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provide coverage for those risks, independently from the market failures fre-
quently observed in practice. On the demand side, we characterise individual
preferences under which the willingness to pay for the coverage of large losses
remains significant, although their occurrence probability is very small. On
the supply side, the correlation between individual losses affects the insur-
ance pricing through the insurers’ cost of capital. Analysing the interaction
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of a socially optimal risk sharing strategy.
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1 Introduction
The insurability of catastrophic risks is at the heart of many economic policy
debates and the aggregate consequences of these risks, be they natural or
man-made, are often emphasised. Rietz (1988) and Barro (2006) for example,
documented significant effects on asset prices while Gourio (2012) and Farhi
& Gabaix (2015) highlighted effects on business cycles and interest rates.
In the context of global climate change, Weitzman (2009) also illustrated
the potentially disastrous consequences of uninsured catastrophic risks on
welfare. The coverage of these risks is therefore a crucial question, at the
intersection of government decision-making and market mechanisms.

We are particularly concerned with very low probability accidents, typ-
ically not insured by private markets because of the large exposure they
induce for insurance providers. For instance, large-scale nuclear disasters,
such as Fukushima-Daiichi, are estimated to occur with an annual probabil-
ity of the order of 10−6 per reactor, and thus of the order of n10−6 for an
individual concerned with n reactors in his/her neighbourhood. Similarly,
major earthquakes in the United-States affect individuals homeowners with
low probabilities. According to the United States Geological Survey, the
probability of a major earthquake with a magnitude of at least 7 in the San
Francisco area in a 30 year period of time between 2014 and 2044 is 51%.
On an annual basis, this translates into a 2.35 % probability. Assuming that
such an earthquake affects 10 % of the population in the San Francisco region
leads to an individual probability of loss around 2‰.

Other risks such as large-scale terrorism or major sanitary crisis have very
low probabilities but consequences severe enough to mobilise authorities. In
the US, the Californian Earthquake Authority or the Terrorism Insurance Act
are evidence of such a willingness to improve the coverage for these very low
probability risks. In Europe, the Paris and Vienna conventions provide for a
coverage against nuclear catastrophes financed jointly by the operators, and
the states. The revision of these conventions in 2004 has lead to an increase
in coverage but the fact that nuclear liability insurance remains insufficient
is still the object of active policy debates.

The role that governments play in organising the coverage for such catas-
trophic risks is indicative of the difficulty to increase take-up in market envi-
ronments for low-probability risks. To circumvent issues of low take-up rates,
countries like France or Spain have even adopted a fully compulsory natural
disaster insurance scheme.

Despite their low probabilities, such events are costly to insure, in par-
ticular because they affect many individuals simultaneously and require that
insurers have access to important sources of financing in case of accident.
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This cost, passed on to consumers may discourage insurance take-up. The
goal of this paper is to highlight the conditions under which a very low prob-
ability catastrophe remains nevertheless insurable when capital is costly.

Figure 1 shows the evolution of the share of insured losses to total eco-
nomic losses from natural disasters in the world from 1980 to 2018. This
ratio has a positive trend but remains limited. Even in the most recent years
it remained below 50% at 144/345 ≈ 47% in 2018 and 80/170 ≈ 50% in
2017. These average coverage rates hide important disparities between coun-
tries, and insurance penetration is much higher in high-income countries,1
where 56% of the natural catastrophe losses were insured in 2018, than in
low-income ones, where virtually none of the natural catastrophe losses were
insured. Nevertheless even in high-income countries, the average coverage
rate for the period 2000-2018 is 46% with substantial heterogeneity between
individuals. For instance, only 40% of the residents in New-Orleans had flood
insurance when Hurricane Katrina hit in 2005 and many victims of Hurricane
Sandy in 2012 had no flood insurance at all.

Our perspective will mainly be normative. In practice, there are many
reasons why catastrophic risks often remain poorly insured, as shown by
an important body of literature following Kunreuther (1973). The expla-
nations for these low coverage rates have ranged from departures from the
expected utility paradigm (Kunreuther & Slovic (1978), Kunreuther et al.
(2001) and Hertwig et al. (2004)) to the crowding-out of private insurance
demand by public relief (Raschky et al. (2013), Kousky et al. (2013) and
Grislain-Letrémy (2018)). Imperfect capital markets are also often presented
as a significant impediment to the insurability of catastrophic risks (Jaffee
& Russell (1997), Froot (2001), Niehaus (2002), Zanjani (2002), Cummins
et al. (2002) and Kousky & Cooke (2012)).

If market failures and behavioural biases are needed to justify government
interventions, they are not necessary a priori to rationalise low insurance
take-up rates. As we will show, covering risks that have a systemic compo-
nent is, by nature, particularly costly, even in a perfectly competitive set-up.
Disentangling the role of market failures and behavioural biases from the in-
trinsic characteristics of the risk that may make them uninsurable is therefore
an important pre-requisiste to relevant policy intervention. Put differently, it
is important to understand if low-probability high-severity risks may not be
adequately covered because of imperfections in market organisations and/or
behavioural biases in decision-making, or if they are by nature, uninsurable.

1The classification follows Munich Re NatCat Service and is based on the World Bank’s
Gross National Income (GNI) measure. Countries with GNI below 1,045 US dollars are
classified as low-income and countries with GNI above 12,736 US dollars are classified as
high-income. Other countries are considered medium-income.
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Figure 1: Evolution of economic losses and insured losses from natural catas-
trophes worldwide (Earthquakes - Tsunamis - Convective storms - Tropical
cyclones - Winter storms - Winter damages - Flood - Flask floods - Heat
waves - Wild fires) from 1980 to 2019. Source : © 2019 Munich Re, Geo
Risks Research, NatCatSERVICE. As of November 2019.

The present paper consequently remains upstream of market failures and
departures from expected utility, and our objective is to highlight the intrinsic
determinants of demand and supply in the insurance market for catastrophic
risks. To some extent, this does not differ from a standard market analysis,
where explanatory factors determine demand and supply. However, as we
will see, the insurance coverage of events that are, at the same time, very
rare (low probability) and simultaneously highly damaging (high severity)
to many people (correlated) requires a specific approach. On the demand
side, the severity of the losses incurred by individuals makes insurance par-
ticularly valuable, but low probabilities reduce the propensity of individuals
to purchase insurance. The willingness to pay for the coverage of such risks
results from these counter-balancing effects. On the supply side, the fact
that many individuals are affected at the same time when a disaster occurs
makes insurance costlier to provide, since capital must be raised to maintain
the insurer’s solvency.

Our objective in this paper is to analyse these specificities, in order to
bring out the key determinants of insurance coverage for catastrophic risks.
In a nutshell, it will turn-out that these key determinants are the degree of
risk aversion that individuals feel when they experience the highest possible
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loss and the correlation between individual risks.
Our analysis shows that, in a perfectly competitive insurance market

without excessive transaction costs, low-probability risks that entail serious
losses for victims are (at least partially) covered, in spite of their systemic
nature. A contrario, and from a positive economics perspective, this suggests
that substantial market failures, behavioural biases or transaction costs are
likely to play a key role in the explanation of low catastrophic insurance
take-up rates observed in practice. From a normative standpoint, our anal-
ysis emphasise the favourable welfare effects of policies that seek to organise
insurance schemes against catastrophic risks by providing information on
risks, by lowering transaction costs or by mitigating the various forms of
market failures that may be at stake.

As a preliminary step, we leave the correlation aspect of catastrophic
risks out of the picture to focus on how low-probability, high-severity risks
can be viewed through the lens of insurance microeconomics. To do so,
we first move away from the Arrow-Pratt approximation (Arrow (1963) and
Pratt (1964)) of the risk premium in order to account for potentially large
deviations from the mean, and we provide an asymptotic characterisation of
the willingness to pay to get rid of a very low-probability risks. We show
that, when individuals display decreasing absolute risk aversion (DARA),
a high absolute risk aversion (or, equivalently, a low risk tolerance) in the
accident state may entail a significant willingness to pay to avoid risk, even if
the accident probability is very low (an extreme case being infinite absolute
risk aversion in the loss state, as in Weitzman (2009)).

