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On Furstenberg systems of aperiodic

multiplicative functions

of Matomäki, Radziwiłł and Tao

Aleksander Gomilko Mariusz Lemańczyk

Thierry de la Rue

August 26, 2021

Abstract

It is shown that in a class of counterexamples to Elliott’s conjecture
by Matomäki, Radziwiłł and Tao [23], the Chowla conjecture holds along
a subsequence.

1 Introduction

The celebrated Chowla conjecture [5] from 1965 predicts that for the arithmetic
Liouville function λ, we have

(1) lim
NÑ8

1

N

ÿ

1ďnďN

λpn ` a1q ¨ . . . ¨ λpn ` akq “ 0

for any choice of 0 ď a1 ă . . . ă ak, k ě 1. As noticed by Sarnak [25] this
is equivalent to saying that the Liouville subshift Xλ Ă t´1, 1uN is actually
the full shift and λ is a generic point for the Bernoulli measure p1{2, 1{2qbN,
which is the Haar measure on t´1, 1uN. When we consider a more general
multiplicative function u : N Ñ S1 which is aperiodic (i.e. its mean along any
arithmetic progression exists and equals zero), and if all powers uk (k ě 1) are
still aperiodic, then the analog of (1) for u becomes

lim
NÑ8

1

N

ÿ

1ďnďN

ur1pn ` a1q ¨ . . . ¨ urkpn ` akqus1pn ` b1q ¨ . . . ¨ usℓpn ` bℓq “ 0

for all powers ru, st P N and ta1, . . . , aku X tb1, . . . , bℓu “ H, which in turn
means that u is a generic point for pLeb S1q

bN, the Haar measure on pS1qN.
This more general form of Chowla conjecture is still a particular case of

Elliott’s conjecture [7], [8], [9] which deals with several (possibly different) mul-
tiplicative functions (one of which is aperiodic). Similar conjectures can be
formulated for multiplicative functions taking values in the unit disk D, but in
this case we have to consider properties of u relative to |u|, where the latter
point is always generic for an ergodic measure (with respect to the left shift),
often called the Mirsky measure, on r0, 1sN (see [25] for the case of the Möbius
function µ or e.g. [4] for a general case).
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In [23], Matomäki, Radziwiłł and Tao gave a class of examples of multiplica-
tive and aperiodic1 u : N Ñ S1 Y t0u for which the sequence

´ 1

N

ÿ

1ďnďN

upnqupn ` 1q
¯

Ně1

does not converge to zero. This disproved the general form of Chowla conjecture
for aperiodic u, and in particular, they disproved Elliott’s conjecture. In their
class |u| “ µ2 but they also explained that their example could be modified
to get a completely multiplicative S1-valued aperiodic function. Finally, this
lead them to reformulate Elliott’s conjecture in the sense that it is expected to
be valid for a subclass of aperiodic functions, the so-called strongly aperiodic
functions, and till today this stronger form of Elliott’s conjecture is open and
under intensive study [12], [13], [21], [26]-[29].

In this note, we will have a closer look at the counterexample given by
Matomäki, Radziwiłł and Tao. To avoid some technical, rather notational,
issues, we will deal with the completely multiplicative, S1-valued version of their
construction, which we call here the MRT class (see the complete description
of such multiplicative functions in Section 3). If u P MRT then it cannot be
generic for the Haar measure on pS1qN, but still we can ask for which measures
on pS1qN it is quasi-generic. Each such measure yields a so-called measure-
theoretic Furstenberg system (see Section 2). In particular, the arguments given
in [23] prove that there exists an increasing sequence of integers giving rise to
a Furstenberg system which is measure-theoretically isomorphic to the action
of the identity map on S1 equipped with the Lebesgue measure. What kind
of other dynamical systems can be obtained as Furstenberg systems for u in
the MRT class is a natural question. Furthermore, in the topological setting, u
determines a subshift Xu Ă pS1qN and we can ask for its topological entropy.
Our aim is to prove the following result.

Main Theorem. Let u be in the MRT class. Then, for each d ě 0, there is a
Furstenberg system pXu, νd, Sq of u which is measure-theoretically isomorphic
to the unipotent system

pxd, xd´1, . . . , x0q ÞÑ pxd, xd´1 ` xd, . . . , x0 ` x1q

on Td`1 equipped with the pd ` 1q-dimensional Lebesgue measure.
Furthermore, the Bernoulli shift

`

pS1qN, pLeb S1qbN, S
˘

is also a Furstenberg
system of u, i.e.

(2) the analog of the Chowla conjecture holds for u along a subsequence.

In particular,

(3) Xu “ pS1qN, 2

and

(4) htoppXu, Sq “ 8.

1Their functions are totally aperiodic, that is, all powers u
k , k ě 1 are also aperiodic.

2Cf. this equality with a remark after Theorem 10 in [25] as a topological instance of
validity of Chowla conjecture.
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The proof of the above theorem is given in Section 4. It seems also that this
result makes it legitimate to ask whether (some of) properties (2)-(4) are valid
for all totally aperiodic multiplicative functions u, |u| “ 1. Note also that the
theorem above sheds light on Frantzikinakis’ question: see Problem 3.1 on the
list of problems in [3] of whether the system px, yq ÞÑ px, x ` yq on T2 can be a
Furstenberg system of the Liouville function. The expected answer is of course
negative (as the positive answer is in conflict with the Chowla conjecture) but,
as our result shows, this unipotent system is a Furstenberg system for a class of
multiplicative aperiodic functions. Moreover, our Main Theorem yields positive
answers to questions raised in Problem 7.3 [3] in the class of MRT functions.
More than that, since the ergodic components of νd, d ě 2, are affine extensions
of irrational rotations, the Main Theorem disproves Conjecture 2 from [15].

As each u P MRT is given “locally by Archimedean characters”, in Section 5,
we will deal with Furstenberg systems of Archimedean characters themselves
and will describe their Furstenberg systems. Moreover, we will show that no
u P MRT satisfies the analog of Sarnak’s conjecture. Finally, in Section 6 we
show that the analog of logarithmic Chowla conjecture for u (cf. (2)) holds
along a subsequence and discuss further properties of Furstenberg systems of
MRT arithmetic functions: strong stationarity and the absence of zero mean on
typical short interval.

In Appendix we discuss Furstenberg systems given by νd from the pure er-
godic theory point of view. We explain their connections with the classical
theory of transformations with quasi-discrete spectrum and give a new charac-
terization of quasi-eigenfunctions which seems to be of independent interest.

2 Furstenberg systems of a bounded arithmetic

function

Assume that u : N Ñ C is an arithmetic function, |u| ď 1. Denote by D the unit
disk. On the space M

`

DN
˘

of Borel probability measures on DN, we consider
the weak˚-topology, in which νm Ñ ν if and only if

ş

DN f dνm Ñ
ş

DN f dν for
each f P CpDNq. This topology turns M

`

DN
˘

into a compact metrizable space.
Let S denote the shift map on DN, and consider in M

`

DN
˘

the sequence

pEN puqqNě1 :“

˜

1

N

ÿ

0ďnăN

δSnu

¸

Ně1

of empiric probability measures. By compactness, we can choose a converging
subsequence

ENm
puq Ñ ν,

and we say that u is quasi-generic for ν along the sequence pNmq. It is not
hard to see (cf. the Krylov-Bogolyubov theorem) that such a limit point ν is S-
invariant. Moreover, such a ν is always supported on the subshift Xu generated
by u, that is

Xu :“ tSnu : n ě 0u.
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The measure-theoretic dynamical system pXu, ν, Sq is called a Furstenberg
system of u. Denote by V puq the set of all probability measures on Xu for which
u is quasi-generic:

V puq :“
!

ν P MpXu, Sq : ν “ lim
mÑ8

ENm
puq for some Nm Ñ 8

)

.

Classically, we have the following:

Proposition 2.1. ([6]) (i) V puq Ă MpXu, Sq is closed (in the weak˚-topology).
(ii) V puq is connected, whence either |V puq| “ 1 or V puq is uncountable.

