On Furstenberg systems of aperiodic multiplicative functions of Matomaki, Radziwill and Tao

Aleksander Gomilko, Mariusz Lemanczyk, Thierry de La Rue

To cite this version:

Aleksander Gomilko, Mariusz Lemanczyk, Thierry de La Rue. On Furstenberg systems of aperiodic multiplicative functions of Matomaki, Radziwill and Tao. Journal of modern dynamics, 2021, 17, pp.529-555. 10.3934/jmd.2021018 . hal-02875515

HAL Id: hal-02875515

https://hal.science/hal-02875515

Submitted on 26 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On Furstenberg systems of aperiodic multiplicative functions of Matomäki, Radziwiłł and Tao

Aleksander Gomilko Mariusz Lemańczyk
Thierry de la Rue

August 26, 2021

Abstract

It is shown that in a class of counterexamples to Elliott's conjecture by Matomäki, Radziwiłł and Tao [23], the Chowla conjecture holds along a subsequence.

1 Introduction

The celebrated Chowla conjecture [5] from 1965 predicts that for the arithmetic Liouville function $\boldsymbol{\lambda}$, we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} \boldsymbol{\lambda}\left(n+a_{1}\right) \cdot \ldots \cdot \boldsymbol{\lambda}\left(n+a_{k}\right)=0 \tag{1}
\end{equation*}
$$

for any choice of $0 \leqslant a_{1}<\ldots<a_{k}, k \geqslant 1$. As noticed by Sarnak [25] this is equivalent to saying that the Liouville subshift $X_{\boldsymbol{\lambda}} \subset\{-1,1\}^{\mathbb{N}}$ is actually the full shift and $\boldsymbol{\lambda}$ is a generic point for the Bernoulli measure $(1 / 2,1 / 2)^{\otimes \mathbb{N}}$, which is the Haar measure on $\{-1,1\}^{\mathbb{N}}$. When we consider a more general multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ which is aperiodic (i.e. its mean along any arithmetic progression exists and equals zero), and if all powers $\boldsymbol{u}^{k}(k \geqslant 1)$ are still aperiodic, then the analog of (1) for \boldsymbol{u} becomes

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} \boldsymbol{u}^{r_{1}}\left(n+a_{1}\right) \cdot \ldots \cdot \boldsymbol{u}^{r_{k}}\left(n+a_{k}\right) \overline{\boldsymbol{u}^{s_{1}}\left(n+b_{1}\right) \cdot \ldots \cdot \boldsymbol{u}^{s_{\ell}}\left(n+b_{\ell}\right)}=0
$$

for all powers $r_{u}, s_{t} \in \mathbb{N}$ and $\left\{a_{1}, \ldots, a_{k}\right\} \cap\left\{b_{1}, \ldots, b_{\ell}\right\}=\varnothing$, which in turn means that \boldsymbol{u} is a generic point for $\left(\operatorname{Leb}_{\mathbb{S}^{1}}\right)^{\otimes \mathbb{N}}$, the Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$.

This more general form of Chowla conjecture is still a particular case of Elliott's conjecture [7], [8], [9] which deals with several (possibly different) multiplicative functions (one of which is aperiodic). Similar conjectures can be formulated for multiplicative functions taking values in the unit disk \mathbb{D}, but in this case we have to consider properties of \boldsymbol{u} relative to $|\boldsymbol{u}|$, where the latter point is always generic for an ergodic measure (with respect to the left shift), often called the Mirsky measure, on $[0,1]^{\mathbb{N}}$ (see [25] for the case of the Möbius function $\boldsymbol{\mu}$ or e.g. [4] for a general case).

In [23], Matomäki, Radziwiłł and Tao gave a class of examples of multiplicative and aperiodic ${ }^{1} \boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1} \cup\{0\}$ for which the sequence

$$
\left(\frac{1}{N} \sum_{1 \leqslant n \leqslant N} \boldsymbol{u}(n) \overline{\boldsymbol{u}(n+1)}\right)_{N \geqslant 1}
$$

does not converge to zero. This disproved the general form of Chowla conjecture for aperiodic \boldsymbol{u}, and in particular, they disproved Elliott's conjecture. In their class $|\boldsymbol{u}|=\boldsymbol{\mu}^{2}$ but they also explained that their example could be modified to get a completely multiplicative \mathbb{S}^{1}-valued aperiodic function. Finally, this lead them to reformulate Elliott's conjecture in the sense that it is expected to be valid for a subclass of aperiodic functions, the so-called strongly aperiodic functions, and till today this stronger form of Elliott's conjecture is open and under intensive study [12], [13], [21], [26]-[29].

In this note, we will have a closer look at the counterexample given by Matomäki, Radziwiłł and Tao. To avoid some technical, rather notational, issues, we will deal with the completely multiplicative, \mathbb{S}^{1}-valued version of their construction, which we call here the MRT class (see the complete description of such multiplicative functions in Section 3). If $\boldsymbol{u} \in$ MRT then it cannot be generic for the Haar measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$, but still we can ask for which measures on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$ it is quasi-generic. Each such measure yields a so-called measuretheoretic Furstenberg system (see Section 2). In particular, the arguments given in [23] prove that there exists an increasing sequence of integers giving rise to a Furstenberg system which is measure-theoretically isomorphic to the action of the identity map on \mathbb{S}^{1} equipped with the Lebesgue measure. What kind of other dynamical systems can be obtained as Furstenberg systems for \boldsymbol{u} in the MRT class is a natural question. Furthermore, in the topological setting, \boldsymbol{u} determines a subshift $X_{\boldsymbol{u}} \subset\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$ and we can ask for its topological entropy. Our aim is to prove the following result.

Main Theorem. Let \boldsymbol{u} be in the MRT class. Then, for each $d \geqslant 0$, there is a Furstenberg system $\left(X_{\boldsymbol{u}}, \nu_{d}, S\right)$ of \boldsymbol{u} which is measure-theoretically isomorphic to the unipotent system

$$
\left(x_{d}, x_{d-1}, \ldots, x_{0}\right) \mapsto\left(x_{d}, x_{d-1}+x_{d}, \ldots, x_{0}+x_{1}\right)
$$

on \mathbb{T}^{d+1} equipped with the $(d+1)$-dimensional Lebesgue measure.
Furthermore, the Bernoulli shift $\left(\left(\mathbb{S}^{1}\right)^{\mathbb{N}},\left(\operatorname{Leb}_{\mathbb{S}^{1}}\right)^{\otimes \mathbb{N}}, S\right)$ is also a Furstenberg system of \boldsymbol{u}, i.e.
(2) the analog of the Chowla conjecture holds for \boldsymbol{u} along a subsequence.

In particular,

$$
\begin{equation*}
X_{\boldsymbol{u}}=\left(\mathbb{S}^{1}\right)^{\mathbb{N}},{ }^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\mathrm{top}}\left(X_{\boldsymbol{u}}, S\right)=\infty \tag{4}
\end{equation*}
$$

[^0]The proof of the above theorem is given in Section 4. It seems also that this result makes it legitimate to ask whether (some of) properties (2)-(4) are valid for all totally aperiodic multiplicative functions $\boldsymbol{u},|\boldsymbol{u}|=1$. Note also that the theorem above sheds light on Frantzikinakis' question: see Problem 3.1 on the list of problems in [3] of whether the system $(x, y) \mapsto(x, x+y)$ on \mathbb{T}^{2} can be a Furstenberg system of the Liouville function. The expected answer is of course negative (as the positive answer is in conflict with the Chowla conjecture) but, as our result shows, this unipotent system is a Furstenberg system for a class of multiplicative aperiodic functions. Moreover, our Main Theorem yields positive answers to questions raised in Problem 7.3 [3] in the class of MRT functions. More than that, since the ergodic components of $\nu_{d}, d \geqslant 2$, are affine extensions of irrational rotations, the Main Theorem disproves Conjecture 2 from [15].

As each $\boldsymbol{u} \in$ MRT is given "locally by Archimedean characters", in Section 5, we will deal with Furstenberg systems of Archimedean characters themselves and will describe their Furstenberg systems. Moreover, we will show that no $\boldsymbol{u} \in$ MRT satisfies the analog of Sarnak's conjecture. Finally, in Section 6 we show that the analog of logarithmic Chowla conjecture for \boldsymbol{u} (cf. (2)) holds along a subsequence and discuss further properties of Furstenberg systems of MRT arithmetic functions: strong stationarity and the absence of zero mean on typical short interval.

In Appendix we discuss Furstenberg systems given by ν_{d} from the pure ergodic theory point of view. We explain their connections with the classical theory of transformations with quasi-discrete spectrum and give a new characterization of quasi-eigenfunctions which seems to be of independent interest.

2 Furstenberg systems of a bounded arithmetic function

Assume that $u: \mathbb{N} \rightarrow \mathbb{C}$ is an arithmetic function, $|u| \leqslant 1$. Denote by \mathbb{D} the unit disk. On the space $M\left(\mathbb{D}^{\mathbb{N}}\right)$ of Borel probability measures on $\mathbb{D}^{\mathbb{N}}$, we consider the weak*-topology, in which $\nu_{m} \rightarrow \nu$ if and only if $\int_{\mathbb{D}^{\mathbb{N}}} f d \nu_{m} \rightarrow \int_{\mathbb{D}^{\mathbb{N}}} f d \nu$ for each $f \in C\left(\mathbb{D}^{\mathbb{N}}\right)$. This topology turns $M\left(\mathbb{D}^{\mathbb{N}}\right)$ into a compact metrizable space. Let S denote the shift map on $\mathbb{D}^{\mathbb{N}}$, and consider in $M\left(\mathbb{D}^{\mathbb{N}}\right)$ the sequence

$$
\left(E_{N}(u)\right)_{N \geqslant 1}:=\left(\frac{1}{N} \sum_{0 \leqslant n<N} \delta_{S^{n} u}\right)_{N \geqslant 1}
$$

of empiric probability measures. By compactness, we can choose a converging subsequence

$$
E_{N_{m}}(u) \rightarrow \nu
$$

and we say that u is quasi-generic for ν along the sequence $\left(N_{m}\right)$. It is not hard to see ($c f$. the Krylov-Bogolyubov theorem) that such a limit point ν is S invariant. Moreover, such a ν is always supported on the subshift X_{u} generated by u, that is

$$
X_{u}:=\overline{\left\{S^{n} u: n \geqslant 0\right\}} .
$$

The measure-theoretic dynamical system $\left(X_{u}, \nu, S\right)$ is called a Furstenberg system of u. Denote by $V(u)$ the set of all probability measures on X_{u} for which u is quasi-generic:

$$
V(u):=\left\{\nu \in M\left(X_{u}, S\right): \nu=\lim _{m \rightarrow \infty} E_{N_{m}}(u) \text { for some } N_{m} \rightarrow \infty\right\}
$$

Classically, we have the following:
Proposition 2.1. ([6]) (i) $V(u) \subset M\left(X_{u}, S\right)$ is closed (in the weak*-topology). (ii) $V(u)$ is connected, whence either $|V(u)|=1$ or $V(u)$ is uncountable.

Let $Z_{0}: \mathbb{D}^{\mathbb{N}} \rightarrow \mathbb{D}$ be the 1-coordinate map: $Z_{0}(y)=y(1)$ for $y=(y(n))_{n \in \mathbb{N}} \in$ $\mathbb{D}^{\mathbb{N}}$. In general, we define $Z_{n}:=Z_{0} \circ S^{n}$ as the map $y \mapsto y(n+1)$. Then, given $\nu \in V(u)$, we obtain a stationary process $\left(Z_{0}, Z_{1}, \ldots\right)$ with values in $\mathbb{D}^{\mathbb{N}}$ whose distribution is ν. Let $\kappa=\left(Z_{0}\right)_{*}(\nu)$ be the distribution of the random variable Z_{0} under ν. Then by the S-invariance of ν, κ is also the distribution of each coordinate $Z_{n}, n \geqslant 0$. An example of particular interest corresponds to the i.i.d. case, arising when ν is a product measure, i.e., when ν is of the form $\kappa^{\otimes \mathbb{N}}$. We have the following observation.