We then investigate the optimal insurance coverage of an individual who
faces the risk of an accident with a very low probability. We extend the
canonical model of the optimal insurance literature (Mossin (1968) and Ra-
viv (1979)) by considering a general insurance pricing rule reflecting the in-
creasing marginal cost of capital, and we characterise the asymptotic optimal
insurance coverage when the loss probability tends to zero.

Considering an increase in the size of a potential loss and a decrease in the
probability of such a loss is reminiscent from an important body of literature
that addresses the effect of a change in risk on optimal individual choices,
in particular the demand for risky assets. Rothschild & Stiglitz (1971) have
highlighted the conditions under which an increase in risk lowers expected
utility, and Gollier (1995) found the necessary and sufficient conditions under
which an increase in risk leads to an increase in the demand for a risky asset
by a risk averse individual. Our approach is different and complementary to
the latter. We do not consider the effect of a second-order stochastic domi-
nance shift of the risk distribution associated to a simultaneous decrease in
the probability and increase in the severity of an accident. Instead we con-
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sider that an accident (the catastrophe) may trigger a (presumably severe)
loss, whose distribution is fixed, and we analyse insurance demand when the
probability of occurrence of the accident becomes very small. This approach
allows us to characterise insurance demand for any catastrophe whose prob-
ability of occurrence is sufficiently close to zero. Of course, the scope of this
asymptotic is limited to risks whose probability of occurrence is sufficiently
close to zero. Its relevance to address actual examples of catastrophic risks
is therefore investigated in a subsequent numerical example with realistic
assumptions on preferences, risk distribution and costs of insurance.

We then study the supply side of the insurance market by considering the
risk of a low-probability catastrophe affecting a large number of individuals
at the same time, hence acknowledging the correlation aspect of catastrophic
risks. When the catastrophe takes place, we assume that a random fraction of
the population is affected by the loss. The higher the variance of this random
variable, the higher the volatility of the insurer’s liability. The model allows
to span a continuum of situations between perfect correlation, when either
no-one is affected or everybody is, and no correlation, when the same fraction
of individuals always incurs the loss. To maintain its solvency, the insurance
provider raises capital on financial markets and, since the catastrophe is
systemic, capital is costly to obtain and features a positive risk premium.
This cost of capital is passed onto the policyholders through the insurance
premiums, that are therefore above the actuarially fair prices. Low levels
of coverage may consequently occur in equilibrium when the catastrophe is
highly systemic, even in a complete financial market setting. We show how-
ever that the optimal insurance coverage remains positive for low-probability
risks.

Our conclusions may also be presented in a more normative perspective,
by focusing on their policy implications. Removing the barriers to catas-
trophic risk insurability is a multi-faceted challenge, including the promotion
of adequate financial innovations, and the targeting of government policy to-
wards risk prevention and the assistance of the most vulnerable groups. Our
approach is restricted to the preliminary question as to whether, and under
which conditions, the coverage of catastrophic risks by insurance mecha-
nisms is a socially optimal objective. The answer to this question is positive
if the individual’s degree of absolute risk aversion, evaluated in the accident
state, overcompensates the high price of insurance induced by the systemic
nature of the risk. We will show that this condition is satisfied if insur-
ance transaction costs are not too large. Reducing transaction costs (e.g.,
by lowering distribution and claim handling costs) is thus a crucial step to-
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ward insurability.2 Put differently, when transaction costs could be reduced
by improving market organisations, assuming as a matter of principle, that
individuals should be protected by state-sponsored insurance mechanisms,
whatever their willingness to pay and the cost of capital, does not seem to
be the appropriate way to approach the catastrophic risk insurance issue.

Finally, we complete these theoretical foundations by simulating the opti-
mal insurance coverage. Our simulations yield significant levels of coverage.
We also show that the optimal coverage converges rapidly to its limit, which
corroborates the relevance of the asymptotic approach used in the previous
sections.

The rest of the paper is organised as follows. Section 2 and 3 respectively
analyse the risk premium and the insurance demand for a low-probability,
high-severity risk, and Section 4 provides the analysis of the supply side
of insurance, taking the issue of risk correlation into account. Section 5
illustrates the relevance of our results with numerical simulations and Section
6 concludes by summarising our findings and relating them to public policy
issues. Section 7 gathers the proofs.

2 The risk premium of low-probability high-
severity risks

The Arrow-Pratt approximation of the risk premium holds for small risks,
with little variation around the mean. As a preliminary analysis of our study
of optimal insurance against catastrophic risks, this section characterises the
risk premium of low-probability, high-severity risks.

Consider a risk-averse individual with a (twice continuously differentiable)
von Neumann-Morgenstern utility function u(x) such that u′ > 0 and u′′ <
0, where x ≥ 0 is the individual’s wealth. Let A(x) = −u′′(x)/u′(x) and
T (x) = 1/A(x) be his indices of absolute risk aversion and of risk tolerance,
respectively. He holds an initial wealth w, and faces the risk of a loss ˜̀, which
may occur with probability p. Hence p is the probability of an event (the
”accident”, or ”catastrophe”) that triggers the random loss ˜̀. Conditionally
on the occurrence of an accident, ˜̀ is distributed in [0, L̄], with c.d.f. F (`)
and density f(`) = F ′(`) and L̄ ≤ w. Thus m(p, ˜̀) = pE˜̀ and σ2(p, ˜̀) =
p(1− p)(E˜̀)2 + pσ2

` , where σ2
` = Var(˜̀) are, respectively, the expected value

and the variance of the loss. The certainty equivalent C(p, ˜̀) of lottery (p, ˜̀)
2Important aspects of the US N.F.I.P. are illustrative of this approach, by facilitating

the underwriting of flood policies, (e.g., the ”write your own policy”), and through ground
intervention of F.E.M.A agents in the case of a flood.
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is defined by
u(w − C) = (1− p)u(w) + pEu(w − ˜̀).

Straightforward calculations give

C ′p(p, ˜̀) = u(w)− Eu(w − ˜̀)
u′(w − C) > 0,

C ′′p2(p, ˜̀) = −C ′p(p, ˜̀)2A(w − C) < 0.

Thus, C(p, ˜̀) is increasing and concave with respect to p, and of course we
have C(0, ˜̀) = 0. We also denote

θ(p, ˜̀) ≡ C(p, ˜̀)−m(p, ˜̀)
σ2(p, ˜̀)

,

the normalised risk premium, that is the risk premium per unit of variance.
Put informally, the risk (p, ˜̀) may be considered catastrophic for the

individual if C(p, ˜̀) is non-negligible although p is very small. Risk aversion
implies that C(p, ˜̀) > pE˜̀. Denoting C ′p(0+, ˜̀) ≡ limp→0C

′
p(p, ˜̀), L’Hôpital’s

rule allows us to write the limit ratio of certainty equivalent to expected loss
as

lim
p→0

C(p, ˜̀)
m(p, ˜̀)

=
C ′p(0+, ˜̀)

E˜̀ ,

which is proportional to C ′p(0+, ˜̀) for ˜̀ given. Using l’Hôpital’s rule again
gives

θ(0+, ˜̀) ≡ lim
p−→0

θ(p, ˜̀) =
C ′p(0+, ˜̀)− E˜̀

(E˜̀)2
. (1)

Thus, analysing the determinants of θ(0+, ˜̀) is an intermediate step to under-
standing why C ′p(0+, ˜̀) may be large and thus why C(p, ˜̀) may be significant
although p is very small.

