) in the
final learnt model. In the non-convex setting, few methods have tried to lift this issue. One approach
mixes importance sampling and randomized coordinate descent [11], while another one seeks at
safely screening features that are irrelevant [25]. Working set (also known as active set) strategy
aims at focusing computational effort on a subset of relevant variables, making them highly effi-
cient for optimization problem with sparse solutions, provided that the algorithm is able to quickly
identify the “relevant” features. In the literature, several works on working set algorithms address
this selection issue mostly for convex optimization problems such as the Support Vector Machine
problem [32, 14] or the Lasso problem [12, 30, 18, 22]. Working set strategies have been extended
to non-convex sparse optimization problems [1, 2] but lack of theoretical understandings.

In this work, inspired by the Blitz algorithm proposed by Johnson and Guestrin [18](see also [21, 22]
for its connection with safe screening rules) we propose a theoretically supported method for select-
ing working set in non-convex regularized sparse optimization problems. While Blitz can only be
implemented for convex problems, leveraging on primal-dual aspects of the `1-regularized problem,
we show that a similar algorithm can be designed by exploiting the key role of the residual in the
sparse regression problem. Our algorithm proposes a method for selecting variables to integrate into
a working set, and provides a theoretical guarantee on objective value decrease. Based on those
results, we provide, as far as we know, the first convergence guarantee of working set algorithm in
a non-convex Lasso setting and we show that this convergence property is preserved in a inexact
setting.

In summary, our contributions are the following:

• We propose a novel working set algorithm for non-convex regularized regression that se-
lects features to integrate in the model based on a so-called “feasible” residual;

• We show that the algorithm enjoys properties such as convergence to a stationary point,
even when the inner solver is inexact, under sufficient decay of the error along the iterations;

• Our experimental results show that our FireWorks algorithm achieves substantial computa-
tional gain (that can reach two order of magnitude) compared to the baseline approaches
and even to other working set approach.

Notation We denote as X ∈ Rn×d the design matrix. We write vectors of size d or size n in bold
e.g., y ∈ Rn or w ∈ Rd. We will consider several sets and they are noted in calligraphic mode. We
have set of indices, mostly noted as A, with A being a subset of indices extracted from {1, . . . , d}
and with cardinality noted |A|. Given a set A, Ā denotes its complement in {1, . . . , d}. Set defined
by (union of) function level-set will be denoted as C, with indices defining the function. Vectors
noted as wA are of size |A| and we note w̃A ∈ Rd for the vector of component wj,A for all j ∈ A
and 0 elsewhere. We will note res(w) , y −Xw and res(wA) , y −XAwA = y −Xw̃A.
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2 Linear regression with non-convex regularizers

We first introduce the non-convex Lasso problem we are interested in as well as its first order op-
timality conditions. We emphasize on the form of the optimality conditions which will be key for
designing our working set algorithm.

2.1 The optimization problem

We consider solving the problem of least-squares regression with a generic penalty of the form

min
w∈Rd

f(w) ,
1

2
‖y −Xw‖22 +

d∑
j=1

rλ(|wj |) , (1)

where y ∈ Rn is a target vector, X = [x1, . . . ,xd] ∈ Rn×d is the design matrix with column-wise
features xj ∈ Rn, w is the coefficient vector of the model and the map rλ : R+ 7→ R+ is concave
and differentiable on [0,+∞) with a regularization parameter λ > 0. In addition, we assume that
rλ(|w|) is a lower semi-continuous function. Note that most penalty functions such as SCAD, MCP
or log sum (see their definitions in Table 1) satisfy such a property and that for those penalties, f(·)
is lower bounded.

We consider tools such as Fréchet subdifferentials and limiting-subdifferentials [19, 26, 23] well
suited for non-smooth and non-convex optimization, so that a vector w? belongs to the set of min-
imizers (not necessarily global) of Problem (1) if the following Fermat’s condition holds [7, 19]:

∀j, x>j (y −Xw?) ∈ ∂rλ(|w?j |) , (2)
with ∂rλ(| · |) being the Fréchet subdifferential of rλ(| · |), assuming it exists at w?. In particular, this
is the case for the MCP, log sum and SCAD penalties presented in Table 1. For the sake of clarity,
we present the optimality conditions for MCP and log sum, in the next examples.
Example 1. For the MCP penalty (see Table 1 for its definition and its subdifferential), it is easy to
show that the ∂rλ(|0|) = [−λ, λ]. Hence, the Fermat’s condition becomes with the residual res(w?)