Proposition 2.2. Let κ be a probability measure on \mathbb{D}. Assume that for each $d \geqslant 0$ there exists $\nu_{d} \in V(u)$ under which the distribution of $\left(Z_{0}, \ldots, Z_{d}\right)$ is $\kappa^{\otimes d+1}$. Then $\kappa^{\otimes \mathbb{N}} \in V(u)$.

Proof. By compactness, we can assume that $\nu_{d} \rightarrow \rho$, and by Proposition 2.1 (i), $\rho \in V(u)$. All we need to show is that

$$
\mathbb{E}_{\rho}\left(Z_{0}^{q_{1}} \circ S^{j_{1}} \cdot \ldots \cdot Z_{0}^{q_{k}} \circ S^{j_{k}}\right)=\prod_{i=1}^{k} \mathbb{E}_{\kappa} Z_{0}^{q_{i}}
$$

for each $k \geqslant 1, q_{i} \in \mathbb{Z}$ and $0 \leqslant j_{1}<\ldots<j_{k}$. But the equality above is true if ρ is replaced by ν_{d} for $d \geqslant j_{k}$, and since $Z_{0}^{q_{1}} \circ S^{j_{1}} \cdot \ldots \cdot Z_{0}^{q_{k}} \circ S^{j_{k}} \in C\left(X_{u}\right)$, the result follows.

Remark 2.3. If $\kappa^{\otimes \mathbb{N}} \in V(u)$ then by the variational principle (see e.g. [30, Section 8.2]) $h_{\mathrm{top}}\left(X_{u}, S\right) \geqslant h\left(X_{u}, \kappa^{\otimes \mathbb{N}}, S\right)=H(\kappa)$. If the distribution of κ is continuous then immediately $H(\kappa)=+\infty$, whence $h_{\text {top }}\left(X_{u}, S\right)=+\infty$ in this case.

Proposition 2.2 can be useful if we want to show that the product measure yields a Furstenberg system of Bernoulli type ("Chowla holds along a subsequence"). Indeed, we only need to show the existence of Furstenberg systems which yield some finite degree of independence of the process $\left(Z_{n}\right)_{n \geqslant 0}$ and such can be firstly of zero entropy and even very non-ergodic (i.e. belonging to Erg^{\perp}), cf. also [10]. Together with Remark 2.3, it also gives a nice criterion to show that the topological entropy of u is infinite.

3 MRT multiplicative functions

In this section we describe more precisely the MRT class of completely multiplicative functions to which our Main Theorem applies. We start by giving a
formal definition of this class, then we resume the construction given in [23] by Matomäki, Radziwiłł and Tao of a completely multiplicative function meeting the required property. Finally, we give the key property of MRT arithmetic functions that will be used in the proof of our Main Theorem.
Definition 3.1. A completely multiplicative function $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{S}^{1}$ belongs to the MRT class if there exist two increasing sequences of integers $\left(t_{m}\right)$ and $\left(s_{m}\right)$ such that, for each $m \geqslant 1$, we have the following properties:

- $t_{m}<s_{m+1}<s_{m+1}^{2} \leqslant t_{m+1}$,
- for each prime $p \in\left(t_{m}, t_{m+1}\right], \boldsymbol{u}(p)=p^{i s_{m+1}}$,
- for each prime $p \leqslant t_{m},\left|\boldsymbol{u}(p)-p^{i s_{m+1}}\right|<\frac{1}{t_{m}^{2}}$.

Here is the method to get such a function. We just have to define $\boldsymbol{u}(p)$ for each prime p and to construct the sequences $\left(t_{m}\right)$ and $\left(s_{m}\right)$, which is done inductively as follows. Start by choosing an integer $t_{1} \in \mathbb{N}$ and set, for each prime $p \leqslant t_{1}, \boldsymbol{u}(p):=1$. Now, assume that for some $m \geqslant 1$ we have already defined t_{m} and $\boldsymbol{u}(p)$ for each $p \leqslant t_{m}$. In the Cartesian product $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$, we consider the sequence of points

$$
\left(\left(p^{i s}\right)_{p \leqslant t_{m}}\right)_{s \in \mathbb{N}}
$$

Since the numbers $\log p, p \leqslant t_{m}$, are linearly independent over the integers, this sequence is dense in $\prod_{p \leqslant t_{m}} \mathbb{S}^{1}$. Thus, we can choose $s_{m+1}>t_{m}$ so that (6) is satisfied. We then choose $t_{m+1} \geqslant s_{m+1}^{2}$, and for $t_{m}<p \leqslant t_{m+1}$ we set $\boldsymbol{u}(p):=p^{i s_{m+1}}$. Doing this inductively for each $m \geqslant 1$ gives a completely multiplicative function $\boldsymbol{u} \in$ MRT.

Remark 3.1. It is also interesting to note that the growth of s_{m+1} / t_{m} is necessarily superpolynomial: in fact, it follows from Propositions 4.3 and 4.7 that, for each $\beta>0, t_{m}<s_{m+1}^{\beta}$ for m large enough.

It is also shown in [23] that once $s_{m+1}>e^{t_{m}}$ for $m \geqslant 1$, the resulting \boldsymbol{u} is aperiodic.

We will use the following easy lemma.
Lemma 3.2. Let $\boldsymbol{u} \in \operatorname{MRT}$ and $\left(t_{m}\right),\left(s_{m}\right)$ be as in Definition 3.1. Let $m \geqslant 1$ and $n \leqslant t_{m+1}$. If the number of prime factors of n less than or equal to t_{m} (counting multiplicity) is bounded by t_{m}, then

$$
\begin{equation*}
\left|\boldsymbol{u}(n)-n^{i s_{m+1}}\right| \leqslant \frac{1}{t_{m}} \tag{7}
\end{equation*}
$$

Proof. We write n as a product of primes

$$
n=\prod_{p \leqslant t_{m}} p^{\alpha_{p}(n)} \prod_{t_{m}<p \leqslant t_{m+1}} p^{\alpha_{p}(n)} .
$$

By the complete multiplicativity of \boldsymbol{u} and by (5), we then have

$$
\boldsymbol{u}(n)=\prod_{p \leqslant t_{m}} \boldsymbol{u}(p)^{\alpha_{p}(n)}\left(\prod_{t_{m}<p \leqslant t_{m+1}} p^{\alpha_{p}(n)}\right)^{i s_{m+1}}
$$

Using (6) in the first product above, we get

$$
\left|\boldsymbol{u}(n)-n^{i s_{m+1}}\right| \leqslant \frac{\sum_{p \leqslant t_{m}} \alpha_{p}(n)}{t_{m}^{2}}
$$

In particular, if $\sum_{p \leqslant t_{m}} \alpha_{p}(n) \leqslant t_{m}$, then

$$
\left|\boldsymbol{u}(n)-n^{i s_{m+1}}\right| \leqslant \frac{1}{t_{m}}
$$

The next lemma is useful to estimate the density of the integers n for which (7) is not valid.

Lemma 3.3. For $t \in \mathbb{N}$, denote

$$
B_{t}:=\left\{n \geqslant 1: \sum_{p \leqslant t} \alpha_{p}(n) \geqslant t\right\}
$$

i.e. B_{t} is the set of integers $n \geqslant 1$ having at least t prime factors less than or equal to t (counting multiplicity). Then

$$
\begin{equation*}
\varepsilon_{t}:=\sup _{N \geqslant 1} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} 1_{B_{t}}(n) \underset{t \rightarrow \infty}{\longrightarrow} 0 . \tag{8}
\end{equation*}
$$

Proof. For each $t \in \mathbb{N}$, set $k_{t}:=\left\lfloor\frac{t}{\pi(t)}\right\rfloor$ (where $\pi(t)$ denotes, as usual, the number of primes up to t). Let $n \in \mathbb{N}$; if, for each prime $p \leqslant t, p^{k_{t}}$ does not divide n, then the number of prime factors of n less than or equal to t (counting multiplicity) is at most $\pi(t)\left(k_{t}-1\right)<t$, hence $n \notin B_{t}$. By contraposition, if $n \in B_{t}$, there exists a prime number $p \leqslant t$ such that $p^{k_{t}} \mid n$. Therefore, we have for each $N \geqslant 1$

$$
\begin{aligned}
\frac{1}{N} \sum_{1 \leqslant n \leqslant N} 1_{B_{t}}(n) & \leqslant \frac{1}{N} \sum_{1 \leqslant n \leqslant N} \sum_{p \leqslant t} 1_{p^{k_{t}} \mid n} \\
& =\sum_{p \leqslant t} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} 1_{p^{k_{t}} \mid n} \\
& \leqslant \sum_{p \leqslant t} \frac{1}{p^{k_{t}}} \\
& <\sum_{p} \frac{1}{p^{k_{t}}} \xrightarrow[t \rightarrow \infty]{ } 0 \quad\left(\text { since } k_{t} \rightarrow \infty \text { as } t \rightarrow \infty\right) .
\end{aligned}
$$

Using Lemma 3.2 and Lemma 3.3, we obtain the following result.
Proposition 3.4. Let $\boldsymbol{u} \in \operatorname{MRT}$ and $\left(t_{m}\right),\left(s_{m}\right)$ be as in Definition 3.1. Let $\left(N_{m}\right)$ be an increasing sequence of integers with $N_{m} \leqslant t_{m+1}$ for each $m \in \mathbb{N}$. Then

$$
\frac{1}{N_{m}} \#\left\{n \in\left\{1 \ldots, N_{m}\right\}:\left|\boldsymbol{u}(n)-n^{i s_{m+1}}\right|>\frac{1}{t_{m}}\right\} \leqslant \varepsilon_{t_{m}} \xrightarrow[m \rightarrow \infty]{ } 0
$$

4 Proof of the Main Theorem

Here is an outline of the proof. First, we present in Section 4.1 a family of stationary processes, taking values in the unit circle, parametrized by an integer $d \geqslant 0$. Such a process generates a measure-theoretic dynamical system isomorphic to the unipotent system appearing in the statement of the theorem. It is easily characterized by two conditions: each coordinate of the process is uniformly distributed on the circle, and some deterministic function ϕ_{d+1} of the coordinates of the process is constantly equal to 1 . We completely describe in Proposition 4.1 and Remark 4.2 the distribution ν_{d} of such a process, in particular we show that $d+1$ consecutive coordinates are independent. Then Proposition 4.3 provides a criterion for an arithmetic function u to be quasigeneric for this probability measure ν_{d}. This criterion involves the functions ϕ_{d+1}, and we study in Section 4.2 two sequences of polynomials related with this family of functions. We show in Section 4.3 that for $\boldsymbol{u} \in$ MRT, the criterion is fulfilled for each $d \geqslant 0$. For this we use Proposition 3.4 which allows us to replace, in the appropriate range, $\boldsymbol{u}(n)$ by $n^{i s_{m+1}}$. The criterion then becomes an evaluation of some exponential sums, that we can handle with the help of Kusmin-Landau Theorem (Theorem 4.8). Finally, using Proposition 2.2, we can conclude that \boldsymbol{u} is also quasi-generic for the product measure $\left(\operatorname{Leb}_{\mathbb{S}^{1}}\right)^{\otimes \mathbb{N}}$.

