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Abstract

It is shown that in a class of counterexamples to Elliott’s conjecture
by Matomiki, Radziwill and Tao [23], the Chowla conjecture holds along
a subsequence.

1 Introduction

The celebrated Chowla conjecture [5] from 1965 predicts that for the arithmetic
Liouville function A, we have

. 1
(1) A}l_r)nooﬁ Z A(n+a1)-...-An+ax) =0
1<n<N
for any choice of 0 < a1 < ... < ag, k = 1. As noticed by Sarnak [25] this

is equivalent to saying that the Liouville subshift Xx < {—1,1}" is actually
the full shift and X is a generic point for the Bernoulli measure (1/2,1/2)®N,
which is the Haar measure on {—1,1}.  When we consider a more general
multiplicative function u : N — S! which is aperiodic (i.e. its mean along any
arithmetic progression exists and equals zero), and if all powers uk (k=1) are
still aperiodic, then the analog of (1) for u becomes

1
lim — Z ut(n+ar) ...cuF(n+ap)ust(n+by) ..o ut(n+b) =0
N—>
1<n<N
for all powers ry,s; € N and {a1,...,ar} n {b1,...,be} = &, which in turn

means that u is a generic point for (Lebgi)®", the Haar measure on (S!)Y.

This more general form of Chowla conjecture is still a particular case of
Elliott’s conjecture [7], [8], [9] which deals with several (possibly different) mul-
tiplicative functions (one of which is aperiodic). Similar conjectures can be
formulated for multiplicative functions taking values in the unit disk I, but in
this case we have to consider properties of w relative to |u|, where the latter
point is always generic for an ergodic measure (with respect to the left shift),
often called the Mirsky measure, on [0, 1]V (see [25] for the case of the M&bius
function p or e.g. [4] for a general case).



In [23], Matomaiki, Radziwill and Tao gave a class of examples of multiplica-
tive and aperiodic’ w : N — S! U {0} for which the sequence

(% 3 u(n)u(n+1))N21

1<n<N

does not converge to zero. This disproved the general form of Chowla conjecture
for aperiodic u, and in particular, they disproved Elliott’s conjecture. In their
class |u| = p? but they also explained that their example could be modified
to get a completely multiplicative S'-valued aperiodic function. Finally, this
lead them to reformulate Elliott’s conjecture in the sense that it is expected to
be valid for a subclass of aperiodic functions, the so-called strongly aperiodic
functions, and till today this stronger form of Elliott’s conjecture is open and
under intensive study [12], [13], [21], [26]-[29].

In this note, we will have a closer look at the counterexample given by
Matomaéki, Radziwilt and Tao. To avoid some technical, rather notational,
issues, we will deal with the completely multiplicative, S'-valued version of their
construction, which we call here the MRT class (see the complete description
of such multiplicative functions in Section 3). If w € MRT then it cannot be
generic for the Haar measure on (S')N, but still we can ask for which measures
on (SY)N it is quasi-generic. Each such measure yields a so-called measure-
theoretic Furstenberg system (see Section 2). In particular, the arguments given
in [23] prove that there exists an increasing sequence of integers giving rise to
a Furstenberg system which is measure-theoretically isomorphic to the action
of the identity map on S! equipped with the Lebesgue measure. What kind
of other dynamical systems can be obtained as Furstenberg systems for w in
the MRT class is a natural question. Furthermore, in the topological setting,
determines a subshift X, < (S')Y and we can ask for its topological entropy.
Our aim is to prove the following result.

Main Theorem. Let u be in the MRT class. Then, for each d = 0, there is a
Furstenberg system (X, vq,S) of w which is measure-theoretically isomorphic
to the unipotent system

(Td, Td—1,.-.,20) — (Tg, Tg—1 + Td, ..., To + 1)

on T equipped with the (d + 1)-dimensional Lebesgue measure.
Furthermore, the Bernoulli shift ((Sl)N, (Leb g1 )®N, S) is also a Furstenberg
system of u, i.e.

(2)  the analog of the Chowla conjecture holds for w along a subsequence.

In particular,

(3) Xy = (S, 2
and
(4) hiop(Xu, S) = .

ITheir functions are totally aperiodic, that is, all powers u, k > 1 are also aperiodic.
2Cf. this equality with a remark after Theorem 10 in [25] as a topological instance of
validity of Chowla conjecture.



The proof of the above theorem is given in Section 4. It seems also that this
result makes it legitimate to ask whether (some of) properties (2)-(4) are valid
for all totally aperiodic multiplicative functions u, |u| = 1. Note also that the
theorem above sheds light on Frantzikinakis’ question: see Problem 3.1 on the
list of problems in [3] of whether the system (z,y) — (2,2 + y) on T? can be a
Furstenberg system of the Liouville function. The expected answer is of course
negative (as the positive answer is in conflict with the Chowla conjecture) but,
as our result shows, this unipotent system is a Furstenberg system for a class of
multiplicative aperiodic functions. Moreover, our Main Theorem yields positive
answers to questions raised in Problem 7.3 [3] in the class of MRT functions.
More than that, since the ergodic components of vy, d = 2, are affine extensions
of irrational rotations, the Main Theorem disproves Conjecture 2 from [15].

As each u € MRT is given “locally by Archimedean characters”, in Section 5,
we will deal with Furstenberg systems of Archimedean characters themselves
and will describe their Furstenberg systems. Moreover, we will show that no
u € MRT satisfies the analog of Sarnak’s conjecture. Finally, in Section 6 we
show that the analog of logarithmic Chowla conjecture for w (cf. (2)) holds
along a subsequence and discuss further properties of Furstenberg systems of
MRT arithmetic functions: strong stationarity and the absence of zero mean on
typical short interval.

In Appendix we discuss Furstenberg systems given by vy from the pure er-
godic theory point of view. We explain their connections with the classical
theory of transformations with quasi-discrete spectrum and give a new charac-
terization of quasi-eigenfunctions which seems to be of independent interest.

2 Furstenberg systems of a bounded arithmetic
function

Assume that u : N — C is an arithmetic function, |u| < 1. Denote by D the unit
disk. On the space M (]D)N) of Borel probability measures on DY, we consider
the weak*-topology, in which v, — v if and only if §y fdvm, — §pu fdv for
each f € C(DY). This topology turns M (]D)N) into a compact metrizable space.
Let S denote the shift map on DY, and consider in M (DN) the sequence

(EN(U))N>1 = (% Z 5S"u>
N>=1

os<n<N

of empiric probability measures. By compactness, we can choose a converging
subsequence
En,,(u) = v,

and we say that w is quasi-generic for v along the sequence (N,,). It is not
hard to see (¢f. the Krylov-Bogolyubov theorem) that such a limit point v is S-
invariant. Moreover, such a v is always supported on the subshift X, generated
by u, that is

Xy = {S"u:n = 0}.