−x>j res(w?) = 0, if |w?j | > λθ

−x>j res(w?) + λ sign(w?j ) =
w?

j

θ , if 0 < |w?j | ≤ λθ
|x>j res(w?)| ≤ λ, if w?j = 0

(3)

Example 2. For the log sum penalty, one can explicitly compute ∂rλ(|0|) = [−λθ , λθ ] and leverage
on smoothness of rλ(|w|) when |w| > 0 for computing ∂rλ(|w|). Then, the condition in Equation
(2) can be written as: {

−x>j res(w?) + λ
sign(w?

j )

θ+|w?
j |

= 0, if w?j 6= 0 ,

|x>j res(w?)| ≤ λ
θ , if w?j = 0 .

(4)

As we can see, first order optimality conditions lead to simple equations and inclusions. More
interestingly, one can note that regardless of the regularizer, the structure of optimality condition for
a weight w?j = 0 depends on the correlation of the feature xj with the optimal residual y −Xw?.
Hence, these conditions can be used for defining a region in which the optimal residual has to live.

3 Working Set Algorithm and Analysis

Before presenting the FireWorks algorithm, we first introduce in what follows, all necessary concepts
underlying our working set algorithm and needed for analyzing its properties.

3.1 Restricted problem and optimality

Given a set A of m indices belonging to {1, . . . , d}, we denote as restricted problem, the problem
defined in Equation (1) but restricted to columns of X defined by A, leading thus to

min
wA∈Rm

1

2
‖y −XAwA‖22 +

m∑
j=1

rλ(|wj,A|) . (5)
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Naturally, a vector w?
A minimizing this problem has to satisfy its own Fermat’s condition. However,

the next proposition derives another necessary condition for achieving Fermat’s condition that will
be useful in the sequel for characterizing optimality of w̃?

A on the full problem.

Proposition 1. If w?
A satisfies Fermat’s condition of problem (5), then for all j ∈ A, we have

|x>j (y −XAw
?
A)| ≤ r′λ(0) (6)

Proof. At first, note that since the function rλ is concave, then its gradient is positive and decreasing
hence ∀w, r′λ(w) ≤ r′λ(0). Now, when j ∈ {i ∈ A : w?i,A = 0} then the inequality in Equation 6
naturally comes from the Fermat’s condition. When j ∈ {i ∈ A : w?i,A 6= 0}, then for a stationary
point, we must have x>j res(w?

A) = r′λ(|w?j,A|). Taking the absolute value of this equation and
plugging in the inequality of the gradient concludes the proof.

Based on this latter condition, we define the function hj : Rn → R, for j ∈ {1, . . . , d} as hj(a) =
|x>j a| − r′λ(0), the convex set Cj expressed as the slab

Cj , {a ∈ Rn : hj(a) ≤ 0}
and

C=
j , {a ∈ Rn : hj(a) = 0}.

Now, we are going to define a set useful for characterizing candidate stationary points of either
Equations (1) or (5). We note as C =

⋂d
j=1 Cj and CA =

⋂
j∈A Cj and from this, the necessary

optimality condition defined in Proposition 1 can be written as y−XAw
?
A ∈ CA. Note that C is the

dual feasible set for `1-type convex regularizers. Now, assume w?
A is a minimizer of its restricted

problem then w̃?
A (in Rd) satisfies the Fermat’s condition of the full problem if and only if we also

have
y −Xw̃?

A ∈ CĀ , (7)

where Ā is the complement of A in {1, . . . , d}. Indeed, since w?
A is optimal for the restricted

problem, Fermat’s condition is already satisfied for all j ∈ A. Then, the above condition ensures
that ∀j ∈ Ā, we have |x>j (y −Xw̃?

A)| ≤ r′(0) since, as by definition, w̃?j = 0, ∀j ∈ Ā. As they
play a key role in our algorithm and for monitoring optimality, we define the distance of a vector r
to the convex set Cj and C=

j as

dist(r, Cj) , min
z∈Rn

‖z− r‖2 , s.t. hj(z) ≤ 0;

distS(s, C=
j ) , min

z∈Rn
‖z− s‖2 , s.t. hj(z) = 0 .

These definitions can also be used for defining the most violated optimality condition which is a key
component of methods proposed by [1, 11]. Indeed, given a set A, the solution wA of Equation
(5) and the residual res(wA), we have the index j? = arg maxj∈Ā dist

(
res(wA), Cj

)
which is the

index of the most violated constraint among non-active variables for the residual res(wA).

3.2 Feasible Residual Working Set Algorithm for non-convex Lasso

A working set algorithm for solving problem (1) consists in sequentially solving a series of restricted
problem as defined in Equation (5) with a sequence of working sets A0,A1, . . . ,Ak. The main dif-
ferences among working set algorithms lie on the way the set is being updated. For instance, the
approach of [1], denoted in the experiment as MaxVC, selects the single most violated constraint (as
defined above) in the non-active set to be included in the new working set leading to the algorithm
presented in the supplementary material. Flamary et al. [11] followed similar approach but consid-
ered a randomized selection in which the probability of selection is related to dist

(
res(w?

