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a b s t r a c t

We present JeLLyFysh-Version1.0, an open-source Python application for event-chain Monte Carlo
(ECMC), an event-driven irreversible Markov-chain Monte Carlo algorithm for classical N-body simu-
lations in statistical mechanics, biophysics and electrochemistry. The application’s architecture mirrors
the mathematical formulation of ECMC. Local potentials, long-range Coulomb interactions and multi-
body bending potentials are covered, as well as bounding potentials and cell systems including the
cell-veto algorithm. Configuration files illustrate a number of specific implementations for interacting
atoms, dipoles, and water molecules.
Program summary
Program title: JeLLyFysh-Version1.0
Program files doi: http://dx.doi.org/10.17632/srrjt9493d.1
Licensing provisions: GNU GPLv3
Programming language: Python 3
Nature of problem: Event-chain Monte Carlo (ECMC) simulations for classical N-body simulations in
statistical mechanics, biophysics and electrochemistry.
Solution method: Event-driven irreversible Markov-chain Monte Carlo algorithm.
Additional comments: The application is complete with sample configuration files, docstrings, and
unittests. The manuscript is accompanied by a frozen copy of JeLLyFysh-Version1.0 that is made pub-
licly available on GitHub (repository https://github.com/jellyfysh/JeLLyFysh, commit hash
d453d497256e7270e8babc8e04d20fb6d847dee4).

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Event-chain Monte Carlo (ECMC) is an irreversible continuous-
time Markov-chain algorithm [1,2] that often equilibrates faster
than its reversible counterparts [3–7]. ECMC has been success-
fully applied to the classic N-body all-atom problem in statisti-
cal physics [8,9]. The algorithm implements the time evolution
of a piecewise non-interacting, deterministic system [10]. Each
straight-line, non-interacting leg of this time evolution termi-
nates in an event, defined through the event time at which it
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takes place and through the out-state, the updated starting con-
figuration for the ensuing leg. An event is chosen as the earliest
of a set of candidate events, each of which is sampled using
information contained in a so-called factor. The entire trajectory
samples the equilibrium probability distribution.

ECMC departs from virtually all Monte Carlo methods in that
it does not evaluate the equilibrium probability density (or its ra-
tios). In statistical physics, ECMC thus computes neither the total
potential (or its changes) nor the total force on individual point
masses. Rather, the decision to continue on the current leg of
the non-interacting time evolution builds on a consensus which
is established through the factorized Metropolis algorithm [2].
A veto puts an end to the consensus, triggers the event, and
terminates the leg (see Fig. 1). In the continuous problems for
which ECMC has been conceived, the veto is caused by a single
factor.
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Fig. 1. ECMC time evolution. At events Ea, Eb, Ec , . . . , a number of factors ({a1, a2, . . . , a5}, {b1, b2, . . . , b6}, . . .) are activated. For each leg ((Ea → Eb), (Eb → Ec ), . . . ),
each factor must at all times independently accept the continued non-interacting evolution, and must determine a candidate event time at which this is no longer
the case. The earliest candidate event time (which determines the veto) and its out-state yield the next event (the event Eb is triggered by a2). In JF-V1.0, after
committing an event to the global state, candidate events with certain tags are trashed (tags t_1, t_3 at Eb) or maintained active (tags t_2, t_4 at Eb), and others
are newly activated. JF introduces non-confirmed events and also pseudo-factors, which complement the factors of ECMC, and which may also trigger events.

The resulting event-driven ECMC algorithm is reminiscent of
molecular dynamics, and in particular of event-driven molecu-
lar dynamics [11–13], in that there are velocity vectors (which
appear as lifting variables). These velocities do not correspond
to the physical (Newtonian) dynamics of the system. ECMC dif-
fers from molecular dynamics in three respects: First, ECMC is
event-driven, and it remains approximation-free for any inter-
action potential [14], whereas event-driven molecular dynamics
is restricted to hard-sphere or piecewise constant potentials.
(Interaction potentials in biophysical simulation codes have been
coarsely discretized [15] in order to fit into the event-driven
framework [16–18].) Second, in ECMC, most point masses are
at rest at any time, whereas in molecular dynamics all point
masses typically have non-zero velocities. In ECMC, an arbitrary
fixed number of independently active point masses with iden-
tical non-zero velocity vectors may be chosen. In most present
applications of ECMC, only a single independent point mass is
active at any time. The ECMC dynamics is thus very simple, yet
it mixes and relaxes at a rate at least as fast as in molecular
dynamics [4,6,7]. Third, ECMC by construction exactly samples
the Boltzmann (canonical) distribution, whereas molecular dy-
namics is in principle micro-canonical, that is, energy-conserving.
Molecular dynamics must therefore generally be coupled to a
thermostat in order to sample the Boltzmann distribution. The
thermostat also eliminates the drift in physical observables that
is caused by integration errors. In contrast, ECMC is free from
truncation and discretization errors.

ECMC samples the equilibrium Boltzmann distribution with-
out being itself in equilibrium, as it violates the detailed-balance
condition. Remarkably, it establishes the aforementioned consen-
sus and proceeds from one event to the next with O(1) computa-
tional effort even for long-range potentials, as was demonstrated
for soft-sphere models, the Coulomb plasma [4,19], and for the
simple point-charge with flexible water molecules (SPC/Fw)
model [20,21].

JeLLyFysh (JF) is a general-purpose Python application that
implements ECMC for a wide range of physical systems, from
point masses interacting with central potentials to composite
point objects such as finite-size dipoles, water molecules, and
eventually peptides and polymers. The application’s architecture
mirrors the mathematical formulation that was presented previ-
ously (see [21, Sect II]). The application can run on virtually any
computer, but it also allows for multiprocessing and, in the future,
for parallel implementations. It is being developed as an open-
source project on GitHub. Source code may be forked, modified,

and then merged back into the project (see Section 6 for access
information and license issues). Contributions to the application
are encouraged.

The present paper introduces the general architecture and the
key features of JF. It accompanies the first public release of the
application, JeLLyFysh-Version1.0 (JF-V1.0). JF-V1.0 implements
ECMC for homogeneous, translation-invariant N-body systems in
a regularly shaped periodic simulation box and with interactions
that can be long-range. In addition, the present paper presents
a cookbook that illustrates the application for simplified core
examples that can be run from configuration files and validated
against published data [21]. A full-scale simulation benchmark
against the Lammps application is published elsewhere [22].

The JF application presented in this paper is intended to grow
into a basis code that will foster the development of irreversible
Markov-chain algorithms and will apply to a wide range of com-
putational problems, from statistical physics to field theory [23].
It may prove useful in domains that have traditionally been
reserved to molecular dynamics, and in particular in the all-atom
Coulomb problem in biophysics and electrochemistry.

The content of the present paper is as follows: The remainder
of Section 1 discusses the general setting of JF as it implements
ECMC. Section 2 describes its mediator-based architecture [24].
Section 3 discusses how the eponymous events of ECMC are
determined in the event handlers of JF. Section 4 presents system
definitions and tools, such as the user interface realized through
configuration files, the simulation box, the cell systems, and the
interaction potentials. Section 5, the cookbook, discusses a num-
ber of worked-out examples for previously presented systems
of atoms, dipoles or water molecules with Coulomb interac-
tions [21]. Section 6 discusses license issues, code availability and
code specifications. Section 7 presents an outlook on essential
challenges and a preview of future releases of the application.

1.1. Configurations, factors, pseudo-factors, events, event handlers

In ECMC, configurations c = {s1, . . . , si, . . . , sN} are described
by continuous time-dependent variables where si(t) represents
the position of the ith of N point masses (although it may also
stand for the continuous angle of a spin on a lattice [3]). JF
is an event-driven implementation of ECMC, and it treats point
masses and certain collective variables (such as the barycen-
ter of a composite point object) on an equal footing. Rather
than the time-dependent variables si(t), its fundamental particles
(Particle objects) are individually time-sliced positions (of the
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Fig. 2. Factors and pseudo-factors. (a) In-state and sampled out-state (each with two active units) for a three-unit factor M (implementing, for example, the
inter-molecular bending potential UM of Section 4.4.5). (b) In- and out-states for a cell-boundary event handler realizing a pseudo-factor. Times at which units are
time-sliced are indicated. tout is the event time.

point masses or composite point objects). Non-zero velocities
and time stamps are also recorded, when applicable. The full
information can be packed into units (Unit objects), that are
moved around the application (see Section 1.2).

Each configuration c has a total potential U({s1, . . . , sN}), and
its equilibrium probability density π is given by the Boltzmann
weight

π ({s1, . . . , sN}) = exp [−βU({s1, . . . , sN})] , (1)

that is sampled by ECMC (see [21]). The total potential U is
decomposed as

U({s1, . . . , sN}) =

∑
M∈M

UM ({si : i ∈ IM}), (2)

and the Boltzmann weight of Eq. (1) is written as a product over
terms that depend on factors M , with their corresponding factor
potentials UM . A factor M = (IM , TM ) consists of an index set IM
and of a factor type TM , and M is the set of factors that have
a non-zero contribution to Eq. (2) for some configuration c. In
the SPC/Fw water model, for example, one factor M with factor
type TM = Coulomb might describe all the Coulomb potentials
between two given water molecules, and the factor index set
IM would contain the identifiers (indices) of the involved four
hydrogens and two oxygens (see Section 5.3).

ECMC relies on the factorized Metropolis filter [2], where the
move from a configuration c to another one, c ′, is accepted with
probability

pFact(c → c ′) =

∏
M∈M

min [1, exp (−β∆UM)] , (3)

where ∆UM = UM (c ′

M )−UM (cM ). Rather than evaluating the right-
hand side of Eq. (3), the product over the factors is interpreted as
corresponding to a conjunction of independent Boolean random
variables

XFact(c → c ′) =

⋀
M∈M

XM (cM → c ′

M ). (4)

In this equation, XFact(c → c ′) is ‘‘True’’ (the proposed Monte
Carlo move is accepted) if the independently sampled factorwise
Booleans XM are all ‘‘True’’. Equivalently, the move c → c ′

is accepted if it is independently accepted by all factors. This
realizes the aforementioned consensus decision (see Fig. 1).

For an infinitesimal displacement, the random variable XM of
only a single factor M can be ‘‘False’’, and the factor M vetoes the
consensus, creates an event, and starts a new leg. In this process,
M requires only the knowledge of the factor in-state (based on
the configuration cM , and the information on the move), and the
factor out-state (based on c ′

M ) provides all information on the
evolution of the system after the event. The event is needed in
order to enforce the global-balance condition (see Fig. 2a). In
this process, lifting variables [25], corresponding to generalized
velocities, allow one to repeat moves of the same type (same
particle, same displacement), as long as they are accepted by

consensus.1 Physical and lifting variables build the overcomplete
description of the Boltzmann distribution at the base of ECMC,
and they correspond to the global physical and global lifting
states of JF, its global state.

JF, the computer application, is entirely formulated in terms
of events, beyond the requirements of the implemented event-
driven ECMC algorithm. The application relies on the concept of
pseudo-factors, which complement the factors in Eq. (2), but are
independent of potentials and without incidence on the global-
balance condition (see Fig. 2b). In JF, the sampling of configuration
space, for example, is expressed through events triggered by
pseudo-factors. Pseudo-factors also trigger events that interrupt
one continuous motion (one ‘‘event chain’’ [1]) and start a new
one. Even the start and the end of each run of the application are
formulated as events triggered by pseudo-factors.