The measure-theoretic dynamical system (X, v, S) is called a Furstenberg
system of u. Denote by V (u) the set of all probability measures on X,, for which
u is quasi-generic:

V(u) := {V € M(X,,S): v= lim Ey,(u) for some N, — oo} .

m—a0
Classically, we have the following:

Proposition 2.1. ([6]) (i) V(u) € M(X,,S) is closed (in the weak™-topology).
(i) V(u) is connected, whence either |V (u)| =1 or V(u) is uncountable.

Let Zy : DY — D be the 1-coordinate map: Zy(y) = y(1) for y = (y(n))neN €
DY, In general, we define Z,, := Zy 0 S™ as the map y — y(n + 1). Then, given
v € V(u), we obtain a stationary process (Zy, Z1, ...) with values in DN whose
distribution is v. Let k = (Zp)«(v) be the distribution of the random variable
Zy under v. Then by the S-invariance of v, x is also the distribution of each
coordinate Z,,, n = 0. An example of particular interest corresponds to the i.i.d.
case, arising when v is a product measure, i.e., when v is of the form x®N. We
have the following observation.

Proposition 2.2. Let k be a probability measure on D. Assume that for each
d = 0 there exists vqg € V(u) under which the distribution of (Zo,...,Zq) is
KO Then k®N € V(u).

Proof. By compactness, we can assume that vy — p, and by Proposition 2.1 (i),
p € V(u). All we need to show is that

k
Ep(Z§ 0 87 ...« Z§ 0 §7%) = [ [ En
=1

foreach k > 1, ¢, € Z and 0 < j; < ... < ji. But the equality above is true if
p is replaced by vy for d > ji, and since Z& o St - ... Z@* o Sk € C(X,,), the
result follows. 0O

Remark 2.3. If x®Y € V(u) then by the variational principle (see e.g. [30,
Section 8.2]) hiop(Xu,S) = h( Xy, k8N, S) = H(k). If the distribution of x is
continuous then immediately H (k) = +00, whence hiop(Xy,S) = +00 in this
case.

Proposition 2.2 can be useful if we want to show that the product measure
yields a Furstenberg system of Bernoulli type (“Chowla holds along a subse-
quence”). Indeed, we only need to show the existence of Furstenberg systems
which yield some finite degree of independence of the process (Z,)n>0 and such
can be firstly of zero entropy and even very non-ergodic (i.e. belonging to Ergj‘),
cf. also [10]. Together with Remark 2.3, it also gives a nice criterion to show
that the topological entropy of w is infinite.

3 MRT multiplicative functions

In this section we describe more precisely the MRT class of completely multi-
plicative functions to which our Main Theorem applies. We start by giving a



formal definition of this class, then we resume the construction given in [23] by
Matomaéki, Radziwill and Tao of a completely multiplicative function meeting
the required property. Finally, we give the key property of MRT arithmetic
functions that will be used in the proof of our Main Theorem.

Definition 3.1. A completely multiplicative function u : N — S! belongs to
the MRT class if there exist two increasing sequences of integers (t,,) and (sp,)
such that, for each m > 1, we have the following properties:

2
o tm < Sm4+1 < Syl < tm+1;

(5) o for each prime p € (tm, tmy1], u(p) = p*m+1,
, 1

(6) e for each prime p < t,,, ‘u(p) — p”’"“‘ <a-
m

Here is the method to get such a function. We just have to define u(p)
for each prime p and to construct the sequences (t,,) and (s,,), which is done
inductively as follows. Start by choosing an integer t; € N and set, for each
prime p < t1, u(p) := 1. Now, assume that for some m > 1 we have already
defined t,, and u(p) for each p < t,,. In the Cartesian product [ St, we
consider the sequence of points

P<lm

((pis)P@m) seN’

Since the numbers log p, p < t,,,, are linearly independent over the integers, this
sequence is dense in Hpgtm S'. Thus, we can choose 8,41 > t, so that (6)
is satisfied. We then choose t,,4+1 > s2,.4, and for ¢,, < p < tm41 we set
u(p) := p*m+1. Doing this inductively for each m > 1 gives a completely
multiplicative function u € MRT.

Remark 3.1. It is also interesting to note that the growth of s,,1/t;, is nec-
essarily superpolynomial: in fact, it follows from Propositions 4.3 and 4.7 that,
for each 8 > 0, t,, < sﬁwl for m large enough.

It is also shown in [23] that once s,,41 > e'™ for m > 1, the resulting w is
aperiodic.

We will use the following easy lemma.

Lemma 3.2. Let u € MRT and (ty,), (sm) be as in Definition 3.1. Let m > 1
and n < tymy1. If the number of prime factors of n less than or equal to t,,
(counting multiplicity) is bounded by t,,, then

- 1

(7) [u(n) —ni*met| < —.
Proof. We write n as a product of primes

n = 1_[ po‘p(n) n po‘p(n)_

P<tm tm <p<tm+1

By the complete multiplicativity of w and by (5), we then have

u(n) = Hu<p>%<">< I p%w) .

P<tm tm <P<tm+41



Using (6) in the first product above, we get

lu(n) — nismﬂ‘ < M

tom
In particular, if 3>}, ~a,(n) < ¢y, then
. 1
lu(n) — n**m+1| < —.
lm

ad

The next lemma is useful to estimate the density of the integers n for
which (7) is not valid.

Lemma 3.3. Forte N, denote

Byi={n=1: Zozp(n) > t},

p<st

i.e. By is the set of integers n = 1 having at least t prime factors less than or
equal to t (counting multiplicity). Then

(8) €¢ := sup 1 Z 1p,(n) —— 0.

t—o0
Nzl Y N -

Proof. Foreachte N, set k; := lﬁJ (where 7(t) denotes, as usual, the number

of primes up to t). Let n € N; if, for each prime p < t, p** does not divide n, then
the number of prime factors of n less than or equal to ¢ (counting multiplicity)
is at most 7(¢)(k; — 1) < t, hence n ¢ B,. By contraposition, if n € By, there
exists a prime number p < ¢ such that p*¢|n. Therefore, we have for each N > 1

2 <y X S

1<n<N 1<n<N p<t
1

Z Lpkefn

1<n<N

t

=
N

N
3 =l

—— 0 (since k; — o0 as t — ).
t  t—00

3

A
=M R
=~

a
Using Lemma 3.2 and Lemma 3.3, we obtain the following result.