Let Z0 : DN Ñ D be the 1-coordinate map: Z0pyq “ yp1q for y “
`

ypnq
˘

nPN
P

DN. In general, we define Zn :“ Z0 ˝ Sn as the map y ÞÑ ypn ` 1q. Then, given
ν P V puq, we obtain a stationary process pZ0, Z1, . . .q with values in DN whose
distribution is ν. Let κ “ pZ0q˚pνq be the distribution of the random variable
Z0 under ν. Then by the S-invariance of ν, κ is also the distribution of each
coordinate Zn, n ě 0. An example of particular interest corresponds to the i.i.d.
case, arising when ν is a product measure, i.e., when ν is of the form κbN. We
have the following observation.

Proposition 2.2. Let κ be a probability measure on D. Assume that for each
d ě 0 there exists νd P V puq under which the distribution of pZ0, . . . , Zdq is
κbd`1. Then κbN P V puq.

Proof. By compactness, we can assume that νd Ñ ρ, and by Proposition 2.1 (i),
ρ P V puq. All we need to show is that

EρpZq1
0 ˝ Sj1 ¨ . . . ¨ Zqk

0 ˝ Sjkq “
k

ź

i“1

EκZ
qi
0

for each k ě 1, qi P Z and 0 ď j1 ă . . . ă jk. But the equality above is true if
ρ is replaced by νd for d ě jk, and since Z

q1
0 ˝ Sj1 ¨ . . . ¨ Zqk

0 ˝ Sjk P CpXuq, the
result follows.

Remark 2.3. If κbN P V puq then by the variational principle (see e.g. [30,
Section 8.2]) htoppXu, Sq ě hpXu, κ

bN, Sq “ Hpκq. If the distribution of κ is
continuous then immediately Hpκq “ `8, whence htoppXu, Sq “ `8 in this
case.

Proposition 2.2 can be useful if we want to show that the product measure
yields a Furstenberg system of Bernoulli type (“Chowla holds along a subse-
quence”). Indeed, we only need to show the existence of Furstenberg systems
which yield some finite degree of independence of the process pZnqně0 and such
can be firstly of zero entropy and even very non-ergodic (i.e. belonging to ErgK),
cf. also [10]. Together with Remark 2.3, it also gives a nice criterion to show
that the topological entropy of u is infinite.

3 MRT multiplicative functions

In this section we describe more precisely the MRT class of completely multi-
plicative functions to which our Main Theorem applies. We start by giving a
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formal definition of this class, then we resume the construction given in [23] by
Matomäki, Radziwiłł and Tao of a completely multiplicative function meeting
the required property. Finally, we give the key property of MRT arithmetic
functions that will be used in the proof of our Main Theorem.

Definition 3.1. A completely multiplicative function u : N Ñ S1 belongs to
the MRT class if there exist two increasing sequences of integers ptmq and psmq
such that, for each m ě 1, we have the following properties:

‚ tm ă sm`1 ă s2m`1 ď tm`1,

‚ for each prime p P ptm, tm`1s, uppq “ pism`1 ,(5)

‚ for each prime p ď tm,
ˇ

ˇuppq ´ pism`1

ˇ

ˇ ă
1

t2m
.(6)

Here is the method to get such a function. We just have to define uppq
for each prime p and to construct the sequences ptmq and psmq, which is done
inductively as follows. Start by choosing an integer t1 P N and set, for each
prime p ď t1, uppq :“ 1. Now, assume that for some m ě 1 we have already
defined tm and uppq for each p ď tm. In the Cartesian product

ś

pďtm
S1, we

consider the sequence of points
´

`

pis
˘

pďtm

¯

sPN
.

Since the numbers log p, p ď tm, are linearly independent over the integers, this
sequence is dense in

ś

pďtm
S1. Thus, we can choose sm`1 ą tm so that (6)

is satisfied. We then choose tm`1 ě s2m`1, and for tm ă p ď tm`1 we set
uppq :“ pism`1 . Doing this inductively for each m ě 1 gives a completely
multiplicative function u P MRT.

Remark 3.1. It is also interesting to note that the growth of sm`1{tm is nec-
essarily superpolynomial: in fact, it follows from Propositions 4.3 and 4.7 that,
for each β ą 0, tm ă s

β
m`1 for m large enough.

It is also shown in [23] that once sm`1 ą etm for m ě 1, the resulting u is
aperiodic.

We will use the following easy lemma.

Lemma 3.2. Let u P MRT and ptmq, psmq be as in Definition 3.1. Let m ě 1

and n ď tm`1. If the number of prime factors of n less than or equal to tm
(counting multiplicity) is bounded by tm, then

(7)
ˇ

ˇupnq ´ nism`1

ˇ

ˇ ď
1

tm
.

Proof. We write n as a product of primes

n “
ź

pďtm

pαppnq
ź

tmăpďtm`1

pαppnq.

By the complete multiplicativity of u and by (5), we then have

upnq “
ź

pďtm

uppqαppnq

˜

ź

tmăpďtm`1

pαppnq

¸ism`1

.
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Using (6) in the first product above, we get

ˇ

ˇupnq ´ nism`1

ˇ

ˇ ď

ř

pďtm
αppnq

t2m
.

In particular, if
ř

pďtm
αppnq ď tm, then

ˇ

ˇupnq ´ nism`1

ˇ

ˇ ď
1

tm
.

The next lemma is useful to estimate the density of the integers n for
which (7) is not valid.

Lemma 3.3. For t P N, denote

Bt :“ tn ě 1 :
ÿ

pďt

αppnq ě tu,

i.e. Bt is the set of integers n ě 1 having at least t prime factors less than or
equal to t (counting multiplicity). Then

(8) εt :“ sup
Ně1

1

N

ÿ

1ďnďN

1Bt
pnq ÝÝÝÑ

tÑ8
0.

Proof. For each t P N, set kt :“
Y

t
πptq

]

(where πptq denotes, as usual, the number

of primes up to t). Let n P N; if, for each prime p ď t, pkt does not divide n, then
the number of prime factors of n less than or equal to t (counting multiplicity)
is at most πptqpkt ´ 1q ă t, hence n R Bt. By contraposition, if n P Bt, there
exists a prime number p ď t such that pkt |n. Therefore, we have for each N ě 1

1

N

ÿ

1ďnďN

1Bt
pnq ď

1

N

ÿ

1ďnďN

ÿ

pďt

1pkt |n

“
ÿ

pďt

1

N

ÿ

1ďnďN

1pkt |n

ď
ÿ

pďt

1

pkt

ă
ÿ

p

1

pkt
ÝÝÝÑ
tÑ8

0 (since kt Ñ 8 as t Ñ 8).

Using Lemma 3.2 and Lemma 3.3, we obtain the following result.

Proposition 3.4. Let u P MRT and ptmq, psmq be as in Definition 3.1. Let
pNmq be an increasing sequence of integers with Nm ď tm`1 for each m P N.
Then

1

Nm

#

"

n P t1 . . . , Nmu :
ˇ

ˇupnq ´ nism`1

ˇ

ˇ ą
1

tm

*

ď εtm ÝÝÝÝÑ
mÑ8

0.
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4 Proof of the Main Theorem

Here is an outline of the proof. First, we present in Section 4.1 a family of
stationary processes, taking values in the unit circle, parametrized by an in-
teger d ě 0. Such a process generates a measure-theoretic dynamical system
isomorphic to the unipotent system appearing in the statement of the theorem.
It is easily characterized by two conditions: each coordinate of the process is
uniformly distributed on the circle, and some deterministic function φd`1 of
the coordinates of the process is constantly equal to 1. We completely describe
in Proposition 4.1 and Remark 4.2 the distribution νd of such a process, in
particular we show that d ` 1 consecutive coordinates are independent. Then
Proposition 4.3 provides a criterion for an arithmetic function u to be quasi-
generic for this probability measure νd. This criterion involves the functions
φd`1, and we study in Section 4.2 two sequences of polynomials related with
this family of functions. We show in Section 4.3 that for u P MRT, the criterion
is fulfilled for each d ě 0. For this we use Proposition 3.4 which allows us to
replace, in the appropriate range, upnq by nism`1 . The criterion then becomes
an evaluation of some exponential sums, that we can handle with the help of
Kusmin-Landau Theorem (Theorem 4.8). Finally, using Proposition 2.2, we can

conclude that u is also quasi-generic for the product measure
`

Leb S1

˘bN
.