4.1 Processes in the unit circle

We recall the notation $Z_{n}=Z_{0} \circ S^{n}(n \geqslant 0)$ from Section 2, but we restrict ourselves to the set of sequences taking values in \mathbb{S}^{1}. We define inductively a new sequence of maps $\left(Y^{(d)}\right)_{d \geqslant 0}$ defined on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$ taking also their values in \mathbb{S}^{1}, by $Y^{(0)}:=Z_{0}, Y^{(1)}:=Z_{1} / Z_{0}$, and in general for each $d \geqslant 0$,

$$
Y^{(d+1)}:=\frac{Y^{(d)} \circ S}{Y^{(d)}}
$$

We also define the auxilliary sequence $\left(X_{d}\right)_{d \geqslant 0}$ taking values in the one-dimensional torus $\mathbb{T}:=\mathbb{R} / \mathbb{Z}$, by

$$
e^{i 2 \pi X_{d}}:=Y^{(d)} .
$$

As $e^{i 2 \pi X_{d+1}}=Y^{(d+1)}=e^{i 2 \pi\left(X_{d} \circ S-X_{d}\right)}$, we get

$$
\begin{equation*}
\forall d \geqslant 0, \quad X_{d} \circ S=X_{d+1}+X_{d} \tag{9}
\end{equation*}
$$

Moreover, by an easy induction on n using the above formula, we can recover the process each Z_{n} from $\left(X_{d}\right)$ by the relation

$$
\begin{equation*}
\forall n \geqslant 0, \quad Z_{n}=e^{i 2 \pi \sum_{d=0}^{n}\binom{n}{d} X_{d}} . \tag{10}
\end{equation*}
$$

Proposition 4.1. Let ν be a shift-invariant probability measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$. Assume that there exists $d \geqslant 0$ such that, under ν,

- $Y^{(d)}$ is S-invariant (i.e. $Y^{(d+1)}=1 \nu$-a.s.),
- the distribution of $Y^{(d)}$ is uniform on \mathbb{S}^{1}.

Then, for each n, Z_{n} is uniformly distributed on \mathbb{S}^{1}, and $Z_{0}, Z_{1}, \ldots, Z_{d}$ are independent.

Proof. As $Y^{(d)}$ is S-invariant, so is X_{d}. Hence, in every ergodic component of ν, X_{d} is a.s. constant. Moreover, since the distribution of X_{d} under ν is the Lebesgue measure Leb $\mathbb{T}_{\mathbb{T}}$ on \mathbb{T}, in almost every ergodic component the value of X_{d} is irrational. Let us fix such an ergodic component, say $\tilde{\nu}$, and let α be the value taken by X_{d} under $\tilde{\nu}$. From (9), we get

$$
\begin{aligned}
\left(X_{d-1}, \ldots, X_{0}\right) \circ S & =\left(X_{d-1}+X_{d}, X_{d-2}+X_{d-1}, \ldots, X_{0}+X_{1}\right) \\
& =\left(X_{d-1}+\alpha, X_{d-2}+X_{d-1}, \ldots, X_{0}+X_{1}\right)
\end{aligned}
$$

But when α is irrational, the map

$$
\left(x_{d-1}, \ldots, x_{0}\right) \in \mathbb{T}^{d} \mapsto\left(x_{d-1}+\alpha, x_{d-2}+x_{d-1}, \ldots, x_{0}+x_{1}\right)
$$

is uniquely ergodic [16], with the d-fold product $\left(\operatorname{Leb}_{\mathbb{T}}\right)^{\otimes d}$ as the only ergodic invariant measure. We deduce that, under $\tilde{\nu}$, the distribution of $\left(X_{d-1}, \ldots, X_{0}\right)$ must be $\left(\mathrm{Leb}_{\mathbb{T}}\right)^{\otimes d}$. Integrating over the set of ergodic components, we get that under ν, the distribution of $\left(X_{d}, X_{d-1}, \ldots, X_{0}\right)$ is $\left(\operatorname{Leb}_{\mathbb{T}}\right)^{\otimes(d+1)}$. Then, from Formula (10), we can write each $0 \leqslant n \leqslant d$,

$$
Z_{n}=\tilde{Z}_{n-1} e^{i 2 \pi X_{n}}
$$

where \tilde{Z}_{n-1} is measurable with respect to $X_{0}, \ldots, X_{d-1}\left(\tilde{Z}_{n-1}=1\right.$ for $\left.n=0\right)$. From this it follows that Z_{n} is uniformly distributed on \mathbb{S}^{1} conditionally to X_{0}, \ldots, X_{n-1}. This concludes the proof.

Remark 4.2. The proof shows in fact that, for each $d \geqslant 0$, there is a unique shift-invariant measure ν_{d} on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$ such that whenever the assumptions of Proposition 4.1 are satisfied, then the distribution of the stationary process $\left(Z_{n}\right)_{n \in \mathbb{N}}$ is ν_{d}. Under ν_{d}, any $d+1$ consecutive coordinates of the process are independent and uniformly distributed on the circle, and for each $n \geqslant 0$ the coordinate Z_{n+d+1} is a deterministic function of Z_{n}, \ldots, Z_{n+d} given by the condition $Y^{(d+1)}=1$. Moreover, looking at the process $\left(\left(X_{0}, X_{1}, \ldots, X_{d}\right) \circ S^{n}\right)_{n \geqslant 0}$, we see that the dynamical system $\left(\left(\mathbb{S}^{1}\right)^{\mathbb{N}}, \nu_{d}, S\right)$ is measure-theoretically isomorphic to the unipotent system described in the statement of the Main Theorem.

It will be useful to introduce, for each $d \geqslant 0$, the function $\phi_{d}:\left(\mathbb{S}^{1}\right)^{d+1} \rightarrow \mathbb{S}^{1}$ such that $Y^{(d)}=\phi_{d}\left(Z_{0}, \ldots, Z_{d}\right)$. For $d=0, \ldots, 4$, these functions are given by

$$
\begin{gather*}
\phi_{0}\left(z_{0}\right)=\frac{z_{0}}{1} \quad ; \quad \phi_{1}\left(z_{0}, z_{1}\right)=\frac{z_{1}}{z_{0}} \quad ; \quad \phi_{2}\left(z_{0}, z_{1}, z_{2}\right)=\frac{z_{0} z_{2}}{z_{1}^{2}} \quad ; \\
\quad \phi_{3}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\frac{z_{1}^{3} z_{3}}{z_{0} z_{2}^{3}} \quad ; \quad \phi_{4}\left(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{z_{0} z_{2}^{6} z_{4}}{z_{1}^{4} z_{3}^{4}} . \tag{11}
\end{gather*}
$$

In general, we can always write the function ϕ_{d} as a quotient

$$
\begin{equation*}
\phi_{d}\left(z_{0}, \ldots, z_{d}\right)=\frac{\pi_{d}\left(z_{0}, \ldots, z_{d}\right)}{\tilde{\pi}_{d}\left(z_{0}, \ldots, z_{d}\right)} \tag{12}
\end{equation*}
$$

where $\pi_{d}\left(z_{0}, \ldots, z_{d}\right)$ and $\tilde{\pi}_{d}\left(z_{0}, \ldots, z_{d}\right)$ are products of some z_{j} 's (with possible multiplicity). These sequences of products are completely defined by the following recurrence property: $\pi_{0}\left(z_{0}\right):=z_{0}, \tilde{\pi}_{0}\left(z_{0}\right):=1$, and for each $d \geqslant 1$,

$$
\begin{equation*}
\pi_{d+1}\left(z_{0}, \ldots, z_{d+1}\right):=\pi_{d}\left(z_{1}, \ldots, z_{d+1}\right) \tilde{\pi}_{d}\left(z_{0}, \ldots, z_{d}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\pi}_{d+1}\left(z_{0}, \ldots, z_{d+1}\right):=\tilde{\pi}_{d}\left(z_{1}, \ldots, z_{d+1}\right) \pi_{d}\left(z_{0}, \ldots, z_{d}\right) \tag{14}
\end{equation*}
$$

Note that, as π_{d} and $\tilde{\pi}_{d}$ only involve a product of variables, their definition can be extended to C^{d+1}.

The next proposition is a key ingredient for the identification of some Furstenberg systems of multiplicative functions.
Proposition 4.3. Let $u=(u(n))_{n \in \mathbb{N}} \in\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$. Assume that, for some $d \geqslant 1$ and some increasing sequence $\left(N_{m}\right) \subset \mathbb{N}$, we have

$$
\begin{equation*}
\frac{1}{N_{m}} \sum_{n \leqslant N_{m}} \phi_{d+1}(u(n), u(n+1), \ldots, u(n+d+1)) \xrightarrow[m \rightarrow \infty]{ } 1 \tag{15}
\end{equation*}
$$

and that

$$
\begin{equation*}
\forall \ell \geqslant 1, \frac{1}{N_{m}} \sum_{n \leqslant N_{m}} \phi_{d}^{\ell}(u(n), u(n+1), \ldots, u(n+d)) \underset{m \rightarrow \infty}{ } 0 \tag{16}
\end{equation*}
$$

Then, along the subsequence $\left(N_{m}\right), u$ is quasi-generic for the measure ν_{d} described in Remark 4.2.

Proof. Let μ be a shift-invariant measure on $\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$ such that, along some subsequence of $\left(N_{m}\right), u$ is quasi-generic for μ. From (15), we get that

$$
1=\mathrm{E}_{\mu}\left[\phi_{d+1}\left(Z_{0}, \ldots, Z_{d+1}\right)\right]=\mathrm{E}_{\mu}\left[Y^{(d+1)}\right]
$$

hence $Y^{(d+1)}=1 \mu$-a.s. And from (16), we get that for each $\ell \geqslant 1$,

$$
0=\mathrm{E}_{\mu}\left[\phi_{d}^{\ell}\left(Z_{0}, \ldots, Z_{d}\right)\right]=\mathrm{E}_{\mu}\left[\left(Y^{(d)}\right)^{\ell}\right]
$$

which shows that, under $\mu, Y^{(d)}$ is uniformly distributed on \mathbb{S}^{1}. Then, with Proposition 4.1 and Remark 4.2, we conclude that $\mu=\nu_{d}$.

4.2 Special sequences of polynomials

We now introduce two sequences $\left(P_{d}\right)_{d \geqslant 0}$ and $\left(Q_{d}\right)_{d \geqslant 0}$ of polynomials in the variable n, linked to the analysis of the preceding section by the following definition: for each $d \geqslant 0$,
(17) $P_{d}(n):=\pi_{d}(n, n+1, \ldots, n+d), \quad$ and $\quad Q_{d}(n):=\tilde{\pi}_{d}(n, n+1, \ldots, n+d)$.

The first polynomials of this family are given below (compare with the numerators and denominators in (11)).

$$
\begin{aligned}
P_{0}(n)=n ; Q_{0}(n)=1 ; \\
P_{1}(n)=n+1 ; Q_{1}(n)=n ; \\
P_{2}(n)=n(n+2) ; Q_{2}(n)=(n+1)^{2} ; \\
P_{3}(n)=(n+1)^{3}(n+3) ; Q_{3}(n)=n(n+2)^{3} ; \\
P_{4}(n)=n(n+2)^{6}(n+4) ; Q_{4}(n)=(n+1)^{4}(n+3)^{4} .
\end{aligned}
$$

Note that, according to (13) and (14), these sequences of polynomials satisfy the following recurrence property:

$$
\begin{align*}
P_{d+1}(n) & =P_{d}(n+1) Q_{d}(n) \\
Q_{d+1}(n) & =Q_{d}(n+1) P_{d}(n) \tag{18}
\end{align*}
$$

Proposition 4.4. For each $d \geqslant 1, P_{d}$ and Q_{d} are both of degree 2^{d-1}, and the degree of the difference $R_{d}:=Q_{d}-P_{d}$ is $2^{d-1}-d$.

The computation of the degree of P_{d} and Q_{d} is a straightforward induction using (18). For the degree of R_{d}, we will use the following lemma.