When ˜̀ is small, we know from the Arrow-Pratt approximation that the
risk premium per unit of variance is proportional to the index of absolute
risk aversion. Indeed, for p fixed, considering a sequence of random variables
˜̀
n with support [0, L̄n] and L̄n → 0 when n → +∞ (hence with E˜̀

n → 0
and Var˜̀

n → 0 when n→ +∞), we have

lim
n−→+∞

θ(p, ˜̀
n) = A(w)

2 for all p ∈ (0, 1),

which of course also holds when p goes to 0, that is

lim
n−→+∞

θ(0+, ˜̀
n) = A(w)

2 .
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When ˜̀ can take large values, it is intuitive that the size of the risk premium
depends on function A(x) not only in the neighbourhood of x = w, but
over the whole interval [w − L̄, w]. This is confirmed by Proposition 1 and
its corollary. Proposition 1 provides an exact formula for θ(0+, ˜̀) which is
a weighted average of A(x) exp{

∫ w
x A(t)dt}/2 when x is in [w − L̄, w] and

Corollary 1 directly deduces a lower bound for θ(0+, ˜̀).

Proposition 1. For all ˜̀, the asymptotic normalised risk premium is

θ(0+, ˜̀) = 1
2

∫ w

w−L̄
[k(x)A(x) exp{

∫ w

x
A(t)dt}]dx

where

k(x) = 2[x− (w − L̄)−
∫ L̄
w−x F (`)d`]

(E˜̀)2
> 0

and ∫ w

w−L̄
k(x)dx = 1.

Corollary 1. For all ˜̀, a lower bound for the asymptotic normalised risk
premium is given by

θ(0+, ˜̀) > 1
2

∫ w

w−L̄
k(x)A(x)dx.

With the natural case of non-increasing absolute risk aversion in mind,
Proposition 1 and Corollary 1 suggest that θ(0+, ˜̀) may be large if A(x) is
large (or equivalently when T (x) is low) when x goes to w − L̄.

Symmetrically, Proposition 2 and Corollary 2 show that, under non-
increasing absolute risk aversion, the normalised risk premium θ(p, ˜̀) may
be large when p is close to zero only if A(w − L̄) is very large, that is, only
when the individual’s risk tolerance is very small in the accident state.

Proposition 2. Let
ε(x) = x[1− F (w − x)]∫ L̄

w−x [1− F (`)]d`
and

γ̄ = max{R(x), x ∈ [w − L̄, w]}.
Assume L̄ < w, γ̄ < w/E˜̀ , f(L̄) > 0, f ′(L̄) < 0 and ε(x) is decreasing over
[w − L̄, w]. Then, we have

θ(0+, ˜̀) < L̄

E˜̀Ā,
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where Ā = 1/L̄
∫ w
w−L̄A(x)dx, and

C(p, ˜̀) < pE˜̀[1 + L̄Ā
]
.

Corollary 2. In addition to the assumptions made in Proposition 2, under
non-increasing absolute risk aversion, we have

θ(0+, ˜̀) < L̄

E˜̀A(w − L̄),

and
C(p, ˜̀) < pE˜̀[1 + L̄A(w − L̄)

]
.

Proposition 2 provides upper bounds for the asymptotic normalised risk
premium θ(0+, ˜̀) and for the certainty equivalent C(p, ˜̀). γ̄ is an upper
bound for the index of relative risk aversion R(x) when x is in the interval
[w− L̄, w].3 The upper bound of θ(0+, ˜̀) and C(p, ˜̀) are proportional to the
average index of absolute risk aversion Ā. Corollary 2 focuses on the non-
increasing absolute risk aversion case and shows that θ(0+, ˜̀) and C(p, ˜̀) may
be non-negligible when p is very small, say as a proportion of the expected
loss E˜̀, only if A(w− L̄) is large. On the contrary, assume A(w− L̄) = A(w),
i.e., the index of absolute risk aversion remains constant in [w − L̄, w]. In
that case, we would have R(x) < R(w) for all x < w, and thus γ = R(w),
which implies

C(p, ˜̀) < pE˜̀[1 + L̄A(w)
]

= pE˜̀(1 + L̄

w
γ̄
)

Assuming R(w) = 2 or 3 and L̄ = θw with θ ∈ [0, 1[ would give C(p, ˜̀) <
pE˜̀(1 + 2θ) or C(p, ˜̀) < pE˜̀(1 + 3θ), respectively. Thus, if p is very small,
then C(p, ˜̀)/E˜̀ is very small.4

3We have ε(w) = w/E˜̀ and ε(x) → +∞ when x → w − L̄. Hence the monotonicity
assumption made in the proposition guarantees ε(x) > w/E˜̀ for all x. If this monotonicity
assumption is not made, Proposition 2 holds under γ̄ < min{ε(x), x ∈ [w − L̄, w]}.

4For the sake of numerical illustration, consider the case of a large-scale nuclear disaster
that may occur with probability p = 10−5, with expected total losses of $100b evenly
spread among 1 million inhabitants (think of people living in the neighbourhood of the
nuclear plant). In the case of an accident, each inhabitant would suffer a loss of expected
value E˜̀ = $100, 000. The unconditional expected loss pE˜̀ equals $1, and the certainty
equivalent is less than 1+2θ < $3 or 1+3θ < $4, which is negligible, say as a proportion of
their annual electricity expenses. Assuming larger but still realistic values of the index of
relative risk aversion would not substantially affect this conclusion. If we assume w = $2M ,
then the condition γ̄ ≤ w/E˜̀ is written as γ̄ ≤ 20.
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Thus, under non-increasing absolute risk aversion, we may conclude that
the risk premium of low-probability high-severity accidents may be non-
negligible (and thus that the coverage of such a risk is a relevant issue)
if and only if the risk tolerance is very low in such catastrophic cases.

CRRA preferences are an instance of such a case with T (x) = x/γ,
where γ is the index of relative risk aversion. We then have T (x) −→ 0 and
A(x) −→ ∞ when x −→ 0. However, CRRA preferences are not very well
suited to deal with large risks because the utility function has an explosive
behaviour when final wealth approaches zero. As a consequence, considering
large losses can yield results extremely sensitive to even reasonable variations
in the level of risk aversion.5

If preferences are of the HARA type, the utility function is written as

u(x) = ζ
(
η + x

γ

)1−γ
, (2)

whose domain is such that η+(x/γ) > 0, and with the condition ζ(1−γ)/γ >
0, that guarantees that u(x) is increasing and concave. HARA preferences
correspond to affine risk tolerance T (x) = 1/A(x) = η + x/γ and the class
nests the constant relative risk aversion (CRRA) case when η = 0, and the
constant absolute risk aversion (CARA) case when γ → +∞. Keeping the
DARA case in mind leads to the additional restriction γ > 0.

When ˜̀ is close to a Dirac distribution at ` = w, i.e. when the individual
is at risk of loosing close to w in case of a catastrophe, it can be shown that6

θ(0+, ˜̀) > 1
w

∫ w

0

xu′(x)
wu′(w)A(x)dx,

which gives

θ(0+, ˜̀) > γ

w2

∫ w

0

x

ηγ + x

(ηγ + w

ηγ + x

)γ
dx ≡ Γ(η). (3)

A short computation shows that if and only if γ < 1. Otherwise, when γ > 1
we have

lim
η→0

Γ(η) = +∞,

5See Eeckhoudt et al. (2000) and Weitzman (2009) for examples of this sensitivity issue,
and Ikefuji et al. (2015) for a formal analysis of the conditions under which the problem
arises.