4.1 Processes in the unit circle

We recall the notation Zn “ Z0 ˝ Sn (n ě 0) from Section 2, but we restrict
ourselves to the set of sequences taking values in S

1. We define inductively a
new sequence of maps pY pdqqdě0 defined on pS1qN taking also their values in S1,
by Y p0q :“ Z0, Y p1q :“ Z1{Z0, and in general for each d ě 0,

Y pd`1q :“
Y pdq ˝ S

Y pdq
.

We also define the auxilliary sequence pXdqdě0 taking values in the one-dimensional
torus T :“ R{Z, by

ei2πXd :“ Y pdq.

As ei2πXd`1 “ Y pd`1q “ ei2πpXd˝S´Xdq, we get

(9) @d ě 0, Xd ˝ S “ Xd`1 ` Xd.

Moreover, by an easy induction on n using the above formula, we can recover
the process each Zn from pXdq by the relation

(10) @n ě 0, Zn “ ei2π
řn

d“0 pn

dqXd .

Proposition 4.1. Let ν be a shift-invariant probability measure on pS1qN. As-
sume that there exists d ě 0 such that, under ν,

• Y pdq is S-invariant (i.e. Y pd`1q “ 1 ν-a.s.),

• the distribution of Y pdq is uniform on S1.

Then, for each n, Zn is uniformly distributed on S1, and Z0, Z1, . . . , Zd are
independent.
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Proof. As Y pdq is S-invariant, so is Xd. Hence, in every ergodic component of
ν, Xd is a.s. constant. Moreover, since the distribution of Xd under ν is the
Lebesgue measure Leb T on T, in almost every ergodic component the value of
Xd is irrational. Let us fix such an ergodic component, say ν̃, and let α be the
value taken by Xd under ν̃. From (9), we get

pXd´1, . . . , X0q ˝ S “ pXd´1 ` Xd, Xd´2 ` Xd´1, . . . , X0 ` X1q

“ pXd´1 ` α,Xd´2 ` Xd´1, . . . , X0 ` X1q .

But when α is irrational, the map

pxd´1, . . . , x0q P T
d ÞÑ pxd´1 ` α, xd´2 ` xd´1, . . . , x0 ` x1q

is uniquely ergodic [16], with the d-fold product pLeb Tqbd as the only ergodic
invariant measure. We deduce that, under ν̃, the distribution of pXd´1, . . . , X0q
must be pLeb Tqbd. Integrating over the set of ergodic components, we get that
under ν, the distribution of pXd, Xd´1, . . . , X0q is pLeb Tqbpd`1q. Then, from
Formula (10), we can write each 0 ď n ď d,

Zn “ Z̃n´1e
i2πXn ,

where Z̃n´1 is measurable with respect to X0, . . . , Xd´1 (Z̃n´1 “ 1 for n “ 0).
From this it follows that Zn is uniformly distributed on S1 conditionally to
X0, . . . , Xn´1. This concludes the proof.

Remark 4.2. The proof shows in fact that, for each d ě 0, there is a unique
shift-invariant measure νd on pS1qN such that whenever the assumptions of
Proposition 4.1 are satisfied, then the distribution of the stationary process
pZnqnPN is νd. Under νd, any d ` 1 consecutive coordinates of the process are
independent and uniformly distributed on the circle, and for each n ě 0 the
coordinate Zn`d`1 is a deterministic function of Zn, . . . , Zn`d given by the con-
dition Y pd`1q “ 1. Moreover, looking at the process

`

pX0, X1, . . . , Xdq˝Sn
˘

ně0
,

we see that the dynamical system
`

pS1qN, νd, S
˘

is measure-theoretically isomor-
phic to the unipotent system described in the statement of the Main Theorem.

It will be useful to introduce, for each d ě 0, the function φd : pS1qd`1 Ñ S
1

such that Y pdq “ φdpZ0, . . . , Zdq. For d “ 0, . . . , 4, these functions are given by

φ0pz0q “
z0

1
; φ1pz0, z1q “

z1

z0
; φ2pz0, z1, z2q “

z0z2

z21
;

φ3pz0, z1, z2, z3q “
z31z3

z0z
3
2

; φ4pz0, z1, z2, z3, z4q “
z0z

6
2z4

z41z
4
3

.

(11)

In general, we can always write the function φd as a quotient

(12) φdpz0, . . . , zdq “
πdpz0, . . . , zdq

π̃dpz0, . . . , zdq
,

where πdpz0, . . . , zdq and π̃dpz0, . . . , zdq are products of some zj’s (with possi-
ble multiplicity). These sequences of products are completely defined by the
following recurrence property: π0pz0q :“ z0, π̃0pz0q :“ 1, and for each d ě 1,

(13) πd`1pz0, . . . , zd`1q :“ πdpz1, . . . , zd`1q π̃dpz0, . . . , zdq,
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and

(14) π̃d`1pz0, . . . , zd`1q :“ π̃dpz1, . . . , zd`1qπdpz0, . . . , zdq.

Note that, as πd and π̃d only involve a product of variables, their definition
can be extended to Cd`1.

The next proposition is a key ingredient for the identification of some Fursten-
berg systems of multiplicative functions.

Proposition 4.3. Let u “
`

upnq
˘

nPN
P pS1qN. Assume that, for some d ě 1

and some increasing sequence pNmq Ă N, we have

(15)
1

Nm

ÿ

nďNm

φd`1

`

upnq, upn ` 1q, . . . , upn ` d ` 1q
˘

ÝÝÝÝÑ
mÑ8

1,

and that

(16) @ℓ ě 1,
1

Nm

ÿ

nďNm

φℓ
d

`

upnq, upn ` 1q, . . . , upn ` dq
˘

ÝÝÝÝÑ
mÑ8

0.

Then, along the subsequence pNmq, u is quasi-generic for the measure νd de-
scribed in Remark 4.2.

Proof. Let µ be a shift-invariant measure on pS1qN such that, along some sub-
sequence of pNmq, u is quasi-generic for µ. From (15), we get that

1 “ Eµ rφd`1pZ0, . . . , Zd`1qs “ Eµ

”

Y pd`1q
ı

,

hence Y pd`1q “ 1 µ-a.s. And from (16), we get that for each ℓ ě 1,

0 “ Eµ

“

φℓ
dpZ0, . . . , Zdq

‰

“ Eµ

”

pY pdqqℓ
ı

,

which shows that, under µ, Y pdq is uniformly distributed on S1. Then, with
Proposition 4.1 and Remark 4.2, we conclude that µ “ νd.

4.2 Special sequences of polynomials

We now introduce two sequences pPdqdě0 and pQdqdě0 of polynomials in the
variable n, linked to the analysis of the preceding section by the following defi-
nition: for each d ě 0,

(17) Pdpnq :“ πdpn, n` 1, . . . , n` dq, and Qdpnq :“ π̃dpn, n` 1, . . . , n` dq.

The first polynomials of this family are given below (compare with the numer-
ators and denominators in (11)).

P0pnq “ n ; Q0pnq “ 1 ;

P1pnq “ n ` 1 ; Q1pnq “ n ;

P2pnq “ npn ` 2q ; Q2pnq “ pn ` 1q2 ;

P3pnq “ pn ` 1q3pn ` 3q ; Q3pnq “ npn ` 2q3 ;

P4pnq “ npn ` 2q6pn ` 4q ; Q4pnq “ pn ` 1q4pn ` 3q4 .
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Note that, according to (13) and (14), these sequences of polynomials satisfy
the following recurrence property:

Pd`1pnq “ Pdpn ` 1qQdpnq,

Qd`1pnq “ Qdpn ` 1qPdpnq.
(18)

Proposition 4.4. For each d ě 1, Pd and Qd are both of degree 2d´1, and the
degree of the difference Rd :“ Qd ´ Pd is 2d´1 ´ d.