In ECMC, among all factors M in Eq. (2), only those for which
UM changes along one leg can trigger events. In JF, these factors
are identified in a separate element of the application, the activa-
tor (see Section 2.4), and they are realized in yet other elements,
the event handlers. An event handler may require an in-state.
It then computes the candidate event time and its out-state
(from the in-state, from the factor potential, and from random
elements). The complex operation of the activator and the event
handlers is organized in JF-V1.0 with the help of a tag activator,
with tags essentially providing finer distinction than the factor
types TM . A tagger identifies a certain pool of factors, and also
singles out factors that are to be activated for each tag. The trig-
gering of an event associated with a given tag entails the trashing
of (non-triggered) candidate events with certain tags, while other
candidate events are maintained (see Fig. 1). Also, new candidate
events have to be computed by event handlers with given tags.
This entire process is managed by the tag activator.

1.2. Global state, internal state

In the event-driven formulation of ECMC, a point mass with
identifier σ and with zero velocity is simply represented through
its position sσ , while an active point mass (with non-zero veloc-
ity) is represented through a time-sliced position sσ (tσ ), a time
stamp σ (tσ ) and a velocity vσ :

sσ (t) =

{
sσ if vσ = 0
sσ (tσ ) + (t − tσ )vσ else (active point mass).

(5)

An active point mass thus requires storing of a velocity vσ and of
a time stamp tσ , in addition to the time-sliced position sσ (tσ ). In
JF, the global state traces all the information in Eq. (5). It is broken
up into the global physical state, for the time-sliced positions sσ ,
and the global lifting state, for the non-zero velocities vσ and the
time stamps tσ .

JF represents composite point objects as trees described by
nodes. Leaf nodes correspond to the individual point masses.

1 For concreteness, the lifting variables in this paper are referred to as
‘‘velocities’’, although they are not derived from mechanical equations of motions
and their conservation laws. The concept of lifting variables is more general [25].
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Fig. 3. Tree representation of composite point objects in JF-V1.0. (a) Molecule with functional parts. (b) Tree representation, with leaf nodes for the individual atoms
and higher-level nodes for barycenters. Nodes each have a particle (a Particle object) containing a position vector and charge values. A unit (a Unit object),
associated with a node, copies out the particle’s identifier and its complete global-state information. (c) Internal representation of composite point objects with
separate cell systems for particle identifiers on different levels. On the leaf level, only one kind of particle is tracked.

A tree’s inner node may represent, for example, the barycenter
of a part of a molecule, and the root node that of the entire
molecule (see Fig. 3a–b). The velocities inside a composite point
object are kept consistent, which means that the global lifting
state includes non-zero velocities and time stamps of inner and
root nodes. The storing element of the global state in JF is the
state handler (see Section 2.3). The global state is not directly
accessed by other elements of the application, but branches of the
tree can be extracted (copied) temporarily, together with their
unit information. Independent and induced units differentiate
between those that appear in ECMC and those that are carried
along in order to assure consistency (see Fig. 3).

For internal computations, the global state may be supple-
mented by an internal state that is kept, not in the state handler,
but in the activator part of the application (see Section 2.4). In JF-
V1.0, the internal state consists of cell-occupancy systems, which
associate identifiers of composite point objects or point masses
to cells. (An identifier is a generalized particle index with, in
the case of a tree, a number of elements that correspond to the
level of the corresponding node.) In JF, cell-occupancy systems are
used for book-keeping, and also for cell-based bounding poten-
tials. JF-V1.0 requires consistency between the time-sliced par-
ticle information and the units. This means that the time-sliced
position sσ (tσ ) and the time-dependent position sσ (t) in Eq. (5)
belong to the same cell (see Fig. 2b). Several cell-occupancy
systems may coexist within the internal state (possibly on dif-
ferent tree-levels and with different cell systems, see Fig. 3c and
Section 5.3.4). ECMC requires time-slicing only for units whose
velocities are modified. Beyond the consistency requirements, JF-
V1.0 performs time-slicing also for unconfirmed events, that is,
for triggered events for which, after all, the out-state continues
the straight-line motion of the in-state (see Section 3.1.2).

1.3. Lifting schemes

In its lifted representation of the Boltzmann distribution, ECMC
introduces velocities for which there are many choices, that is,
lifting schemes. The number of independent active units can in
particular be set to any value nac ≥ 1 and then held fixed
throughout a given run. This generalizes easily from the known
nac = 1 case [26]. A simple nac-conserving lifting scheme uses a
factor-derivative table (see [21, Fig. 2]), but confirms the active
out-state unit only if the corresponding unit is not active in the
in-state (its velocity is None).

For |IM | > 3, the lifting scheme (the way of determining
the out-state given the in-state) is not unique, and its choice

influences the ECMC dynamics [21]. In JF-V1.0, different lifting-
scheme classes are provided in the JF lifting package. They all
construct independent-unit out-state velocities for independent
units that equal the in-state velocities. This appears as the most
natural choice in spatially homogeneous systems [1].

1.4. Multiprocessing

In ECMC, factors are statistically independent. In JF, therefore,
the event handlers that realize these factors can be run indepen-
dently on a multiprocessor machine. With multiprocessor support
enabled, candidate events are concurrently determined by event
handlers on separate processes, using the Python multipro-
cessing module. Candidate event times are then first requested
in parallel from active event handlers, and afterwards the out-
state for the selected event. Given a sufficient number of available
processors, out-states may be computed for candidate events in
advance, before they are requested (see Section 2.1). The event
handlers themselves correspond to processes that usually last
for the entire duration of one ECMC run. When not computing,
event handlers are either in idle stage waiting to compute a
candidate event time or in suspended stage waiting to compute
an out-state.

Using multiple processes instead of threads circumvents the
Python global interpreter lock, but the incompressible time lag
due to data exchange slows down the multiprocessor imple-
mentation of the mediator with respect to the single-processor
implementation.

1.5. Parallelization

ECMC generalizes to more than one independent active unit,
and a sequential, single-process ECMC computation remains triv-
ially correct for arbitrary nac (although JF-V1.0 only fully imple-
ments the nac = 1 case). The relative independence of a small
number of independent active units in a large system, for 1 ≪

nac ≪ N , allows one to consider the simultaneous committing
in different processes of npr events to the shared global state.
(A conflict arises if this disagrees with what would result by
committing them in a single process.) If npr ≪ N , conflicts
between processes disappear (for short-range interacting sys-
tems) if nearby active units are treated in a single process (see
Fig. 4a). The parallel implementation of ECMC, for short-range
interactions, is conceptually much simpler than that of event-
driven molecular dynamics [27–29], and it may well extend to
long-range interacting system.
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Fig. 4. Parallel ECMC with local potentials (interaction range d). (a) Multiprocess version with nac ≪ N active units. Nearby active units avoid conflict in a single
process. (b) Domain decomposition with separated stripes. Particles in between stripes are immobile. The separation region (of width ∆) is wider than d, so that all
of the conflict between stripes is avoided (see [30]).

An alternative type of parallel ECMC, domain decomposition
into nac stripes, was demonstrated for two-dimensional hard-
spheres systems, and considerable speed-up was reached [30].
Here, stripes are oriented parallel to the velocities, with one
active unit per stripe. Stripes are isolated from each other by
immobile layers of spheres [30], which, however, cause rejections
(or reversals of one or more components of the velocity). The
stripe decomposition eliminates all scheduling conflicts. As with
any domain decomposition [27], it is restricted to physical models
with short-range interactions. It is not implemented in JF-V1.0
(see Fig. 4b).

2. JF architecture

JF adopts the design pattern based on a mediator [24], which
serves as the central hub for the other elements that do not
directly connect to each other. In this way, interfaces and data
exchange are particularly simple. The mediator design maximizes
modularity in view of future extensions of the application.

2.1. Mediator

The mediator is doubled up into two modules (with Sin-
gleProcessMediator and MultiProcessMediator classes).
The runmethod of either class is called by the executable run.py
script of the application, and it loops over the legs of the
continuous-time evolution. The loop is interrupted when an End-
OfRun exception is raised, and a post_run method is invoked.
For the single-process mediator, all the other elements are in-
stances of classes that provide public methods. In particular, the
mediator interacts with event handlers. For the multi-process
mediator, each event handler has its own autonomous iteration
loop and runs in a separate process. It exchanges data with the
mediator through a two-way pipe. Receiving ends on both sides
detect when data is available using the pipe’s recv method.

In JF-V1.0, the same event-handler classes are used for the
single-process and multi-process mediator classes. The multi-
process mediator achieves this through a monkey-patching tech-
nique. It dynamically adds a run_in_process method to each
created instance of an event handler, which then runs as an
autonomous iteration loop in a process and reacts to shared flags
set by the mediator. The multi-process mediator in addition dec-
orates the event handler’s send_event_time and send_out_
state methods so that output is not simply returned (as it is
in the single-process mediator) but rather transmitted through a
pipe. Only the mediator accesses the event handlers, and these
re-definitions of methods and classes (which abolish the need
for two versions for each event-handler class) are certain not to
produce undesired side effects.

On one leg of the continuous-time evolution, the mediator
goes through nine steps (see Fig. 5). In step 1, the active global

Fig. 5. JF architecture, built on the mediator design pattern. The iteration loop
takes the system from one event to the next (for example from Ea to Eb in
Fig. 1). All elements of JF interact with the mediator, but not with each other.
The multi-process mediator interacts with event handlers running on separate
processes, and exchanges data via pipes.

state (the part of the global state that appears in the global lifting
state) is obtained from the state handler. (In the tree state handler
of JF-V1.0, branches of independent units are created for all
identifiers that appear in the lifting state.) Knowing the preceding
event handler (which initially is None) and the active global state,
it then obtains from the activator, in step 2, the event handlers
to activate, together with their in-state identifiers. For this, the
activator may rely on its internal state, but not on the global state,
to which it has no access. In step 3, the corresponding in-states
are extracted (that is, copied) from the state handler. In step 4,
candidate event times are requested from the appropriate event
handlers and pushed into the scheduler’s push_event method.
In step 5, the mediator obtains the earliest candidate event time
from the scheduler’s get_succeeding_event method and asks
its event handler for the event out-state (step 6) to be com-
mitted to the global state (step 7). The activator, in step 8,
determines which candidate events are to be trashed (in JF-V1.0:
based on their tags), that is, which candidate event times are
to be eliminated from the scheduler. Also, the activator collects
the corresponding event handlers, as they become available to
determine new candidate events. In the optional final step 9,
the mediator may connect (via the input–output handler) to
an output handler, depending on the preceding event handler.
A mediating method defines the arguments sent to the output
handler (for example the extracted global state), and considerable
computations may take place there.

The multi-process mediator uses a single pipe to receive the
candidate event time and the out-state from an event han-
dler. In order to distinguish the received object, the media-
tor assigns four different stages to the event handlers (idle,
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event_time_started, suspended, out_state_started
stages). The assigned stage determines which flags can be set
to start the send_event_time or send_out_state methods.
It also determines the nature of the data contained in the pipe.
In the idle stage, the mediator can set the starting flag after
which the event handler will wait to receive the in-state through
the pipe. This starts the event_time_started stage during
which the event handler determines the next candidate event
time and places it into the pipe. After the mediator has recovered
the data from the pipe, it places the event handler into the
suspended stage. If requested (by flags), the event handler can
then either compute the out-state (out_state_started stage),
or else revert to the event_time_started stage.