Proposition 3.4. Let u € MRT and (t,,), (Sm) be as in Definition 3.1. Let
(Ny,) be an increasing sequence of integers with Ny, < tp4+1 for each m € N.
Then

1 s 1
N—#{ne{l...,Nm} tu(n) — n*mt| > —} <eg,, —— 0.

fm m—00



4 Proof of the Main Theorem

Here is an outline of the proof. First, we present in Section 4.1 a family of
stationary processes, taking values in the unit circle, parametrized by an in-
teger d = 0. Such a process generates a measure-theoretic dynamical system
isomorphic to the unipotent system appearing in the statement of the theorem.
It is easily characterized by two conditions: each coordinate of the process is
uniformly distributed on the circle, and some deterministic function ¢4, of
the coordinates of the process is constantly equal to 1. We completely describe
in Proposition 4.1 and Remark 4.2 the distribution v4 of such a process, in
particular we show that d + 1 consecutive coordinates are independent. Then
Proposition 4.3 provides a criterion for an arithmetic function u to be quasi-
generic for this probability measure v4. This criterion involves the functions
®d+1, and we study in Section 4.2 two sequences of polynomials related with
this family of functions. We show in Section 4.3 that for w € MRT, the criterion
is fulfilled for each d > 0. For this we use Proposition 3.4 which allows us to
replace, in the appropriate range, w(n) by n®m+1. The criterion then becomes
an evaluation of some exponential sums, that we can handle with the help of
Kusmin-Landau Theorem (Theorem 4.8). Finally, using Proposition 2.2, we can

. . . N
conclude that wu is also quasi-generic for the product measure (Leb Sl)®

4.1 Processes in the unit circle

We recall the notation Z,, = Zy o S™ (n > 0) from Section 2, but we restrict
ourselves to the set of sequences taking values in S'. We define inductively a
new sequence of maps (Y ()~ defined on (S')N taking also their values in S,
by Y(© := Z,, YV := Z,/Z,, and in general for each d > 0,

ylasy Y Dod
' Y (d)
We also define the auxilliary sequence (X4)4=0 taking values in the one-dimensional
torus T := R/Z, by
eiQﬂ'Xd = Y(d)

As e2mXan = y(d+1) — gi2n(XaoS—Xa) o get
(9) Yd =0, Xgo0S8=Xg1 + Xq4.

Moreover, by an easy induction on n using the above formula, we can recover
the process each Z,, from (X,) by the relation

(10) Vn =0, Z,=e?"Xi=o (1)Xa.

Proposition 4.1. Let v be a shift-invariant probability measure on (S')N. As-
sume that there exists d = 0 such that, under v,

e Y4 s S-invariant (i.e. Y@+ =1 v-a.s.),
o the distribution of YD is uniform on S*.

Then, for each n, Z, is uniformly distributed on S*, and Zy, Z1,...,Zq are
independent.



Proof. As Y4 is S-invariant, so is X4. Hence, in every ergodic component of
v, Xg4 is a.s. constant. Moreover, since the distribution of Xy under v is the
Lebesgue measure Lebt on T, in almost every ergodic component the value of
X, is irrational. Let us fix such an ergodic component, say 7, and let « be the
value taken by X, under . From (9), we get

(Xa—1,...,X0) 08 = (Xg-1 + Xg, Xg—2 + Xg—1,..., X0 + X1)
= (Xa—1+ o, Xgo+ Xg-1,..., X0+ X1).

But when « is irrational, the map
(Tg—1,...,20) € T — (g—1 + o, Tg—2 + Tg—1,...,To + T1)

is uniquely ergodic [16], with the d-fold product (Lebt)®? as the only ergodic
invariant measure. We deduce that, under 7, the distribution of (X4—_1, ..., Xo)
must be (Leb)®¢. Integrating over the set of ergodic components, we get that
under v, the distribution of (Xg, Xq_1,...,Xo) is (Lebp)®@*+D . Then, from
Formula (10), we can write each 0 <n < d,

~ 27 X
Zn = 4p—-1€ "y

where Z,,_; is measurable with respect to Xy, ..., Xq_1 (Zp—1 =1 for n =0).
From this it follows that Z, is uniformly distributed on S' conditionally to
Xo,...,X,_1. This concludes the proof. O

Remark 4.2. The proof shows in fact that, for each d > 0, there is a unique
shift-invariant measure vy on (Sl)N such that whenever the assumptions of
Proposition 4.1 are satisfied, then the distribution of the stationary process
(Zn)nen is v4. Under v4, any d + 1 consecutive coordinates of the process are
independent and uniformly distributed on the circle, and for each n > 0 the
coordinate Z, 1441 is a deterministic function of Z,,, ..., Z, 14 given by the con-
dition Y@+ = 1. Moreover, looking at the process ((XO, Xi,... ’Xd)osn)nzo’
we see that the dynamical system ((Sl)N, Vg, S ) is measure-theoretically isomor-
phic to the unipotent system described in the statement of the Main Theorem.

It will be useful to introduce, for each d > 0, the function ¢4 : (S')4*! — St
such that Y¥ = ¢4(Z,...,Zq). For d = 0,...,4, these functions are given by

20 <1 2022
Po(z0) = 7 $1(20,21) = o $2(20, 21, 22) = el
1
(11) ZBZ 6
173 . B Z0R9 R4
¢3(20721522723) = ZOZ% ) ¢4(20721522723524) - Zilzg .

In general, we can always write the function ¢4 as a quotient

Td\20, - -5 2d
(12) ba(20---,2a) = ¥,
ﬂ-d(ZOv ceey Zd)
where 74(20,...,24) and 74(20,...,2q4) are products of some z;’s (with possi-

ble multiplicity). These sequences of products are completely defined by the
following recurrence property: mo(20) := 2o, 7o(z0) := 1, and for each d > 1,

(13) Ta41(205 - -+ Za+1) = Ta(21, - - . Zdv1) Ta(zo0, - - -, 2a),



and

(14) Ta+1(20y -+ -5 2ds1) = Ta(z1y -, Zd+1) Ta(20, - - -5 2d)-

Note that, as w4 and 74 only involve a product of variables, their definition
can be extended to C4*1.

The next proposition is a key ingredient for the identification of some Fursten-
berg systems of multiplicative functions.

Proposition 4.3. Let u = (u(n))neN e (SYN. Assume that, for some d > 1
and some increasing sequence (Np,) < N, we have

1
(15) N—mn;v gari(u(n),u(n +1),...,u(n+d+1)) ——1,
and that

1
(16) Ve 1, o o4 (u(n),u(n +1),...,u(n + d)) —— 0.

n< N,

Then, along the subsequence (Np,), u is quasi-generic for the measure vq de-
scribed in Remark 4.2.