The computation of the degree of Pd and Qd is a straightforward induction
using (18). For the degree of Rd, we will use the following lemma.

Lemma 4.5. Let P and R be two polynomials, of degree p and r, respectively
and with p ‰ r. Let R̃ be the polynomial defined by

R̃pnq :“ Rpn ` 1qP pnq ´ RpnqP pn ` 1q.

Then the degree of R̃ is r ` p ´ 1.

Proof. Let us write the two terms of highest degree in P and R:

P pnq “ aPn
p ` bPn

p´1 ` ¨ ¨ ¨

and
Rpnq “ aRn

r ` bRn
r´1 ` ¨ ¨ ¨

where aPaR ‰ 0. Then a direct computation shows that the two terms of
highest degree in Rpn ` 1qP pnq are

Rpn ` 1qP pnq “ aR aP nr`p ` paR bP ` aP bR ` r aP aRqnr`p´1 ` ¨ ¨ ¨

Likewise, the two terms of highest degree in RpnqP pn ` 1q are

RpnqP pn ` 1q “ aR aP nr`p ` paR bP ` aP bR ` p aP aRqnr`p´1 ` ¨ ¨ ¨

It follows that the term of highest degree in R̃pnq is pr ´ pqaP aR nr`p´1.

End of the proof of Proposition 4.4. We show by induction on d ě 1 that the
degree of Rd is 2d´1 ´ d. This is already true for d “ 1 since R1 “ ´1 is of
degree 0. Then, assume that the result holds for some d ě 1, and let us consider
the polynomial Rd`1. We have

Rd`1pnq “ Qd`1pnq ´ Pd`1pnq

“ Qdpn ` 1qPdpnq ´ Pdpn ` 1qQdpnq

“
`

Pdpn ` 1q ` Rdpn ` 1q
˘

Pdpnq ´ Pdpn ` 1q
`

Pdpnq ` Rdpnq
˘

“ Rdpn ` 1qPdpnq ´ RdpnqPdpn ` 1q.

But we know that the degree of Pd is 2d´1, and by the induction assumption
the degree of Rd is 2d´1 ´ d. These degrees are different, therefore Lemma 4.5
applies, and shows that the degree of Rd`1 is 2d ´ pd ` 1q.

10



4.3 Furstenberg systems of MRT multiplicative functions

Now, we consider a completely multiplicative arithmetic function u “
`

upnq
˘

ně1
P

MRT. Let ptmq and psmq be the associated sequences, as in Definition 3.1. Let
pNmq be an increasing sequence of integers with Nm ď tm`1, and let d ě 0 and
ℓ ě 1 be fixed integers. Our purpose is to apply Proposition 4.3 to u, therefore
we have to evaluate the expressions of the form

(19)
1

Nm

ÿ

1ďnďNm

φℓ
d

`

upnq,upn ` 1q, . . . ,upn ` dq
˘

.

By Proposition 3.4, we have

1

Nm

ÿ

1ďnďNm

φℓ
d

`

upnq, . . . ,upn ` dq
˘

“
1

Nm

ÿ

1ďnďNm

φℓ
d

`

nism`1 , . . . , pn ` dqism`1

˘

` op1q

“
1

Nm

ÿ

1ďnďNm

e
iℓsm`1 log

Pdpnq

Qdpnq ` op1q.(20)

Therefore, in view of applying Proposition 4.1, we can replace an expression of
the form (19) by

1

Nm

ÿ

1ďnďNm

eiℓsm`1fdpnq,

where fd is defined by

(21) fdpxq :“ log
Pdpxq

Qdpxq
.

Note that, by Proposition 4.4, for d ě 1, the d terms of highest degrees in
Pd and Qd coincide. In particular, we have

lim
xÑ8

Pdpxq

Qdpxq
“ 1,

so fdpxq is well defined for x P R large enough. We will use the following results
on the asymptotic behaviour of fd.

Lemma 4.6. For each d ě 1, there exists Kd ‰ 0 such that

(22) fdpxq „
Kd

xd
as x Ñ 8.

For each d ě 0, there exists Ld ‰ 0 such that

(23) f 1
dpxq „

Ld

xd`1
as x Ñ 8.

Moreover, there exists Hd ą 0 such that f 1
d is monotone on rHd,`8q.

11



Proof. For d “ 0, note that f0pxq “ log x, so that f 1
0pxq “ 1

x
and the result

concerning f 1
0 is obvious. We consider now the case d ě 1. From Proposition 4.4,

we can write

fdpnq “ log
Pdpnq

Pdpnq ` Rdpnq
“ ´ log

ˆ

1 `
Rdpnq

Pdpnq

˙

,

where degPd “ 2d´1 and degRd “ 2d´1 ´ d, which yields (22).
Deriving fd gives

f 1
d “

Qd

Pd

¨
P 1
dpPd ` Rdq ´ PdpP 1

d ` R1
dq

Q2
d

“
P 1
dRd ´ PdR

1
d

PdQd

.

Since the degrees of Pd and Rd are different, the degree of the numerator is
equal to degPd ` degRd ´ 1 “ 2d ´ pd ` 1q. But the degree of the denominator
is degPd ` degQd “ 2d, and this gives (23). Finally, as a nonzero rational
fraction, the second derivative f2

d has finitely many zeros, from which we get
the last claim of the lemma.

We can now state the precise asymptotics which, together with Proposi-
tion 4.3, will allow us to identify some Furstenberg systems of u.

Proposition 4.7. Let d ě 0 be a fixed integer, and choose a real number β such
that

1

d ` 1
ă β ă

1

d
if d ě 1, 1 ă β ă 2 if d “ 0.

Set, for each m ě 1, Nm :“
X

psm`1qβ
\

. Then

(24) @ℓ ě 1,
1

Nm

ÿ

1ďnďNm

eiℓsm`1fdpnq ÝÝÝÝÑ
mÑ8

0,

and

(25)
1

Nm

ÿ

1ďnďNm

eism`1fd`1pnq ÝÝÝÝÑ
mÑ8

1.

An important tool in the proof of the above proposition is the following
theorem of Kusmin-Landau, which we state as in [24]. Here, if x is a real
number, }x} stands for the distance of x to the nearest integer.

Theorem 4.8 (Kusmin-Landau Theorem). If f : ra, bs Ñ R is C1, f 1 is mono-
tone and }f 1} ě λ1 ą 0 then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nPra,bs

ei2πfpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

πλ1

.

Proof of Proposition 4.7. Choose α such that 1
d`1

ă α ă β. We can replace the

average in (24) and in (25) by the average over sαm`1 ď n ď s
β
m`1. For such an

n, using (22), we get

|sm`1fd`1pnq| “ O

˜

1

s
αpd`1q´1

m`1

¸

ÝÝÝÝÑ
mÑ8

0,

12



and this immediately gives (25).

By Lemma 4.6, for m large enough f 1
d is monotone on

”

sαm`1, s
β
m`1

ı

, and

there exists K ą 0 (depending only on ℓ and d) such that, for n in this interval,

}ℓsm`1f
1
dpnq} ě K

sm`1

nd`1
ě K

1

s
βpd`1q´1

m`1

.

By Kusmin-Landau Theorem, we get
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

sα
m`1

ďnďs
β

m`1

eiℓsm`1fdpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
´

s
βpd`1q´1

m`1

¯

,

and finally
ˇ

ˇ

ˇ

ˇ

ˇ

1

Nm

ÿ

1ďnďNm

eiℓsm`1fdpnq

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
´

s
βd´1
m`1

¯

ÝÝÝÝÑ
mÑ8

0.

Putting together (20), Proposition 4.7 and Proposition 4.3, we get the fol-
lowing result.

Theorem 4.9. For any d ě 0, the measure-preserving system
`

pS1qN, νd, S
˘

appears as a Furstenberg system of u.

Using Proposition 2.2 and the fact that, under νd, d ` 1 consecutive coordi-
nates of the process pZnq are independent and uniformly distributed on S1, we
obtain the following.