The strategy for suspending an event handler or for having
it start an out-state computation (before the request) can be
adjusted to the availability of physical processors on the multi-
processor machine. However, in JF-V1.0, the communication via
pipes presents a computational bottleneck.

2.2. Event handlers

Event handlers (instances of a number of classes that inherit
from the abstract EventHandler class) provide the
send_event_time and send_out_state methods that return
candidate events. These candidate events either become events
of a factor or pseudo-factor or they will be trashed (see Fig. 6).2

When realizing a factor or a pseudo-factor, event handlers
receive the in-state as an argument of the send_event_time
method. The send_out_state method then takes no argument.
In contrast, event handlers that realize a set of factors or pseudo-
factors request candidate event times without first specifying
the complete in-state, because the element of the set that trig-
gers the event is yet unknown at the event-time request (see
Section 3.2.2 for examples of event handlers that realize sets of
factors). The send_event_time method then takes the part of
the in-state which is necessary to calculate the candidate event
time. Also, it may return supplementary arguments together with
the candidate event time, which are used by the mediator to
construct the full in-state. The in-state is then an argument of
the send_out_state method, as it was not sent earlier.

In JF-V1.0, each run requires a start-of-run event handler (an
instance of a class that inherits from the abstract StartOfRun-
EventHandler class), and it cannot terminate properly with-
out an end-of-run event handler. Section 3 discusses several
event-handler classes that are provided.

2.3. State handler

The state handler (an instance of a class that inherits from
the abstract StateHandler class) is the sole separate element
of JF to access the global state. In JF-V1.0, the global physical
state (all positions of point masses and composite point objects)
is contained in an instance of the TreePhysicalState class
represented as a tree consisting of nodes (each node corresponds
to a Node object). Each node contains a particle (a Particle ob-
ject) which holds a time-sliced position. In JF-V1.0, each leaf node
may in addition have charges as a Python dictionary mapping the
name of the charge onto its value.

Each tree is specified through its root node. Root nodes can
be iterated over (in JF-V1.0, they are members of a list). Each
node is connected to its parent and its children, which can also be
iterated over. In JF-V1.0, the children are again members of a list.

2 A candidate event time may stem from a bounding potential, and not be
confirmed for the factor potential. In JF-V1.0, unconfirmed and confirmed events
are treated alike.

Fig. 6. Basic stages of event handlers for factors and pseudo-factors (stages
1 and 3 relevant for the multi-process mediator only). In the idle and
suspended stages, the event handler is halted (via flags controlled by the
multi-process mediator), thus liberating resources for other candidate-event-
time computations. With the multi-process mediator, candidate out-states may
be computed before the out-state request arrives.

These lists imply unique identifiers of nodes and their particles
as tuples. The first entry of the tuple gives a node’s root-node list
index, followed by the indices on lower levels down to the node
itself (see Fig. 3).

The global lifting state is stored in JF-V1.0 in a Python dic-
tionary mapping the implicit particle identifier onto its time
stamp and its velocity vector. This information is contained in
an instance of the TreeLiftingState class. Both the physical
and lifting states are combined in the TreeStateHandler which
implements all methods of a state handler.

To communicate with other elements of the JF application
(such as the event handlers and the activator) via the mediator,
the state handler combines the information of the global physical
and the global lifting state into units (that is, temporary Unit
objects, see Fig. 7). For a given node in the state handler, its
physical-state and lifting-state information is mirrored (that is,
copied) to a unit containing its implicit identifier, position, charge,
velocity and time stamp. All other elements can access, mod-
ify, and return units. This provides a common packaging format
across JF. The explicit identifier of a unit allows the program to
integrate changed units into the state handler’s global state.

In the tree state handler of JF-V1.0, the local tree structure of
nodes can be extracted into a branch of cnodes, that is, nodes
containing units.3 Each event handler only requires the global
state reduced to a single factor in order to determine candidate
event times and out-states. As a design principle in JF-V1.0,
the event handlers keep the time-slicing of composite point ob-
jects and its point masses consistent. Information sent to event
handlers via the mediator is therefore structured as branches,
that is, the information of a node with its ancestors and de-
scendants. The state handler’s extract_from_global_state
method creates a branch for a given identifier of a particle by
constructing a temporary copy of the immutable node structure
of the state handler using cnodes. Out-states of events in the
form of branches can be committed to the global state using the
insert_into_global_state method.

The extract_active_global_state method, the first of
two additional methods provided by the state handler, extracts
the part of the global state which appears in the global lift-
ing state. The tree state handler constructs the minimal num-
ber of branches, where each node contains an active unit, so
that all implicit identifiers appearing in the global lifting state
are represented. The activator may then determine the factors
which are to be activated. The method is also used to time-
slice the entire global state (see Section 3.2.2). Second, the ex-
tract_global_statemethod extracts the full global state. (For

3 The distinction between particles and units, as well as between nodes and
cnodes stresses that the state handler can only be accessed by the mediator,
although information on the physical and the lifting state must of course travel
throughout the application.
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Fig. 7. Inner storage of the tree state handler and example of its extract_from_global_state method, applied to the global state of Fig. 3b.

the tree state handler of JF-V1.0, this corresponds to a branch for
each root node.) This method does not copy the positions and
velocities.

In JF-V1.0, the global physical state is initialized via the input
handler within the input–output handler (see Section 2.6). The
initial lifting state, however, is set via the out-state of the start-
of-run event handler, which is committed to the global state at
the beginning of the program (see Section 3.2.2). This means that,
in JF-V1.0, the lifting state cannot be initialized from a file.

2.4. Activator

The activator, a separate element of the JF application, is an
instance of a class that inherits from the abstract Activator
class. At the beginning of each leg, the activator provides to the
mediator the new event handlers which are to be run, using
the get_event_handlers_to_runmethod. (As required by the
mediator design pattern, no data flows directly between the
activator and the event handlers, although it initially obtains
their references, and subsequently manages them.) The activator
also returns associated in-state identifiers of particles within the
global state. The extracted parts of the global state of these in-
state identifiers are needed by the event handlers to compute
their candidate event times (the identifier may be None if no
information is needed).

Once the mediator has committed the preceding event to the
global state via the state handler, the activator finally prepares (in
the get_trashable_events method) a list of trashable candi-
date events.

In JF-V1.0, the activator is an instance of the TagActivator
class (that inherits from the Activator class). The tag activa-
tor’s operations depend on the interdependence of tags of event
handlers and their events. Event handlers receive their tag by
instances of classes located in the activator and derived from the
abstract Tagger class that are called ‘‘taggers’’.

A tagger centralizes common operations for identically tagged
event handlers (see Fig. 8). On initialization, the tagger receives
its tag (a string-valued tag attribute) and an event handler (that
is, a single instance), of which it creates as many identical event-
handler copies as needed (using the Python deepcopy method).
Each tagger provides a yield_identifiers_send_event_
time method which generates in-state identifiers based on the
branches containing independent active units (this means that
the taggers are implemented especially for the TreeState-
Handler. The TagActivator, however, can be used with any
state handler since it just transmits the extracted active global
state). These in-states are passed (after extracting the part of the
global state related to the identifiers from the state handler) to
the send_event_time method of the tagger’s event handlers.
The number of event handlers inside a tagger should meet the

maximum number of events with the given tag simultaneously in
the scheduler. In this paper, event handlers (and their candidate
events) are referred to by tags, although in JF they do not have
the tag attribute of their taggers.

On initialization, a tagger also receives a list of tags for event
handlers that it creates, as well as a list of tags for event han-
dlers that need to be trashed. The tag activator converts this
information of all taggers into its internal _create_taggers
and _trash_taggers dictionaries. Additionally, the tag activator
creates an internal dictionary mapping from an event
handler onto the corresponding tagger (_event_handler_
tagger_dictionary).

A call of the get_event_handlers_to_run method is ac-
companied by the event handler which created the preceding
event and by the extracted active global state. The event han-
dler is first mapped onto its tagger. The taggers returned by
the _create_taggers dictionary then generate the in-state
identifiers, which are returned together with the correspond-
ing event handlers (in a dictionary). For the initial call of the
get_event_handlers_to_run method no information on the
preceding event handler can be provided. This is solved by ini-
tially returning the start-of-run event handler. Similarly the
_trash_taggers dictionary is used on each call of get_
trashable_events. The corresponding event handlers are then
also liberated, meaning that the activator can return them in the
next call of the get_event_handlers_to_run method.4 For
this, the activator internally splits the pool of all event handlers
of a given tag into those with a scheduled candidate event and
the ones that are available to take on new candidate events.

The activator also maintains the internal state. In JF-V1.0, the
internal state consists of cell-occupancy systems. Therefore, the
internal state is an instance of a class that inherits from the
CellOccupancy class, which itself inherits from the abstract
InternalState class. Taggers may refer to internal-state in-
formation to determine the in-states of their event handlers.
The cell-occupancy system does not double up on the informa-
tion available in the state handler. It keeps track of the iden-
tifier of a particle (which may correspond to a point mass or
a composite point object), but does not store or copy the par-
ticle itself (see Section 4.3). The mediator can access the in-
ternal state via the get_info_internal_state method (see
Fig. 8). To acquire consistency between the global state and
the internal state (and between a particle and its associated
unit), a pseudo-factor triggers an event for each active unit
tracked by the cell-occupancy system that crosses a cell boundary
(see Fig. 2b). The internal state is updated in each call of the
get_event_handlers_to_run method.

4 The action of the _create_taggers and _trash_traggers dictionaries
can be overruled with the concept of activated and deactivated taggers. Event
handlers out of deactivated taggers are not returned to the mediator.
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Fig. 8. Tag activator, and its complex interaction with the mediator. It readies event handlers and in-state identifiers, provides internal-state information for an
out-state request, and identifies the trashable candidate events, as a function of the preceding event.

2.5. Scheduler

The scheduler is an instance of a class inheriting from the ab-
stract Scheduler class. It keeps track of the candidate events and
their associated event-handler references. Its get_succeeding_
event method selects among the candidate events the one with
the soonest candidate event time, and it returns the reference
of the corresponding event handler. Its push_event method
receives a new candidate event time and event-handler reference.
Its trash_event method eliminates a candidate event, based on
the reference of its event handler. In JF-V1.0, the scheduler is an
instance of the HeapScheduler class. It implements a priority
queue through the Python heapq module.

2.6. Input–output handler

The input–output handler is an instance of the InputOut-
putHandler class. The input–output handler connects the JF
application to the outside world, and it is accessible by the
mediator. The input–output handler breaks up into one input
handler (an instance of a class that inherits from the abstract
InputHandler class) and a possibly empty list of output han-
dlers (instances of classes that inherit from the abstract Out-
putHandler class). These are accessed by the mediator only
via the input–output handler. Output handlers can also perform
significant calculations.