A), Cj
)
.

Our algorithm is inspired by Blitz [18] which is a working set algorithm dedicated to convex con-
strained optimization problem. But as the problem we address is a non-convex one, we manipulate
different mathematical objects that need to be redefined. The procedure is presented in Algorithm 1.

It starts by selecting a small subset of indices (either randomly or cleverly like the indices with largest
|x>j y|, for instance) as initial working set and by choosing a vector s1 such that s1 ∈ C =

⋂d
j=1 Cj ,
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Algorithm 1: FireWorks: Feasible Residual Working Set Algorithm
Input: {X,y}, A1 active set, s1 ∈ C, a sequence of τk / mechanism for defining τk, initial vector

w̃A0

Output: w̃Ak

1: for k = 1, 2, . . . do
2: wAk

= arg minw
1
2‖y −XAk

w‖22 +
∑
j∈Ak

rλ(|wj |) ; // warm-start solver with

wAk−1

3: rk = y −XAk
wAk

; // get residual
4: αk = max{α ∈ [0, 1] : αrk + (1− α)sk ∈ C}
5: sk+1 = αkrk + (1− αk)sk ; // define the most "feasible" residual
6: Ak = Ak/{j ∈ Aj : wj,Ak

= 0} ; // we prune the set from inactive features
7: compute τk ; // e.g., sort distS(sk+1, C=

j ) so as to keep constant number

of features to add
8: Ak+1 = {j : distS(sk+1, C=

j )} ≤ τk} ∪ Ak
9: end for

10: Build w̃Ak

for instance setting s1 = 0. From this vector s1, we will generate a sequence of {sk} that plays
a key role in the selection of the constraints to be integrated in the next restricted model. The
approach, at iteration k, starts by exactly solving the restricted problem with the set Ak and then by
computing the residual rk = res(w?

Ak
). As noted in Equation (7), if rk ∈ CĀ then the vector w̃?

Ak
is

a stationary point of the full problem. If rk 6∈ CĀ, we need to update the working set Ak. For doing
so, we proceed by defining sk+1 as the vector on the segment [sk, rk], nearest to rk that belongs to
C. Then, we update the working set by prioritizing the j-th coordinate w.r.t. the distance of sk+1 to
C=
j and the constraint associated to j is included in the new working set if distS(sk+1, C=

j ) ≤ τk. τk
is a strictly positive term that defines the number of constraints to be added to the current working
set. In practice, we have chosen τk so that a fixed number nk of constraints is added to Ak for each
k.

We provide the following intuition on why this algorithm works in practice. At first, note that by
construction sk+1 is a convex combination of two vectors one of which is the residual hence justifies
its interpretation as a residual. However, the main difference between the sk’s and rk’s is that the
former belongs to C and thus to any CĀ while rk belongs to C only for a potential w̃?

Ak
optimal

for the full problem. Then, when w?
Ak

is a stationary point for the restricted problem but not for
the full problem, rk ∈ CA but rk 6∈ C. Hence, sk+1 represents a residual candidate for optimality
and constraints near this residual can be interpreted as the constraints that need to be relaxed by
integrating related features j in the working set (allowing thus wj to be potentially non-zero at the
next iteration). The indices j for which distances of sk+1 to C=

j are below a given threshold are then
integrated into the working set. The mechanism for constraint selection is illustrated in Figure 1.

3.3 Some properties of the algorithm

In this subsection, we provided some analyzes of the proposed algorithm. At first, let us introduce
an optimality condition of a vector solving the restricted problem.

Proposition 2. Given a working set Ak and w?
Ak

solving the related restricted problem, w̃?
Ak

is
also optimal for the full problem if and only if α = 1 in Algorithm 1, step 4 (which also means
sk+1 = rk).

Proof. (sketch) apply the fact that at optimality, we have rk ∈ CĀ.

Now, we are going to characterize the decrease in objective value obtained between two updates of
working sets.

Proposition 3. Assume that wAk
and wAk+1

are respectively the solutions of the restricted problem
with the working set Ak and Ak+1, with Ak+1 = {j} ∪ Ak. Denote as rk , res(wAk

) then, we

5
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−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

C1

C2

C3

Cy

r1

s1s2

Iteration 1 with A1 = {2}
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Figure 1: Illustrating the constraint selection. (left) Given three variables, we plot their associate
slabs {Cj}3j=1. C is the intersection of the 3 slabs. We assume that the working set is {2}. (middle)
After the first iteration, the residual r1 satisfies constraint h2(a) ≤ 0 and thus lies in the h2’s feasible
region C2. Then, the segment [s1, r1] gives us the most feasible point s2 ∈ C. If τ1 is chosen so as to
select only one feature, it is then j = 1. The new working set is {2, 1}. (right) After optimizing over
this working set, the residual r2 satisfies constraints h2 and h1 and thus lies in the C1 ∩ C2 region.

have the following inequality

‖w̃Ak+1
− w̃Ak

‖2 ≥
1

‖X‖2
dist(rk, Cj) .