Corollary 4.10. The system
´

pS1qN, pLeb S1q
bN

, S
¯

is a Furstenberg system

of u.

This concludes the proof of the Main Theorem.

5 Archimedean characters and slowly varying arith-

metic functions

We recall that an Archimedean character is a completely multiplicative function
of the form n ÞÑ nit with some fixed t P R. As

ˇ

ˇpn ` 1qit ´ nit
ˇ

ˇ “
ˇ

ˇ

ˇ
eit logp1`1{nq ´ 1

ˇ

ˇ

ˇ
ÝÝÝÑ
nÑ8

0,

Archimedean characters fall into the category of slowly varying arithmetic func-
tions, that are bounded arithmetic functions u satisfying

upn ` 1q ´ upnq ÝÝÝÑ
nÑ8

0.

A useful weakening of this property is the following: we say that the bounded
arithmetic function u is mean slowly varying if

(26)
1

N

ÿ

nďN

|upn ` 1q ´ upnq| ÝÝÝÝÑ
NÑ8

0.

13



Note that this is equivalent to the fact that upn ` 1q ´ upnq Ñ 0 on a subset of
n of density 1.

It is worth mentioning a result by Klurman [20, Theorem 1.8], who proved
a conjecture by Kátai concerning mean slowly varying multiplicative functions
(non necessarily bounded). From his theorem, it easily follows that the only
mean slowly varying multiplicative functions taking values in the unit circle are
the Archimedean characters.

5.1 Furstenberg systems of (mean) slowly varying func-
tions

Proposition 5.1. The arithmetic function u : N Ñ D is mean slowly varying
if and only if all Furstenberg systems of u are measure-theoretically isomorphic
to the action of the identity on some probability space.

Proof. Assume first that u is mean slowly varying, and that u is quasi-generic
for some S-invariant measure ν on DN along a subsequence pNmq. Then, by (26),
we have

Eν

“

|Z1 ´ Z0|
‰

“ lim
mÑ8

1

Nm

ÿ

nďNm

|upn ` 1q ´ upnq| “ 0.

It follows that Z1 “ Z0 ν-a.e., and more generally by S-invariance, for each
k P N, we also have Zk`1 “ Zk ν-a.e. Hence, ν is concentrated on the subset of
sequences with identical coordinates, and S “ Id ν-a.e.

Conversely, assume that (26) fails. Then there exists a subsequence pNmq
such that

lim
mÑ8

1

Nm

ÿ

nďNm

|upn ` 1q ´ upnq| ą 0,

and by compactness of MpDNq we can assume that u is quasi-generic for some
S-invariant measure ν along pNmq. But then we have

Eν

“

|Z1 ´ Z0|
‰

“ Eν

“

|Z0 ˝ S ´ Z0|
‰

ą 0,

and the Furstenberg system of u defined by ν is not measure-theoretically iso-
morphic to the action of the identity.

Proposition 5.2. Let u : N Ñ D be a slowly varying arithmetic function, and
let Xu Ă DN be the subshift generated by u. Then the topological entropy of
pXu, Sq is zero.

Proof. We start by observing that, as u is slowly varying, for each ε ą 0 there
exists Lε such that whenever ℓ ě Lε,

(27) @n P N,
1

ℓ

ÿ

nďjăn`ℓ

|upj ` 1q ´ upjq| ă ε.

Let w be a sequence in Xu. As each subblock of w is a limit of subblocks of u,
it follows that (27) is still valid if we replace u by w. But this in turn implies
that any w P Xu is mean slowly varying.

14



Now, let ν be an ergodic shift-invariant measure on Xu, and let w P Xu

be ν-generic (ν-almost all sequences in Xu are ν-generic). Then w is mean
slowly varying, and by Proposition 5.1, the measure-theoretic system pXu, ν, Sq
is isomorphic to pXu, ν, Idq. In particular, its Kolmogorov entropy is zero.

By the variational principle (see e.g. [30, Section 8.2], the topological entropy
of pXu, Sq must be also zero.

Remark 5.3. As a matter of fact, the above proof shows that whenever u is
a slowly varying function, any w P Xu is also a slowly varying function. More
than that, we can make the following observation: by the definition of Xu, each
w P Xu can be written as

w “ lim
kÑ8

Snku,

where pnkq is a non-decreasing sequence of non-negative integers. Either pnkq
is bounded, and then w “ Snu for some n ě 0, or nk Ñ 8, and then as u is
slowly varying, w must be of the form pw1, w1, w1, . . .q for some w1 P D.

In the following remark we provide some more observations on mean slowly
varying functions.

Remark 5.4. (a) Note that the subshift generated by a mean slowly varying
function u : N Ñ D can be of infinite entropy: we can modify a slowly varying
function on a subset of density zero to get a mean slowly varying function
generating the full subshift pDN, Sq.

(b) If u is mean slowly varying and if, for each ℓ ě 1, the limit

lim
NÑ8

1

N

ÿ

1ďnďN

uℓpnq

exists then there is only one Furstenberg system of u: there exists a shift-
invariant measure ν such that EN puq ÝÝÝÝÑ

NÑ8
ν. Indeed, note that for each

k ě 1, ℓr ě 1, jr ě 0 for r “ 1, . . . , k, we have
ˇ

ˇ

ˇ

ˇ

ˇ

1

N

ÿ

1ďnďN

uℓ1pn ` j1q ¨ . . . ¨ uℓkpn ` jkq ´
1

N

ÿ

1ďnďN

uℓ1`...`ℓkpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
NÑ8

0.

(c) We can repeat word for word all arguments for the logarithmic averages.
In particular, if u is mean slowly varying and, for each ℓ ě 1, the limit

(28) lim
NÑ8

1

logN

ÿ

1ďnďN

1

n
uℓpnq

exists, then there is only one logarithmic Furstenberg system (see Section 6.1):
there exists a shift-invariant measure ν such that

1

logN

ÿ

1ďnďN

1

n
δSnu ÝÝÝÝÑ

NÑ8
ν.

(d) For upnq “ nit, we have the logarithmic assumption (28) satisfied (in
fact, each such limit is zero whenever ℓ ‰ 0), so there is only one logarithmic
Furstenberg system, as already noticed in [15] but we have uncountably many
Furstenberg systems (cf. Corollary 5.5).
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As it follows from Proposition 2.1, a slowly varying function u : N Ñ D ei-
ther has one Furstenberg system, or it has uncountably many different Fursten-
berg systems. By different, we mean that we obtain different measures. The
measure-theoretic dynamical systems given by these measures can however be
all isomorphic which is the case in the example below.

We consider now a mean slowly varying function u such that |upnq| “ 1 for
all n ě 1. Assume, moreover, that

lim
mÑ8

1

Nm

ÿ

0ďnăNm

δSnu “ lim
mÑ8

ENm
puq “ ν

for an increasing sequence pNmq. It follows from Proposition 5.1 that ν is
supported on the set tpz, z, . . .q : z P S1u. Moreover, Zk

0 pz, z, . . .q “ zk. Hence,
we can identify ν with a measure κ defined on S1 such that

lim
mÑ8

1

Nm

ÿ

1ďnďNm

ukpnq “

ż

Zk
0 dν “

ż

S1

zk dκ.

It follows that, varying k P Z, the LHS of the equation above provides the
Fourier transform of the measure κ which we are seeking. In the particular case
where upnq “ ni, we have

1

Nm

ÿ

1ďnďNm

nik “
N ik

m

1 ` ik
` op1q,

thus the Fourier coefficients of κ are given by the limits of Nki
m

1`ik
as m Ñ 8. The

case k “ 1 yields that N i
m Ñ c, where |c| “ 1, and we obtain that

ż

S1

zk dκ “
ck

1 ` ik
, k P Z.

Consider, κ1 :“ κ ˚ δc. Then
ż

S1

zk dκ1 “
1

1 ` ik
, k P Z.