6This can be obtained either by using equation (23) in the proof of Proposition 1
with F (`) = 0 if ` < L̄ and F (`) = 1 if ` > L̄, or equivalently, by directly establishing
Proposition 1 in this simpler case.
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when γ > 1. The normalised risk premium θ(0+, ˜̀) can therefore be made
arbitrarily large by choosing a value η = T (0) small enough, for γ > 1.7

3 Insurance demand for catastrophic risks
We now assume that the individual can purchase insurance for a binomial
risk (p, L), where ˜̀ = L with probability 1. Insurance contracts specify the
indemnity I in the case of an accident, i.e., when the individual suffers a
loss L, and the premium D(p, I) to be paid to the insurer depends on the
loss probability p and the indemnity I. As an example, the standard insur-
ance pricing model specifies a price proportional to the expected indemnity
D(p, I) = (1 + λ)pI, where λ is the loading factor. More generally, we call

d(p, I) = D(p, I)− pI
pI

,

the unit cost of insurance with d(p, I) = λ in the case of a constant loading.
In the case of catastrophe risk with correlated claims however, d(p, I) is
strongly affected by the cost of providing the capital that guarantees the
solvency of the insurance scheme and it is likely to depend on p and I. We
assume non-decreasing marginal costs D′′I2(p, I) ≥ 0, and D′I(p, I) ∈ (p, 1)
rules out corner solutions with I = 0 or I = L. We also assume that the
marginal cost of coverage becomes null as p tends to zero, that is

lim
p→0

D′I(p, I) ≡ D′I(0+, I) = 0,

and consistency conditions D(p, 0) = D(0+, I) = 0.
The policyholder faces the lottery (w1, w2), with corresponding probabil-

ities 1− p and p, where w1 and w2 denote the wealth in the no-loss and loss
states respectively, with

w1 = w −D(p, I) (4)
w2 = w −D(p, I)− L+ I (5)

The full coverage lottery w1 = w2 = w − D(p, L) is preferred to the no
coverage lottery (w,w−L) if and only if the certainty equivalent, now denoted
C(p, L) is higher than the price of full coverage D(p, L), that is

C(p, L) ≥ D(p, L).
7Note that R(x) is increasing in the HARA case, and assuming R(x) > 1 when x is

large (e.g. when x is close to w) requires γ > 1.
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When p goes to zero, l’Hôpital’s rule allows us to rewrite the previous con-
dition as

C ′p(0+, L)− L
L

= θ(0+, L)L ≥ d(0+, L),

where d(0+, I) = limp→0 d(p, I). Hence the following Lemma.

Lemma 1. θ(0+, L)L ≥ d(0+, L) is a necessary and sufficient condition for
the individual to prefer full insurance to no insurance when p goes to zero.

Lemma 1 illustrates the importance of the normalised risk premium θ(0+, L)
analysed in the previous section. For insurance to remain attractive despite
the vanishingly low probability of accident, the normalised risk premium has
to be larger than the unit cost of insurance d(0+, L) divided by the loss. A
direct consequence of Lemma 1 is that θ(0+, L)L ≥ d(0+, L) is a sufficient
condition for the optimal (partial) insurance cover to remain positive as p
goes to zero.8

Combining Corollary 1 and Lemma 1 yields Corollary 3 that provides
conditions on relative risk aversion under which insurance remains valuable
for low-probability events with high severity.

Corollary 3. Assume R(x) is non decreasing. If limx→0R(x) ≥ limL→w d(0+, L),
then for L smaller than w but large enough, the individual prefers full in-
surance to no insurance (and therefore the optimal cover is positive) when p
goes to zero.

Decreasing the probability and increasing the loss of the accident while
maintaining the expected loss is equivalent to a mean-preserving spread.
As is well known, this induces a decrease in the expected utility of a risk-
averse individual. The amount of money that such an individual would be
willing to pay to fully cover such a risk would therefore increase. Corollary
3 provides an additional insight : if individuals have a coefficient of relative
risk aversion in the worst case scenario higher than the price of coverage,
then they will prefer full coverage over no coverage for any infinitesimally
small probability accident. For example, with the standard proportional
loading rule D(p, I) = (1 + λ)pI and a CRRA utility function with relative
risk aversion coefficient γ, the condition of Corollary 3 simply is written as
γ > λ.

Let us now characterise the optimal insurance coverage for a low-probability
accident. In the (w1, w2) plane represented in Figure 2, the set of feasible

8Indeed, if the individual prefers full coverage to no coverage, extending his opportunity
set does not make him switch to zero coverage. It is easy to check that the optimal limit
cover (denoted I∗ below) is positive when d(0+, L) < [u′(w − L)− u′(w)]/u′(w) and that
this condition is implied by θ(0+, L)L ≥ d(0+, L).
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lotteries is delimited by a concave curve (drawn for p = 0.1, p = 0.25 and
p = 0.5) that represents equations (4) and (5), together with the sign condi-
tion

w2 − w1 + L ≥ 0, (6)
(or I ≥ 0). For illustrative purpose, Figure 2 displays the case of a simple
pricing rule that relates the premium to the expected value and variance of
the loss.9 The optimal lottery maximizes the individual’s expected utility

(1− p)u(w1) + pu(w2),

in this set of feasible lotteries. It is such that the marginal rate of substitution
−dw2/dw1|Eu=ct. = (1 − p)u′(w1)/pu′(w2) is equal to the slope (in absolute
value) of the feasible lottery locus, that is

(1− p)D′I(p, I)u′(w1) = [1−D′I(p, I)]pu′(w2), (7)

where w1 and w2 depend on I through (4) and (5). Figure 2 shows the locus
of optimal lotteries in the (w1, w2) plane when p changes. Each lottery is
at the tangency point of a convex indifference curve with the concave curve
that delimits the set of feasible lotteries for a particular probability p. Point
A represents the situation with no insurance, and point B represents the
asymptotic optimal lottery when p goes to zero.

Let w1(p, L), w2(p, L) denote the optimal state-contingent wealth levels
when I > 0, that is, when d(p, I) is not too large. Equation (7) can be
rewritten as

u′(w2(p, L))
u′(w1(p, L)) = (1− p)D′I(p, I)

p(1−D′I(p, I)) .

Denoting

w∗1(L) ≡ lim
p−→0

w1(p, L) = w

w∗2(L) ≡ lim
p−→0

w2(p, L),

and using L’Hôpital’s rule yields

u′(w∗2(L)) = D′′Ip(0+, I
∗)u′(w∗1(L)), (8)

which implies w∗2(L) < w = w∗1(L) if and only if D′′Ip(0+, I
∗) > 1. Thus, when

p goes to 0, the optimal insurance contract (P, I) goes to a limit (P ∗, I∗),
with P ∗ = D(0+, I

∗) = 0 and I∗ = w∗2(L) + L − w∗1(L) < L. When p is
9Section 4 will be dedicated to analyzing the supply side of the market and will derive

a pricing function.
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Figure 2: Comparative statics in the space of lotteries

Each thick black circle represents an optimal lottery for a given probability, from p high
in point A to p close to zero in point B. Optimal lotteries are at the tangency point of
the indifference curve and the cost curve. In B, the optimal insurance coverage is positive
even-though the loss probability is infinitesimally small. The calibration is w = 1, 000, 000,
L = 800, 000, u(x) = −x

−2

2 , and D(p, I) = (1 + λ)pI + αp(1 − p)I2 with λ = 0.3 and
α = 3× 10−6.

positive but close to 0, we still have I < L and P = D(p, I) ' D(p, I∗).
Since w∗2(L) = w − L+ I∗, (8) gives

u′(w − L+ I∗) = D′′Ip(0+, I
∗)u′(w), (9)

which defines I∗ when I∗ > 0, that is when u′(w − L) > D′′Ip(0+, 0+)u′(w),
where D′′Ip(0+, 0+) = limp,I→0D(p, I). Otherwise, we have I∗ = 0.