The input handler enters the initial global physical state into
the application. JF-V1.0 provides an input handler that enters
protein-data-bank formatted data (.pdb files) as well as an input
handler which samples a random initial state. The initial state
(constructed as a tree for the case of the tree state handler)
is returned when calling the read method of the input–output
handler, which calls the read method of the input handler.

The output handlers serve many purposes, from the output
in .pdb files to the sampling of correlation functions and other
observables, to a dump of the entire run. They obtain their argu-
ments (for example the entire global state) via its write method.
The write method of the input–output handler receives the
desired output handler as an additional argument through the
mediating methods of specific event handlers. These are triggered
for example after a sampling or an end-of-run event. The corre-
sponding event handlers are initialized with the name of their
output handlers.

3. JF event-handler classes

Event-handler classes differ in how they provide the send_
event_time and send_out_state methods. Event handlers
split into those that realize factors and sets of factors and those
that realize pseudo-factors and sets of pseudo-factors. The first
are required by ECMC while the second permit JF to represent
the entire run in terms of events.

3.1. Event handlers for factors or sets of factors

Event handlers that realize a factor M , or a set of factors, are
implemented in different ways depending on the analytic prop-
erties of the factor potential UM and on the number of involved
independent units.

3.1.1. Invertible-potential event handlers
In JF, an invertible factor potential UM (an instance of a class

that inherits from the abstract InvertiblePotential class)
has its event rate integrated in closed form along a straight-line
trajectory (as in Fig. 1). The sampled cumulative event rate (U+

M in
[21, Eq. (45)]) provides the displacement method. Together
with the time stamp and the velocity of the active unit, this
determines the candidate event time. In JF-V1.0, the two-leaf-unit
event handler (an instance of the TwoLeafUnitEventHandler
class) is characterized by two independent units at the leaf level.
It realizes a two-particle factor with an invertible factor potential.
The in-state (an argument of the send_event_time method) is
stored internally, and it remains available for the subsequent call
of the send_out_state method. Because of the two indepen-
dent units, the lifting simply consists in these two units switch-
ing their velocities (using the internal _exchange_velocity
method) and keeping the velocities of all induced units consis-
tent.

3.1.2. Event handlers for factors with bounding potential
For a factor potential UM that is not inverted (by choice or

by necessity because it is non-invertible), the cumulative event
rate U+

M is unavailable (or not used) and so is its displacement
method. Only the derivative method is used. To realize such
a factor without an inverted factor potential, an event handler
then uses the displacement method of an associated bounding
potential whose event rate at least equals that of UM and that is
itself invertible. A non-inverted UM may be associated with more
than one bounding potential, each corresponding to a different
event handler (the molecular Coulomb factors in Section 5.2 asso-
ciate the Coulomb factor potential in the same run with different
bounding potentials). In JF-V1.0, a number of event handlers
are instances of classes that inherit from the EventHandler-
WithBoundingPotential class, and that realize factors with
bounding potentials. Each of these event handlers translates the
sampled displacement of the bounding potential into a candidate
event time. On an out-state request (via the send_out_state
method), the event handler confirms the event with a proba-
bility that is given by the ratio of the event rates of the factor
potential and the bounding potential. The out-state consists of
independent units together with their branches of induced units.
For two independent units, the lifting simply consists in the
application of a local _exchange_velocity method, which ex-
changes independent-unit velocities and enforces velocities for
the induced units. For more than one independent unit, the out-
state calculation requires a lifting. For an unconfirmed event,
no lifting takes place. In JF-V1.0, confirmed and unconfirmed
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events have time-sliced out-states. The inefficient treatment of
unconfirmed events is the main limitation of this version of the
application.

A special case of a bounding potential is the cell-based bound-
ing potential which features piecewise cell-bounded event rates.
The two independent units are localized within their respective
cells, and the bounding potential’s rate is for all positions of the
units larger than the factor potential event rate. In JF-V1.0, the
constant cell-bounded event rate is determined for all pairs of
cells on initialization (see Section 4.4.4). The resulting displace-
ment may move the independent active unit outside its cell. The
proposed candidate event will then, however, be preempted by a
cell-boundary event and therefore trashed (see Section 3.2.1).

3.1.3. Cell-veto event handlers
Cell-veto event handlers (instances of a number of classes that

inherit from the abstract CellVetoEventHandler class) realize
sets of factors, rather than a single factor. The factor in-states (for
each element of the set) are not transmitted with the candidate-
event-time calculations. Instead, the branch of the independent
active unit is an argument of the send_event_timemethod. The
sampled factor in-state is transmitted with the out-state request.
The cell-veto event handler implements Walker’s algorithm [31]
in order to sample one element in the set of factors in O(1)
operations.

Cell-veto event handlers are instantiated with an estimator
(see Section 4.6). In addition, they obtain a cell system which is
read in through its initialize method (see Section 4.2). The
estimator provides upper limits for the event rate (in the given
direction of motion) for the independent active unit anywhere
in one specific cell (called the ‘‘zero-cell’’, see Section 4.3), and
for a target unit in any other cell, except for a list of excluded
cells. These upper limits can be translated from the zero-cell to
any other active-unit cell, because of the homogeneity of the
simulation box. In JF-V1.0, the cell systems for the cell-veto event
handler can be on any level of the particles’ tree representation
(see Section 5.3.4, where a molecule-cell system tracks individual
water molecules on the root level, while an oxygen-cell system
tracks only the leaf nodes corresponding to oxygens).

A Walker sampler is an instance of the Walker class in
the event_handler package. It provides the total event rate
(total_rate), which, for a homogeneous periodic system, is
a constant throughout a run. On a candidate-event-time re-
quest, a cell-veto event handler computes its displacement no
longer through the displacement method of a factor poten-
tial or a bounding potential, but simply as an exponential ran-
dom number divided by the total event rate. (The particularly
simple send_event_time method of a cell-veto event han-
dler is implemented in the abstract CellVetoEventHandler
class, see [21] for a full description.) The Walker sampler’s sam-
ple_cell method samples the cell of the target unit in O(1). It
is returned, together with the candidate event time, as an argu-
ment of the send_event_time method. The out-state request is
accompanied by the branch of the independent unit in the target
cell, if it exists. Confirmation of events and, possibly, lifting are
handled as in Section 3.1.2.

3.2. Event handlers for pseudo-factors or sets of pseudo-factors

The pseudo-factors of JF unify the description of the ECMC
time evolution entirely in terms of events. The distinction be-
tween event handlers that realize pseudo-factors and those that
realize sets of pseudo-factors remains crucial. In the former, the
factor in-state is known at the candidate-event-time request. It
is transmitted at this moment and kept in the memory of the
event handler for use at the out-state request. For a set of pseudo-
factors, the factor in-state can either not be specified at the

Fig. 9. Set of pseudo-factors realized by the end-of-chain event handler.
(a) Set of end-of-chain pair pseudo-factors for four point masses coupling the
final active unit of the old chain and the beginning active unit of the new chain.
(b) At the event time, the realized pseudo-factor with the incoming active unit
and the outgoing unit is known. (c) A new event chain is started. The outgoing
active unit is shown.

candidate-event-time request, or would require transmitting too
much data (one in-state per element of the set). It is therefore
transmitted later, with the out-state-request (see Fig. 9).

3.2.1. Cell-boundary event handler
In the presence of a cell-occupancy system, JF-V1.0 preserves

consistency between the tracked particles of the global physical
state and the corresponding units (which must both belong to the
same cell). This is enforced by a cell-boundary event handler, an
instance of the CellBoundaryEventHandler class. This event
handler has a single independent unit and realizes a pseudo-
factor with a single identifier. A cell-boundary event leads to the
internal state being updated (see Section 2.4).

On instantiation, a cell-boundary event handler receives a cell
system. (Each cell-occupancy system requires one independent
cell-boundary event handler.) A candidate-event-time request
by the mediator is accompanied by the in-state contained in
a single branch and a single unit on the level tracked by the
cell-occupancy system. An out-state request is met with the cell-
level-unit’s position corresponding to the minimal position in the
new cell.

3.2.2. Event handlers for sampling, end-of-chain, start-of-run, end-
of-run

Sampling event handlers are instances of classes that in-
herit from the abstract SamplingEventHandler class. Sampling
event handlers are expected to produce output (they inherit
from the EventHandlerWithOutputHandler class and are con-
nected, on instantiation, with their own output handler which is
used in the mediating method of this event handler). Several sam-
pling event handlers may coexist in one run. Their output handler
is responsible for computing physical observables at the sampling
event time (see Section 2.6). JF-V1.0 implements sampling events
as the time-slicing of all the active units. A sampling event
handler thus realizes a set of single-unit pseudo-factors, and the
in-state is not specified at the candidate-event-time request. In
JF-V1.0, the candidate event times of the sampling event handler
are equally spaced. The out-state request is accompanied by
branches of all independent active units, which are then all time-
sliced simultaneously. Sampling candidate events are normally
trashed only by themselves or by an end-of-run event.

End-of-chain event handlers are instances of classes that in-
herit from the abstract EndOfChainEventHandler class. They
effectively stop one event chain and reinitialize a new one. This
is often required for the entire run to be irreducible (see [21]).
The end-of-chain event handler clearly realizes a set of pseudo-
factors, rather than a single pseudo-factor (see Fig. 9a). An end-
of-chain event handler implements a method to sample a new
direction of motion. In addition, it implements a method to de-
termine a new chain length (that gives the time of the next
end-of-chain event) and, finally, the identifiers of the next inde-
pendent active cnodes. For this, the end-of-chain event handler
is aware of all the possible cnode identifiers (see Section 4.2).
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On an event-time request, the end-of-chain event handler
returns the next candidate event time (computed from the new
chain length) and the identifier of the next independent ac-
tive cnode. The out-state request is accompanied by the current
and the succeeding independent active units and their associ-
ated branches (see Fig. 9b). For the out-state, the event handler
determines the next direction of motion (see Fig. 9c).

A start-of-run event handler (an instance of a class that in-
herits from the abstract StartOfRunEventHandler class) is the
sole event handler whose presence is required. The start-of-run
event is the first one to be committed to the global state, because
its candidate event time is set equal to the initial time of the
run (usually zero) and because the activator will initially only
activate the start-of-run event handler. The start-of-run event
handler serves two purposes. First, it sets the initial lifting state.
Second, the activator uses the start-of-run event handler as an
entry point. Its tag (the start_of_run tag in the configuration
files of Section 5) is then used to determine the events that should
be activated and created thereafter.

The end-of-run event handler (an instance of a class that
inherits from the abstract EndOfRunEventHandler class) ter-
minates a run by raising an end-of-run exception and thus ends
the mediator loop. An end-of-run event handler is usually con-
nected, on instantiation, with its own output handler. In JF-V1.0,
its send_event_time method returns the total run-time, which
transits from the configuration file. On the send_out_state
request, all active units are time-sliced. The end-of-run output
handler may further process the global state which it receives via
the mediating method of the end-of-run event handler.

3.3. Event handlers for rigid motion of composite point objects, mode
switching

The event handlers of JF-V1.0 are generally suited for the rigid
motion of composite point objects (root mode), that is, for inde-
pendent non-leaf-node units (as implemented in Section 5.2.4).
This is possible because all event handlers keep the branches
of independent units consistent. As the subtree-node units of
an independent-unit node move rigidly, the displacement is not
irreducible. Mode switching into leaf mode (with single active
leaf units) then becomes a necessity in order to have all factors
be considered during one run and to assure the irreversibility of
the implemented algorithm. In JF-V1.0, the corresponding event
handlers are instances of the RootLeafUnitActiveSwitcher
class. On instantiation, they are specified to switch either from
leaf mode to root mode or vice versa.