Proof. We have the following inequalities

‖rk+1 − rk‖2 = ‖X(w̃Ak+1
− w̃Ak

)‖2
≤ ‖X‖2‖w̃Ak+1

− w̃Ak
‖2 .

Now recall that rk 6∈ CAk+1
since it violates the hj constraint while rk+1 ∈ CAk+1

as wAk+1
has

been optimized over Ak+1. As such, we also have hj(rk+1) ≤ 0. Now by definition of dist(rk, Cj)
either rk+1 is the minimizer of the distance optimization problem, hence dist(rk, Cj) = ‖rk+1 −
rk‖2 or dist(rk, Cj) ≤ ‖rk+1 − rk‖2. Plugging this latter inequality in Equation (8) concludes the
proof.

Given the right hand side of the equation in Proposition 3, we now show that the distance of the
residual rk at step k to a constraint Cj , defined by a feature j that is not yet in the active set, is lower
bounded by a term depending on the parameter τk−1 which governs the number of features that has
been added to the active set at step k − 1.

Lemma 1. At step k ≥ 2, consider a constraint Cj such that hj(rk) > 0 and hj(sk) < 0, then

dist(rk, Cj) ≥
1− αk
αk

τk−1 . (8)

The proof of this lemma has been deported to the supplementary. From the above Proposition 3 and
Lemma 1, we can ensure that the sequence of {w̃Ak

} produced by Algorithm 1 converges towards
a stationary point under mild conditions on the inner solver.

Proposition 4. Suppose that for each step k, the algorithm solving the inner problem ensures a
decrease in the objective value in the form

f(w̃Ak+1
)− f(w̃Ak

) ≤ −γk‖w̃Ak+1
− w̃Ak

‖22 .

with ∀k, γk > 0. For the inner solver, we also impose that when solving the problem with setAk+1,
the inner solver is warm-started with wAk

. Assume also that ‖X‖2 > 0, τk > 0 and hj satisfies
assumption in Lemma 1, then the sequence of αk produced by Algorithm 1 converges towards 1 and
∀j, limk→∞ |x>j rk| ≤ r′λ(0).

6



Proof. Using result in Proposition 3 and Lemma 1 and the above assumption, we have, for k ≥ 2,

f(w̃Ak+1
) ≤ f(w̃Ak

)− γk
‖X‖22

(
1− αk
αk

)2

τ2
k−1

≤ f(w̃A2
)− 1

‖X‖22

k∑
`=2

γ`

(
1− α`
α`

)2

τ2
`−1.

This means that 1
‖X‖22

∑k
`=2 γ`

(
1−α`

α`

)2

τ2
`−1 ≤ f(w̃A2

) − f(w̃Ak+1
). Since f is bounded from

below, the right hand side is less than some positive constant, hence
∑∞
`=2 γj

(
1−α`

α`

)2

τ2
`−1 < ∞.

Since the latter sum is bounded, it implies that γ`
(

1−α`

α`

)2

τ2
`−1 → 0 as ` → ∞, and as γ` >

0, τ` > 0, we have lim`→∞ α` = 1. Now using the definition of sk+1, we have ∀j, x>j rk =
1
αk

x>j sk+1 − 1−αk

αk
x>j sk. Then, taking the absolute value, triangle inequality, using the fact that

∀k, sk ∈ C and taking the limit concludes the proof.

The above proposition ensures convergence to a stationary point under some conditions on the
inner solver. Several algorithms may satisfy this assumption. For instance, any first-order it-
erative algorithm which selects its step size as 1/tk based on line search criterion of the form
∀k, f(wk+1) ≤ f(wk) − σ

2 tk‖wk+1 − wk‖22 , where σ is a constant in the interval (0, 1), pro-
vides such a guarantee. This is the case of the generalized proximal algorithm of Gong et al. [16]
or proximal Newton approaches [24], assuming that f is differentiable with gradient Lipschitz and
rλ(·) admits a proximal operator. As non-convex block coordinate descent algorithms [3] can also
be interpreted as proximal algorithm, they also satisfy this sufficient decrease condition under the
same assumptions than proximal approaches.

Inexact inner solver One key point when considering a meta-solver like Blitz [18] or a working
set algorithm is that for some approaches, theoretical properties hold only when the inner solver is
solved exactly. This is for instance the case for the SimpleSVM algorithm of Vishwanathan et al.
[32] or the active set algorithm proposed by Boisbunon et al. [1] which convergence is based on
non-cyclicity of the working set selection (prohibiting pruning) and thus on the ability of solving
exactly the inner problem. For the approach we propose, we show next that the distance between
two consecutive inexact solutions of the inner problem is still lower bounded.