Proposition 3. Assume that D′′Ip(0+, 0+) ≤ u′(w−L)
u′(w) . Then, when p goes

to 0, the optimal insurance coverage I goes to a limit I∗ > 0 defined by
Equation (9), and when p is close to 0, I and P are close to I∗ and D(p, I∗),
respectively.
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Proposition 3 highlights the conditions under which a risk with an in-
finitesimally small probability remains insurable. For example, with a pro-
portional loading, a logarithmic utility and a loss equal to a fraction θ of w
the conditions summarise as 1 + λ < 1/(1− θ). That is, the loading must be
sufficiently small and the loss sufficiently large. The generality of Proposition
3 in terms of utility and cost functions will allow us to discuss the insurability
of catastrophic risks in the next section.

Straightforward calculations allow us to characterise the effect of a change
in L and/or w on the asymptotic optimal insurance coverage. An increase
dL > 0 for w given induces an increase dI∗ < dL. A simultaneous increase
dw = dL > 0 induces an increase dI∗ > 0 in coverage, while an increase
in wealth with unchanged loss dw > 0, dL = 0 entails a decrease in optimal
coverage dI∗ < 0 under DARA preferences, i.e. when A′ < 0. These compar-
ative statics results, standard in the analysis of traditional risks,10 therefore
extend to the asymptotic characterisation of catastrophic risk optimal insur-
ance.

4 Insurance supply for catastrophic risk
This section determines the pricing rules D(p, I) - taken as given in the pre-
vious section - and the corresponding insurance market equilibrium in an
economy with a continuum of individuals and complete financial markets.
To do so, we add a third component to the definition of catastrophic risks:
in addition to their low-probability high-severity nature, they are correlated
among individuals. Due to this correlation, many individuals may be simul-
taneously affected by the catastrophic event, hence its systemic nature.

Assume that a catastrophe occurs with probability π and, in such a case,
a fraction κ̃ of the population is affected by the loss L (the same for all
victims). In order to allow for different severity levels, we assume that κ̃ is a
random variable with Eκ̃ = µκ and Varκ̃ = σ2

κ. Let

K̃ =
{
κ̃ with probability π
0 with probability 1− π ,

be the (unconditional) fraction of the population affected by the loss L. Con-
ditionally on the realisation of K̃, we assume that all individuals have the
same probability to incur the loss L. Therefore, the individual (uncondi-
tional) probability of facing a loss L is p = πµκ.

As can be anticipated, the variability of the average loss within the popu-
lation will be a determinant of the insurance cost when this cost is transferred

10See Schlesinger (2013).
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to risk-averse investors. In the present setting, this variability is associated
with a positive coefficient of correlation between individual losses which, as
shown in Appendix 7.5, is equal to

ρ = σ2
κ + (1− π)µ2

κ

µκ − πµ2
κ

. (10)

The coefficient of correlation ρ increases with σ2
κ and since κ̃ is distributed

over the interval [0, 1], the highest variance is achieved when κ̃ is a Bernoulli
variable, equal to 0 or 1. The probability that κ̃ equals one in this case is
simply µκ, and we have σ2

κ = µκ(1− µκ), hence ρ = 1. The highest possible
variance σ2

κ therefore yields perfect correlation across losses.11

Another knife-edge case arises when σ2
κ = 0 and π = 1 that is, the same

fraction of the population is always affected by the loss. This corresponds to
the standard situation where the law of large number applies : the average
loss is constant, and the correlation coefficient is ρ = 0.

More generally, the correlation coefficient depends on the parameters µκ,
σ2
κ and π and converges to

σ2
κ + µ2

κ

µκ
, (11)

when π → 0.
For a given probability distribution of K̃, the insurance provider offers a

coverage I at price D to all agents in the economy. For each indemnity paid,
the insurer incurs a proportional cost at rate λ because of administrative
expenses such as auditing and expertise, or other forms of transaction costs.
Furthermore, in order to avoid a default,12 the insurance provider has to col-
lateralise the random total indemnity costs K̃(1+λ)I. This may be achieved
through various forms of contracting such as raising equity, in which case the
insurance company’s equity-holders are liable for the policy payments, or by
raising capital on financial markets, in which case the risk is transferred to
dedicated market investors. Formally, this is equivalent to assuming that
the insurers collateralise indemnities by purchasing an asset that delivers a
random payoff ỹ = K̃(1 + λ)I, whose price defines D.

In order to characterise this price, we consider a setting with complete
financial markets, where all individuals have the same utility function u. The

11When π > 0, this corresponds to the degenerate case where the catastrophe may be
completely harmless. Only two events are then relevant : either there is a catastrophe
that affects all individuals, either nobody suffers a loss, hence the perfect correlation.

12This paper abstracts from the possibility of default, examined in Charpentier &
Le Maux (2014) and Zanjani (2002) for example. In other words, we consider unlimited
liability for all agents in the economy and in particular for the insurance provider.
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value of the asset ỹ can be estimated with a standard one factor model13

D = Eỹ + cov(ỹ, u′(z̃)). (12)

where z̃ is the representative agent’s random wealth (defined below). Under
market completeness, the exposure of investors to idiosyncratic risks have
been eliminated from the economy thanks to adequate contracting. As a
consequence, only systemic risks give rise to a risk premium in equilibrium.
The co-variance term of equation (12) captures the idea that investors, who
accept to provide the necessary capital to sustain the insurance scheme, re-
quire a risk premium to provide a payoff which is high when the average
wealth is low.

The representative agent has a wealth equal to the average wealth in the
economy:

z̃ = w − K̃L, (13)
which is the difference between the exogeneously given level of initial wealth
w and the average loss per individual in the economy. A simple calculation
using (10), (12) and (13) with p = πµκ and Eỹ = pI gives

D(p, I) = ψ(p)pI ∀p ∈ [0, µκ], (14)

where

ψ(p) = (1 + λ)E[κ̃u′(w − κ̃L)]
µκ

(15)

is the total loading that reflects both the transaction and capital costs of the
insurance coverage, with utility normalisation Eu′(z̃) = 1.14

Since p → 0 when π → 0 with µκ given, the condition that guarantees
that insurance take-up remains positive in the limit when π tends to 0 can
be derived from Proposition 3 as15

ψ(0) ≤ u′(w − L), (16)
13In an economy with complete financial markets, D = Eỹ + cov(ỹ, u

′(z̃)
Eu′(z̃) ) defines the

price of the asset ỹ (see Gollier (2004)). Without loss of generality, we use the normalisation
Eu′(z̃) = 1.

14Note that the right-hand side of (14) depends on π, L and on the distribution of κ̃. In
what follows, L and κ̃ are considered as given and we analyse the effect of a change in the
probability of a catastrophe π, that affects the individual probability p = µκπ of being a
victim.

15When we consider economies that differ through the value of π, we maintain the
normalising assumption Eu′(z̃) = 1 for the economy. The utility functions therefore depend
on π and u′(w)→ 1 when π → 0 for any random variable κ̃.
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In addition, Equation (9) from the previous section also delivers a closed-
form solution for the optimal asymptotic coverage

I∗ = u′−1(ψ(0))− w + L, (17)

where
ψ(0) = (1 + λ)E[κ̃u′(w − κ̃L)]

µκ
, (18)

with utility normalisation u′(w) = 1.

Proposition 4. For any risk characteristics (L, κ̃), there exists λ̄ > 0, such
that the asymptotic insurance coverage I∗ is positive if λ < λ̄.

Proposition 4 shows that a correlated catastrophic risk generates a pos-
itive level of coverage in equilibrium, if transaction costs are not too large.
In other words, there is no intrinsic barriers to insurance coverage for such
risks.