Lemma 4.5. Let P and R be two polynomials, of degree p and r, respectively and with $p \neq r$. Let \tilde{R} be the polynomial defined by

$$
\tilde{R}(n):=R(n+1) P(n)-R(n) P(n+1)
$$

Then the degree of \tilde{R} is $r+p-1$.
Proof. Let us write the two terms of highest degree in P and R :

$$
P(n)=a_{P} n^{p}+b_{P} n^{p-1}+\cdots
$$

and

$$
R(n)=a_{R} n^{r}+b_{R} n^{r-1}+\cdots
$$

where $a_{P} a_{R} \neq 0$. Then a direct computation shows that the two terms of highest degree in $R(n+1) P(n)$ are

$$
R(n+1) P(n)=a_{R} a_{P} n^{r+p}+\left(a_{R} b_{P}+a_{P} b_{R}+r a_{P} a_{R}\right) n^{r+p-1}+\cdots
$$

Likewise, the two terms of highest degree in $R(n) P(n+1)$ are

$$
R(n) P(n+1)=a_{R} a_{P} n^{r+p}+\left(a_{R} b_{P}+a_{P} b_{R}+p a_{P} a_{R}\right) n^{r+p-1}+\cdots
$$

It follows that the term of highest degree in $\tilde{R}(n)$ is $(r-p) a_{P} a_{R} n^{r+p-1}$.
End of the proof of Proposition 4.4. We show by induction on $d \geqslant 1$ that the degree of R_{d} is $2^{d-1}-d$. This is already true for $d=1$ since $R_{1}=-1$ is of degree 0 . Then, assume that the result holds for some $d \geqslant 1$, and let us consider the polynomial R_{d+1}. We have

$$
\begin{aligned}
R_{d+1}(n) & =Q_{d+1}(n)-P_{d+1}(n) \\
& =Q_{d}(n+1) P_{d}(n)-P_{d}(n+1) Q_{d}(n) \\
& =\left(P_{d}(n+1)+R_{d}(n+1)\right) P_{d}(n)-P_{d}(n+1)\left(P_{d}(n)+R_{d}(n)\right) \\
& =R_{d}(n+1) P_{d}(n)-R_{d}(n) P_{d}(n+1)
\end{aligned}
$$

But we know that the degree of P_{d} is 2^{d-1}, and by the induction assumption the degree of R_{d} is $2^{d-1}-d$. These degrees are different, therefore Lemma 4.5 applies, and shows that the degree of R_{d+1} is $2^{d}-(d+1)$.

4.3 Furstenberg systems of MRT multiplicative functions

Now, we consider a completely multiplicative arithmetic function $\boldsymbol{u}=(\boldsymbol{u}(n))_{n \geqslant 1} \in$ MRT. Let $\left(t_{m}\right)$ and (s_{m}) be the associated sequences, as in Definition 3.1. Let $\left(N_{m}\right)$ be an increasing sequence of integers with $N_{m} \leqslant t_{m+1}$, and let $d \geqslant 0$ and $\ell \geqslant 1$ be fixed integers. Our purpose is to apply Proposition 4.3 to \boldsymbol{u}, therefore we have to evaluate the expressions of the form

$$
\begin{equation*}
\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} \phi_{d}^{\ell}(\boldsymbol{u}(n), \boldsymbol{u}(n+1), \ldots, \boldsymbol{u}(n+d)) . \tag{19}
\end{equation*}
$$

By Proposition 3.4, we have

$$
\begin{align*}
& \frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} \phi_{d}^{\ell}(\boldsymbol{u}(n), \ldots, \boldsymbol{u}(n+d)) \\
& =\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} \phi_{d}^{\ell}\left(n^{i s_{m+1}}, \ldots,(n+d)^{i s_{m+1}}\right)+\mathrm{o}(1) \\
& =\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} e^{i \ell s_{m+1} \log \frac{P_{d}(n)}{Q_{d}(n)}}+\mathrm{o}(1) \tag{20}
\end{align*}
$$

Therefore, in view of applying Proposition 4.1, we can replace an expression of the form (19) by

$$
\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} e^{i \ell s_{m+1} f_{d}(n)}
$$

where f_{d} is defined by

$$
\begin{equation*}
f_{d}(x):=\log \frac{P_{d}(x)}{Q_{d}(x)} \tag{21}
\end{equation*}
$$

Note that, by Proposition 4.4, for $d \geqslant 1$, the d terms of highest degrees in P_{d} and Q_{d} coincide. In particular, we have

$$
\lim _{x \rightarrow \infty} \frac{P_{d}(x)}{Q_{d}(x)}=1
$$

so $f_{d}(x)$ is well defined for $x \in \mathrm{R}$ large enough. We will use the following results on the asymptotic behaviour of f_{d}.

Lemma 4.6. For each $d \geqslant 1$, there exists $K_{d} \neq 0$ such that

$$
\begin{equation*}
f_{d}(x) \sim \frac{K_{d}}{x^{d}} \quad \text { as } x \rightarrow \infty \tag{22}
\end{equation*}
$$

For each $d \geqslant 0$, there exists $L_{d} \neq 0$ such that

$$
\begin{equation*}
f_{d}^{\prime}(x) \sim \frac{L_{d}}{x^{d+1}} \quad \text { as } x \rightarrow \infty \tag{23}
\end{equation*}
$$

Moreover, there exists $H_{d}>0$ such that f_{d}^{\prime} is monotone on $\left[H_{d},+\infty\right)$.

Proof. For $d=0$, note that $f_{0}(x)=\log x$, so that $f_{0}^{\prime}(x)=\frac{1}{x}$ and the result concerning f_{0}^{\prime} is obvious. We consider now the case $d \geqslant 1$. From Proposition 4.4, we can write

$$
f_{d}(n)=\log \frac{P_{d}(n)}{P_{d}(n)+R_{d}(n)}=-\log \left(1+\frac{R_{d}(n)}{P_{d}(n)}\right)
$$

where $\operatorname{deg} P_{d}=2^{d-1}$ and $\operatorname{deg} R_{d}=2^{d-1}-d$, which yields (22).
Deriving f_{d} gives

$$
\begin{aligned}
f_{d}^{\prime} & =\frac{Q_{d}}{P_{d}} \cdot \frac{P_{d}^{\prime}\left(P_{d}+R_{d}\right)-P_{d}\left(P_{d}^{\prime}+R_{d}^{\prime}\right)}{Q_{d}^{2}} \\
& =\frac{P_{d}^{\prime} R_{d}-P_{d} R_{d}^{\prime}}{P_{d} Q_{d}} .
\end{aligned}
$$

Since the degrees of P_{d} and R_{d} are different, the degree of the numerator is equal to $\operatorname{deg} P_{d}+\operatorname{deg} R_{d}-1=2^{d}-(d+1)$. But the degree of the denominator is $\operatorname{deg} P_{d}+\operatorname{deg} Q_{d}=2^{d}$, and this gives (23). Finally, as a nonzero rational fraction, the second derivative $f_{d}^{\prime \prime}$ has finitely many zeros, from which we get the last claim of the lemma.

We can now state the precise asymptotics which, together with Proposition 4.3 , will allow us to identify some Furstenberg systems of \boldsymbol{u}.
Proposition 4.7. Let $d \geqslant 0$ be a fixed integer, and choose a real number β such that

$$
\frac{1}{d+1}<\beta<\frac{1}{d} \text { if } d \geqslant 1, \quad 1<\beta<2 \text { if } d=0 .
$$

Set, for each $m \geqslant 1, N_{m}:=\left\lfloor\left(s_{m+1}\right)^{\beta}\right\rfloor$. Then

$$
\begin{equation*}
\forall \ell \geqslant 1, \quad \frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} e^{i \ell s_{m+1} f_{d}(n)} \xrightarrow[m \rightarrow \infty]{ } 0 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} e^{i s_{m+1} f_{d+1}(n)} \xrightarrow[m \rightarrow \infty]{ } 1 \tag{25}
\end{equation*}
$$

An important tool in the proof of the above proposition is the following theorem of Kusmin-Landau, which we state as in [24]. Here, if x is a real number, $\|x\|$ stands for the distance of x to the nearest integer.
Theorem 4.8 (Kusmin-Landau Theorem). If $f:[a, b] \rightarrow \mathbb{R}$ is C^{1}, f^{\prime} is monotone and $\left\|f^{\prime}\right\| \geqslant \lambda_{1}>0$ then

$$
\left|\sum_{n \in[a, b]} e^{i 2 \pi f(n)}\right| \leqslant \frac{2}{\pi \lambda_{1}} .
$$

Proof of Proposition 4.7. Choose α such that $\frac{1}{d+1}<\alpha<\beta$. We can replace the average in (24) and in (25) by the average over $s_{m+1}^{\alpha} \leqslant n \leqslant s_{m+1}^{\beta}$. For such an n, using (22), we get

$$
\left|s_{m+1} f_{d+1}(n)\right|=\mathrm{O}\left(\frac{1}{s_{m+1}^{\alpha(d+1)-1}}\right) \underset{m \rightarrow \infty}{ } 0
$$

and this immediately gives (25).
By Lemma 4.6, for m large enough f_{d}^{\prime} is monotone on $\left[s_{m+1}^{\alpha}, s_{m+1}^{\beta}\right]$, and there exists $K>0$ (depending only on ℓ and d) such that, for n in this interval,

$$
\left\|\ell s_{m+1} f_{d}^{\prime}(n)\right\| \geqslant K \frac{s_{m+1}}{n^{d+1}} \geqslant K \frac{1}{s_{m+1}^{\beta(d+1)-1}} .
$$

By Kusmin-Landau Theorem, we get

$$
\left|\sum_{s_{m+1}^{\alpha} \leqslant n \leqslant s_{m+1}^{\beta}} e^{i \ell s_{m+1} f_{d}(n)}\right|=\mathrm{O}\left(s_{m+1}^{\beta(d+1)-1}\right)
$$

and finally

$$
\left|\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} e^{i \ell s_{m+1} f_{d}(n)}\right|=\mathrm{O}\left(s_{m+1}^{\beta d-1}\right) \xrightarrow[m \rightarrow \infty]{ } 0
$$

Putting together (20), Proposition 4.7 and Proposition 4.3, we get the following result.
Theorem 4.9. For any $d \geqslant 0$, the measure-preserving system $\left(\left(\mathbb{S}^{1}\right)^{\mathbb{N}}, \nu_{d}, S\right)$ appears as a Furstenberg system of \boldsymbol{u}.

Using Proposition 2.2 and the fact that, under $\nu_{d}, d+1$ consecutive coordinates of the process $\left(Z_{n}\right)$ are independent and uniformly distributed on \mathbb{S}^{1}, we obtain the following.
Corollary 4.10. The system $\left(\left(\mathbb{S}^{1}\right)^{\mathbb{N}},\left(\operatorname{Leb}_{\mathbb{S}^{1}}\right)^{\otimes \mathbb{N}}, S\right)$ is a Furstenberg system of \boldsymbol{u}.

This concludes the proof of the Main Theorem.

5 Archimedean characters and slowly varying arithmetic functions

We recall that an Archimedean character is a completely multiplicative function of the form $n \mapsto n^{i t}$ with some fixed $t \in \mathbb{R}$. As

$$
\left|(n+1)^{i t}-n^{i t}\right|=\left|e^{i t \log (1+1 / n)}-1\right| \underset{n \rightarrow \infty}{ } 0
$$

Archimedean characters fall into the category of slowly varying arithmetic functions, that are bounded arithmetic functions u satisfying

$$
u(n+1)-u(n) \xrightarrow[n \rightarrow \infty]{ } 0
$$

A useful weakening of this property is the following: we say that the bounded arithmetic function u is mean slowly varying if

$$
\begin{equation*}
\frac{1}{N} \sum_{n \leqslant N}|u(n+1)-u(n)| \xrightarrow[N \rightarrow \infty]{ } 0 \tag{26}
\end{equation*}
$$

Note that this is equivalent to the fact that $u(n+1)-u(n) \rightarrow 0$ on a subset of n of density 1 .

It is worth mentioning a result by Klurman [20, Theorem 1.8], who proved a conjecture by Kátai concerning mean slowly varying multiplicative functions (non necessarily bounded). From his theorem, it easily follows that the only mean slowly varying multiplicative functions taking values in the unit circle are the Archimedean characters.

5.1 Furstenberg systems of (mean) slowly varying functions

Proposition 5.1. The arithmetic function $u: \mathbb{N} \rightarrow \mathbb{D}$ is mean slowly varying if and only if all Furstenberg systems of u are measure-theoretically isomorphic to the action of the identity on some probability space.

Proof. Assume first that u is mean slowly varying, and that u is quasi-generic for some S-invariant measure ν on $\mathbb{D}^{\mathbb{N}}$ along a subsequence $\left(N_{m}\right)$. Then, by (26), we have

$$
\mathrm{E}_{\nu}\left[\left|Z_{1}-Z_{0}\right|\right]=\lim _{m \rightarrow \infty} \frac{1}{N_{m}} \sum_{n \leqslant N_{m}}|u(n+1)-u(n)|=0
$$

It follows that $Z_{1}=Z_{0} \nu$-a.e., and more generally by S-invariance, for each $k \in \mathbb{N}$, we also have $Z_{k+1}=Z_{k} \nu$-a.e. Hence, ν is concentrated on the subset of sequences with identical coordinates, and $S=$ Id ν-a.e.