These event handlers resemble the end-of-chain event han-
dler, but only one of them is active at any given time. They
provide a method to sample the new candidate event time based
on the time stamp of the active independent unit at the time of its
activation. An out-state request from one of these event handlers
is accompanied by the entire tree of the current independent
active unit of one mode and met with the tree of the independent
active unit on the alternate mode.

4. JF run specifications and tools

The JF application relies on a user interface to select the phys-
ical system that is considered, and to fully specify the algorithm
used to simulate it. Inside the application, some of these choices
are made available to all modules (rather than having to be
communicated repeatedly by the mediator). The application also
relies on a number of tools that provide key features to many of
its parts.

4.1. Configuration files, logging

The user interface for each run of the JF application consists of
a configuration file that is an argument of the executable run.py
script.5 It specifies the physical and algorithmic parameters (tem-
perature, system shape and size, dimension, type of point masses
and composite point objects, and also factors, factor potentials,
lifting schemes, total run time, sampling frequency, etc.).

A configuration file is composed of sections that each cor-
respond to a class requiring input parameters. The [Run] sec-
tion specifies the mediator and the setting. The ensuing sections
choose the parameters in the __init__methods of the mediator
and of the setting. Each section contains pairs of properties and
values. The property corresponds to the name of the argument in
the __init__ method of the given class, and its value provides
the argument (see Fig. 12). The content of the configuration
file is parsed by the configparser module and passed to the
JF factory (located in the base.factory module) in run.py.
Standard Python naming conventions are respected in the classes
built by the JF factory, which implies the naming conventions
in the configuration file (see Section 6.3 for details). Within the
configuration file, sections can be written in any order, but their
explicit nesting is not allowed. Nesting is, however, implicit in the
structure of the configuration file.

The JF application returns all output via files under the control
of output handlers. Run-time information is logged (the Python
logging module is used). Logged information can range from
identification of CPUs to the initialization information of classes,
run-time information, etc. Logging output (to standard output
or to a file) can take place on a variety of levels from DEBUG
to INFO to WARNING that are controlled through command-line
arguments of run.py. An identification hash of the run is part of
the logging output. It also tags all the output files so that input,
output and log files are uniquely linked (the Python uuidmodule
is used).

4.2. Globally used modules

JF-V1.0 requires that all trees representing composite point
objects are identical and of height at most two. Furthermore, in
the NVT physical ensemble, the particle number, system size and
temperature remain unchanged throughout each run. After ini-
tialization, as specified in the configuration file, these parameters
are stored in the JF setting package and the modules therein,
which may be imported by all other modules, which can then
autonomously construct identifiers. Helper functions for periodic
boundary conditions (if available) and for the sampling of random
positions are also accessible.

JF-V1.0 implements hypercubic and hypercuboid setting mod-
ules. Both settings define the inverse temperature and also the
attributes of all possible particle identifiers, which are broadcast
directly by the setting package. In contrast, the parameters
of the physical system are accessed only using the modules of
the specific setting (for example the setting.hypercubic_
setting module).6 The setting package and its modules are
initialized by classes which inherit from the abstract Setting
class. The HypercuboidSetting class defines only the hyper-
cuboid setting, the HypercubicSetting class, however, sets up
both the hypercubic_setting and the hypercuboid_
setting modules together with the setting package. This al-
lows modules that are specifically implemented for a hypercuboid
setting to be used with the hypercubic setting.

5 Configuration files follow the INI-file format and, in JF, feature the extension
.ini.
6 Attributes in the setting package are copied to the modules for

convenience.
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Fig. 10. Cell methods. (a) excluded_cells, successor, cell_min and
cell_max methods required by the abstract Cells class. Horizontal and
vertical directions are indexed as 0 and 1, respectively. (b) translate and
relative_cell methods (illustrated by vectors) required by the Periodic-
Cells class, in addition to the methods of the Cells class. Periodic boundary
conditions are required, and the two blue (north-east hatched) cells are identical.
The periodic-cell system’s origin is given by the zero_cell property.

Each setting can implement periodic boundaries, by inheriting
from the abstract PeriodicBoundaries class and by imple-
menting its methods. Since many modules of JF only rely on
periodic boundaries but not on the specific setting, the setting
package gives also access to the initialized periodic boundary
conditions. Similarly, a function to create a random position is
broadcast by the setting package. All the configuration files in
Section 5 are for a three-dimensional cubic simulation box, that
is, use the hypercubic setting with dimension = 3.

Additional useful modules are located in the JF base package.
The abstract Initializer class located in the initializer
module enforces the implementation of an initialize method.
This method must be called ahead of other public methods of
the inheriting class. The strings module provides functions to
translate strings from snake to camel case and vice versa, as
well as to translate a package path into a directory path. Helper
functions for vectors, such as calculating the norm or the dot
product, are located in the vectors module.

4.3. Cell systems and cell-occupancy systems

A cell-occupancy system is an instance of a class that inherits
from the abstract CellOccupancy class, located in the activator.
Any cell-occupancy system is associated with a cell system, itself
an instance of a class that inherits from the abstract Cells class.

In JF-V1.0, the cell system consists of a regular grid of cells
that are referred to through their indices. Cells can be iterated
over with the yield_cells method. For a given cell, the ex-
cluded cells are accessed by the excluded_cells method, the
successor cell in a suitably defined direction by the successor
method and the lower and the upper bound position in each
direction through the cell_min and cell_max methods (see
Fig. 10a). Finally, the position_to_cell method returns the
cell for a given position. Cell systems with periodic boundary con-
ditions are described as periodic cell systems (instances of classes
that inherit from the abstract PeriodicCells class, which itself
inherits from the Cells class). Their zero_cell property cor-
responds to the cell located at the origin. Their relative_cell
method receives a cell and a reference cell, and establishes equiv-
alence between the relative and the zero-cell. The inverse to this
is the translate method (see Fig. 10b).

A cell-occupancy system (which is located in the activator)
associates the identifiers of cell-based particles and of surplus
particles with a cell. It also stores active cells, that is, cells that

contain an active unit (see Fig. 11). Cell-based and surplus parti-
cles in the state handler correspond to units with zero velocity,
so that there is no real distinction between units and particles
for them. The cell-occupancy system inherits from the abstract
InternalState class and therefore provides __getitem__ and
update methods. The former returns a particle identifier based
on a cell, whereas the latter updates the cell occupancies based on
the currently active units. This keeps the internal state consistent
with the global state. Moreover, the cell-occupancy may iterate
over surplus particle identifiers via the yield_surplus method.
The active cells and the corresponding identifiers of the active
units are generated using the yield_active_cells method
(see Fig. 11).

JF-V1.0 implements the SingleActiveCellOccupancy class
which features only a single active cell and which keeps the active
unit identifier among its private attributes. The cell-based particle
identifiers are stored in an internal _occupant list, and surplus-
particle identifiers are stored in an internal _surplus dictionary
mapping the cell indices onto the surplus-particle identifiers.

The stored cell-occupancy system can address different levels
of composite particles: one cell-occupancy system may track
particles (and units) associated to root nodes, while another may
track particles associated with leaf nodes. This is set on initial-
ization via the cell_level property which equals the length of
the particle identifier tuple. The concerned cell system is itself set
on initialization. An indicator charge allows one to select specific
particles on a given level for tracking.

A single run can feature several internal states stored within
the activator. These instances may rely on different cell-occupancy
systems and cell systems. For consistency between internal states
and the global state, each cell-occupancy system requires its own
cell-boundary event handler.

4.4. Inter-particle potentials and bounding potentials

In JF, potentials play a dual role, not only as factor poten-
tials UM in event handlers but also as bounding potentials for
factor potentials UM . Potentials are located in the JF potential
package. They inherit from the abstract Potential class and
provide a derivative method. They may also inherit from the
abstract InvertiblePotential class, and must then addition-
ally provide a displacement method. In JF-V1.0, derivatives and
displacements are with respect to the positive change of the
active unit along one of the coordinates (indicated through the
direction argument). For a potential U(rj − ri) and direction
= 0, the derivative is, for example, given by

[
∂/∂xiU(rj − ri)

]
.

4.4.1. Inverse-power-law potential, Lennard-Jones potential
The inverse-power-law potential (an instance of the Inverse-

PowerPotential class that inherits from the abstract Invert-
iblePotential class) concerns the separation vector rij = rj−ri
(without periodic boundary conditions, in d-dimensional space)
between a unit j and an active unit i as

U({i,j}, inv)(rij, ci, cj) = cicjk
⏐⏐⏐⏐ 1rij

⏐⏐⏐⏐p . (6)

Here, k and p > 0 correspond to the prefactor and power
parameters set on initialization. The charges ci and cj are entered
into the methods of the potential as parameters charge_one and
charge_two. This allows one instance of the InversePowerPo-
tential class to be used for different charges. The derivative
method is straightforward, while the displacement method
distinguishes the repulsive (cicjk > 0) and the attractive (cicjk <

0) cases.
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Fig. 11. Cell-occupancy system, an internal state of the activator, with active units accounted for differently from surplus and cell-based particles. Only a fixed number
of cell-based particle identifiers are allowed per cell (here one per cell). Surplus-particle identifiers may be iterated over from the outside of the cell-occupancy
system with the yield_surplus method. In JF-V1.0, surplus particles form an internal dictionary mapping the cell onto the particle identifier.

The Lennard-Jones potential (an instance of the Lennard-
JonesPotential class) implements the Lennard-Jones potential

U({i,j}, LJ)(rij) = kLJ

[(
σ

|rij|

)12

−

(
σ

|rij|

)6
]

, (7)

where rij = rj − ri is the separation vector (without periodic
boundary conditions, in d-dimensional space) between a unit j
and an active unit i. The parameters prefactor and charac-
teristic_length set on instantiation correspond to kLJ and σ .
This Lennard-Jones potential provides a straightforward deriva-
tive method. Its displacement method relies on an algebraic
inversion.

4.4.2. Displaced-even-power-law potential
An instance of the DisplacedEvenPowerPotential class

that inherits from the abstract InvertiblePotential class,
the displaced-even-power-law potential, concerns the separation
vector rij = rj − ri (without periodic boundary conditions, in
d-dimensional space) between a unit j and an active unit i

U({i,j}, depp)(rij) = kdepp
(
|rij| − r0

)p
, (8)

where kdepp > 0, p ∈ {2, 4, 6, . . . }, and r0, respectively, are the
parameters prefactor, power, and equilibrium_separation
parameters set on instantiation. The derivative and dis-
placement methods are provided analytically.