Since p 1
1`ik

q is an ℓ2- sequence, the measure κ1 is absolutely continuous with
respect to the (normalized) Lebesgue measure Leb S1 , with density g equal to
gpzq “

ř8
k“´8

1
1`ik

zk. In fact, noting that for all k P Z,
ż 1

0

e2πxei2πkxdx “
e2π ´ 1

2πp1 ` ikq
,

we see that, for x P r0, 1q,

gpei2πxq “
2πe2πx

e2π ´ 1
.

Finally, note that the sequence pniq is dense in S1 as the sequence plognq is
dense in r0, 2πq mod 2π.

Corollary 5.5. The family of Furstenberg systems of upnq “ ni consists of
uncountably many different systems given by all rotations of gpzqdz. All of them
are isomorphic to the identity on the circle with Lebesgue measure (and ergodic
components are Dirac measures on the circle). Moreover, Xu “ tpz, z, . . .q : z P
S1u Y tSnu : n P Nu.
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5.2 MRT arithmetic functions do not satisfy Sarnak’s con-
jecture

As MRT arithmetic functions mostly behave like Archimedean characters on
very large intervals, we will use some ideas presented in the preceding section to
prove that MRT arithmetic functions do not satisfy Sarnak’s conjecture: for any
MRT function u there exists a zero entropy topological system which outputs
a sequence having some correlation with u.

Let u be an MRT arithmetic function, and let ptmq and psmq be as in Defini-

tion 3.1. We set, for each m P N, rm :“ ts
3{2
m u. Then we define a new arithmetic

function v “
`

vpnq
˘

nPN
P pS1qN by setting for each m:

vpnq :“

#

1 for tm ă n ď rm`1,

nism`1 for rm`1 ă n ď tm`1.

Then, for each m, we have

|vpn ` 1q ´ vpnq| “

#

0 if tm ă n ă rm`1,

O
´

s
´1{2
m`1

¯

if rm`1 ă n ă tm`1.

Even though v may not be slowly varying because of the possible jumps in tm
and in rm`1, the property described in Equation (27) is still valid, as these jumps
are bounded by 2 and are separated by gaps whose lengths tend to 8. Therefore,
the proof of Proposition 5.2 also applies to v, and we have htoppXv, Sq “ 0.

But, since rm`1

tm`1

ÝÝÝÝÑ
mÑ8

0, in view of Proposition 3.4, we have

1

tm`1

ÿ

1ďnďtm`1

upnqvpnq ÝÝÝÝÑ
mÑ8

1.

We thus have found a topological dynamical system pXv, Sq of zero topological
entropy, a point v P Xv and a continuous map f : Xv Ñ C (the conjugate of the
zero-coordinate map), such that the sequence

`

fpSnvq
˘

is not orthogonal to u,
in the sense that

1

N

ÿ

1ďnďN

upnqfpSnvq ÝÑ{ 0 as N Ñ 8.

6 Further properties of MRT functions

6.1 MRT functions satisfy logarithmic Chowla conjecture
along a subsequence

The purpose of this section is to study what the Main Theorem becomes if we
consider logarithmic averages instead of usual averages. A logarithmic Fursten-
berg system of an arithmetic function u : N Ñ D is defined as in Section 2 as
a measure-theoretic dynamical system pXu, ν, Sq, where ν is now a weak˚ limit
of a subsequence of the logarithmic empirical measures

E
log
N puq :“

1

LN

ÿ

1ďnďN

1

n
δSn´1u,
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with LN :“ 1 ` 1
2

` ¨ ¨ ¨ ` 1
N

(N ě 1).
We recall the classical relation between the logarithmic and usual averages,

obtained by summation by parts:

(29) E
log

N puq “
1

LN

ÿ

1ďnďN´1

1

n ` 1
Enpuq `

1

LN

EN puq.

We recall that the weak˚-topology turns MppS1qNq into a compact metrizable
space, and that a possible metric is given by

∆pν, κq “
ÿ

jě1

1

2j

ˇ

ˇ

ˇ

ˇ

ż

fj dν ´

ż

fj dκ

ˇ

ˇ

ˇ

ˇ

,

where pfjqjě1 is a countable family generating a dense subspace of CppS1qNq. We
can for example take for pfjqjě1 the family of tZr1

i1
¨. . .¨Zrt

it
: t ě 1, ik ě 0, rk P Zu

taken in any order. Then, the metric is globally bounded by 2. Note also that
for convex combinations, we have

(30) ∆

ˆ
ż

νγ dP pγq,

ż

κγ dP pγq

˙

ď

ż

∆pνγ , κγq dP pγq.

We need the following simple observation.

Lemma 6.1. Assume that µk Ñ µ and let, for d ě 1, κd :“
řd`ad

k“d α
pdq
k µk `

βpdqρd, where α
pdq
k , βpdq ě 0,

řd`ad

k“d α
pdq
k “ 1 ´ βpdq. If βpdq Ñ 0 then κd Ñ µ.

Proof. This follows immediately from (30).

Now, we consider an MRT arithmetic function u, and we take ptmq and psmq
as in Definition 3.1. The proof of Main Theorem (see Section 4.3) yields the
following:

Lemma 6.2. Fix d ě 0 and choose
#

1
d`1

ă βd ă β1
d ă 1

d
if d ě 1,

1 ă β0 ă β1
0 ă 2 if d “ 0.

Let ε ą 0. Then, for each m large enough,

∆ pEN puq, νdq ă ε

uniformly in s
βd

m`1 ď N ď s
β1
d

m`1.

Proof. Assume the result does not hold. Then for infinitely many integers m

we can find s
βd

m`1 ď Nm ď s
β1
d

m`1 such that

∆ pENm
puq, νdq ě ε.

On the other hand, the proof of Proposition 4.7 shows that, along such a se-
quence pNmq we must have

ENm
puq Ñ νd,

which yields a contradiction.
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Now, let us fix integers 1 ď D1 ă D2. We consider the convergence of
logarithmic empirical measures of u along the increasing sequence of integers

pNmq :“
´Y

s
1{D1

m`1

]¯

. Given a small real number ε ą 0, set for each D1 ď d ď D2

βd :“
1

d ` 1
`

ε

2dpd ` 1q
and β1

d :“
1

d
´

ε

2dpd ` 1q
.

Using (29), we write E
log

Nm
puq as a convex combination of the empirical measures

Enpuq, 1 ď n ď N . We partition t1, . . . , Nmu as
Ů

D1ďdďD2
Imd \ Jm, where

Imd :“
!

n P N : s
βd

m`1 ď n ď s
β1
d

m`1

)

,

and
Jm :“ t1, . . . , Nmuz

ğ

D1ďdďD2

Imd .

By Lemma 6.2, for m large, Enpuq is close to νd for n P Imd . The weight of Imd
in the convex combination is

1

LNm

ÿ

nPIm
d

1

n ` 1
„

mÑ8
D1pβ1

d ´ βdq “ D1

ˆ

1

d
´

1

d ` 1

˙

p1 ´ εq.

It follows that the total weight of
Ů

D1ďdďD2
Imd is asymptotic, as m Ñ 8, to

D1

ˆ

1

D1

´
1

D2

˙

p1 ´ εq ą 1 ´ ε ´
D1

D2

,

and then for m large enough the weight of Jm is bounded by ε ` D1

D2

. In view

of Lemma 6.2 and (30), any weak˚ limit of Elog

Nm
puq can be written as

D1p1 ´ εq
ÿ

D1ďdďD2

ˆ

1

d
´

1

d ` 1

˙

νd ` αρ,

where ρ is some shift-invariant probability measure on Xu and 0 ď α ď ε` D1

D2

.
Letting ε Ñ 0 and D2 Ñ 8, we see (cf. Lemmma 6.1) that for any D1 ě 1

there exists a logarithmic Furstenberg system of u whose invariant measure is

D1

ÿ

děD1

ˆ

1

d
´

1

d ` 1

˙

νd.