Proof. Let i be a shift-invariant measure on (S!)Y such that, along some sub-
sequence of (N,,), u is quasi-generic for x. From (15), we get that

1= By [6as1(Zo -, Zas1)] = By, [Y @]
hence Y1) = 1 y-a.s. And from (16), we get that for each £ > 1
0=E,[6%(Z0, ..., 7Z4)] = By [(Y@)l] :

which shows that, under p, Y(® is uniformly distributed on S'. Then, with
Proposition 4.1 and Remark 4.2, we conclude that y =vy. O

4.2 Special sequences of polynomials

We now introduce two sequences (Pj)g=0 and (Qq)4>0 of polynomials in the
variable n, linked to the analysis of the preceding section by the following defi-
nition: for each d > 0,

(17) Py(n) :=mg(n,n+1,...,n+d), and Qg(n):=74(n,n+1,...,n+d).

The first polynomials of this family are given below (compare with the numer-
ators and denominators in (11)).
Po(n) = n; Qo(n)
Pi(n)=n+1; Qi(n)
Py(n) =n(n+2); Qa(n) = (n+1)%;
(n) =
(n) =

L
n n;

Py(n) = (n+1)*(n+3); Qz(n) =n(n+2)>
Py(n) =nn+2)°n+4); Qsun)=(n+1)*(n+3)*



Note that, according to (13) and (14), these sequences of polynomials satisfy
the following recurrence property:

Pd+1(7’L) = Pd(n + 1)@,1(71),
Qar1(n) = Qa(n + 1)Py(n).

Proposition 4.4. For each d > 1, Py and Qq are both of degree 2=, and the
degree of the difference Ry := Qq — Py is 2471 — d.

(18)

The computation of the degree of P; and Qg is a straightforward induction
using (18). For the degree of R, we will use the following lemma.

Lemma 4.5. Let P and R be two polynomials, of degree p and r, respectively
and with p # r. Let R be the polynomial defined by

R(n):= R(n+1)P(n) — R(n)P(n + 1).
Then the degree of R isr +p — 1.

Proof. Let us write the two terms of highest degree in P and R:
P(n) = apn® +bpnP~t + ...

and

r—1

R(n) = agn” +bgrn" " +---

where apar # 0. Then a direct computation shows that the two terms of
highest degree in R(n + 1)P(n) are

R(n+1)P(n) = arapn™? + (arbp + apbr + rapag)n" P71 ...
Likewise, the two terms of highest degree in R(n)P(n + 1) are
R(n)P(n+1)=agrapn™ + (apbp + apbr + pap aR)nT+P—1 4.
It follows that the term of highest degree in R(n) is (r — p)ap agn™ P!, O

End of the proof of Proposition 4.4. We show by induction on d > 1 that the
degree of Ry is 2971 — d. This is already true for d = 1 since Ry = —1 is of
degree 0. Then, assume that the result holds for some d > 1, and let us consider
the polynomial R4.1. We have

Rat1(n) = Qa+1(n) — Pat1(n)
= Qd(n + 1)Pd(n) — Pd(n + I)Qd(n)
= (Pd(n + 1) + Rd(n + 1))Pd(n) — Pd(n + 1)(Pd(n) + Rd(n))
= Ryq(n + 1)P4y(n) — Rq(n)Pa(n + 1).
But we know that the degree of Py is 2?1, and by the induction assumption
the degree of Rq is 247! — d. These degrees are different, therefore Lemma 4.5
applies, and shows that the degree of Rqy is 29 — (d + 1).
O

10



4.3 Furstenberg systems of MRT multiplicative functions

Now, we consider a completely multiplicative arithmetic function u = (u (n))n>1 €

MRT. Let (t,) and (s,,) be the associated sequences, as in Definition 3.1. Let
(Np,) be an increasing sequence of integers with Ny, < ¢,41, and let d = 0 and
£ =1 be fixed integers. Our purpose is to apply Proposition 4.3 to u, therefore
we have to evaluate the expressions of the form

(19) 1 >, dh(un),un +1),...,u(n+d).

™ 1<n<Np,
By Proposition 3.4, we have

NL Z qﬁfl(u(n),...,u(n +d))

M 1<n<Nm

1 . .
~ o dh(nrer, o (nd)eret) +o(1)
™ 1<n< Ny,
L
N,

) Pg(n)
2 ezésmﬂ log Qa(m) 4 0(1).

™ 1<n<Np,

(20) =

Therefore, in view of applying Proposition 4.1, we can replace an expression of
the form (19) by

L Z ei‘esm+lfd(")’
™ 1<n<N,,
where fy is defined by
Py(z)
21 z) :=lo .
(21) fula) = Tog 51 3

Note that, by Proposition 4.4, for d > 1, the d terms of highest degrees in
P; and Q4 coincide. In particular, we have

lim Pa(z)
z—0 Qg (x)

so fa(x) is well defined for x € R large enough. We will use the following results
on the asymptotic behaviour of fy.

=1,

Lemma 4.6. For each d > 1, there exists K4 # 0 such that

(22) fa(z) ~ % as x — 0.

For each d = 0, there exists Lg # 0 such that

/ d
(23) fd(.fC) ~ W as r — .

Moreover, there exists Hq > 0 such that f} is monotone on [Hg, +0).

11



Proof. For d = 0, note that fy(z) = logz, so that fj(z) = % and the result
concerning f is obvious. We consider now the case d > 1. From Proposition 4.4,
we can write

fa(n) = log

P,
—d(n) = —log (1 + Rd(n)) ;
Pd(n) + Rd(n) Pd(n)
where deg P; = 2971 and deg Ry = 297! — d, which yields (22).
Deriving f4 gives

;o Q4 PCII(Pd + Rd) — Pd(P(; + R&)

d 2
Py b

Since the degrees of P; and R, are different, the degree of the numerator is
equal to deg Py + deg Ry — 1 = 2% — (d + 1). But the degree of the denominator
is deg Py + degQq = 29, and this gives (23). Finally, as a nonzero rational
fraction, the second derivative f/] has finitely many zeros, from which we get
the last claim of the lemma. 0O

We can now state the precise asymptotics which, together with Proposi-
tion 4.3, will allow us to identify some Furstenberg systems of w.

Proposition 4.7. Letd > 0 be a fized integer, and choose a real number B such

that 1 1

Set, for each m =1, Ny, := [(strl)ﬁJ. Then

(24) Ve =1, 1 ¢ilsmifa(n) 0
Non 1<n<Np, m—0
and
(25) L ei5m+lfd+1(n) 1.
m 1<n<Nm, m— 00

An important tool in the proof of the above proposition is the following
theorem of Kusmin-Landau, which we state as in [24]. Here, if x is a real
number, |z stands for the distance of x to the nearest integer.