We may consider a more tractable expression for a risk κ̃ that is small
compared with aggregate wealth w, with a nevertheless systemic nature due
to ρ > 0. Approximating u′(w − κ̃L) at the first order around u′(w). This
gives

ψ(0) = (1 + λ)[1 + A(w)Lρ]. (19)
This approximation16 shows that an increase in the correlation coeffi-

cient ρ reduces the equilibrium coverage I∗ since it makes insurance more
expensive. An increase in L has a potentially ambiguous effect on I∗. On
the one hand, the representative risk-averse individual provides the capital
that sustain the insurance scheme, and thus higher losses increase the re-
quired premium, which tends to reduce the equilibrium coverage. On the
other hand, an increase on the risk exposure of policyholders tends to in-
crease their insurance demand. For static comparative purposes, we may
write the asymptotic equilibrium indemnity I∗(L, ρ, λ) as a function of the
loss level, the correlation coefficient and the loading factor, and similarly
β∗(L, ρ, λ) = I∗(L, ρ, λ)/L.

Proposition 5. Assume that u is DARA and λ > 0. Then, under the
approximated pricing rule (19), there exist a threshold L(λ, ρ) > 0, with

16Equation (19) is an approximation of ψ(0) by default when u′′′ > 0 that would lead
to over-estimate the coverage rates. Numerical simulations, not reported here for the
sake of brevity but available from the authors upon request, show that approximating the
true price with (19) produces reasonable levels of errors (a few percentage points) for the
calibrations considered in the next section.
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∂L/∂λ < 0 and ∂L/∂ρ < 0 such that I∗(L, ρ, λ) > 0 if L > L(λ, ρ). When
L > L(λ, ρ), we have

∂β∗

∂L
> 0, ∂β

∗

∂ρ
< 0, ∂β

∗

∂λ
< 0.

In the presence of transaction costs (λ > 0), the coverage rate is positive
only when the loss is sufficiently high and for λ given, an increase in the
individual loss L (respect. coefficient of correlation ρ) stimulates (reduces)
insurance demand and leads to an increase (a decrease) in the coverage rate
β∗(L, ρ, λ). Importantly, formula (19) is valid for risks that have a systemic
nature (ρ > 0) but that remain small compared to aggregate wealth.17 This
may be unduly restrictive, and thus we revert to the more general expression
(18) to perform the simulations of the next section.

In contrast with Propositions 4 and 5, that provide an optimistic view
on the ability of insurance markets to cover catastrophic risks, transaction
costs, market failures, and behavioural biases, deliberately ignored here, are
likely to play a significant role when the observed coverage of low-probability
high-severity risks is weak. In particular, limited liability and concerns about
default may play an important role as suggested in Zanjani (2002) and Cum-
mins et al. (2002). High transaction costs between insurers and reinsurers
also limit the ability of insurers to pay for ”the big one” as suggested in
Froot (2001) and Niehaus (2002). Imperfect information on risk exposure or
biases in beliefs about such risks may also deter individuals from purchasing
insurance. In other words, the frequently observed under-coverage of catas-
trophic risks through private insurance mechanisms is likely to result from
such market imperfections rather than from an hypothetical intrinsic weak-
ness of insurance mechanism to deal with such risks. From an economic policy
standpoint, this suggests that reducing such market imperfections should be
right at the top of the agenda. Of course, such a conclusion makes sense only
when the insurance industry is sufficiently strong to manage the financial
transfer of catastrophic risks.

5 Numerical application
This section conducts numerical simulations that illustrate our theoretical
results. We assume that policyholders display harmonic absolute risk aver-

17This restriction on the size of the catastrophe need not be as restrictive as it seems.
For example, the Japanese government expects the total cost of the Fukushima-Daiichi
accident in 2011 to amount to a 177 billion euros bill. An important part of this cost is
systemic since it affects many people at once, but its size, when compared to a 4300 billion
euros annual GDP, remains limited.
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sion (HARA) preferences, characterised by (2) and a coefficient of relative
risk aversion

R(x) = x
(
η + x

γ

)−1
. (20)

Using the CRRA specification, studies on individual data, such as Levy
(1994) and Szpiro (1986), have isolated a plausible range between 1 and
5 for the index of relative risk aversion. We therefore perform simulations
over this plausible range of values. In particular, we calibrate the coefficient
of relative risk aversion in the no-loss state R(w) ≡ R = 3 and we let the
coefficient of relative aversion in the loss state R(w−L) ≡ R, vary between 1
and 5. When R = R, the HARA specification boils down the CRRA utility
function.

Solving the agent’s optimisation program in the HARA case and with the
pricing rule (14) yields a closed form solution for all acceptable values of p

I∗∗(p) = L+ (ηγ + w)(χ(p)− 1)
1 + ψ(p)p(χ(p)− 1) , where χ(p) =

[ 1− ψ(p)p
ψ(p)(1− p)

] 1
γ , (21)

which indeed converges to the value given by (17) when p→ 0. Importantly,
the results of the numerical simulations do not rely on any any approximation.
We nevertheless report the error that one would be making by approximating
the exact optimum I∗∗(p) by its limit counterpart I∗. It turns out that this
error is fairly small in all scenarios considered.

In order to simulate these optimal coverage levels, we calibrate a beta
distribution for the variable κ̃. We consider a catastrophe of probability π =
1% and µκ = 0.1. That is, the fraction of the population expected to incur a
loss in case of catastrophe is 10 %. The individual loss probability is therefore
p = 0.1%. In addition, the variance of κ̃ is set at σ2

κ̃ = 0.001, which gives
a coefficient of correlation ρ = 0.109. We also compute the premium ψ∗∗(p)
associated with the optimal levels of coverage and the relative difference

ε(p) = I∗ − I∗∗(p)
I∗∗(p) ,

between the true optimal coverage I∗∗(p) and its asymptotic value I∗, char-
acterised by Equation (21) and Proposition 3, respectively.

These simulations are reported in Table 1. The size of the loss L varies
across lines from 200, 000 euros to 800, 000 euros to capture the monetary
consequences of a severe accident. Initial wealth w is set at one million euros,
which represents roughly the average lifetime discounted earnings of a French
citizen. We assume R = 3 and R varies across columns between 1 and 5.
Finally, the insurance provider’s costs are captured by a proportional loading
factor λ = 0.3.
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L
R 1 2 3 4 5

I∗∗ 39,016 84,616 96,098 101,285 104,235
200,000 ψ∗∗ 1.38 1.39 1.39 1.39 1.39

ε (0.89) (0.19) (0.11) (0.08) (0.06)
I∗∗ 252,130 270,411 275,869 278,490 280,028

400,000 ψ∗∗ 1.47 1.47 1.47 1.47 1.47
ε (0.12) (0.05) (0.03) (0.02) (0.02)
I∗∗ 443,172 452,505 455,460 456,909 457,770

600,000 ψ∗∗ 1.56 1.56 1.56 1.56 1.56
ε (0.05) (0.02) (0.01) (0.01) (0.01)
I∗∗ 629,572 633,554 634,854 635,499 635,885

800,000 ψ∗∗ 1.64 1.64 1.64 1.64 1.64
ε (0.02) (0.01) (0.00) (0.00) (0.00)

Table 1: Optimal coverage I∗∗ in euros, optimal loading ψ∗∗, and relative
error ε, at π = 1%, µκ = 0.1 and σ2

κ = 0.001 (hence p = 0.001 and ρ = 0.109).

Optimal coverage increases with the size of the loss and with the coef-
ficient of risk aversion R. For a given level of risk aversion R = 3, it rises
from 96, 098 to 634, 854 euros when L increases from 200, 000 to 800, 000 eu-
ros. Fixing the loss at 800, 000 euros results in a modest increase in optimal
coverage from 629, 572 euros when R = 1 to 635, 885 euros when R = 5.
The comparative statics with respect to R is of particular interest because
it summarises two distinct effects. One the one hand, higher risk aversion
pushes toward higher demand levels. On the other hand, it also also yields
higher supply prices through the risk premium required in equilibrium. In
our simulation, the demand effect dominates the price effect because the risk
considered are very large at the individual level but remain limited compared
to the overall wealth of the economy.