Note that, under this measure, the distribution of pZ0, . . . , ZD1
q is pLeb S1q

bpD1`1q.
By Proposition 2.2 (which is also valid in the logarithmic case), we can also find
pLeb S1q

bN as an invariant measure of a logarithmic Furstenberg system of u.
Thus, we have proved the following result:

Corollary 6.3. Each u P MRT satisfies the logarithmic Chowla conjecture
along a subsequence.
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Getting ν0

Under the assumptions given in Definition 3.1, we can easily modify the above
argument to incorporate ν0 in the weak˚ limit of Elog

Nm
puq: we just have to take

D1 “ 0 and choose β0 :“ 1 ` ε, β1
0 :“ 2 ´ ε. The weak˚ limit we get has then

the form
1

2

˜

ν0 `
ÿ

dě1

ˆ

1

d
´

1

d ` 1

˙

νd

¸

.

If in the construction of the MRT sequence we add the extra assumption that

sam

m`1 ď tm`1, with am Ñ 8,

which is compatible with the rest, then we can now take β1
0 as large as we want,

so that the weight of ν0 in the weak˚ limit is as close to 1 as we want. Finally,
we get a logarithmic Furstenberg system of u with ν0 as an invariant measure.

It is not clear however if we can get νd (d ě 1) for some logarithmic Fursten-
berg system of an MRT function.

6.2 Absence of zero mean on typical short interval

Motivated by Matomäki-Radziwiłł’s theorem [22] concerning strongly aperiodic
multiplicative functions, we say that u : N Ñ D has zero mean on typical short
interval if

lim
M,HÑ8,H“opMq

1

M

ÿ

1ďmďM

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

0ďhăH

upm ` hq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

Proposition 6.4. Assume that lim infℓÑ8
1
ℓ

ř

1ďjďℓ |upjq| “: α ą 0. If u has
identity as a Furstenberg system then u has no zero mean on short intervals.

Proof. Suppose that u has zero mean on short intervals. Assume that

lim
kÑ8

EMk
puq “ κ.

Now, the system pS,Xu, κq is the identity if and only if Z0 “ Z0 ˝ S κ-a.e.
Let ε ą 0 and choose H0 so that for H ą H0, we have

lim sup
kÑ8

1

Mk

ÿ

1ďmďMk

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

0ďhăH

upm ` hq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Take H ą H0. Then

lim sup
kÑ8

1

Mk

ÿ

1ďmďMk

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

0ďhăH

upm ` hq

ˇ

ˇ

ˇ

ˇ

ˇ

“

lim sup
kÑ8

1

Mk

ÿ

1ďmďMk

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

0ďhăH

Z0pSh`muq

ˇ

ˇ

ˇ

ˇ

ˇ

“

lim sup
kÑ8

ż

Xu

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

0ďhăH

Z0 ˝ Sh

ˇ

ˇ

ˇ

ˇ

ˇ

dEMk
puq “
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ż

Xu

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

0ďhăH

Z0 ˝ Sh

ˇ

ˇ

ˇ

ˇ

ˇ

dκ “

ż

Xu

|Z0| dκ ě α ą 0,

a contradiction.

Corollary 6.5. If u P MRT then u has no zero mean on short intervals.

6.3 Strong stationarity

We now show that, for each d ě 0, the stationary process pZnq with distribution
νd is strongly stationary (see [19]), i.e. for each s1 ă . . . ă sk and each r ě 1,
the distributions of the vectors pZs1 , . . . , Zskq and pZrs1 , . . . , Zrskq are the same.

Fix d ě 0 and we recall that the process pZnq with the distribution νd is the
same as of the process pf ˝ T n

d q, see (34) in Appendix for the definition of Td

and fpx1, . . . , xdq “ ei2πxd . Then

f ˝ T s
d px1, . . . , xdq “ e2πipp

s

d´1qx1`p s

d´2qx2`...`ps

0qxdq.

It follows that for each s1 ă . . . ă sk and each choice of integers j1, . . . , jk, we
have

EZj1
s1

¨ . . . ¨ Zjk
sk

‰ 0 ô

k
ÿ

i“1

ji

ˆ

si

ℓ

˙

“ 0 for ℓ “ 0, . . . , d ´ 1 ô
k

ÿ

i“1

sℓi “ 0 for ℓ “ 0, . . . , d ´ 1.

Therefore,

EZj1
s1

¨ . . . ¨ Zjk
sk

“ 0 ô EZj1
rs1

¨ . . . ¨ Zjk
rsk

“ 0 for each r ě 1.

Moreover, EZj1
s1

¨ . . . ¨Zjk
sk

‰ 0 is equivalent to EZj1
s1

¨ . . . ¨Zjk
sk

“ 1. It follows that
the process pZnq with the distribution νd is strongly stationary.

It follows that all Furstenberg systems which have been found in the paper
are given by stationary processes which are strongly stationary. Note also that
since every convex combination of strongly stationary processes remains strongly
stationary, also the logarithmic Furstenberg systems determined in Section 6.1
are strongly stationary which fits perfectly to a general result of Frantzikinakis
and Host [14], [15] about logarithmic Furstenberg systems of strongly aperiodic
multiplicative functions.

We end by asking the following question, which has been suggested to us
by both Nikos Frantzikinakis and Florian Richter: can we find a Furstenberg
system of some u P MRT which is the direct product of a Bernoulli shift and a
unipotent system?

7 Appendix

We aim at showing that from the dynamical point of view there is a close relation
between the processes pY pdqqdě0 which appeared in Section 4 and the concept
of quasi-eigenfunction in ergodic theory.
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7.1 Algebraic constraints and quasi-eigenfunctions

Given a standard Borel probability space pX,B, µq, let MpXq denote the set
of all measurable functions of modulus 1 defined on X . Endowed with the
pointwise multiplication and the L2-topology, it becomes a Polish group. Given
an automorphism T on pX,B, µq, set

E0pT q :“ tg P MpXq : g ˝ T “ gu

and then inductively, define

Ed`1pT q :“ tf P MpXq : f ˝ T {f P EdpT qu, d ě 0.

Note that each EdpT q is a group which is called the group of d-quasi-eigenfunctions.
For w P MpXq and m ě 1, we set

wpmq “ w ˝ Tm´1 ¨ . . . ¨ w

with wp0q “ 1. Assume that g P EdpT q and let g ˝ T “ hg with h “ g ˝ T {g P
Ed´1pT q. Then, for each ℓ1, . . . , ℓk, we have

k
ź

i“1

g ˝ T ℓi “
k

ź

i“1

hpℓiqg “ gk
k

ź

i“1

hpℓiq “

gk
k

ź

i“1

˜

ℓi´1
ź

j“0

h ˝ T j

¸

“ gk
k

ź

i“1

ℓi´1
ź

j“0

ˆ

h ˝ T

h

˙pjq

h “

gk
k

ź

i“1

hℓi

ℓi´1
ź

j“0

ˆ

h ˝ T

h

˙pjq

“

gkh
ř

k
i“1

ℓi

k
ź

i“1

ℓi´1
ź

j“0

ˆ

h ˝ T

h

˙

˝ T j´1 ¨ . . . ¨

ˆ

h ˝ T

h

˙

“

gkh
ř

k
i“1

ℓi

k
ź

i“1

ℓi´1
ź

j“0

j´1
ź

p“0

ˆ

ph ˝ T {hq ˝ T

h ˝ T {h

˙ppq
h ˝ T

h
“

gkh
ř

k
i“1

ℓi

k
ź

i“1

ℓi´1
ź

j“0

ˆ

h ˝ T

h

˙j j´1
ź

p“0

ˆ

ph ˝ T {hq ˝ T

h ˝ T {h

˙ppq

“

gkh
řk

i“1
ℓi

ˆ

h ˝ T

h

˙

ř

k
i

ℓipℓi´1q
2

k
ź

i“1

ℓi´1
ź

j“0

j´1
ź

p“0

ˆ

ph ˝ T {hq ˝ T

h ˝ T {h

˙ppq

“ . . .