Theorem 4.8 (Kusmin-Landau Theorem). If f : [a,b] — R is C*, f’ is mono-
tone and || f'|| = A1 > 0 then

S i) ¢ 2
nela,b] AL

1
d+1
average in (24) and in (25) by the average over s&,, ; < n < sfnﬂ. For such an
n, using (22), we get

Proof of Proposition 4.7. Choose « such that < a < . We can replace the

1
|Sm+1fd+1(n)| =0 <Sa(d+1)1> m—o0 0,

m+1

12



and this immediately gives (25).
By Lemma 4.6, for m large enough f} is monotone on [sffwl, SE@-}—I]’ and

there exists K > 0 (depending only on ¢ and d) such that, for n in this interval,

Sm+1 1
[€sm41fe(n)]| = Knd+1 = Ksﬂ(d+1)—1'

m+1

By Kusmin-Landau Theorem, we get

Z pilsmirfa(n)| — (Si(ﬁl)fl) ’

Nt B
S 1SNSS,

and finally
1

RE eilsm+1fd(n) =0 (andJ:ll) — 0.

m—a0

M 1<n< Ny,

a
Putting together (20), Proposition 4.7 and Proposition 4.3, we get the fol-
lowing result.

Theorem 4.9. For any d > 0, the measure-preserving system ((Sl)N,Vd,S)
appears as a Furstenberg system of w.

Using Proposition 2.2 and the fact that, under v4, d + 1 consecutive coordi-
nates of the process (Z,,) are independent and uniformly distributed on S!, we
obtain the following.

Corollary 4.10. The system ((Sl)N, (Leb 51)®N,S) is a Furstenberg system
of u.

This concludes the proof of the Main Theorem.

5 Archimedean characters and slowly varying arith-
metic functions

We recall that an Archimedean character is a completely multiplicative function
of the form n — n’ with some fixed t € R. As

eitlog(1+1/n) -1 0
n—0o0

[(n+1)" —n'| =

)

Archimedean characters fall into the category of slowly varying arithmetic func-
tions, that are bounded arithmetic functions u satisfying

u(n +1) —u(n) —— 0.

n—o0

A useful weakening of this property is the following: we say that the bounded
arithmetic function u is mean slowly varying if

(26) % S Ju(n + 1) — u(n)] —— 0.

N—w
n<N

13



Note that this is equivalent to the fact that u(n + 1) —u(n) — 0 on a subset of
n of density 1.

It is worth mentioning a result by Klurman [20, Theorem 1.8], who proved
a conjecture by Kétai concerning mean slowly varying multiplicative functions
(non necessarily bounded). From his theorem, it easily follows that the only
mean slowly varying multiplicative functions taking values in the unit circle are
the Archimedean characters.

5.1 Furstenberg systems of (mean) slowly varying func-
tions

Proposition 5.1. The arithmetic function u : N — D is mean slowly varying
if and only if all Furstenberg systems of u are measure-theoretically isomorphic
to the action of the identity on some probability space.

Proof. Assume first that u is mean slowly varying, and that u is quasi-generic
for some S-invariant measure v on DY along a subsequence (N,,). Then, by (26),
we have

B2 = Zo|] = lim — > |u(n+1) = u(n)| =0.

It follows that Z; = Zj v-a.e., and more generally by S-invariance, for each
k € N, we also have Z; 1 = Zj v-a.e. Hence, v is concentrated on the subset of
sequences with identical coordinates, and S = Id v-a.e.

Conversely, assume that (26) fails. Then there exists a subsequence (Ny,)
such that

and by compactness of M (DY) we can assume that u is quasi-generic for some
S-invariant measure v along (N,,). But then we have

Ey[|Z1 — Z0|] = EV[|ZO oS — Z0|] > 0,

and the Furstenberg system of u defined by v is not measure-theoretically iso-
morphic to the action of the identity. O

Proposition 5.2. Let u: N — D be a slowly varying arithmetic function, and
let X, c DN be the subshift generated by w. Then the topological entropy of
(Xu, S) is zero.

Proof. We start by observing that, as w is slowly varying, for each £ > 0 there
exists L. such that whenever ¢ > L.,

1

(27) VneN, = > Ju(j+1) —u(j)| <e.
(
n<j<n+L

Let w be a sequence in X,. As each subblock of w is a limit of subblocks of w,
it follows that (27) is still valid if we replace v by w. But this in turn implies
that any w € X, is mean slowly varying.

14



Now, let v be an ergodic shift-invariant measure on X,, and let w € X,
be v-generic (v-almost all sequences in X, are v-generic). Then w is mean
slowly varying, and by Proposition 5.1, the measure-theoretic system (X, v, S)
is isomorphic to (X, v,Id). In particular, its Kolmogorov entropy is zero.

By the variational principle (see e.g. [30, Section 8.2], the topological entropy
of (X, S) must be also zero. O

Remark 5.3. As a matter of fact, the above proof shows that whenever u is
a slowly varying function, any w € X, is also a slowly varying function. More
than that, we can make the following observation: by the definition of X,,, each
w € X, can be written as
w = lim S™Fu,
k—o0

where (ny) is a non-decreasing sequence of non-negative integers. Either (ng)
is bounded, and then w = S™u for some n > 0, or ny — 00, and then as u is
slowly varying, w must be of the form (w;, w1, ws,...) for some wy € D.

In the following remark we provide some more observations on mean slowly
varying functions.

Remark 5.4. (a) Note that the subshift generated by a mean slowly varying
function v : N — D can be of infinite entropy: we can modify a slowly varying
function on a subset of density zero to get a mean slowly varying function
generating the full subshift (DY, S).

(b) If u is mean slowly varying and if, for each £ > 1, the limit

. 1 ’
dm 5 2 v
1<n<N

exists then there is only one Furstenberg system of u: there exists a shift-
invariant measure v such that Ex(u) w2 v Indeed, note that for each
—00

k=1,/0.>21,j.=20forr=1,...,k, we have
i Z uél (7’L+ . ) . . ék( + i ) B i Z €1+...+€k( ) 0
N i) et (ntge) = 5 u n)| =2 0
1<n<N 1<n<N

(¢) We can repeat word for word all arguments for the logarithmic averages.
In particular, if u is mean slowly varying and, for each £ > 1, the limit

S Lut)

n
1<n<N

(28) J\}linoo log N

exists, then there is only one logarithmic Furstenberg system (see Section 6.1):
there exists a shift-invariant measure v such that

1 1
= gy —— 1.
1ogNK§Nn Sru o

(d) For u(n) = n', we have the logarithmic assumption (28) satisfied (in
fact, each such limit is zero whenever £ s 0), so there is only one logarithmic
Furstenberg system, as already noticed in [15] but we have uncountably many
Furstenberg systems (cf. Corollary 5.5).
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As it follows from Proposition 2.1, a slowly varying function v : N — D ei-
ther has one Furstenberg system, or it has uncountably many different Fursten-
berg systems. By different, we mean that we obtain different measures. The
measure-theoretic dynamical systems given by these measures can however be
all isomorphic which is the case in the example below.