Coverage rates are limited for lower losses levels, but they increase rapidly
with the size of the loss. Because we have fixed relative risk aversion in the
loss state R = (w−L)A(w−L), the index of absolute risk aversion becomes
large as the loss L gets closer to initial wealth w. These higher levels of
absolute risk aversion in the loss state explain the higher coverage rates
observed for higher loss levels, as we have shown in the previous sections.

The second number of each box represents the total loading ψ∗∗ associated
with the optimal coverage. For L = 800, 000 and R = 3, policyholders pay a
premium equal to 1.64 times their expected loss. Since the exogenous loading
factor λ was set at 0.3, this implies that the cost of capital is responsible
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for a 34 percentage points increase in the loading factor. The loading factor
increases with both L and R but the effect of R is quantitatively very limited
becauseR mainly affects the insurance cost through the coefficient of absolute
risk aversion. Since A(w) = R(w)/w, a unit change in R(w) only leads to
limited changes in A(w). In contrast, an increase in L directly affect the cost
of insurance as Equation (15) shows.

Finally, bracketed numbers report the error in percent, ε(p), that one
would be making by approximating I∗∗(p) with I∗. It varies between 0.89%
when L = 200, 000 euros and R= 1 and negligible values in most scenarios.
These low errors confirm that I∗ is an interesting quantity to look at when
considering insurance decisions for low-probability risks.1819

L
R 1 2 3 4 5

I∗∗ 24,920 75,633 88,318 94,031 97,274
200,000 ψ∗∗ 1.42 1.42 1.42 1.42 1.42

ε (1.66) (0.22) (0.12) (0.09) (0.07)
I∗∗ 232,569 253,217 259,308 262,212 263,910

400,000 ψ∗∗ 1.53 1.53 1.53 1.53 1.53
ε (0.15) (0.06) (0.04) (0.03) (0.02)
I∗∗ 415,619 425,760 428,879 430,385 431,270

600,000 ψ∗∗ 1.65 1.65 1.65 1.65 1.65
ε (0.07) (0.03) (0.02) (0.01) (0.01)
I∗∗ 591,744 595,498 596,660 597,222 597,552

800,000 ψ∗∗ 1.77 1.77 1.77 1.77 1.77
ε (0.03) (0.01) (0.00) (0.00) (-0.00)

Table 2: Optimal coverage I∗∗ in euros, optimal loading ψ∗∗, and relative
error ε, at π = 1%, µκ = 0.1 and σ2

κ = 0.005 (hence p = 0.001 and ρ = 0.149).

As a final exercise, Table 2 considers the case of a higher variance σ2
κ =

0.005 and therefore of a higher correlation ρ = 0.149. The role of the systemic
component of the risk is well illustrated here. With a higher variance σ2

κ, it
18Considering higher levels of loss probability would indeed give rise to higher errors.

Considering π = 0.1 instead of π = 0.01 for, would results in approximation errors lower
than 8.55% and lower than 2% in 17 out of the 20 scenarios of Table 1.

19In addition, large catastrophes often affect people with sometimes widely different
(but small) probabilities. Our result suggests that such differences in risk exposure may
actually result in very limited differences in optimal coverage values. Similarly, conflicting
expert opinions concerning the true probability of a catastrophe would also be irrelevant
for the choice of an optimal level of coverage, as long as experts agree that the probability
π is very small.
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is more costly to provide insurance, so all loadings are higher. At the same
time, the expected probability of loss for a given individual remains constant,
hence the lower levels of coverage optimally purchased.

6 Conclusion
The purpose of this paper was to analyse the key determinants of the optimal
insurance for catastrophic risks associated with low-probability high-severity
events. Considering the limit case of a vanishingly low probability of loss,
we have analysed how insurance demand is affected by the degree of risk
aversion when individuals face large-scale risks, and we have characterised
the asymptotic insurance coverage. On the supply side, the correlation of
losses that characterises catastrophic risks results in a risk premium in equi-
librium. Added to transaction costs, this translates into higher prices for
policyholders.

This cost is a well-known impediment to the insurability of catastrophic
risks. Our analysis however, demonstrates that this impediment alone hardly
explains the uninsurability of low-probability high-severity risks. In particu-
lar, under reasonably low transaction costs and complete financial markets,
the cost of capital itself should not prevent the insurability of catastrophic
risks. The larger the loss incurred by victims and/or the lower the correla-
tion between individual losses, the larger the equilibrium rate of insurance
coverage. Insurance transaction costs and capital market imperfections, in-
creasing further the cost and lowering the availability of capital therefore
play an important role in explaining the failure to insure catastrophic risks.
Other market failures, such as asymmetries of information, behavioural bi-
ases or lack of competition may also contribute to the absence of insurance
markets for the more systemic lines of risk.

Governments have an important role to play in the reduction of these
transaction costs in interaction with capital markets. This may go through
policy measures that reduce transaction costs or capital costs for risks that
would otherwise be uninsurable. Sometimes criticised for its cost in the fed-
eral budget, the U.S. National Flood Insurance Program nevertheless aims
at lowering insurance transaction costs, by making underwriting and claims
handling easier, while also encouraging local communities to take prevention
measures that reduce future flood damage. In the field of nuclear risk, in-
ternational conventions have endorsed a common nuclear corporate liability
law, thereby reducing the claims handling costs in the case of a nuclear acci-
dent. As for the reduction of capital costs, insurance pools provide examples
of what proactive policies can do. This is the case for natural disaster risk
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(e.g., Flood Re in the UK, or the Caribbean Catastrophe Risk Insurance
Facility for hurricanes and earthquakes, to mention just two examples), for
large-scale terrorism risk (e.g., the GAREAT pool in France), and for the
nuclear risk in almost all countries with nuclear power plants. By contrast,
failing to pass onto policyholders the cost of capital due to the systemic com-
ponent of catastrophic risks would send biased signals about the social cost
of risk. The consequences of such an approach on risk prevention behaviours
and on the perception of the size of cross-subsidisation between more or less
exposed individuals are sometimes at the origin of criticisms made towards
state-sponsored insurance regimes, such as the natural disaster insurance
regimes in France and Spain.
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7 Proofs

7.1 Proof of Proposition 1
From equation (2), we have

C ′p(0+, ˜̀) = u(w)− u(w − E˜̀)
u′(w) = E

[∫ w

w−˜̀

u′(x)
u′(w)dx

]
.

Since
u′(x) = u′(w)−

∫ w

x
u′′(t)dt,

for all x ∈ [w − L̄, w], we may write

C ′p(0+, ˜̀) = E˜̀− E
[∫ w

w−˜̀

[∫ w

x

u′′(t)
u′(w)dt

]
dx

]

= E˜̀+ E
[∫ w

w−˜̀

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx

]
,

and thus,

θ(0+, ˜̀) =
C ′p(0+, ˜̀)− E˜̀

(E˜̀)2

= 1
(E˜̀)2

E
[∫ w

w−˜̀

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx

]
Integrating by parts three times and making the change of variable x = w−`
gives

θ(0+, ˜̀) = 1
(E˜̀)2

∫ L̄

0

[∫ w

w−`
(x− w + `)A(x) u

′(x)
u′(w)dx

]
f(`)d` (22)

= 1
(E˜̀)2

{∫ w

w−L̄
(x− w + `)A(x) u

′(x)
u′(w)dx−

∫ L̄

0
F (`)

[∫ w

w−`
A(x) u

′(x)
u′(w)dx

]
d`

}

= 1
(E˜̀)2

{∫ w

w−L̄

[
x− w + L̄−

∫ L̄

w−x
F (`)d`

]
A(x) u

′(x)
u′(w)dx

}
. (23)

Using
u′(x) = u′(w) exp{

∫ w

x
A(x)dx},

completes the first part of the proof. Integrating by parts twice then gives∫ w

w−L̄

[
x− w + L̄−

∫ L̄

w−x
F (`)d`

]
dx = 1

2(E˜̀)2,

hence ∫ w

w−L̄
k(x)dx = 1.
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7.2 Proof of Corollary 1
The corollary follows straightforwardly from

exp{
∫ w

x
A(t)dt} ≥ 1.