It follows that for the stationary process pg ˝T nqnPN the following holds: when-
ever ℓi, ℓ

1
i satisfy

řk

i“1 ℓ
j
i “

řk

i“1 ℓ
1j
i for j “ 0, 1, . . . , d, we have

(31)
k

ź

i“1

g ˝ T ℓi “
k

ź

i“1

g ˝ T ℓ1
i

provided that g P EdpT q.
In fact, the processes given by quasi-eigenfunctions are the only satisfying

the algebraic relation (31).
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Proposition 7.1. Assume that pZnq is a stationary S1-valued process. Then
for each d ě 0, Z0 P EdpT q if and only if

(32) Zℓ1 ¨ . . . ¨ Zℓk “ Zℓ1
1

¨ . . . ¨ Zℓ1
k

for each ℓi, ℓ
1
i for which

řk
i“1 ℓ

j
i “

řk
i“1 ℓ

1j
i for j “ 0, 1, . . . , d assuming that

(33) tℓ1, . . . , ℓlu X tℓ1
1, . . . , ℓ

1
ku “ H.

Proof. We can assume that Zn “ Z0 ˝ T n for an automorphism T of pX,B, µq.
Now, we proceed by induction. Since the first condition (d “ 0) is just Z0 ˝T ℓ1 ¨
. . . ¨ ˝Z0 ˝T ℓk “ Z0 ˝T ℓ1

1 ¨ . . . ¨Z0 ˝T ℓ1
k whichever numbers we take, we have (by

taking k “ 1, ℓ1 “ 1 and ℓ1
1 “ 0) Z0 ˝ T “ Z0, so Z0 P E0pT q.

Notice that condition (33) is superfluous since if some of the numbers ℓi are
equal to ℓ1

j, then we can just cancel out the relevant factors. So, assume now
that Z0 satisfies (32) and let f “ Z0 ˝ T {Z0. We need to prove that f satisfies
the relation (32) up to d (if so, then by the induction assumption f P EdpT q,
whence Z0 P Ed`1pT q). That is, we want to prove that

f ˝ T ℓ1 ¨ . . . ¨ f ˝ T ℓk “ f ˝ T ℓ1
1 ¨ . . . ¨ f ˝ T ℓ1

k

provided that
řk

i“1 ℓ
j
i “

řk

i“1 ℓ
1j
i for j “ 0, 1, . . . , d. Equivalently, we want to

show that

Z0 ˝ T ℓ1`1 ¨ . . . ¨ Z0 ˝ T ℓk`1 ¨ Z0 ˝ T ℓ1
1 ¨ . . . ¨ Z0 ˝ T ℓ1

k “

Z0 ˝ T ℓ1
1

`1 ¨ . . . ¨ Z0 ˝ T ℓ1
k`1 ¨ Z0 ˝ T ℓ1 ¨ . . . ¨ Z0 ˝ T ℓk .

But we clearly have

pℓ1 ` 1qd`1 ` . . . ` pℓk ` 1qd`1 ` ℓ1d`1
1 ` . . . ` ℓ1d`1

k “

pℓ1
1 ` 1qd`1 ` . . . ` pℓ1

k ` 1qd`1 ` ℓd`1
1 ` . . . ` ℓd`1

k

(let alone if we replace d ` 1 by a smaller j), hence the result.

Remark 7.2. Assume additionally that T is totally ergodic (i.e. all non-
zero powers are ergodic). Then, following [2], T has quasi-discrete spectrum
if span

`
Ť

dě0EdpT q
˘

“ L2pX,B, µq (sometimes, T is called an Abramov auto-
morphism). Quasi-discrete spectrum automorphisms are basically affine auto-
morphisms of compact, Abelian, metric groups, see [18] for more details.

Remark 7.3. Knowing that Z0 P EdpT q does not determine the whole process
pZmqmPN. Indeed, for example, if we take the ergodic decomposition of T , then
the process pZmq (considered with respect to an ergodic component) will still
satisfy the same algebraic relation even though the distribution of the process
may have changed.

7.2 Algebraic constraints and n-independence

We will be interested in the (very) non-ergodic case. Given d ě 1, consider the
(unipotent) automorphism Td : Td Ñ Td, defined by:

(34) Tdpx1, . . . , xdq :“ px1, x1 ` x2, . . . , xd´1 ` xdq
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(hence T1 is just the identity on T). Set fpx1, . . . , xdq “ ei2πxd . Then,
`

f ˝

T {f
˘

px1, . . . , xdq “ ei2πxd´1, so by induction, it is easy to show that f P EdpTdq.
Denote by ErgK the class of automorphisms disjoint from all ergodic auto-

morphisms.

Proposition 7.4. For each d ě 1, Td P ErgK. Moreover, the stationary process
pf ˝ Tm

d qmPN is d-independent, i.e. for all m1 ă . . . ă md the variables f ˝
Tm1

d , . . . , f ˝ Tmd

d are independent.

Proof. To prove that Td P ErgK, we first notice that its ergodic decomposition is
given by the tori (on which we consider the relevant Lebesgue measure) Td´1

x “
Td´1 with x P T irrational (and we consider Lebesgue measure3 on T) on which
the action Td,x is given by

px2, x3 . . . , xdq ÞÑ px2 ` x, x2 ` x3, . . . , xd´1 ` xdq.

If an ergodic automorphism S acting on pY, C, νq is non-disjoint with Td,x then
since Td,x is an ergodic compact group extension of an irrational rotation, the
associated Koopman operator US must share a common eigenvalue with the
Koopman operator UTd,x

given by Td,x (cf. [17], Chapter 6). As US can have only
countably many eigenvalues and the measure on the space of ergodic components
is continuous, we can assume that S is disjoint with all ergodic components.
Take any joining ρ of Td and S. Let

ρ “

ż

ργ dP pγq

be its ergodic decomposition. Then, for P -a.e. γ, the projection ργ |Y of ργ on
Y equals ν since ν is ergodic. Moreover,

(35) Leb Tbd “ ρ|Td “

ż

ργ |Td dP pγq

is a decomposition of Leb Tbd into ergodic measures. By the uniqueness of
ergodic decomposition, it is (35) which is the ergodic decomposition, and (by
disjointness) we obtain that

ρ “

ż

T

pδx b pLeb Tq
bpd´1q

q b ν dLeb Tpxq

and the first claim easily follows.
It is not hard to check that by elementary properties of Pascal triangle:

(36) T r
d px1, . . . , xdq “

´

x1, . . . ,

ˆ

r

d ´ 1

˙

x1 `

ˆ

r

d ´ 2

˙

x2 ` . . . `

ˆ

r

0

˙

xd

¯

.

Now, choose any integers r1 ă r2 ă . . . rd and qj P Z for j “ 1, . . . , d. We want
to show that the distribution of the vector pf q1 ˝T r1

d , . . . , f qd ˝T rd
d q is pLeb Tq

bd

and for that we need to check that

(37) Epf q1 ˝ T r1
d ¨ . . . ¨ f qd ˝ T rd

d q “ 0

3That is, we identify the space of ergodic components with pT,Leb Tq.
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unless q1 “ . . . “ qd “ 0. Now, in view of (36), the negation of (37) is equivalent
to

d
ÿ

j“1

qj

ˆ

rj

k

˙

“ 0 for k “ 0, 1, . . . , d ´ 1.

It is not hard to see that this system of linear equations is equivalent to

d
ÿ

j“1

qjr
k
j “ 0 for k “ 0, 1, . . . , d ´ 1.

However, the determinant here is the Vandermonde determinant and since the
numbers rj are pairwise different, our claim follows.

Remark 7.5. By the proof of Proposition 4.1 (see also Remark 4.2), under
the assumptions of Proposition 4.1, we obtain that the dynamical system cor-
responding to the stationary process pZnq is (up to isomorphism) just Td.

Remark 7.6. If T acting on pX,B, µq is additionally ergodic then E0pT q con-
sists of the constants while E1pT q consists of the eigenfunctions of the Koopman
operator UT acting on L2pX,B, µq. Hence, if pZnqnPN is a stationary process
satisfying

(38) Z0 ¨ Z2 “ Z2
1

then, using also Proposition 7.1, the ergodic components of the corresponding
dynamical system must have discrete spectra.4 A prominent example of such a
situation is the automorphisms T2px1, x2q “ px1, x1 ` x2q on T2 whose ergodic
components are (all) irrational rotations (and Z0 is given by f2 : px1, x2q ÞÑ
ei2πx2).
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