4.4.3. Merged-image Coulomb potential and bounding potential
An instance of the MergedImageCoulombPotential class

that inherits from the abstract Potential class, the merged-
image Coulomb potential is defined for a separation vector rij =

rj − ri (with periodic boundary conditions in a three-dimensional
cubic simulation box of side L) between a unit j and an active unit
i as

UC(rij, ci, cj) =

∑
n∈Z3

cicj/|rij + nL|. (9)

The conditionally convergent sum in Eq. (9) can be consistently
defined in terms of ‘‘tin-foil’’ boundary conditions [32]. It then
yields an absolutely convergent sum, partly in real space and
partly in Fourier space (see [21, Sect. IIIA]),

UC(rij, ci, cj) = cicj

⎡⎣∑
n∈Z3

erfc(α|rij + nL|)
|rij + nL|

+
4π
L3

∑
q̸=(0,0,0)

e−q2/(4α2)

q2 cos
(
q · rij

)⎤⎦ , (10)

with α a tuning parameter and q = 2πm/L, m ∈ Z3. JF-V1.0
provides this class for a cubic simulation box only. Its parameters
are optimized to reach machine precision for its derivative
method. Summations over n and m are taken within spherical
cutoffs, namely for all |n| ≤ position_cutoff and |m| ≤

fourier_cutoff excluding m = (0, 0, 0). (The potential in
Eq. (10) differs from the tin-foil Coulomb potential in a constant
self-energy term that does not influence the derivatives.)

The merged-image Coulomb potential is not invertible. When
it serves as a factor potential, bounding potentials provide the re-
quired displacementmethod. JF-V1.0 provides a merged-image
Coulomb bounding potential as an instance of the InversePow-
erCoulombBoundingPotential class, with

UC,Bounding(rij, ci, cj) = cicjkC/|rij,0|. (11)

Here, rij,0 is the minimum separation vector, that is, the vector
between ri and the closest image of rj under the periodic bound-
ary conditions. (The merged-image Coulomb bounding potential
thus involves no sum over periodic images.) The constant kC must
satisfy

kC ≥ max
r∈[−L/2,L/2]3

|r|3

x
∂UC(r, 1, 1)

∂x
, (12)

so that the factor-potential event rate is bounded. A value kC ≳
1.5836 (the parameter prefactor) is appropriate for a cubic
simulation box. The merged-image Coulomb bounding potential
is closely related to the inverse-power-law potential of Eq. (6)
with p = 1, although the restriction to the minimum separation
vector makes that the latter cannot be used directly.

4.4.4. Cell-based bounding potential
A cell-based bounding potential is an instance of a class

that inherits from the abstract InvertiblePotential class.
It bounds the derivative of the factor potential inside certain
cell regions by constants. These constants can be computed an-
alytically on demand or even sampled using a separate Monte
Carlo algorithm. On initialization, a cell-based bounding potential
receives an estimator (see Section 4.6). Also the information about
the cell system is transmitted. Then, the cell-based bounding
potential iterates over all pairs of cells (making use of periodic
boundary conditions) and determines an upper and a lower
bound derivative for the factor units being in those cells for
each possible direction of motion using the estimator. Here, the
cell-based bounding potential is not applied to excluded cells,
where the cell-bounded event rate diverges, is simply too large,
or otherwise inappropriate.

The constant-derivative bound leads to a piecewise linear
invertible bounding potential. The call of the displacement
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method is accompanied by the direction of motion, the charge
product, the sampled potential change and the cell separation.
In JF-V1.0, any cell-based bounding potential requires a cell-
boundary event handler, that detects when the displacement pro-
posed by the displacement method in fact takes place outside
the cell for which it is computed.

4.4.5. Three-body bending potential
The SPC/Fw water model of Section 5.3 includes a bending po-

tential (an instance of the BendingPotential class), which de-
scribes the fluctuations in the bond angle within each molecule.
For the three units i, j, and k within such a molecule (with j being
the oxygen), it is given by

U({i,j,k}, bending)(rij, rjk) =
1
2
kb

[
φ{i,j,k}(rij, rjk) − φ0

]2
. (13)

Here, φ{i,j,k}(rij, rjk) denotes the internal angle between the two
hydrogen–oxygen legs. The constants kb and φ0 are set on ini-
tialization of the potential (see [21]). The derivative method
is provided explicitly for this potential, which is, however, not
invertible.

In JF-V1.0, an associated piecewise linear bounding potential
is constructed dynamically by an event handler.7 Here, the event
handler speculates on a constant bounding derivative through
its position between two subsequent time-sliced positions of the
active unit: qbounding = max{q(r), q(r + v∆t)} + const where
q(r) is the potential derivative at r. The interval length |v∆t| and
the constant offset are input from the configuration file. Fine-
tuning provides an efficient bounding potential that does not
under-estimate the event rate, yet limits the ratio of unconfirmed
events.

4.5. Lifting schemes

Event handlers with more than two independent units require
a lifting scheme (an instance of a class that inherits from the
Lifting class). The event handler calls a method of the lifting
scheme to compute its out-state. At first, the event handler
prepares factor derivatives of relevant time-sliced units. The
derivative table (see [21, Figs 2 and 10]) is filled with unit
identifiers, factor derivatives and activity information through its
insert method. Finally, the event handler calls the get_
active_identifier method that returns the identifier of the
next independent active unit. The lifting scheme’s reset method
deletes the derivative table. It is called before the first derivative
is inserted. JF-V1.0 implements the ratio, inside-first and outside-
first lifting schemes for a single independent active unit (see
[21, Sect. IV]).

4.6. Estimator

Estimators (instances of a class that inherits from the abstract
Estimator class) determine upper and lower bounds on the
factor derivative in a single direction between a minimum and
maximum corner of a hypercuboid for the possible separations.
For this, they provide the derivative_bound method. Both
upper and lower bounds are useful when the potential can have
either positive and negative charge products (as happens for
example for the merged-image Coulomb potential as a function
of the two charges). In general, an estimator compares the factor
derivatives for different separations in the hypercuboid to obtain
the bounds. These are corrected by a prefactor and optionally by

7 Instance of the FixedSeparationsEventHandlerWithPiecewiseCon-
stantBoundingPotential class.

an empirical bound, which are set on instantiation (together with
the factor potential).

JF-V1.0 provides estimators which either regard regularly or
randomly sampled separations within the hypercuboid. The
inner-point and boundary-point estimators vary the separation
evenly within the hypercuboid or on the edge of the hyper-
cuboid, respectively. For these separations, the factor potential
derivatives (optionally including charges) are compared. Two
more estimators consider the interaction between a charged
active unit and two oppositely charged target units within a
dipole. Here, the factor derivative is summed for the two possi-
ble active-target pairs. A Monte-Carlo estimator distributes both
the separation and the dipole orientation randomly. The dipole-
inner-point estimator varies the separations evenly but aligns
the dipole orientation along the direction of the gradient of the
factor derivative. The implemented estimators are appropriate for
the cookbook examples of Section 5, where the upper and lower
bounds on the factor derivatives (and equivalently on the event
rates) must be computed for a small number of cell pairs only.

5. JF cookbook

The configuration files8 in JF-V1.0 introduce the key features
of the application by constructing runs for two charged point
masses, for two interacting dipoles of charges, and for two in-
teracting water molecules (using the SPC/Fw model). All config-
uration files are for a three-dimensional cubic simulation box
with periodic boundary conditions, and they reproduce published
data [21].

As specified in their [Run] sections, the configuration files
use a single-process mediator (an instance of the SinglePro-
cessMediator class), and the setting package is initialized
by an instance of the HypercubicSetting class (see for exam-
ple Fig. 12). All configuration files in the directory use a heap
scheduler (an instance of the HeapScheduler class), a tree state
handler (instance of the TreeStateHandler class), as well as a
tag activator (an instance of the TagActivator class) in order
to activate event handlers, trash candidate events and prepare
in-states.

The start_of_run, end_of_run, end_of_chain, and sam-
pling event handlers (that realize common pseudo-factors) are
implemented in largely analogous sections across all the con-
figuration files, although their parent sections (that define the
corresponding taggers) provide different tag lists for trashing
and activation of event handlers. The corresponding tagger sec-
tions are presented in detail in Section 5.1.1, and only briefly
summarized thereafter.

5.1. Interacting atoms

The configuration files in the coulomb_atoms directory of
JF-V1.0 implement the ECMC sampling of the Boltzmann distri-
bution for two identical charged point masses. They interact with
the merged-image Coulomb pair potential and are described by
a Coulomb pair factor. One of the two point masses is active,
and it moves either in the +x, +y, or +z direction. Statistically
equivalent output is obtained for the merged-image Coulomb
pair potential (the factor potential) associated with the inverse-
power bounding potential (Section 5.1.1), or else with a cell-based
bounding potential, either realized directly (Section 5.1.2), or
through a cell-veto event handler (Section 5.1.3). Although the
configuration files use the language of Section 1.2 for the repre-
sentation of particles, all trees and branches are trivial, and each
root node is also a leaf node.

8 Configuration files in the src/config_files/2018_JCP_149_064113
directory tree are described in this section.
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Fig. 12. Configuration file coulomb_atoms/power_bounded.ini. (a) A typical __init__ method of a JF class. (b) Excerpts of the configuration file (some lines
split for clarity). Sections with properties and values that correspond to the argument names in the __init__ methods of JF classes.

Fig. 13. Tree representation of the sections in the configuration file coulomb_atoms/power_bounded.ini. Only part of the tree is shown and names of event
handlers for sampling and end-of-chain are shortened. The children of the [TagActivator] section correspond to all the declared taggers, which point towards
sections for their associated event-handler classes.

5.1.1. Atomic factors, inverse-power Coulomb bounding potential
The configuration file coulomb_atoms/power_bounded.ini

implements a single Coulomb pair factor with the merged-image
Coulomb factor potential that is associated with its inverse-power
Coulomb bounding potential. The same event handler realizes
this factor for any separation of the point masses. The activator
requires no internal state.

Although it would be feasible to directly implement (that is,
hard-wire) all event handlers for this simple system, the tag
activator is used. All event handlers are thus accessed via taggers
that are listed, together with their tags, in the [TagActivator]
section (see Fig. 13 for a tree representation of the sections).
The coulomb tagger is an instance of the FactorTypeMapIn-
StateTagger class, indicating that its event handlers require
a specific in-state created from a pattern stored in a file indi-
cated in the [FactorTypeMaps] section. This pattern mirrors
the factor index sets and factor types for a system with two
root nodes. The entry [0, 1], Coulomb in this file indicates
that, for two point masses, a Coulomb potential would act be-
tween particles 0 and 1. From this information, the tagger’s
yield_identifiers_send_event_time method generates all
the in-state identifiers for any number of point masses.

The [Coulomb] section specifies input for the coulomb tag-
ger’s tag lists (the creates list and the trashes list). Here,
a coulomb event creates and trashes only coulomb candidate
events (see the configuration file of Section 5.3.1 for different tag
lists for the same coulomb event handlers).

The [Coulomb] section further specifies that the coulomb
event handler is an instance of the TwoLeafUnitBoundingPo-
tentialEventHandler class and that, for two point masses,
only one coulomb event handler is needed. The corresponding
section9 specifies the factor potential to be an instance of the
MergedImageCoulombPotential class. It specifies the bound-
ing potential as an instance of the InversePowerCoulomb-
BoundingPotential class. The sampling, end_of_chain,
start_of_run and end_of_run taggers are all instances of the
NoInStateTagger class (their event handlers require no in-
state), and also provide their event handlers and their tag lists,
which are then transmitted to the tag activator. Each of these tag-
gers’ yield_identifiers_send_event_time methods yields

9 The [TwoLeafUnitBoundingPotentialEventHandler] section. The sec-
tion name may be replaced by an alias to respect the tree structure of the
configuration file (see Section 5.2.1).
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Fig. 14. Cumulative histogram of the pair separation |r12| (nearest image) for
two charges in a periodic three-dimensional cubic simulation box with periodic
boundary conditions (βc1c2 = 2, L = 1). 1⃝: Reversible Markov-chain Monte
Carlo (see [21, Fig. 8]) 2⃝: Method of Section 5.1.1 3⃝: Method of Section 5.1.2
4⃝: Method of Section 5.1.3, each with standard errors for π (|r12| < 0.6).

the in-state identifiers needed by the taggers’ event handlers in
order to realize corresponding factors or pseudo-factors.