Proposition 5. Let wAk
and wAk+1

the approximate solutions of the inner problem with respec-
tively the working sets Ak and Ak+1. Assume that wAk+1

as being obtained through a tolerance of
ξk+1 ≤ τk of its Fermat’s condition (e.g., for the log sum penalty, Equation (4) are satisfied up to
ξk+1), then the following inequality holds :

‖wAk+1
−wAk

‖22 ≥
1

‖X‖2
(
dist(rk, hj)− ξk+1

)
.

Proof. First note that if wAk+1
is such that rk+1 ∈ CAk+1

then we are in the same condition
than in Proposition 1 and the same proof applies. Let us assume then that rk+1 6∈ CAk+1

and
dist(rk+1, Cj) ≤ ξk+1. Define as u the point in Cj that defines the distance of rk to Cj and as p
the point that minimizes the distance between rk+1 and the segment [u, rk]. Then, owing to simple
geometrical arguments and orthogonality we have : ‖rk+1− rk‖2 = ‖rk+1−p‖2 + ‖p− rk‖2 and
thus ‖rk+1 − rk‖ ≥ ‖rk − p‖. Now, because p belongs to the segment defined by u and rk, we
have

‖rk+1 − rk‖ ≥ ‖rk − u‖ − ‖u− p‖ ≥ dist(rk, Cj)− ξk+1

where the last inequality comes from the fact that ‖u− p‖ = dist(rk+1, Cj) ≤ ξk+1. Plugging this
inequality into Equation (8) completes the proof.

Note that the above lower bound is meaningful only if the tolerance ξk+1 is smaller than the distance
of the residual to the set Cj . This is a reasonable assumption to be made since we expect rk to violate
Cj . Now, we can derive condition of convergence towards a stationary point of the full problem.
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Corollary 1. Under the assumption of Proposition 4 and assuming that the sequence of tolerance
is such that

∑
k ξk < ∞, then Algorithm 1 produces a sequence of iterates that converges towards

a stationary point.

The proof follows the same steps as for Proposition 4, with the addition that sequence {ξk} is
convergent and thus has been omitted. Note that the assumption of convergent sum of errors is a
common assumption, notably in the proximal algorithm literature [8, 31] and it helps guaranteeing
convergence towards exact stationary point instead of an approximate convergence (up to a tolerance
τ ).

Relation with maximum violated constraint. The mechanism we have proposed for updating
the working set is based on the current residual rk and a feasible residual sk. By changing how
sk+1 is defined, we can retrieve the classical maximal violated constraint approach. Indeed, if we
set at Line 5 of Algorithm 1, ∀k, sk = 0 and sk+1 = αkrk, with αk ∈ [0, 1] then sk+1 is a rescaling
of the current residual and the scale is chosen so that sk+1 ∈ C. Using simple inequality argument,
it is straightforward to show that αk = min(minj∈Ā

λ
|x>j rk|

, 1) and the minimum in j occurs for the

largest value of |x>j rk|. Recall again that the polynomial convergence of this algorithm is guaranteed
for exact inner solver and when no working set pruning (removing from the set Ak variables which
weights are 0) occurs.

Table 2: Running time in seconds of different algorithms on different problems. In the first
column, we reported data, the tolerance on the stopping criterion and the constant K such that
λ = K maxj |x>j y| (the larger the K, the sparser w? is). The small Toy dataset has n = 100,
d = 1000 and p = 30; the large one has n = 1000, d = 5000, p = 500. For each inner solver,
we bold the most efficient algorithm. The symbol ”−” denotes that the algorithm did not finish one
iteration in 24 hours. The number in parenthesis is the number of non-zero weights in w?