We consider now a mean slowly varying function w such that |u(n)| = 1 for
all n > 1. Assume, moreover, that

1
lim — 2 dsny = lim En, (u) =v

m—00 m m—00
0<n<N,,

for an increasing sequence (N,,). It follows from Proposition 5.1 that v is
supported on the set {(z,z,...): z € S'}. Moreover, Z}(z,z2,...) = z*. Hence,
we can identify v with a measure s defined on S! such that
1
lim — Z uk(n) = JZ& dv = J 2F dk.
Sl

m—00 N
M 1<n<Np,

It follows that, varying k € Z, the LHS of the equation above provides the
Fourier transform of the measure x which we are seeking. In the particular case
where u(n) = n*, we have

1 ) Nik
— nt = —m_ 4 o(1),
m N, 1+ik
ki
thus the Fourier coefficients of x are given by the limits of ﬁﬁ as m — o0. The

case k = 1 yields that N}, — ¢, where |c| = 1, and we obtain that

ck
J- Fdk = ——, kel
St 1+Zl€

Consider, ' := k * dz. Then

1
f de:‘i/ ST keZ.
St 1+1k
Since (ﬁ) is an ¢2- sequence, the measure x’ is absolutely continuous with
respect to the (normalized) Lebesgue measure Lebg:, with density g equal to
9(2) = Y0, 7-2*. In fact, noting that for all k € Z,

1+ik
L e  — 1
J e27rac ei27rkxd _
o 27(1 + k)’
we see that, for x € [0,1),
) 27Te27rm
g(ez2wx) _ 627‘—71-

Finally, note that the sequence (n') is dense in S! as the sequence (logn) is
dense in [0, 27) mod 2.

Corollary 5.5. The family of Furstenberg systems of u(n) = n' consists of
uncountably many different systems given by all rotations of g(z)dz. All of them
are isomorphic to the identity on the circle with Lebesgue measure (and ergodic
components are Dirac measures on the circle). Moreover, X,, = {(z,2,...): z €
St} U {S"u:neN}.
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5.2 MRT arithmetic functions do not satisfy Sarnak’s con-
jecture

As MRT arithmetic functions mostly behave like Archimedean characters on
very large intervals, we will use some ideas presented in the preceding section to
prove that MRT arithmetic functions do not satisfy Sarnak’s conjecture: for any
MRT function u there exists a zero entropy topological system which outputs
a sequence having some correlation with u.

Let w be an MRT arithmetic function, and let (¢,,) and (s,,) be as in Defini-

tion 3.1. We set, for eachm e N, r,,, := [sf’fj. Then we define a new arithmetic
function v = (v(n)), _ € (S')N by setting for each m:

v(n) =

1 for t,, <n < rpa,
nim+l for rpmar <N < bt

Then, for each m, we have

0 ifty, <m < T,

vin+1)—vn)| = _

v( ) (n)] {O (sml_ﬁ) ifrper <n <tmar-

Even though v may not be slowly varying because of the possible jumps in t,,
and in 7,41, the property described in Equation (27) is still valid, as these jumps
are bounded by 2 and are separated by gaps whose lengths tend to co. Therefore,
the proof of Proposition 5.2 also applies to v, and we have hyop(X,, S) = 0.

But, since 71— (), in view of Proposition 3.4, we have
tm+1 m—oo

1

u(n)v(n) — 1.

t

m+1 1<n<tmy1

We thus have found a topological dynamical system (X,,.S) of zero topological
entropy, a point v € X, and a continuous map f : X,, — C (the conjugate of the
zero-coordinate map), such that the sequence ( f (S”v)) is not orthogonal to u,
in the sense that

Y wm)f(S™) > 0as N oo

1<n<N

6 Further properties of MRT functions

6.1 MRT functions satisfy logarithmic Chowla conjecture
along a subsequence

The purpose of this section is to study what the Main Theorem becomes if we
consider logarithmic averages instead of usual averages. A logarithmic Fursten-
berg system of an arithmetic function v : N — D is defined as in Section 2 as
a measure-theoretic dynamical system (X, v, S), where v is now a weak* limit
of a subsequence of the logarithmic empirical measures

lo 1 1
ENg(’LL) = L_ 2 ﬁésn—lu,

N 1<n<N
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with Ly :=1+ 44+ % (N >1).
We recall the classical relation between the logarithmic and usual averages,
obtained by summation by parts:

og _ 1
(29) ENEw) = — )

N 1<n<nN-1

1 1

7 Balw) + £ Ex ().

We recall that the weak*-topology turns M ((S')Y) into a compact metrizable
space, and that a possible metric is given by

ijdz/fffjdn,

where (f;);j=1 is a countable family generating a dense subspace of C((S')N). We
can for example take for (f;);>1 the family of {Z]'-.. - Z]" : t > 1,ix = 0,74 € Z}
taken in any order. Then, the metric is globally bounded by 2. Note also that
for convex combinations, we have

Ay, k) = oY
j=1

(30) A([rmare). [reare)) < [ a0, are)
We need the following simple observation.

Lemma 6.1. Assume that ui, — p and let, for d > 1, kq := ZZJ”Z[‘ oy, Mk +
8D pg, where oz,(cd),ﬂ(d) =0, ZZiZd oz,(cd) =1—9D, If B -0 then kg — p.

Proof. This follows immediately from (30). O

Now, we consider an MRT arithmetic function u, and we take (t,,) and (s,,)
as in Definition 3.1. The proof of Main Theorem (see Section 4.3) yields the
following:

Lemma 6.2. Fix d = 0 and choose
{ﬁ <Ba<By<i ifd=1
1<pfo<pB<2 if d = 0.
Let € > 0. Then, for each m large enough,
A (En(u),vg) <e

Ba
m+1

uniformly in sﬁfﬂ <N <s

Proof. Assume the result does not hold. Then for infinitely many integers m
we can find sﬁfﬂ < Np, < sﬁfH such that

A(En, (u),va) 2 &

On the other hand, the proof of Proposition 4.7 shows that, along such a se-
quence (N,,) we must have
En,,(u) = va,

which yields a contradiction. 0O
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Now, let us fix integers 1 < D; < Ds. We consider the convergence of
logarithmic empirical measures of u along the increasing sequence of integers