The configuration file’s [InputOutputHandler] section
specifies the input–output handler. It consists of the separation-
output handler (an instance of the SeparationOutputHandler
class), which is connected to the sampling event handler. In the
present example, it samples the nearest-image separation (under
periodic boundary conditions) of any two point masses. The
initial global physical state is created randomly by the random-
input handler (an instance of the RandomInputHandler class).
The configuration file coulomb_atoms/power_bounded.ini
reproduces published data (see Fig. 14, 2⃝).

The configuration file coulomb_atoms/power_bounded.
ini can be modified for N point masses. In the [RandomIn-
putHandler] section, the number of root nodes must then equal
N . In the [Coulomb] section, the number of event handlers must
be set to at least N−1 (this instructs the Coulomb tagger to deep-
copy the required number of event handlers). Without changing
the factor-type map with respect to the N = 2 case, each event
handler will be presented with the correct in-state corresponding
to a pair of units with one of them being the active unit. The
complexity of the implemented algorithm is O(N) per event.

5.1.2. Atomic factors, cell-based bounding potential
The configuration file coulomb_atoms/cell_bounded.ini

implements a single Coulomb pair factor with the merged-image
Coulomb potential, just as the configuration file of Section 5.1.1.
However, a cell-occupancy internal state associates the factor
potential with a cell-based bounding potential. The target (non-
active) unit may be cell-based or surplus (see Fig. 11). The target
unit may also be in an excluded nearby cell of the active cell
(see Fig. 10), for which the cell-based bounding potential cannot
be used. In consequence, three taggers correspond to distinct
event handlers that together realize the Coulomb pair factor.
The consistency requirement of JF-V1.0 assures that particles and
units are always associated with the same cell.

Taggers and their tags are listed in the [TagActivator] sec-
tion. The coulomb_cell_bounding tagger, for example, appears
as an instance of the CellBoundingPotentialTagger class.
The coulomb_cell_bounding event handler then realizes the
Coulomb factor unless the cell of the target particle is excluded
with respect to the active cell and unless it is a surplus particle
(in these cases the tagger does not generate any in-state for its
event handler). Otherwise, the Coulomb pair factor is realized by
a coulomb_surplus or a coulomb_nearby event handler. (For
two units, as the active unit is taken out of the cell-occupancy
system, no surplus candidate events are ever created.)

The cell-occupancy systems (an instance of the
SingleActiveCellOccupancy class) are also declared in the
[TagActivator] section and further specified in the [Single-
ActiveCellOccupancy] section. The associated cell system is

described in the [CuboidPeriodicCells] section. The internal
state, set in the [SingleActiveCellOccupancy] section, has
no charge value. This indicates that the identifiers of all parti-
cles at the cell level (here cell_level = 1) are tracked (see
Section 5.3.2 for an example where this is handled differently).

The coulomb_nearby tagger, an instance of the Exclud-
edCellsTagger class, yields the identifiers of particles in ex-
cluded cells of the active cell, by iterating over excluded cells
and by checking whether they contain appropriate identifiers.
In the same way, the coulomb_surplus tagger relies on the
yield_surplus method of the cell-occupancy system to gener-
ate in-states.

To keep the internal state consistent with the global state,
a cell-boundary event handler is used in the CellBoundary-
Tagger class (together, this builds cell_boundary candidate
events). The cell-boundary tagger just yields the active-unit iden-
tifier as the in-state used in the corresponding event handler. The
configuration file coulomb_atoms/cell_bounded.ini repro-
duces published data (see Fig. 14, 3⃝).

To adapt the configuration file for N > 2 point masses
(from the N = 2 case that is provided), in the [RandomIn-
putHandler] section, number_of_root_nodes must be set to
N . The number of coulomb_cell_bounding, coulomb_nearby,
and coulomb_surplus event handlers must be increased. Sur-
plus particles can now exist. The number of event handlers to
allow for depends on the cell system, whose parameters must be
adapted in order to limit the number of surplus particles, and also
to retain useful cell-based bounds for the Coulomb event rates.

5.1.3. Atomic factors, cell-veto
The configuration file coulomb_atoms/cell_veto.ini im-

plements a Coulomb pair factor together with the merged-image
Coulomb potential. A cell-occupancy internal state is used. The
Coulomb pair factor is then realized, among others, by a cell-
veto event handler, which associates the merged-image Coulomb
potential with a cell-based bounding potential.

All the Coulomb pair factors of the active particle with tar-
get particles that are neither excluded nor surplus are taken
together in a set of Coulomb factors, and realized by a single
coulomb_cell_veto event handler. The candidate event time
can be calculated with the branch of the active unit as the in-
state, which is implemented in the CellVetoTagger class. (The
cell-veto tagger returns the identifier of the active unit.) The
event handler returns the target cell (in which the target unit is
to be localized) together with the candidate event time. The out-
state request is accompanied by the branch of the target unit (if
it exists), and the out-state computation is in analogy with the
case studied in Section 5.1.2.

The configuration file features the coulomb_cell_veto tag
together with the coulomb_nearby, coulomb_surplus,
cell_boundary, sampling, end_of_chain, start_of_run,
and end_of_run tags. The configuration file reproduces pub-
lished data (see Fig. 14, 4⃝).

To adapt the configuration file for N point masses, the number
of root nodes must be set to N in the [RandomInputHandler]
section. The number of event handlers for the coulomb_nearby
and coulomb_surplus events might have to be increased. How-
ever, a single cell-veto event handler realizes any number of
factors with cell-based target particles whereas in Section 5.1.2
each of them required its own event handler.

5.2. Interacting dipoles

The configuration files in the dipoles directory of JF-V1.0
implement the ECMC sampling of the Boltzmann distribution
for two identical finite-size dipoles, a model that was intro-
duced previously [21]. Point masses in different dipoles interact
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Fig. 15. Cumulative histogram of the pair separation |r13| and |r14| (nearest image) for two dipoles (see the inset) in a periodic three-dimensional cubic simulation
box with periodic boundary conditions (βcicj = ±1, L = 1). 1⃝: Reversible Markov-chain Monte Carlo (see [21, Fig. 11]) 2⃝: Method of Section 5.2.1 3⃝: Method of
Section 5.2.2 4⃝: Method of Section 5.2.3 5⃝: Method of Section 5.2.4, each with standard errors for π (|r13| < 0.22) and π (|r14| < 0.22).

via the merged-image Coulomb potential (pairs 1–3, 1–4, 2–3,
2–4 in Fig. 15). Point masses within each dipole interact with
a short-range potential (pairs 1–2 and 3-4). A repulsive short-
range potential between oppositely charged atoms in different
dipoles counterbalances the attractive Coulomb potential at small
distances (pairs 1–4 and 2–3).

Each dipole is a composite point object made up of two oppo-
sitely charged point masses. It is represented as a tree with one
root node that has two children. The number of root nodes in the
system is set in the [RandomInputHandler] section of the con-
figuration file, where the dipoles are created randomly through
the fill_root_node method in the DipoleRandomNodeCre-
ator class. In the setting package, the input handler spec-
ifies that there are two root nodes (number_of_root_nodes
= 2). Each of them contains two nodes (which is coded as
number_of_nodes_per_root_node = 2) and the number of
node levels is two (number_of_node_levels = 2). As these
numbers are set in the setting package, all the JF modules can
autonomously construct all possible particle identifiers.

Statistically equivalent output is obtained for pair factors for
all interactions (Section 5.2.1), for dipole–dipole Coulomb factors
and their factor potential associated with a cell-based bound-
ing potential (Section 5.2.2), for dipole–dipole Coulomb factors
with the cell-veto algorithm (Section 5.2.3), and by alternating
between concurrent moves of the entire dipoles with moves of
the individual point masses (Section 5.2.4). The latter example
showcases the collective-motion possibilities of ECMC integrated
into JF. All configuration files here implement the short-range po-
tential as an instance of the DisplacedEvenPowerPotential
class with power = 2 and the repulsive short-range potential as
an instance of the InversePowerPotential class with power
= 6.

5.2.1. Atomic Coulomb factors
The configuration file dipoles/atom_factors.ini imple-

ments for each concerned pair of point masses a Coulomb pair
factor, with the merged-image Coulomb potential associated with
the inverse-power Coulomb bounding potential. Several event
handlers that are instances of the same class realize these factors,
and the number of event handlers must scale with their number.
No internal state is declared. Pair factors are implemented for
each pair of point masses that interact with a harmonic or a
repulsive potential. One of the four point masses is active at
each time, and it moves either in the +x, +y, or +z direction.
The configuration file represents composite point objects as trees
with two levels (see Section 1.2). Positions and velocities are kept
consistent on both levels, although the root-unit properties are
not made use of. The tree structure only serves to identify leaf
units on the same dipole.

In the configuration file, taggers and tags are listed in the
[TagActivator] section. The coulomb, harmonic, and repul-
sive taggers are separate instances of the same FactorType
MapInStateTagger class, and the corresponding sections set
up the corresponding event handlers. Both the harmonic and
the repulsive event handlers are instances of the TwoLeafU-
nitEventHandler class. Aliasing nevertheless assures a tree-
structured configuration file (the harmonic tagger is for example
declared with a HarmonicEventHandler class which is an alias
for the TwoLeafUnitEventHandler class). The coulomb tagger
and its event handlers are treated as in Section 5.1.1.

The sampling, start-of-run, end-of-run and end-of-chain
pseudo-factors are realized by event handlers that are set up
in the same way as in all other configuration files. However,
the parent sections differ: the parent of the [InitialChain-
StartOfRunEventHandler] section sets the start_of_run
tagger, which specifies that after the start_of_run event, new
coulomb, harmonic, repulsive, sampling, end_of_chain,
and end_of_run event handlers must be activated. The tag lists
thus differ from those of the [StartOfRun] section in other con-
figuration files. The configuration file dipoles/atom_factors
.ini reproduces published data (see Fig. 15, 2⃝).

5.2.2. Molecular Coulomb factors, cell-based bounding potential
The configuration file dipoles/cell_bounded.ini imple-

ments for each pair of dipoles a Coulomb four-body factor. (The
sum of the merged-image Coulomb potentials for pairs 1–3, 1–4,
2–3, 2–4 in Fig. 15 constitutes the Coulomb factor potential.) The
event rates for such factors decay much faster with distance than
for Coulomb pair factors, and the chosen lifting scheme consider-
ably influences the dynamics (see [21, Sect. IV]). The configuration
file installs a cell-occupancy internal state on the dipole level
(rather than for the point masses). A cell-bounded event handler
then realizes a Coulomb four-body factor with its factor potential
associated with an orientation-independent cell-based bounding
potential for dipole pairs that are not in excluded cells relative to
each other. The configuration file furthermore implements pair
factors for the harmonic and the repulsive interactions. One of
the four point masses is active at each time, and it moves either
in the +x, +y, or +z direction.