A. All
experiments have been run on one single core of an Intel Xeon CPU E5-2680 clocked at 2,4Ghz.

Data and Setting MM prox GIST MaxVC Gist FireWorks Gist MM BCD BCD MaxVC BCD FireWorks BCD
Toy small - 1.00e-03 - 0.07 1.4±0.4 (34) 0.8±0.2 (34) 0.3±0.2 (34) 0.2±0.1 (34) 3.4±0.9 (34) 14.2±4.9 (34) 1.9±0.8 (34) 1.5±0.9 (34)
Toy small - 1.00e-05 - 0.07 1.5±0.4 (34) 1.4±0.6 (34) 0.7±0.8 (34) 0.4±0.1 (34) 3.3±0.8 (34) 22.9±11.0 (34) 8.3±9.7 (34) 2.7±1.2 (34)
Toy small - 1.00e-03 - 0.01 11.2±1.2 (71) 6.3±2.2 (71) 1.6±0.6 (71) 1.3±0.6 (71) 83.7±18.6 (71) 73.7±21.7 (71) 15.6±4.5 (71) 8.2±2.0 (71)
Toy small - 1.00e-05 - 0.01 17.6±6.0 (66) 14.1±9.8 (66) 7.1±5.3 (66) 4.6±2.8 (66) 88.2±23.3 (66) 154.6±93.6 (66) 67.0±44.5 (66) 40.8±24.1 (66)
Toy large - 1.00e-03 - 0.07 41.1±15.3 (365) 26.2±13.0 (365) 5.8±1.3 (365) 8.2±3.3 (365) 1040.8±0.0 (365) 355.9±83.8 (365) 82.7±19.3 (365) 73.5±9.7 (365)
Toy large - 1.00e-05 - 0.07 - 50.5±7.6 (371) 36.8±13.3 (371) 31.7±7.4 (371) 1356.7±178 (371) 1030.5±471.7 (371) 561.7±208.8 (371) 465.6±111.4 (371)
Toy large - 1.00e-03 - 0.01 589.5±185.4 (758) 91.6±22.9 (758) 65.4±14.5 (758) 34.9±4.1 (758) 52848.8±0.0 (758) 1192.1±340.1 (758) 777.5±181.5 (758) 337.0±46.3 (758)
Toy large - 1.00e-05 - 0.01 - 583.8±140.7 (759) 1020.6±250.6 (759) 609.4±177.6 (759) 60897±5990 (759) 7847±2774 (759) 12720±2520 (759) 6699±1686 (759)

Data and Setting MM prox GIST MaxVC Gist FireWorks Gist MM BCD BCD MaxVC BCD FireWorks BCD
Leukemia - 1.00e-03 - 0.07 6.3±2.0 (7) 17.9±0.4 (7) 0.2±0.0 (7) 0.4±0.0 (7) 3.8±0.7 (7) 144.4±1.1 (7) 0.8±0.0 (7) 0.8±0.0 (7)
Leukemia - 1.00e-05 - 0.07 8.0±2.7 (9) 26.1±0.6 (9) 0.3±0.0 (9) 0.5±0.0 (9) 4.6±1.1 (9) 218.8±1.1 (9) 1.2±0.0 (9) 1.1±0.0 (9)
Leukemia - 1.00e-03 - 0.01 31.4±6.2 (41) 186.1±1.7 (41) 5.4±0.0 (41) 5.5±0.0 (41) 53.6±9.6 (41) 1168.3±0.2 (41) 19.9±0.0 (41) 17.4±0.0 (41)
Leukemia - 1.00e-05 - 0.07 71.4±7.5 (46) 525.2±8.5 (46) 20.3±0.0 (46) 14.6±0.0 (46) 65.5±4.9 (46) 1412.8±0.3 (46) 71.5±0.0 (46) 42.7±0.0 (46)
Newsgroup-3 - 1.00e-02 - 0.01 955.8±389.1 6041.1±7.2 6.5±0.0 8.3±0.0 7926.6±3183.6 3792.4±6.2 4.9±0.0 5.6±0.0
Newsgroup-3 - 1.00e-03 - 0.01 1200.6±402.7 5790.6±8.0 49.8±0.1 36.6±0.0 12078.0±3879.1 24070.5±18 53.2±0.1 36.8±0.0
Newsgroup-3 - 1.00e-04 - 0.01 1237.9±415.5 5734.0±3.9 1439.3±2.4 326.1±0.2 12130.8±3849.7 37639.8±19 279.2±0.2 167.7±0.1
Newsgroup-7 - 1.00e-02 - 0.01 - 26711.1±44 1001.2±2.7 343.6±0.9 - 77378.7±74 421.7±0.8 172.5±0.1
Newsgroup-7 - 1.00e-03 - 0.01 - 26685.6±14 2163.6±4.4 876.9±0.6 - 91603.9±0.0 728.9±2.9 312.3±0.6
Newsgroup-7 - 1.00e-04 - 0.01 - 26752.5±15 4285.2±6.1 1632.5±3.2 - 117749.0±0.0 1093.7±3.7 554.2±1.0
Criteo - 1.00e-02 - 0.005 - - - - - - 41095.3±2200 31052.7±1200
Criteo - 1.00e-03 - 0.005 - - - - - - 49006.7±1400 37534.6±1600
Criteo - 1.00e-04 - 0.005 - - - - - - 59303.8±1300 42773.9±1000