(Np) = (ls%fiJ) Given a small real number ¢ > 0, set for each D1 < d < Do

B 1 i €
S d+1 0 2d(d+1)

e

1
Pa: d~2dd+1)

and ) :=

Using (29), we write E}f}i (u) as a convex combination of the empirical measures
En(u), 1 <n < N. We partition {1,..., N} as | |p cg<p, I7' 0 J™, where

mo,_ . Pa Ba
1] .—{nEN.sm+1<n<sm+1 )

and

Jmi={1,. N\ || I
Di<d<D2>

By Lemma 6.2, for m large, E,,(u) is close to v4 for n € I]*. The weight of I}’
in the convex combination is

T 2 g, D80 = D (- g ) o)

Ly n+1lm d+1

m m
nely

It follows that the total weight of |_|D1<d<D2 I} is asymptotic, as m — <0, to

1 1 D,
Di[=—-—=—)(1-e)>1-e-—=*
1<D1 D2>( g) > € Dy

and then for m large enough the weight of J™ is bounded by ¢ + g—;. In view

of Lemma 6.2 and (30), any weak® limit of E}\?i (u) can be written as

1 1
D1(17€) 2 <Em> I/d+04p,

D1<d<D>

where p is some shift-invariant probability measure on X,, and 0 < a < e+ g—;.
Letting ¢ — 0 and Dy — o0, we see (cf. Lemmma 6.1) that for any Dy > 1
there exists a logarithmic Furstenberg system of u whose invariant measure is

Note that, under this measure, the distribution of (Zy, ..., Zp, ) is (Lebg: )®(D1+1).
By Proposition 2.2 (which is also valid in the logarithmic case), we can also find

(Lebg: )®N as an invariant measure of a logarithmic Furstenberg system of u.
Thus, we have proved the following result:

Corollary 6.3. Each u € MRT satisfies the logarithmic Chowla conjecture
along a subsequence.
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Getting 1

Under the assumptions given in Definition 3.1, we can easily modify the above
argument to incorporate v in the weak* limit of Elog ® (u): we just have to take
Dy =0 and choose By :=1+¢, 8 :=2—e. The weak* limit we get has then

the form
_<V°+Z ( d+1> d)'

If in the construction of the MRT sequence we add the extra assumption that
s < tmg1,  with ap, — o0,

which is compatible with the rest, then we can now take 3 as large as we want,
so that the weight of 1y in the weak® limit is as close to 1 as we want. Finally,
we get a logarithmic Furstenberg system of u with vy as an invariant measure.

It is not clear however if we can get v4 (d = 1) for some logarithmic Fursten-
berg system of an MRT function.

6.2 Absence of zero mean on typical short interval

Motivated by Matoméaki-Radziwill’s theorem [22] concerning strongly aperiodic
multiplicative functions, we say that w : N — D has zero mean on typical short
interval if

lim u(m+ h)| =0.
M. H o0, H=o(M) M 1<mZ<M O<;H ( )
Proposition 6.4. Assume that 1iminfg_,oo%21<jg |u(§)| =t a > 0. If u has

identity as a Furstenberg system then u has mo zero mean on short intervals.

Proof. Suppose that u has zero mean on short intervals. Assume that

lim Eyp, (u) = k.
k—o0

Now, the system (S, X, ) is the identity if and only if Zy = Zy 0 S k-a.e.
Let £ > 0 and choose Hy so that for H > Hy, we have

lim sup ML Z

k—o k 1<m<Mj,

% Z u(m+h)| <e

0<h<H

Take H > Hy. Then

lim sup ML Z

k—o0 k 1SmSMk

lim sup ML Z

1
E Z ZO (Sh+mu) =

k—00 k<m<ny 0<h<H

. h _

lim sup — Zyo S" dEym, (u) =
k- JX, o<h<H
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1
— Z ZO 9 Sh
fxu H0<h<H

a contradiction. 0O

dli=J- |Zo|ldk = a > 0,

u

Corollary 6.5. If u € MRT then u has no zero mean on short intervals.

6.3 Strong stationarity

We now show that, for each d > 0, the stationary process (Z,,) with distribution
vq is strongly stationary (see [19]), i.e. for each s1 < ... < s and each r > 1,
the distributions of the vectors (Zs,, ..., Zs,) and (Z,s,, ..., Zys, ) are the same.

Fix d = 0 and we recall that the process (Z,,) with the distribution v, is the
same as of the process (f o T}), see (34) in Appendix for the definition of T,
and f(x1,...,74) = 2™, Then

foTi(@y, ... zq) = 2milla)mt(Zo)aatect (§)aa)
It follows that for each s; < ... < s and each choice of integers ji, ..., jk, we
have _ _
EZp ... 20 #0 =

k . k

Z]( > =0for £=0,...,d—1< Y st =0for£=0,....,d—1.

: 14 :

1=1 =1
Therefore,

EZD ... ZI =0« EZJL -...-ZJt =0 for each r > 1.

Moreover, EZgi S Zgl’: # 0 is equivalent to EZgi e Zg: = 1. It follows that

the process (Z,,) with the distribution vy is strongly stationary.

It follows that all Furstenberg systems which have been found in the paper
are given by stationary processes which are strongly stationary. Note also that
since every convex combination of strongly stationary processes remains strongly
stationary, also the logarithmic Furstenberg systems determined in Section 6.1
are strongly stationary which fits perfectly to a general result of Frantzikinakis
and Host [14], [15] about logarithmic Furstenberg systems of strongly aperiodic
multiplicative functions.

We end by asking the following question, which has been suggested to us
by both Nikos Frantzikinakis and Florian Richter: can we find a Furstenberg
system of some uw € MRT which is the direct product of a Bernoulli shift and a
unipotent system?

7 Appendix
We aim at showing that from the dynamical point of view there is a close relation

between the processes (Y(9)4s0 which appeared in Section 4 and the concept
of quasi-eigenfunction in ergodic theory.
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7.1 Algebraic constraints and quasi-eigenfunctions

Given a standard Borel probability space (X, B, u), let M(X) denote the set
of all measurable functions of modulus 1 defined on X. Endowed with the
pointwise multiplication and the L2-topology, it becomes a Polish group. Given
an automorphism 7" on (X, B, u), set

Eo(T) :={ge M(X): goT =g}
and then inductively, define
Eip1(T):={feM(X): foT/feEyT)}, d=0