7.3 Proof of Proposition 2
Let ν(x) = x− w + L̄−

∫ L̄
w−x F (`)d` > 0 for all x ∈ [w − L̄, w], with ν(w) =

L̄−
∫ L̄

0 F (`)d` = E˜̀ and f ′(L̄) < 0. Equation (23) is therefore written as

θ(0+, ˜̀) = 1
(E˜̀)2

∫ w

w−L̄
η(x)A(x) u

′(x)
u′(w)dx.

Hence
d[ν(x)u′(x)]

dx
= u′(x)ν ′(x) + ν(x)u′′(x)

= u′(x)[ν ′(x)− ν(x)
x

R(x)] x ∈ [w − L̄, w].

d[ν(x)u′(x)]/dx > 0 if ε(x) ≡ ν′(x)x
ν(x) > R(x), and

ε(x) = x[1− F (w − x)]∫ L̄
w−x [1− F (`)]d`

.

Since E˜̀ = L̄ −
∫ L̄

0 F (`)d`, we have ε(w) = w/E˜̀. Assuming f(`) → 0
when ` → L̄ and f ′(L̄) < 0 and applying L’Hôpital’s rule twice, we obtain
ε(x) → +∞ when x → w − L̄. Assuming that ε(x) is monotonic, and
therefore decreasing, implies

ε(x) > ε(w) if x < w.

= w

E˜̀

A sufficient condition for d[ν(x)u′(x)]/dx > 0 is therefore
w

E˜̀ > γ̄,

where γ̄ = max{R(x), x ∈ [w − L̄, w]}. In this case, we have

ν(x)u′(x) < ν(w)u′(w) if x ∈ [w − L̄, w]
= E˜̀u′(w),
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and consequently
θ(0+, ˜̀) < 1

E˜̀
∫ w

w−L̄
A(x)dx.

Let Ā = 1/L
∫ w
w−L̄A(x)dx. We then obtain

θ(0+, ˜̀) < L̄

E˜̀Ā.

Using C ′′p < 0 and C(0+, ˜̀) = 0 with equation (1) allows us to write

C(p, ˜̀) < C ′(0+, ˜̀)p
= pE˜̀[1 + θ(0+, ˜̀)E˜̀]
< pE˜̀[1 + L̄Ā

]
.

7.4 Proof of Corollary 3
A simple calculation shows that Proposition 1 and Corollary 1 can be re-
written as

Corollary 4. When ˜̀= L with probability 1, we have

θ(0+, ˜̀) = 1
2

∫ w

w−L
[k(x)A(x) exp{

∫ w

x
A(t)dt}]dx > 1

2

∫ w

w−L
k(x)A(x)dx

where
k(x) = 2[x− (w − L)]

L2 > 0

and ∫ w

w−L
k(x)dx = 1.

Using Lemma (1) then shows that

d(0+, L) ≤ L

2

∫ w

w−L

k(x)
x

R(x)dx

is a sufficient condition insurance take-up to be positive. If R(x) is non
decreasing, then

L

2

∫ w

w−L

k(x)
x

R(x)dx ≥ LR(w − L)
2

∫ w

w−L

k(x)
x

dx

= R(w − L)
L

∫ w

w−L

x− (w − L)
x

dx

= R(w − L)[1− (w − L
L

) ln w

w − L
]

≡ Ψ(L) L ∈ [0, w].
Noticing that limL→w ψ(L) = limx→0R(x) provides the result.
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7.5 Coefficient of correlation ρ

Let L̃i and L̃j be two random variables that represent the losses of individuals
i and j. Conditionally on a realization κ of the random variable κ̃, losses are
assumed identically and independently distributed, hence

L̃iL̃j|κ =
{
L2 with probability πκ2

0 with probability 1− πκ2 .

As a consequence E(L̃iL̃j|κ) = L2πκ2 and E(L̃iL̃j) = L2πEκ̃2. Similarly,

L̃i|κ =
{
L with probability πκ
0 with probability 1− πκ ,

for all i, hence EL̃i = Lπµκ and EL̃iEL̃j = (Lπµκ)2. The co-variance between
two losses is therefore written as

cov(L̃i, L̃j) = L2π[Eκ̃2 − πµ2
κ].

Also, since

L̃i
2|κ =

{
L2 with probability πκ
0 with probability 1− πκ ,

implies E(L̃i
2) = πL2µκ, we find the variance of L̃i

Var(L̃i) = L2πµκ(1− πµκ).

Since Var(L̃i) = Var(L̃j) for all i, the coefficient of correlation is finally equal
to

ρ = cov(L̃i, L̃j)
Var(L̃i)

= Eκ̃2 − πµ2
κ

µκ(1− πµκ)

= σ2
κ + µ2

κ(1− π)
µκ(1− πµκ)

,

where the last line is obtained using σ2
κ = Eκ̃2 − µ2

κ.
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7.6 Proof of Proposition 4
When λ = 0, inequality (16) is rewritten as

E[κ̃u′(w − κ̃L)]
µκ

≤ u′(w − L). (24)

Since u′′ < 0, we have
u′(w − κL) < u′(w − L) for all κ ∈ [0, 1],

and hence
E[κ̃u′(w − κ̃L)] < µκu

′(w − L),
which gives (24). (16) also holds when λ is not too large.

7.7 Proof of Proposition 5
Using Proposition 3 with equations (16) and (19) gives I∗ > 0 if

ϕ(L) ≡ u′(w − L)− x(L, λ, ρ) > 0,
where x(L, λ, ρ) ≡ (1 + λ)(1 +A(w)Lρ). Using u′(w) = 1, we obtain ϕ(0) =
u′(w)− x(0, λ, ρ) = −λ < 0, and

ϕ′(L) = −u′′(w − L)− (1 + λ)A(w)ρ
ϕ′′(L) = u′′′(w − L) > 0

The function ϕ(L) is therefore convex with ϕ(0) < 0 and ϕ(L̄) > 0 if u′(w−
L̄) > (1 + λ)[1 + A(w)L̄ρ]. ϕ(L) = 0 hence defines L(λ, ρ) with L̄(λ, ρ) = 0
if λ = 0 and L̄(λ, ρ) > 0 if λ > 0. When L > L(λ, ρ), (i.e. I∗ > 0), Equation
(17) gives

β∗ = 1 + u′−1(x(L))− w
L

, (25)

for given values of λ and ρ. Let z(L) = u′−1(x(L)). Since DARA implies
u′′′ > 0, u′−1 is decreasing and convex and since x(L) is linear, z(L) is also
decreasing and convex. From (25), we obtain

∂β∗

∂L
=

[
Lx′(L)

u′′(u′−1(x(L))) − u
′−1(x(L)) + w

]
/L2

= Lz′(L)− z(L) + w

L2 .

Using w >= z(0) and the convexity of function z(L) yields
Lz′(L)− z(L) + w >= Lz′(L)− z(L) + z(0) > 0,

which gives ∂β∗/∂L > 0 when L ≥ L̄(λ, ρ). The comparative statics ∂β∗/∂ρ <
0 and ∂β∗/∂λ < 0 are obtained by noticing that an increase in either λ or ρ
translates into an increase in x(L). u′−1 decreasing then provides the results.
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