4 Numerical Experiments

Set-up We now present some numerical studies showing the computational gain achieved by our
approach. As an inner solver and baseline algorithms, we have considered a proximal algorithm
[16] and a block-coordinate descent approach [3]; they are respectively denoted as GIST and BCD.
They have been implemented in Python/Numpy and the code will be shared online upon publica-
tion. We have integrated those solvers into the maximum-violating constraint (MaxVC) working set
approach (algorithm in the appendix) and our approach denoted as FireWorks for FeasIble REsid-
ual WORKing Set). Note that for MaxVC, we add the same number of constraints in the working
set as in our algorithm. This is already a better baseline than the genuine one proposed in [1] As
another baseline, we have considered a solver based on majorization-minimization (MM) approach,
which consists in iteratively minimizing a majorization of the non-convex objective function as in
[17, 13, 25]. Each iteration results in a weighted Lasso problem that we solve with a Blitz-based con-
vex proximal Lasso or BCD Lasso (up to precision of 10−5 for its optimality conditions). For these
approaches, we leverage on the closed-form proximal operator available for several (non-convex)
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Figure 2: Example of evolution of the objective value and the maximum violation constraint on the
0-valued weights. The tolerance on the inner problem is set to 10−6. (most-left) performance on
Newsgroup-3 . (most-right) performance on Newsgroup-7 .

regularizers. For our experiments, we have used the log-sum penalty which has an hyperparameter
θ that has been set to 1. For all algorithms, the stopping criterion is based on the tolerance over
the Fermat’s optimality condition 2. The used performance measure for comparing all algorithms is
the CPU running time. For all problems, we have set τk so as to add the same fixed number nk of
features into the working set of MaxVC and our FireWorks algorithm.

Toy problem Here, the regression matrix X ∈ Rn×d is drawn uniformly from a standard Gaussian
distribution (zero-mean unit variance). For given n, d and a number p of active variables, the true
coefficient vector wtrue is obtained as follows. The p non-zero positions are chosen randomly, and
their values are drawn from a zero-mean unit variance Gaussian distribution, to which we added
±0.1 according to sign(wtrue

j ). Finally, the target vector is obtained as y = Xwtrue + e where
e is a zero-mean Gaussian noise with standard deviation σ = 0.01. For these problems, nk = 30
features are added to the working set at each iteration. Table 2 presents the running time for different
algorithms to reach convergence under various settings. We note that our FireWorks algorithm is
faster than the genuine inner solver and (at least on par) with the MaxVC approach especially in
setting where λ is properly tuned with respect to the number of variables, ie when the solution is
not too sparse. Note that the MM+Blitz approaches is performing worse than all other methods in
almost all settings.

Real data We have reported comparisons on three real datasets. The first one is the Leukemia
dataset [15] which has a dense regression matrix with n = 72 and d = 7129. We have also
considered sparse problem such as newsgroups dataset in which we have kept only 3 categories
(religion and graphics) resulting in n = 1441, d = 26488 and 7 categories comp leading to n =
4891, d = 94414. For these two problems, we have respectively 223173 and 676247 non-zeros
elements in the related design matrix X. We have also used a large-scale dataset which is a subset
of the Criteo Kaggle dataset composed of 2M samples and 1M features, with about 78M non-zero
elements in X. For Leukemia, we have nk = 30 at each iteration, whereas we have added 300 and
1000 respectively for the newsgroup and Criteo problem.

Figure 2 presents a example of how objective value and maximum constraint violation (measured
as maxj(|x>j rk| − r′λ(0))) evolves during the optimization process for the two Newsgroup datasets.
We see in those examples that both MaxVC and FireWorks algorithms achieve approximatively the
same objective value whereas our FireWorks approach converges faster.

Quantitative results are reported in the bottom part of Table 2. At first, we can note that the con-
vex relaxation approach using MM and Blitz is always more efficient than the baseline non-convex
methods using either BCD or GIST. More globally, the table also shows that using FireWorks leads
to a speedup of at least one order of magnitude compared to the baseline algorithm and the MM ap-
proach. For large λ leading to sparse solutions, MaxVC is the most efficient approach on Leukemia,

9



while for large-scale datasets newsgroup-3 and newsgroup-7, FireWorks benefits from pruning and it
is substantially faster than all competitors. For Criteo, only the BCD working set algorithms are able
to terminate in reasonable time and FireWorks is more efficient than MaxVC. Again the MM+Blitz
approach is performing worse than the two non-convex active set algorithms and fails to converge
in a reasonable time for large datasets.

5 Conclusions

We have introduced in this paper a working set based meta-algorithm for non-convex regularized
regression. By generalizing the concept of primal-dual approach, but in a non-convex setting, we
were able to derive a novel rule for updating the variables optimized by an iterative incremental
algorithm. From a theoretical point of view, we showed convergence of the algorithm, even when
the inner problem is not solved exactly but up to a certain tolerance. This is in contrast with the
classical maximal violating constraint approach which convergence requires the exact resolution of
each inner problem. Our experimental results show the computational gain achieved for a given
solver when applied directly on the full variables or within our working set algorithm.