Conversely, assume that (26) fails. Then there exists a subsequence $\left(N_{m}\right)$ such that

$$
\lim _{m \rightarrow \infty} \frac{1}{N_{m}} \sum_{n \leqslant N_{m}}|u(n+1)-u(n)|>0
$$

and by compactness of $M\left(\mathbb{D}^{\mathbb{N}}\right)$ we can assume that u is quasi-generic for some S-invariant measure ν along $\left(N_{m}\right)$. But then we have

$$
\mathrm{E}_{\nu}\left[\left|Z_{1}-Z_{0}\right|\right]=\mathrm{E}_{\nu}\left[\left|Z_{0} \circ S-Z_{0}\right|\right]>0
$$

and the Furstenberg system of u defined by ν is not measure-theoretically isomorphic to the action of the identity.

Proposition 5.2. Let $u: \mathbb{N} \rightarrow \mathbb{D}$ be a slowly varying arithmetic function, and let $X_{u} \subset \mathbb{D}^{\mathbb{N}}$ be the subshift generated by u. Then the topological entropy of $\left(X_{u}, S\right)$ is zero.

Proof. We start by observing that, as u is slowly varying, for each $\varepsilon>0$ there exists L_{ε} such that whenever $\ell \geqslant L_{\varepsilon}$,

$$
\begin{equation*}
\forall n \in \mathbb{N}, \frac{1}{\ell} \sum_{n \leqslant j<n+\ell}|u(j+1)-u(j)|<\varepsilon . \tag{27}
\end{equation*}
$$

Let w be a sequence in X_{u}. As each subblock of w is a limit of subblocks of u, it follows that (27) is still valid if we replace u by w. But this in turn implies that any $w \in X_{u}$ is mean slowly varying.

Now, let ν be an ergodic shift-invariant measure on X_{u}, and let $w \in X_{u}$ be ν-generic (ν-almost all sequences in X_{u} are ν-generic). Then w is mean slowly varying, and by Proposition 5.1, the measure-theoretic system (X_{u}, ν, S) is isomorphic to (X_{u}, ν, Id). In particular, its Kolmogorov entropy is zero.

By the variational principle (see e.g. [30, Section 8.2], the topological entropy of (X_{u}, S) must be also zero.

Remark 5.3. As a matter of fact, the above proof shows that whenever u is a slowly varying function, any $w \in X_{u}$ is also a slowly varying function. More than that, we can make the following observation: by the definition of X_{u}, each $w \in X_{u}$ can be written as

$$
w=\lim _{k \rightarrow \infty} S^{n_{k}} u
$$

where $\left(n_{k}\right)$ is a non-decreasing sequence of non-negative integers. Either $\left(n_{k}\right)$ is bounded, and then $w=S^{n} u$ for some $n \geqslant 0$, or $n_{k} \rightarrow \infty$, and then as u is slowly varying, w must be of the form $\left(w_{1}, w_{1}, w_{1}, \ldots\right)$ for some $w_{1} \in \mathbb{D}$.

In the following remark we provide some more observations on mean slowly varying functions.

Remark 5.4. (a) Note that the subshift generated by a mean slowly varying function $u: \mathbb{N} \rightarrow \mathbb{D}$ can be of infinite entropy: we can modify a slowly varying function on a subset of density zero to get a mean slowly varying function generating the full subshift $\left(\mathbb{D}^{\mathbb{N}}, S\right)$.
(b) If u is mean slowly varying and if, for each $\ell \geqslant 1$, the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leqslant n \leqslant N} u^{\ell}(n)
$$

exists then there is only one Furstenberg system of u : there exists a shiftinvariant measure ν such that $E_{N}(u) \xrightarrow[N \rightarrow \infty]{ } \nu$. Indeed, note that for each $k \geqslant 1, \ell_{r} \geqslant 1, j_{r} \geqslant 0$ for $r=1, \ldots, k$, we have

$$
\left|\frac{1}{N} \sum_{1 \leqslant n \leqslant N} u^{\ell_{1}}\left(n+j_{1}\right) \cdot \ldots \cdot u^{\ell_{k}}\left(n+j_{k}\right)-\frac{1}{N} \sum_{1 \leqslant n \leqslant N} u^{\ell_{1}+\ldots+\ell_{k}}(n)\right| \underset{N \rightarrow \infty}{\longrightarrow} 0
$$

(c) We can repeat word for word all arguments for the logarithmic averages. In particular, if u is mean slowly varying and, for each $\ell \geqslant 1$, the limit

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} u^{\ell}(n) \tag{28}
\end{equation*}
$$

exists, then there is only one logarithmic Furstenberg system (see Section 6.1): there exists a shift-invariant measure ν such that

$$
\frac{1}{\log N} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n} u} \xrightarrow[N \rightarrow \infty]{ } \nu
$$

(d) For $u(n)=n^{i t}$, we have the logarithmic assumption (28) satisfied (in fact, each such limit is zero whenever $\ell \neq 0$), so there is only one logarithmic Furstenberg system, as already noticed in [15] but we have uncountably many Furstenberg systems (cf. Corollary 5.5).

As it follows from Proposition 2.1, a slowly varying function $u: \mathbb{N} \rightarrow \mathbb{D}$ either has one Furstenberg system, or it has uncountably many different Furstenberg systems. By different, we mean that we obtain different measures. The measure-theoretic dynamical systems given by these measures can however be all isomorphic which is the case in the example below.

We consider now a mean slowly varying function u such that $|u(n)|=1$ for all $n \geqslant 1$. Assume, moreover, that

$$
\lim _{m \rightarrow \infty} \frac{1}{N_{m}} \sum_{0 \leqslant n<N_{m}} \delta_{S^{n} u}=\lim _{m \rightarrow \infty} E_{N_{m}}(u)=\nu
$$

for an increasing sequence $\left(N_{m}\right)$. It follows from Proposition 5.1 that ν is supported on the set $\left\{(z, z, \ldots): z \in \mathbb{S}^{1}\right\}$. Moreover, $Z_{0}^{k}(z, z, \ldots)=z^{k}$. Hence, we can identify ν with a measure κ defined on \mathbb{S}^{1} such that

$$
\lim _{m \rightarrow \infty} \frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} u^{k}(n)=\int Z_{0}^{k} d \nu=\int_{\mathbb{S}^{1}} z^{k} d \kappa
$$

It follows that, varying $k \in \mathbb{Z}$, the LHS of the equation above provides the Fourier transform of the measure κ which we are seeking. In the particular case where $u(n)=n^{i}$, we have

$$
\frac{1}{N_{m}} \sum_{1 \leqslant n \leqslant N_{m}} n^{i k}=\frac{N_{m}^{i k}}{1+i k}+\mathrm{o}(1),
$$

thus the Fourier coefficients of κ are given by the limits of $\frac{N_{m}^{k i}}{1+i k}$ as $m \rightarrow \infty$. The case $k=1$ yields that $N_{m}^{i} \rightarrow c$, where $|c|=1$, and we obtain that

$$
\int_{\mathbb{S}^{1}} z^{k} d \kappa=\frac{c^{k}}{1+i k}, k \in \mathbb{Z}
$$

Consider, $\kappa^{\prime}:=\kappa * \delta_{\bar{c}}$. Then

$$
\int_{\mathbb{S}^{1}} z^{k} d \kappa^{\prime}=\frac{1}{1+i k}, k \in \mathbb{Z}
$$

Since $\left(\frac{1}{1+i k}\right)$ is an ℓ^{2} - sequence, the measure κ^{\prime} is absolutely continuous with respect to the (normalized) Lebesgue measure Leb \mathbb{S}^{1}, with density g equal to $g(z)=\sum_{k=-\infty}^{\infty} \frac{1}{1+i k} z^{k}$. In fact, noting that for all $k \in \mathbb{Z}$,

$$
\int_{0}^{1} e^{2 \pi x} e^{i 2 \pi k x} d x=\frac{e^{2 \pi}-1}{2 \pi(1+i k)}
$$

we see that, for $x \in[0,1)$,

$$
g\left(e^{i 2 \pi x}\right)=\frac{2 \pi e^{2 \pi x}}{e^{2 \pi}-1}
$$

Finally, note that the sequence $\left(n^{i}\right)$ is dense in \mathbb{S}^{1} as the sequence $(\log n)$ is dense in $[0,2 \pi) \bmod 2 \pi$.
Corollary 5.5. The family of Furstenberg systems of $u(n)=n^{i}$ consists of uncountably many different systems given by all rotations of $g(z) d z$. All of them are isomorphic to the identity on the circle with Lebesgue measure (and ergodic components are Dirac measures on the circle). Moreover, $X_{u}=\{(z, z, \ldots): z \in$ $\left.\mathbb{S}^{1}\right\} \cup\left\{S^{n} u: n \in \mathbb{N}\right\}$.

5.2 MRT arithmetic functions do not satisfy Sarnak's conjecture

As MRT arithmetic functions mostly behave like Archimedean characters on very large intervals, we will use some ideas presented in the preceding section to prove that MRT arithmetic functions do not satisfy Sarnak's conjecture: for any MRT function \boldsymbol{u} there exists a zero entropy topological system which outputs a sequence having some correlation with \boldsymbol{u}.

Let \boldsymbol{u} be an MRT arithmetic function, and let $\left(t_{m}\right)$ and $\left(s_{m}\right)$ be as in Definition 3.1. We set, for each $m \in \mathbb{N}, r_{m}:=\left\lfloor s_{m}^{3 / 2}\right\rfloor$. Then we define a new arithmetic function $v=(v(n))_{n \in \mathbb{N}} \in\left(\mathbb{S}^{1}\right)^{\mathbb{N}}$ by setting for each m :

$$
v(n):= \begin{cases}1 & \text { for } t_{m}<n \leqslant r_{m+1} \\ n^{i s_{m+1}} & \text { for } r_{m+1}<n \leqslant t_{m+1}\end{cases}
$$

Then, for each m, we have

$$
|v(n+1)-v(n)|= \begin{cases}0 & \text { if } t_{m}<n<r_{m+1} \\ \mathrm{O}\left(s_{m+1}^{-1 / 2}\right) & \text { if } r_{m+1}<n<t_{m+1}\end{cases}
$$

Even though v may not be slowly varying because of the possible jumps in t_{m} and in r_{m+1}, the property described in Equation (27) is still valid, as these jumps are bounded by 2 and are separated by gaps whose lengths tend to ∞. Therefore, the proof of Proposition 5.2 also applies to v, and we have $h_{\text {top }}\left(X_{v}, S\right)=0$.