Note that each E4(T') is a group which is called the group of d-quasi-eigenfunctions.
For w e M(X) and m = 1, we set

w™ =woT™ 1. w

with w(® = 1. Assume that g € E4(T) and let go T = hg with h = goT/g €
E4—1(T). Then, for each ¢4, ..., ¢, we have

k

k k
ngoT& _ Hh(&)g — gkl_[h(fi) —
i=1 i i=1

hoT/h h

k £;i—1 Jji— (»)
- ho (hoT/h)o
kS (hoT/R) o TN™ _
| ( h ) H( hoT/h )

khZ’Llli hoT Zf L ﬁéi*ll:[ (hOT/h)OT (p) B
g h [1] hoT/h o

It follows that for the stationary process (g oT™)pen the following holds: when-
ever {;, 0} satisfy Zz = Zz 1 ¢7 for j =0,1,...,d, we have

k £;—1j5-1 (p)
koo, hoT/h)oT hoT
PR ] (( /h) > _
T

k

k
(31) HgoTeizngoTeli
i=1

1=1

provided that g € Eq(T).
In fact, the processes given by quasi-eigenfunctions are the only satisfying
the algebraic relation (31).
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Proposition 7.1. Assume that (Z,) is a stationary S'-valued process. Then
for each d =0, Zy € E4(T) if and only if

(32) Zoy oo Zay =Ty - Dy,

for each €;, 0. for which Zk 0= Zk 29 for j=0,1,...,d assuming that

i=1"1 i=1"1
(33) (O, ) n (. 0 = @

Proof. We can assume that Z, = Zp o T™ for an automorphism 7" of (X, B, ).
Now, we proceed by induction. Since the first condition (d = 0) is just Zy oTh.
c..r0ZgoTh = Zyo TO ... Zoo T whichever numbers we take, we have (by
taking k= 1, /1 =1 and gll = 0) ZooT = Zo, S0 Zj € Eo(T)

Notice that condition (33) is superfluous since if some of the numbers ¢; are
equal to ﬂ;, then we can just cancel out the relevant factors. So, assume now
that Zy satisfies (32) and let f = Zy o T/Zy. We need to prove that f satisfies
the relation (32) up to d (if so, then by the induction assumption f € E4(T),
whence Zy € Eq4+1(T)). That is, we want to prove that

foTh . .. foT% =foTh . ... .foT%

provided that Z§=1 fg = Zle E/ij for j = 0,1,...,d. Equivalently, we want to
show that

ZooTHr . . ZyoTH Y. Zy0Th ... Zgo T =
ZooTOt . ZyoT% . ZgoTh .. ... Zyo T,
But we clearly have
(0 + D) (g DI T =
(0 + 1) (0, + 1) e g
(let alone if we replace d + 1 by a smaller j), hence the result. O

Remark 7.2. Assume additionally that T is totally ergodic (i.e. all non-
zero powers are ergodic). Then, following [2], T has quasi-discrete spectrum
if span (s Ea(T)) = L*(X, B, 1) (sometimes, T is called an Abramov auto-
morphism). Quasi-discrete spectrum automorphisms are basically affine auto-
morphisms of compact, Abelian, metric groups, see [18] for more details.

Remark 7.3. Knowing that Zy € E4(T) does not determine the whole process
(Zm)men- Indeed, for example, if we take the ergodic decomposition of T', then
the process (Z,,,) (considered with respect to an ergodic component) will still
satisfy the same algebraic relation even though the distribution of the process
may have changed.

7.2 Algebraic constraints and n-independence

We will be interested in the (very) non-ergodic case. Given d > 1, consider the
(unipotent) automorphism 7} : T¢ — T¢, defined by:

(34) Ti(z1,...,xq) = (v1,21 + T2, ..., Td—1 + Tq)
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(hence Ty is just the identity on T). Set f(z1,...,z4) = €*™¢. Then, (f o
T/f)(z1,...,xq) = ™41 50 by induction, it is easy to show that f € Eq(T}).

Denote by ErgJ‘ the class of automorphisms disjoint from all ergodic auto-
morphisms.

Proposition 7.4. For eachd > 1, Ty € Ergj‘. Moreover, the stationary process
(f o T])men is d-independent, i.e. for all mi < ... < mgq the variables f o
T, ..., foT " are independent.

Proof. To prove that Ty € ErgL7 we first notice that its ergodic decomposition is
given by the tori (on which we consider the relevant Lebesgue measure) T¢~! =
T4=1 with 2 € T irrational (and we consider Lebesgue measure® on T) on which
the action T} , is given by

(x2,25...,24) = (T2 + 2,22 + T3,...,Ta—1 + Tq).

If an ergodic automorphism S acting on (Y,C,v) is non-disjoint with T , then
since T . is an ergodic compact group extension of an irrational rotation, the
associated Koopman operator Us must share a common eigenvalue with the
Koopman operator Ur, , given by Ty, (cf. [17], Chapter 6). As Ug can have only
countably many eigenvalues and the measure on the space of ergodic components
is continuous, we can assume that S is disjoint with all ergodic components.
Take any joining p of Ty and S. Let

p= fpv dP(v)

be its ergodic decomposition. Then, for P-a.e. -y, the projection p,|y of p, on
Y equals v since v is ergodic. Moreover,

(35) Lebos = plss = [ pr 50 dP(3)

is a decomposition of Lebgs into ergodic measures. By the uniqueness of
ergodic decomposition, it is (35) which is the ergodic decomposition, and (by
disjointness) we obtain that

p= f (0, ® (Leb1)®“" V) ® v dLeb r(z)
T

and the first claim easily follows.
It is not hard to check that by elementary properties of Pascal triangle:

36 itz = (oneees (7 Yo (0 Joe ot (§)2a).

Now, choose any integers r <ry <...rq and g; € Z for j = 1,...,d. We want

to show that the distribution of the vector (f9 oT}*,..., f44oT;%) is (Leb T)®d
and for that we need to check that

(37) E(ftoT)t-...- fl4oT;*) =0

3That is, we identify the space of ergodic components with (T, Leb ).
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unless ¢1 = ... = g4 = 0. Now, in view of (36), the negation of (37) is equivalent

to
d .

=1

It is not hard to see that this system of linear equations is equivalent to
d
qur;-“ =0fork=0,1,...,d — 1.
j=1

However, the determinant here is the Vandermonde determinant and since the
numbers r; are pairwise different, our claim follows. O

Remark 7.5. By the proof of Proposition 4.1 (see also Remark 4.2), under
the assumptions of Proposition 4.1, we obtain that the dynamical system cor-
responding to the stationary process (Z,,) is (up to isomorphism) just Ty.

Remark 7.6. If T acting on (X, B, 1) is additionally ergodic then Ey(T) con-
sists of the constants while E1(T) consists of the eigenfunctions of the Koopman
operator Ur acting on L?(X,B, ). Hence, if (Z,)nen is a stationary process
satisfying

(38) Zy-Zo =77

then, using also Proposition 7.1, the ergodic components of the corresponding
dynamical system must have discrete spectra.* A prominent example of such a
situation is the automorphisms T5(z1,22) = (21,21 + x2) on T2 whose ergodic

components are (all) irrational rotations (and Zj is given by fa : (z1,22) —
e’L’Qﬂ'fL‘Q)-
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