As a future work, we plan to investigate other non-convex learning problems for which this relation
between residual and dual variable can have theoretical or algorithmic impacts.
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Supplementary material
Provably Convergent Working Set Algorithm for Non-Convex Regularized

Regression

5.1 Maximum-Violating Constraint Working Set Algorithm

The maximum-violating constraint algorithm is a simple algorithm that solves at each iteration a
sub-problem with a subset of variables and then add some others that violate the most the statement
y −Xw̃?

Ak
∈ CĀk

, where “the most” is evaluated in term of distance to each set Cj , with j ∈ Āk.
Hence, at each iteration, we compute all these distances, sort them in descending order and add to the
current working set, the nk variables that yield to the largest distances. The algorithm is presented
below.

Algorithm 2: Maximum Violating Constraints Algorithm
Input: {X,y}, A1 active set, nk number of variables to add at iteration k, initial vector w̃A0

Output: w̃Ak

1: for k = 1, 2, . . . do
2: wAk

= arg min
w∈Ak

1

2
‖y −XAk

w‖22 +
∑
j∈Ak

rλ(|wj |) ; // warm-start solver with

wAk−1

3: rk = y −XAk
wAk

; // current residual
4: v = argsort dist(rk, Cj) in descending order
5: Ak+1 = v[1 : nk] ∪ Ak; // update working set by adding the nk most

violating variables
6: end for
7: Build w̃Ak

5.2 Proof of Proposition 2

Proposition 2. Given a working set Ak and w?
Ak

solving the related restricted problem, w̃?
Ak

is
also optimal for the full problem if and only if α = 1 (which also means sk+1 = rk).

Proof. Assume that w?
Ak

and w̃?
Ak

are optimal respectively for the restricted and the full problem.
Let us show that in this case αk = 1. Since w̃?

Ak
is optimal for the full problem, we thus have

∀j ∈ Āk, |x>j (y −Xw̃?
Ak

)| ≤ r′(0). And thus we have the following equivalent statement

y −Xw̃?
Ak
∈ C ⇔ y −XAk

w?
Ak
∈ C ⇔ rk ∈ C

and thus αk = 1.

Now assume that αk = 1 and let us show that w̃?
Ak

is optimal for the full problem. Since αk = 1,
we have sk+1 = rk and thus rk ∈ C. The latter means that ∀j ∈ Āk, |x>j (y −XAk

w?
Ak

)| ≤ r′(0)

and thus ∀j ∈ Āk, |x>j (y −Xw̃?
Ak

)| ≤ r′(0). Given this last property and the definition of w̃A?
k

based on w?
Ak

, we can conclude that w̃?
Ak

is optimal for the full problem.

5.3 Proof of Lemma 1

The proof follows similar steps as those given by Johnson and Guestrin [18].

Lemma 1. At step k ≥ 2, consider a constraint Cj such that hj(rk) > 0 and hj(sk) < 0 then

dist(rk, Cj) ≥
1− αk
αk

τk−1 . (9)
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Proof. Denote as j the index of the function hj such that hj(rk) > 0 and hj(sk) < 0. Let’s
zk ∈ {z ∈ Rn : hj(z) = 0}. The following equality holds

dist(rk, Cj) = ‖zk − rk‖2
= ‖zk −

1

αk
(sk+1 − (1− αk)sk)‖

=

∥∥∥∥zk − 1

αk
sk+1 +

1− αk
αk

sk

∥∥∥∥
=

∥∥∥∥−zk +
1

αk
sk+1 −

1− αk
αk

sk

∥∥∥∥
=

1− αk
αk

∥∥∥∥− αk
1− αk

zk +
1

1− αk
sk+1 − sk

∥∥∥∥ (10)

Note that because hj(rk) > 0 and hj(sk) < 0, αk 6= 0 since hj is a continuous function. By
construction, we have hj(zk) = 0 as zk is a minimizer of the distance and hj(sk+1) = 0 as we
have chosen j as the index of the set that makes sk+1 6∈ C. Since hj(·) ≤ 0 is a convex set
and the coefficients − αk

1−αk
and 1

1−αk
do not lead to a convex combination of zk and sk+1 and

hence, we have hj(− αk

1−αk
zk + 1

1−αk
sk+1) ≥ 0. On the other hand by construction, we have

sk ∈ Cj . Furthermore, we have distS(sk, C=
j ) ≥ τk−1. Indeed, since hj(rk) > 0, we have j 6∈ Ak

as by construction rk ∈ CA (wAk
has been optimized over Ak). Because j 6∈ Ak means that

distS(sk, C=
j ) ≥ τk−1, by definition of the construction of Ak in Algorithm 1.

Now as hj(− αk

1−αk
zk + 1

1−αk
sk+1) ≥ 0 and distS(sk, C=

j ) ≥ τk, the norm in the above equation
(10) is lower bounded by τk and we have

dist(rk, Cj) ≥
1− αk
αk

τk.
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