But, since $\frac{r_{m+1}}{t_{m+1}} \xrightarrow[m \rightarrow \infty]{ } 0$, in view of Proposition 3.4, we have

$$
\frac{1}{t_{m+1}} \sum_{1 \leqslant n \leqslant t_{m+1}} \boldsymbol{u}(n) \overline{v(n)} \xrightarrow[m \rightarrow \infty]{ } 1
$$

We thus have found a topological dynamical system $\left(X_{v}, S\right)$ of zero topological entropy, a point $v \in X_{v}$ and a continuous map $f: X_{v} \rightarrow \mathbb{C}$ (the conjugate of the zero-coordinate map), such that the sequence $\left(f\left(S^{n} v\right)\right)$ is not orthogonal to \boldsymbol{u}, in the sense that

$$
\frac{1}{N} \sum_{1 \leqslant n \leqslant N} \boldsymbol{u}(n) f\left(S^{n} v\right) \nrightarrow 0 \text { as } N \rightarrow \infty
$$

6 Further properties of MRT functions

6.1 MRT functions satisfy logarithmic Chowla conjecture along a subsequence

The purpose of this section is to study what the Main Theorem becomes if we consider logarithmic averages instead of usual averages. A logarithmic Furstenberg system of an arithmetic function $u: \mathbb{N} \rightarrow \mathbb{D}$ is defined as in Section 2 as a measure-theoretic dynamical system $\left(X_{u}, \nu, S\right)$, where ν is now a weak* limit of a subsequence of the logarithmic empirical measures

$$
E_{N}^{\log }(u):=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N} \frac{1}{n} \delta_{S^{n-1} u}
$$

with $L_{N}:=1+\frac{1}{2}+\cdots+\frac{1}{N}(N \geqslant 1)$.
We recall the classical relation between the logarithmic and usual averages, obtained by summation by parts:

$$
\begin{equation*}
E_{N}^{\log }(u)=\frac{1}{L_{N}} \sum_{1 \leqslant n \leqslant N-1} \frac{1}{n+1} E_{n}(u)+\frac{1}{L_{N}} E_{N}(u) . \tag{29}
\end{equation*}
$$

We recall that the weak*-topology turns $M\left(\left(\mathbb{S}^{1}\right)^{\mathbb{N}}\right)$ into a compact metrizable space, and that a possible metric is given by

$$
\Delta(\nu, \kappa)=\sum_{j \geqslant 1} \frac{1}{2^{j}}\left|\int f_{j} d \nu-\int f_{j} d \kappa\right|,
$$

where $\left(f_{j}\right)_{j \geqslant 1}$ is a countable family generating a dense subspace of $C\left(\left(\mathbb{S}^{1}\right)^{\mathbb{N}}\right)$. We can for example take for $\left(f_{j}\right)_{j \geqslant 1}$ the family of $\left\{Z_{i_{1}}^{r_{1}} \ldots . Z_{i_{t}}^{r_{t}}: t \geqslant 1, i_{k} \geqslant 0, r_{k} \in \mathbb{Z}\right\}$ taken in any order. Then, the metric is globally bounded by 2 . Note also that for convex combinations, we have

$$
\begin{equation*}
\Delta\left(\int \nu_{\gamma} d P(\gamma), \int \kappa_{\gamma} d P(\gamma)\right) \leqslant \int \Delta\left(\nu_{\gamma}, \kappa_{\gamma}\right) d P(\gamma) \tag{30}
\end{equation*}
$$

We need the following simple observation.
Lemma 6.1. Assume that $\mu_{k} \rightarrow \mu$ and let, for $d \geqslant 1, \kappa_{d}:=\sum_{k=d}^{d+a_{d}} \alpha_{k}^{(d)} \mu_{k}+$ $\beta^{(d)} \rho_{d}$, where $\alpha_{k}^{(d)}, \beta^{(d)} \geqslant 0, \sum_{k=d}^{d+a_{d}} \alpha_{k}^{(d)}=1-\beta^{(d)}$. If $\beta^{(d)} \rightarrow 0$ then $\kappa_{d} \rightarrow \mu$.

Proof. This follows immediately from (30).
Now, we consider an MRT arithmetic function \boldsymbol{u}, and we take $\left(t_{m}\right)$ and $\left(s_{m}\right)$ as in Definition 3.1. The proof of Main Theorem (see Section 4.3) yields the following:

Lemma 6.2. Fix $d \geqslant 0$ and choose

$$
\begin{cases}\frac{1}{d+1}<\beta_{d}<\beta_{d}^{\prime}<\frac{1}{d} & \text { if } d \geqslant 1, \\ 1<\beta_{0}<\beta_{0}^{\prime}<2 & \text { if } d=0 .\end{cases}
$$

Let $\varepsilon>0$. Then, for each m large enough,

$$
\Delta\left(E_{N}(\boldsymbol{u}), \nu_{d}\right)<\varepsilon
$$

uniformly in $s_{m+1}^{\beta_{d}} \leqslant N \leqslant s_{m+1}^{\beta_{d}^{\prime}}$.
Proof. Assume the result does not hold. Then for infinitely many integers m we can find $s_{m+1}^{\beta_{d}} \leqslant N_{m} \leqslant s_{m+1}^{\beta_{d}^{\prime}}$ such that

$$
\Delta\left(E_{N_{m}}(\boldsymbol{u}), \nu_{d}\right) \geqslant \varepsilon .
$$

On the other hand, the proof of Proposition 4.7 shows that, along such a sequence (N_{m}) we must have

$$
E_{N_{m}}(\boldsymbol{u}) \rightarrow \nu_{d},
$$

which yields a contradiction.

Now, let us fix integers $1 \leqslant D_{1}<D_{2}$. We consider the convergence of logarithmic empirical measures of \boldsymbol{u} along the increasing sequence of integers $\left.\left(N_{m}\right):=\left(\left\lfloor s_{m+1}^{1 / D_{1}}\right\rfloor\right\rfloor\right)$. Given a small real number $\varepsilon>0$, set for each $D_{1} \leqslant d \leqslant D_{2}$

$$
\beta_{d}:=\frac{1}{d+1}+\frac{\varepsilon}{2 d(d+1)} \quad \text { and } \quad \beta_{d}^{\prime}:=\frac{1}{d}-\frac{\varepsilon}{2 d(d+1)} .
$$

Using (29), we write $E_{N_{m}}^{\log }(\boldsymbol{u})$ as a convex combination of the empirical measures $E_{n}(\boldsymbol{u}), 1 \leqslant n \leqslant N$. We partition $\left\{1, \ldots, N_{m}\right\}$ as $\bigsqcup_{D_{1} \leqslant d \leqslant D_{2}} I_{d}^{m} \sqcup J^{m}$, where

$$
I_{d}^{m}:=\left\{n \in \mathbb{N}: s_{m+1}^{\beta_{d}} \leqslant n \leqslant s_{m+1}^{\beta_{d}^{\prime}}\right\}
$$

and

$$
J^{m}:=\left\{1, \ldots, N_{m}\right\} \backslash{ }_{D_{1} \leqslant d \leqslant D_{2}}^{\bigsqcup} I_{d}^{m}
$$

By Lemma 6.2, for m large, $E_{n}(\boldsymbol{u})$ is close to ν_{d} for $n \in I_{d}^{m}$. The weight of I_{d}^{m} in the convex combination is

$$
\frac{1}{L_{N_{m}}} \sum_{n \in I_{d}^{m}} \frac{1}{n+1} \underset{m \rightarrow \infty}{\sim} D_{1}\left(\beta_{d}^{\prime}-\beta_{d}\right)=D_{1}\left(\frac{1}{d}-\frac{1}{d+1}\right)(1-\varepsilon)
$$

It follows that the total weight of $\bigsqcup_{D_{1} \leqslant d \leqslant D_{2}} I_{d}^{m}$ is asymptotic, as $m \rightarrow \infty$, to

$$
D_{1}\left(\frac{1}{D_{1}}-\frac{1}{D_{2}}\right)(1-\varepsilon)>1-\varepsilon-\frac{D_{1}}{D_{2}}
$$

and then for m large enough the weight of J^{m} is bounded by $\varepsilon+\frac{D_{1}}{D_{2}}$. In view of Lemma 6.2 and (30), any weak* limit of $E_{N_{m}}^{\log }(\boldsymbol{u})$ can be written as

$$
D_{1}(1-\varepsilon) \sum_{D_{1} \leqslant d \leqslant D_{2}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}+\alpha \rho,
$$

where ρ is some shift-invariant probability measure on X_{u} and $0 \leqslant \alpha \leqslant \varepsilon+\frac{D_{1}}{D_{2}}$. Letting $\varepsilon \rightarrow 0$ and $D_{2} \rightarrow \infty$, we see (cf. Lemmma 6.1) that for any $D_{1} \geqslant 1$ there exists a logarithmic Furstenberg system of \boldsymbol{u} whose invariant measure is

$$
D_{1} \sum_{d \geqslant D_{1}}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}
$$

Note that, under this measure, the distribution of $\left(Z_{0}, \ldots, Z_{D_{1}}\right)$ is $\left(\operatorname{Leb}_{\mathbb{S}^{1}}\right)^{\otimes\left(D_{1}+1\right)}$. By Proposition 2.2 (which is also valid in the logarithmic case), we can also find $\left(\operatorname{Leb}_{\mathbb{S}^{1}}\right)^{\otimes \mathbb{N}}$ as an invariant measure of a logarithmic Furstenberg system of \boldsymbol{u}.

Thus, we have proved the following result:
Corollary 6.3. Each $\boldsymbol{u} \in$ MRT satisfies the logarithmic Chowla conjecture along a subsequence.

Getting ν_{0}

Under the assumptions given in Definition 3.1, we can easily modify the above argument to incorporate ν_{0} in the weak* limit of $E_{N_{m}}^{\log }(\boldsymbol{u})$: we just have to take $D_{1}=0$ and choose $\beta_{0}:=1+\varepsilon, \beta_{0}^{\prime}:=2-\varepsilon$. The weak* limit we get has then the form

$$
\frac{1}{2}\left(\nu_{0}+\sum_{d \geqslant 1}\left(\frac{1}{d}-\frac{1}{d+1}\right) \nu_{d}\right) .
$$

If in the construction of the MRT sequence we add the extra assumption that

$$
s_{m+1}^{a_{m}} \leqslant t_{m+1}, \quad \text { with } a_{m} \rightarrow \infty,
$$

which is compatible with the rest, then we can now take β_{0}^{\prime} as large as we want, so that the weight of ν_{0} in the weak* limit is as close to 1 as we want. Finally, we get a logarithmic Furstenberg system of \boldsymbol{u} with ν_{0} as an invariant measure.

It is not clear however if we can get $\nu_{d}(d \geqslant 1)$ for some logarithmic Furstenberg system of an MRT function.

6.2 Absence of zero mean on typical short interval

Motivated by Matomäki-Radziwiłł’s theorem [22] concerning strongly aperiodic multiplicative functions, we say that $\boldsymbol{u}: \mathbb{N} \rightarrow \mathbb{D}$ has zero mean on typical short interval if

$$
\lim _{M, H \rightarrow \infty, H=\mathrm{o}(M)} \frac{1}{M} \sum_{1 \leqslant m \leqslant M}\left|\frac{1}{H} \sum_{0 \leqslant h<H} u(m+h)\right|=0 .
$$

Proposition 6.4. Assume that $\liminf _{\ell \rightarrow \infty} \frac{1}{\ell} \sum_{1 \leqslant j \leqslant \ell}|u(j)|=: \alpha>0$. If u has identity as a Furstenberg system then u has no zero mean on short intervals.

Proof. Suppose that u has zero mean on short intervals. Assume that

$$
\lim _{k \rightarrow \infty} E_{M_{k}}(u)=\kappa .
$$

Now, the system $\left(S, X_{u}, \kappa\right)$ is the identity if and only if $Z_{0}=Z_{0} \circ S \kappa$-a.e.
Let $\varepsilon>0$ and choose H_{0} so that for $H>H_{0}$, we have

$$
\limsup _{k \rightarrow \infty} \frac{1}{M_{k}} \sum_{1 \leqslant m \leqslant M_{k}}\left|\frac{1}{H} \sum_{0 \leqslant h<H} u(m+h)\right|<\varepsilon .
$$

Take $H>H_{0}$. Then

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty} \frac{1}{M_{k}} \sum_{1 \leqslant m \leqslant M_{k}}\left|\frac{1}{H} \sum_{0 \leqslant h<H} u(m+h)\right|= \\
& \limsup _{k \rightarrow \infty} \frac{1}{M_{k}} \sum_{1 \leqslant m \leqslant M_{k}}\left|\frac{1}{H} \sum_{0 \leqslant h<H} Z_{0}\left(S^{h+m} u\right)\right|= \\
& \limsup _{k \rightarrow \infty} \int_{X_{u}}\left|\frac{1}{H} \sum_{0 \leqslant h<H} Z_{0} \circ S^{h}\right| d E_{M_{k}}(u)=
\end{aligned}
$$

$$
\int_{X_{u}}\left|\frac{1}{H} \sum_{0 \leqslant h<H} Z_{0} \circ S^{h}\right| d \kappa=\int_{X_{u}}\left|Z_{0}\right| d \kappa \geqslant \alpha>0
$$

a contradiction.
Corollary 6.5. If $\boldsymbol{u} \in$ MRT then \boldsymbol{u} has no zero mean on short intervals.

6.3 Strong stationarity

We now show that, for each $d \geqslant 0$, the stationary process $\left(Z_{n}\right)$ with distribution ν_{d} is strongly stationary (see [19]), i.e. for each $s_{1}<\ldots<s_{k}$ and each $r \geqslant 1$, the distributions of the vectors $\left(Z_{s_{1}}, \ldots, Z_{s_{k}}\right)$ and $\left(Z_{r s_{1}}, \ldots, Z_{r s_{k}}\right)$ are the same.

Fix $d \geqslant 0$ and we recall that the process $\left(Z_{n}\right)$ with the distribution ν_{d} is the same as of the process $\left(f \circ T_{d}^{n}\right)$, see (34) in Appendix for the definition of T_{d} and $f\left(x_{1}, \ldots, x_{d}\right)=e^{i 2 \pi x_{d}}$. Then

$$
f \circ T_{d}^{s}\left(x_{1}, \ldots, x_{d}\right)=e^{2 \pi i\left(\binom{s}{d-1} x_{1}+\binom{s}{d-2} x_{2}+\ldots+\binom{s}{0} x_{d}\right)}
$$

It follows that for each $s_{1}<\ldots<s_{k}$ and each choice of integers j_{1}, \ldots, j_{k}, we have

$$
\begin{gathered}
\mathbb{E} Z_{s_{1}}^{j_{1}} \ldots . Z_{s_{k}}^{j_{k}} \neq 0 \Leftrightarrow \\
\sum_{i=1}^{k} j_{i}\binom{s_{i}}{\ell}=0 \text { for } \ell=0, \ldots, d-1 \Leftrightarrow \sum_{i=1}^{k} s_{i}^{\ell}=0 \text { for } \ell=0, \ldots, d-1
\end{gathered}
$$

Therefore,

$$
\mathbb{E} Z_{s_{1}}^{j_{1}} \cdot \ldots \cdot Z_{s_{k}}^{j_{k}}=0 \Leftrightarrow \mathbb{E} Z_{r s_{1}}^{j_{1}} \cdot \ldots \cdot Z_{r s_{k}}^{j_{k}}=0 \text { for each } r \geqslant 1
$$

Moreover, $\mathbb{E} Z_{s_{1}}^{j_{1}} \cdot \ldots \cdot Z_{s_{k}}^{j_{k}} \neq 0$ is equivalent to $\mathbb{E} Z_{s_{1}}^{j_{1}} \cdot \ldots \cdot Z_{s_{k}}^{j_{k}}=1$. It follows that the process $\left(Z_{n}\right)$ with the distribution ν_{d} is strongly stationary.

It follows that all Furstenberg systems which have been found in the paper are given by stationary processes which are strongly stationary. Note also that since every convex combination of strongly stationary processes remains strongly stationary, also the logarithmic Furstenberg systems determined in Section 6.1 are strongly stationary which fits perfectly to a general result of Frantzikinakis and Host [14], [15] about logarithmic Furstenberg systems of strongly aperiodic multiplicative functions.

We end by asking the following question, which has been suggested to us by both Nikos Frantzikinakis and Florian Richter: can we find a Furstenberg system of some $\boldsymbol{u} \in$ MRT which is the direct product of a Bernoulli shift and a unipotent system?

7 Appendix

We aim at showing that from the dynamical point of view there is a close relation between the processes $\left(Y^{(d)}\right)_{d \geqslant 0}$ which appeared in Section 4 and the concept of quasi-eigenfunction in ergodic theory.

7.1 Algebraic constraints and quasi-eigenfunctions

Given a standard Borel probability space (X, \mathcal{B}, μ), let $\mathcal{M}(X)$ denote the set of all measurable functions of modulus 1 defined on X. Endowed with the pointwise multiplication and the L^{2}-topology, it becomes a Polish group. Given an automorphism T on (X, \mathcal{B}, μ), set

$$
E_{0}(T):=\{g \in \mathcal{M}(X): g \circ T=g\}
$$

and then inductively, define

$$
E_{d+1}(T):=\left\{f \in \mathcal{M}(X): f \circ T / f \in E_{d}(T)\right\}, d \geqslant 0 .
$$

Note that each $E_{d}(T)$ is a group which is called the group of d-quasi-eigenfunctions. For $w \in \mathcal{M}(X)$ and $m \geqslant 1$, we set

$$
w^{(m)}=w \circ T^{m-1} \cdot \ldots \cdot w
$$

with $w^{(0)}=1$. Assume that $g \in E_{d}(T)$ and let $g \circ T=h g$ with $h=g \circ T / g \in$ $E_{d-1}(T)$. Then, for each $\ell_{1}, \ldots, \ell_{k}$, we have

$$
\begin{gathered}
\prod_{i=1}^{k} g \circ T^{\ell_{i}}=\prod_{i=1}^{k} h^{\left(\ell_{i}\right)} g=g^{k} \prod_{i=1}^{k} h^{\left(\ell_{i}\right)}= \\
g^{k} \prod_{i=1}^{k}\left(\prod_{j=0}^{\ell_{i}-1} h \circ T^{j}\right)=g^{k} \prod_{i=1}^{k} \prod_{j=0}^{\ell_{i}-1}\left(\frac{h \circ T}{h}\right)^{(j)} h= \\
g^{k} \prod_{i=1}^{k} h^{\ell_{i}} \prod_{j=0}^{\ell_{i}-1}\left(\frac{h \circ T}{h}\right)^{(j)}= \\
g^{k} h^{\sum_{i=1}^{k} \ell_{i}} \prod_{i=1}^{k} \prod_{j=0}^{\ell_{i}-1}\left(\frac{h \circ T}{h}\right) \circ T^{j-1} \cdot \ldots \cdot\left(\frac{h \circ T}{h}\right)= \\
g^{k} h^{\sum_{i=1}^{k} \ell_{i}} \prod_{i=1}^{k} \prod_{j=0}^{\ell_{i}-1} \prod_{p=0}^{j-1}\left(\frac{(h \circ T / h) \circ T}{h \circ T / h}\right)^{(p)} \frac{h \circ T}{h}= \\
g^{k} h^{\sum_{i=1}^{k} \ell_{i}} \prod_{i=1}^{k} \prod_{j=0}^{\ell_{i}-1}\left(\frac{h \circ T}{h}\right)^{j} \prod_{p=0}^{j-1}\left(\frac{(h \circ T / h) \circ T}{h \circ T / h}\right)^{(p)}= \\
g^{k} h^{\sum_{i=1}^{k} \ell_{i}}\left(\frac{h \circ T}{h}\right)^{\sum_{i}^{k} \frac{\ell_{i}\left(\ell_{i}-1\right)}{2}} \prod_{i=1}^{k} \prod_{j=0}^{\ell_{i}-1} \prod_{p=0}^{j-1}\left(\frac{(h \circ T / h) \circ T}{h \circ T / h}\right)^{(p)}=\ldots
\end{gathered}
$$

It follows that for the stationary process $\left(g \circ T^{n}\right)_{n \in \mathbb{N}}$ the following holds: whenever $\ell_{i}, \ell_{i}^{\prime}$ satisfy $\sum_{i=1}^{k} \ell_{i}^{j}=\sum_{i=1}^{k} \ell_{i}^{\prime j}$ for $j=0,1, \ldots, d$, we have

$$
\begin{equation*}
\prod_{i=1}^{k} g \circ T^{\ell_{i}}=\prod_{i=1}^{k} g \circ T^{\ell_{i}^{\prime}} \tag{31}
\end{equation*}
$$

provided that $g \in E_{d}(T)$.
In fact, the processes given by quasi-eigenfunctions are the only satisfying the algebraic relation (31).

Proposition 7.1. Assume that $\left(Z_{n}\right)$ is a stationary \mathbb{S}^{1}-valued process. Then for each $d \geqslant 0, Z_{0} \in E_{d}(T)$ if and only if

$$
\begin{equation*}
Z_{\ell_{1}} \cdot \ldots \cdot Z_{\ell_{k}}=Z_{\ell_{1}^{\prime}} \cdot \ldots \cdot Z_{\ell_{k}^{\prime}} \tag{32}
\end{equation*}
$$

for each $\ell_{i}, \ell_{i}^{\prime}$ for which $\sum_{i=1}^{k} \ell_{i}^{j}=\sum_{i=1}^{k} \ell_{i}^{\prime j}$ for $j=0,1, \ldots, d$ assuming that

$$
\begin{equation*}
\left\{\ell_{1}, \ldots, \ell_{l}\right\} \cap\left\{\ell_{1}^{\prime}, \ldots, \ell_{k}^{\prime}\right\}=\varnothing \tag{33}
\end{equation*}
$$

Proof. We can assume that $Z_{n}=Z_{0} \circ T^{n}$ for an automorphism T of (X, \mathcal{B}, μ). Now, we proceed by induction. Since the first condition $(d=0)$ is just $Z_{0} \circ T^{\ell_{1}}$. $\ldots \circ Z_{0} \circ T^{\ell_{k}}=Z_{0} \circ T^{\ell_{1}^{\prime}} \cdot \ldots \cdot Z_{0} \circ T^{\ell_{k}^{\prime}}$ whichever numbers we take, we have (by taking $k=1, \ell_{1}=1$ and $\left.\ell_{1}^{\prime}=0\right) Z_{0} \circ T=Z_{0}$, so $Z_{0} \in E_{0}(T)$.

Notice that condition (33) is superfluous since if some of the numbers ℓ_{i} are equal to ℓ_{j}^{\prime}, then we can just cancel out the relevant factors. So, assume now that Z_{0} satisfies (32) and let $f=Z_{0} \circ T / Z_{0}$. We need to prove that f satisfies the relation (32) up to d (if so, then by the induction assumption $f \in E_{d}(T)$, whence $\left.Z_{0} \in E_{d+1}(T)\right)$. That is, we want to prove that

$$
f \circ T^{\ell_{1}} \cdot \ldots \cdot f \circ T^{\ell_{k}}=f \circ T^{\ell_{1}^{\prime}} \cdot \ldots \cdot f \circ T^{\ell_{k}^{\prime}}
$$

provided that $\sum_{i=1}^{k} \ell_{i}^{j}=\sum_{i=1}^{k} \ell_{i}^{\prime j}$ for $j=0,1, \ldots, d$. Equivalently, we want to show that

$$
\begin{gathered}
Z_{0} \circ T^{\ell_{1}+1} \cdot \ldots \cdot Z_{0} \circ T^{\ell_{k}+1} \cdot Z_{0} \circ T^{\ell_{1}^{\prime}} \cdot \ldots \cdot Z_{0} \circ T^{\ell_{k}^{\prime}}= \\
Z_{0} \circ T^{\ell_{1}^{\prime}+1} \cdot \ldots \cdot Z_{0} \circ T^{\ell_{k}^{\prime}+1} \cdot Z_{0} \circ T^{\ell_{1}} \cdot \ldots \cdot Z_{0} \circ T^{\ell_{k}} .
\end{gathered}
$$

But we clearly have

$$
\begin{gathered}
\left(\ell_{1}+1\right)^{d+1}+\ldots+\left(\ell_{k}+1\right)^{d+1}+\ell_{1}^{\prime d+1}+\ldots+\ell_{k}^{\prime d+1}= \\
\left(\ell_{1}^{\prime}+1\right)^{d+1}+\ldots+\left(\ell_{k}^{\prime}+1\right)^{d+1}+\ell_{1}^{d+1}+\ldots+\ell_{k}^{d+1}
\end{gathered}
$$

(let alone if we replace $d+1$ by a smaller j), hence the result.
Remark 7.2. Assume additionally that T is totally ergodic (i.e. all nonzero powers are ergodic). Then, following [2], T has quasi-discrete spectrum if span $\left(\bigcup_{d \geqslant 0} E_{d}(T)\right)=L^{2}(X, \mathcal{B}, \mu)$ (sometimes, T is called an Abramov automorphism). Quasi-discrete spectrum automorphisms are basically affine automorphisms of compact, Abelian, metric groups, see [18] for more details.

Remark 7.3. Knowing that $Z_{0} \in E_{d}(T)$ does not determine the whole process $\left(Z_{m}\right)_{m \in \mathbb{N}}$. Indeed, for example, if we take the ergodic decomposition of T, then the process $\left(Z_{m}\right)$ (considered with respect to an ergodic component) will still satisfy the same algebraic relation even though the distribution of the process may have changed.

7.2 Algebraic constraints and n-independence

We will be interested in the (very) non-ergodic case. Given $d \geqslant 1$, consider the (unipotent) automorphism $T_{d}: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$, defined by:

$$
\begin{equation*}
T_{d}\left(x_{1}, \ldots, x_{d}\right):=\left(x_{1}, x_{1}+x_{2}, \ldots, x_{d-1}+x_{d}\right) \tag{34}
\end{equation*}
$$

(hence T_{1} is just the identity on $\left.\mathbb{T}\right)$. Set $f\left(x_{1}, \ldots, x_{d}\right)=e^{i 2 \pi x_{d}}$. Then, $(f \circ$ $T / f)\left(x_{1}, \ldots, x_{d}\right)=e^{i 2 \pi x_{d-1}}$, so by induction, it is easy to show that $f \in E_{d}\left(T_{d}\right)$.

Denote by Erg^{\perp} the class of automorphisms disjoint from all ergodic automorphisms.

Proposition 7.4. For each $d \geqslant 1, T_{d} \in \mathrm{Erg}^{\perp}$. Moreover, the stationary process $\left(f \circ T_{d}^{m}\right)_{m \in \mathbb{N}}$ is d-independent, i.e. for all $m_{1}<\ldots<m_{d}$ the variables $f \circ$ $T_{d}^{m_{1}}, \ldots, f \circ T_{d}^{m_{d}}$ are independent.

Proof. To prove that $T_{d} \in \mathrm{Erg}^{\perp}$, we first notice that its ergodic decomposition is given by the tori (on which we consider the relevant Lebesgue measure) $\mathbb{T}_{x}^{d-1}=$ \mathbb{T}^{d-1} with $x \in \mathbb{T}$ irrational (and we consider Lebesgue measure ${ }^{3}$ on \mathbb{T}) on which the action $T_{d, x}$ is given by

$$
\left(x_{2}, x_{3} \ldots, x_{d}\right) \mapsto\left(x_{2}+x, x_{2}+x_{3}, \ldots, x_{d-1}+x_{d}\right)
$$

If an ergodic automorphism S acting on (Y, \mathcal{C}, ν) is non-disjoint with $T_{d, x}$ then since $T_{d, x}$ is an ergodic compact group extension of an irrational rotation, the associated Koopman operator U_{S} must share a common eigenvalue with the Koopman operator $U_{T_{d, x}}$ given by $T_{d, x}$ (cf. [17], Chapter 6). As U_{S} can have only countably many eigenvalues and the measure on the space of ergodic components is continuous, we can assume that S is disjoint with all ergodic components. Take any joining ρ of T_{d} and S. Let

$$
\rho=\int \rho_{\gamma} d P(\gamma)
$$

be its ergodic decomposition. Then, for P-a.e. γ, the projection $\left.\rho_{\gamma}\right|_{Y}$ of ρ_{γ} on Y equals ν since ν is ergodic. Moreover,

$$
\begin{equation*}
\operatorname{Leb}_{\mathbb{T} \otimes d}=\left.\rho\right|_{\mathbb{T}^{d}}=\left.\int \rho_{\gamma}\right|_{\mathbb{T}^{d}} d P(\gamma) \tag{35}
\end{equation*}
$$

is a decomposition of $\mathrm{Leb}_{\mathbb{T}_{\otimes d}}$ into ergodic measures. By the uniqueness of ergodic decomposition, it is (35) which is the ergodic decomposition, and (by disjointness) we obtain that

$$
\rho=\int_{\mathbb{T}}\left(\delta_{x} \otimes\left(\operatorname{Leb}_{\mathbb{T}}\right)^{\otimes(d-1)}\right) \otimes \nu d \operatorname{Leb}_{\mathbb{T}}(x)
$$

and the first claim easily follows.
It is not hard to check that by elementary properties of Pascal triangle:

$$
\begin{equation*}
T_{d}^{r}\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, \ldots,\binom{r}{d-1} x_{1}+\binom{r}{d-2} x_{2}+\ldots+\binom{r}{0} x_{d}\right) \tag{36}
\end{equation*}
$$

Now, choose any integers $r_{1}<r_{2}<\ldots r_{d}$ and $q_{j} \in \mathbb{Z}$ for $j=1, \ldots, d$. We want to show that the distribution of the vector $\left(f^{q_{1}} \circ T_{d}^{r_{1}}, \ldots, f^{q_{d}} \circ T_{d}^{r_{d}}\right)$ is $\left(\operatorname{Leb}_{\mathbb{T}}\right)^{\otimes d}$ and for that we need to check that

$$
\begin{equation*}
\mathbb{E}\left(f^{q_{1}} \circ T_{d}^{r_{1}} \cdot \ldots \cdot f^{q_{d}} \circ T_{d}^{r_{d}}\right)=0 \tag{37}
\end{equation*}
$$

[^1]unless $q_{1}=\ldots=q_{d}=0$. Now, in view of (36), the negation of (37) is equivalent to
$$
\sum_{j=1}^{d} q_{j}\binom{r_{j}}{k}=0 \text { for } k=0,1, \ldots, d-1
$$

It is not hard to see that this system of linear equations is equivalent to

$$
\sum_{j=1}^{d} q_{j} r_{j}^{k}=0 \text { for } k=0,1, \ldots, d-1
$$

However, the determinant here is the Vandermonde determinant and since the numbers r_{j} are pairwise different, our claim follows.
Remark 7.5. By the proof of Proposition 4.1 (see also Remark 4.2), under the assumptions of Proposition 4.1, we obtain that the dynamical system corresponding to the stationary process $\left(Z_{n}\right)$ is (up to isomorphism) just T_{d}.

Remark 7.6. If T acting on (X, \mathcal{B}, μ) is additionally ergodic then $E_{0}(T)$ consists of the constants while $E_{1}(T)$ consists of the eigenfunctions of the Koopman operator U_{T} acting on $L^{2}(X, \mathcal{B}, \mu)$. Hence, if $\left(Z_{n}\right)_{n \in \mathbb{N}}$ is a stationary process satisfying

$$
\begin{equation*}
Z_{0} \cdot Z_{2}=Z_{1}^{2} \tag{38}
\end{equation*}
$$

then, using also Proposition 7.1, the ergodic components of the corresponding dynamical system must have discrete spectra. ${ }^{4}$ A prominent example of such a situation is the automorphisms $T_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{2}\right)$ on \mathbb{T}^{2} whose ergodic components are (all) irrational rotations (and Z_{0} is given by $f_{2}:\left(x_{1}, x_{2}\right) \mapsto$ $\left.e^{i 2 \pi x_{2}}\right)$.

Acknowledgments Research of the first and second authors supported by Narodowe Centrum Nauki grant UMO-2019/33/B/ST1/00364. The second and third authors would like to thank the American Institute of Mathematics for hosting a workshop Sarnak's Conjecture, where this work was first discussed.

References

[1] H. El Abdalaoui. M. Lemańczyk, T. de la Rue, A dynamical point of view on the set of \mathcal{B}-free integers, Int. Math. Res. Not. IMRN 2015, no 16, 72587286.
[2] L.M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk U.S.S.R., 26 (1962), 513-530.
[3] American Institute of Mathematics, workshop Sarnak's Conjecture, December 2018, http://aimpl.org/sarnakconjecture/3/
[4] V. Bergelson, J. Kułaga-Przymus, M. Lemańczyk, F. Richter, Rationally almost periodic sequences, polynomial multiple recurrence and symbolic $d y$ namics, Ergodic Theory Dynam. Systems 39 (2019), 2332-2383.

[^2][5] S. Chowla, The Riemann Hypothesis and Hilbert's Tenth Problem. Mathematics and Its Applications 4, Gordon and Breach Science Publishers, New York, 1965.
[6] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, BerlinNew York, 1976.
[7] P. Elliott, Multiplicative functions $|g| \leqslant 1$ and their convolutions: An overview, Séminaire de Théorie des Nombres, Paris 1987-88. Progress in Mathematics 81 (1990), 63-75.
[8] P.D.T.A. Elliott, On the correlation of multiplicative functions, Notas Soc. Mat. Chile, 11(1):1-11, 1992.
[9] P. Elliott, On the correlation of multiplicative and the sum of additive arithmetic functions, Mem. Amer. Math. Soc. 112 (1994), no. 538, viii+88pp.
[10] L. Flaminio, Mixing k-fold independent processes of zero entropy, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1263-1269.
[11] N. Frantzikinakis, Ergodicity of the Liouville system implies the Chowla conjecture, Discrete Anal. 2017, Paper No. 19, 41 pp.
[12] N. Frantzikinakis, An averaged Chowla and Elliott conjecture along independent polynomials, Int. Math. Res. Not. IMRN 2018, no 12, 3721-3743.
[13] N. Frantzikinkis, B. Host, Asymptotics for multilinear averages of multiplicative functions, Math. Proc. Camb. Phil. Soc. 161 (2016), 87-101.
[14] N. Frantzikinakis, B. Host, The logarithmic Sarnak conjecture for ergodic weights, Ann. of Math. (2) 187 (2018), no. 3, 869-931.
[15] N. Frantzikinakis, B. Host, Furstenberg systems of bounded multiplicative functions and applications, Int. Math. Res. Not. IMRN 2021, no 8, 60776107.
[16] H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573-601.
[17] E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, 2003.
[18] F. Hahn, W. Parry, Minimal dynamical systems with quasi-discrete spectrum, J. London Math. Soc. 40 (1965), 309-323.
[19] E. Jenvey, Strong stationarity and de Finetti's theorem, J. Anal. Math. 73 (1997), 1-18.
[20] O. Klurman, Correlations of multiplicative functions and applications, Compositio Math. 153 (2017), 1622-1657.
[21] L. Matthiesen, Linear correlations of multiplicative functions, Proc. LOndon Math. Soc. (3) 121 (2020), 372-425.
[22] K. Matomäki, M. Radziwiłł, Multiplicative functions in short intervals, Annals of Math. 183 (2016), 1015-1056.
[23] K. Matomäki, M. Radziwiłł, T. Tao, An averaged form of Chowla's conjecture, Algebra Number Theory 9 (2015), no. 9, 2167-2196.
[24] J. Rivat, Analytic Number Theory, in: Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics, Lecture Notes in Math., 2213, Springer, Cham, 2018, pp. 1-99.
[25] P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/.
[26] T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi 4 (2016), e8, 36 pp.
[27] T. Tao, J. Teräväinen, Odd order cases of the logarithmically averaged Chowla conjecture, J. Théor. Nombres Bordeaux 30 (2018), no. 3, 997-1015.
[28] T. Tao, J. Teräväinen, The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures, Duke Math. J. 168 (2019), no. 11, 1977-2027.
[29] T. Tao. J. Teräväinen, The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures, Algebra Number Theory 13 (2019), no. 9, 2103-2150.
[30] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University, Toruń, Poland gomilko@mat.umk.pl, mlem@mat.umk.pl
Laboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie CNRS - Avenue de l'Université - 76801 Saint Étienne du Rouvray, France Thierry.de-la-Rue@univ-rouen.fr

[^0]: ${ }^{1}$ Their functions are totally aperiodic, that is, all powers $\boldsymbol{u}^{k}, k \geqslant 1$ are also aperiodic.
 ${ }^{2}$ Cf. this equality with a remark after Theorem 10 in [25] as a topological instance of validity of Chowla conjecture.

[^1]: ${ }^{3}$ That is, we identify the space of ergodic components with $\left(\mathbb{T}, \operatorname{Leb}_{\mathbb{T}}\right)$.

[^2]: ${ }^{4}$ Note that by Proposition 7.1 it follows that $Z_{1}=c Z_{0}$, whence (34) is satisfied whenever $\sum_{i=1}^{k} \ell_{i}=\sum_{i=1}^{k} \ell_{i}^{\prime}$.