The configuration file’s [TagActivator] section defines all
taggers and their corresponding tags. Among the taggers for
event handlers realizing the Coulomb four-body factor, the
coulomb_cell_bounding tagger differs markedly from the
set-up in Section 5.1.2, as the event handler10 is for a pair of com-
posite point objects. The lifting scheme is set to inside_first

10 Set in the [TwoCompositeObjectCellBoundingPotentialEventHand-
ler] section.
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_lifting. The bounding potential is defined in the [Cell-
BoundingPotential] section. A dipole Monte Carlo estimator
is used for simplicity (see Section 4.6). As it obtains an upper
bound for the event rate from random trials for each relative cell
orientations, its use is restricted to there being only a small num-
ber of cells. The coulomb_nearby and coulomb_surplus tag-
gers are for event handlers realizing the Coulomb four-body fac-
tor when the bounding potential cannot be used. In this case, the
merged-image Coulomb potential is summed not only for the fac-
tor potential, but also for the bounding potential.11 The standard
sampling, end_of_chain, end_of_run, and start_of_run
taggers as well as the ones responsible for the harmonic and
repulsive potentials are set up in a similar way as in Section 5.2.1.

The [TagActivator] section defines the internal state that
is used by the coulomb_cell_bounding, coulomb_nearby,
and coulomb_surplus taggers. The [SingleActiveCellOc-
cupancy] section specifies the cell level (cell_level = 1
indicates that the particle identifiers have length one, corre-
sponding to root nodes, rather than length two, which would
correspond to the dipoles’ leaf nodes). Positions and velocities
must thus be kept consistent on both levels. The cell-occupancy
system requires the presence of a cell_boundary event handler,
again on the level of the root nodes. This event handler is aware
of the cell level, and it ensures consistency of the events trig-
gered by the cell-based bounding potential with the underlying
cell system. The configuration file dipoles/cell_bounded.ini
reproduces published data (see Fig. 15, 3⃝).

5.2.3. Molecular coulomb factors, cell-veto
The configuration file dipoles/cell_veto.ini implements

the same factors and pseudo-factors and the same internal state
as the configuration file of Section 5.2.2. A single cell-veto event
handler then realizes the set of factors that relate to cells that
are not excluded for any number of cell-based particles, whereas
in the earlier implementation, the number of cell-bounded event
handlers must exceed the possible number of particles in non-
excluded cells of the active cell. This is what allows to implement
ECMC with a complexity of O(1) per event.

The configuration file resembles that of Section 5.2.2. It mainly
replaces the latter file’s coulomb_cell_bounding event han-
dlers with a coulomb_cell_veto event handler. Slight differ-
ences reflect the fact that a cell-veto event handler uses no
displacement method of the bounding potential but obtains
the displacement from the total event rate (see the discussion in
Section 3.1.3). The configuration file dipoles/cell_veto.ini
reproduces published data (see Fig. 15, 4⃝).

5.2.4. Atomic Coulomb factors, alternating root mode and leaf mode
The configuration file dipoles/dipole_motion.ini imple-

ments two different modes. In leaf mode, at each time one of
the four point masses is active, and it moves either in the +x,
+y, or +z direction (see Fig. 16a). In root mode, at each time
the point masses of one dipole moves as a rigid block, in the
same direction (see Fig. 16b). (The root mode, by itself, does not
assure irreducibility of the Markov-chain algorithm, as the orien-
tation and shape of any dipole molecule would remain unchanged
throughout the run.)

JF-V1.0 represents the dipoles as trees, and both modes are
easily implemented. In leaf mode, the Coulomb factors are re-
alized by coulomb_leaf event handlers that are instances of
the same class12 as the coulomb_nearby event handlers in

11 The tree structure of the configuration file is hidden in this case, as the JF
factory (which builds instances of classes based on its content) creates separate
instances for all the descendants of a section, not requiring the use of aliases.
12 Instances of the TwoCompositeObjectSummedBoundingPotential-
EventHandler class.

Sections 5.2.2 and 5.2.3. The root mode, in turn, is patterned
after the simulation of two point masses (as in Section 5.1.1):
all inner-dipole potentials are constant. The inter-dipole Coulomb
potentials sum up to an effective two-body potential, the factor
potential of a two-body factor realized in a Coulomb-dipole event
handler. The repulsive short-range potential between oppositely
charged atoms in different dipoles also translates into a poten-
tial between the dipoles in rigid motion, and serves as a factor
potential of a two-body factor, realized in a specific event handler.

Taggers and their tags are listed in the [TagActivator] sec-
tion. The harmonic_leaf, repulsive_leaf (leaf-mode) tag-
gers, as well as all those related to event handlers that realize
pseudo-factors are as in Section 5.2.1. The coulomb_leaf tagger
corresponds to the coulomb_nearby tagger in Section 5.2.2. The
coulomb_root and repulsive_root taggers are analogous to
those in Section 5.1.1 for the two-atom case.

As all other operations that take place in JF, the switches
between leaf mode and root mode are also formulated as events.
They are related to two pseudo-factors and realized by a
leaf_to_root event handler and by a root_to_leaf event
handler, respectively. (These two event handlers are aliases for
instances of the RootLeafUnitActiveSwitcher class.) The
root_to_leaf and leaf_to_root taggers, in addition to the
create and trash lists, set up separate activate and deac-
tivate lists (see Section 2.4). The configuration file reproduces
published data (see Fig. 15, 5⃝). Of particular interest is that the
tree representation of composite point objects preserves consis-
tency between leaf-node units and root-node units: the event
handlers return branches of cnodes for all independent units (see
Fig. 7) whose unit information can be integrated into the global
state.

5.3. Interacting water molecules (SPC/Fw model)

The configuration files in the water directory implement the
ECMC sampling of the Boltzmann distribution for two water
molecules, using the SPC/Fw model that was previously stud-
ied with ECMC [21]. Molecules are represented as composite
point objects with three charged point masses, one of which is
positively charged (representing the oxygen) and the two oth-
ers are negatively charged (representing the hydrogens). Point
masses in different water molecules interact via the merged-
image Coulomb potential. In addition, point masses within each
molecule interact with a three-body bending interaction, and a
harmonic oxygen–hydrogen potential. Finally, any two oxygens
interact through a Lennard-Jones potential [21].

In the tree state handler (defined in the [TreeStateHan-
dler] section, a child of the [SingleProcessMediator] sec-
tion), water molecules are represented as trees with a root node
and three children (the leaf nodes of the tree). The total num-
ber of water molecules (that is, of root nodes) is set in the
[RandomInputHandler] section of each configuration file. The
molecules are created through the fill_root_node method in
the WaterRandomNodeCreator class. There are two node levels
(number_of_node_levels = 2) and three nodes per root node
(number_of_nodes_per_root_node = 3). The charges of a
molecule are set in the [ElectricChargeValues] section (a
descendant of the [WaterRandomNodeCreator] section).

All the configuration files in the water directory of JF-V1.0
implement the pair harmonic factors that are realized through
harmonic event handlers. The corresponding taggers are defined
in the [Harmonic] sections, with the displaced even-power po-
tential and its parameters set in the [HarmonicEventHandler]
and [HarmonicPotential] sections. The configuration files
furthermore implement the taggers corresponding to the three-
body bending factors in their [Bending] sections. The bend-
ing event handler has three independent units (attached to
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Fig. 16. Two moves implemented in dipoles/dipole_motion.ini. (a) In leaf mode, a single independent active leaf unit has velocity v. The corresponding dipole
center (the active root unit) is induced to move at v/2. (b) In root mode, one dipole (independent active root unit) has velocity v, and both its active leaf units have
induced velocity v.

Fig. 17. Cumulative histogram of the oxygen–oxygen pair separation |rOO| for
two SPC/Fw water molecules in a periodic cubic simulation box. 1⃝: Reversible
Markov-chain Monte Carlo (see [21, Fig. 14]) 2⃝: Method of Section 5.3.1 3⃝:
Method of Section 5.3.2 4⃝: Method of Section 5.3.3 5⃝: Method of Section 5.3.4,
each with standard errors for π (|rOO| < 2.9Å).

branches). It thus requires a lifting scheme (which is chosen in the
[BendingEventHandler] section), which is, however, unique
(see [21, Fig. 2]). In all these configuration files, one of the six
point masses is active, and it moves either in the +x, +y, or
+z direction (the optional rigid displacement of the entire water
molecule, could be set up as in Section 5.2.4).

Statistically equivalent output is obtained for a simple set-up
featuring pair factors for the Coulomb potential and a Lennard-
Jones interaction that is inverted (Section 5.3.1), or for a
molecular-factor Coulomb potential associated with a power-law
bounding potential and a cell-based Lennard-Jones bounding po-
tential (Section 5.3.2). In addition, the cell-veto algorithm for the
Coulomb potential coupled to an inverted Lennard-Jones poten-
tial (Section 5.3.3) is also provided. Finally, cell-veto event han-
dlers take part in the realization of complex molecular Coulomb
factors and also realize Lennard-Jones factors between oxygens
(Section 5.3.4). This illustrates how multiple independent cell-
occupancy systems may coexist within the same run.

5.3.1. Atomic Coulomb factors, Lennard-Jones inverted
The configuration file water/coulomb_power_bounded_

lj_inverted.ini implements pair Lennard-Jones, harmonic
and Coulomb factors. The Coulomb factors are realized for any
distance of the point masses by event handlers that associate
the merged-image Coulomb potential with its inverse-power
Coulomb bounding potential. The Lennard-Jones potential is in-
verted. This configuration file needs no internal state.

In the configuration file, the [TagActivator] section lists
all the taggers together with their tags, which in addition to
the taggers related to pseudo-factors, are reduced to coulomb,
harmonic, bending, and lennard_jones. The merged-image
Coulomb potential, with its associated power-law bounding po-
tential (both for attractive and repulsive charge products), is
specified in the [Coulomb] section of the configuration file.
The Lennard-Jones potential is invertible and its displacement
method is used rather than that of a bounding potential. The out-
put handler is defined in the [OxygenOxygenSeparationOut-
putHandler] section, a child of the [InputOutputHandler]

section. It obtains all the units, extracts the oxygens through
their unit identifier, and records the oxygen–oxygen separation
distance. This reproduces published data (see Fig. 17, 2⃝).

5.3.2. Molecular Coulomb factors, Lennard-Jones cell-bounded
The configuration file water/coulomb_power_bounded_lj_

cell_bounded.ini for the water system corresponds to pair
factors for the Lennard-Jones and the harmonic potentials and
to molecular factors for the Coulomb interaction. The Coulomb
factor potential is the sum of the merged-image Coulomb po-
tential for the nine relevant pairs of point masses (pairs across
two molecules). It is realized in a particular event handler,13
analogously to how this is done for the Coulomb interaction
in Sections 5.2.2 and 5.2.3. The associated bounding potential
(both for attractive and repulsive charge combinations) is given
by the sum over all the individual pairs. Although the Lennard-
Jones interaction can be inverted, the configuration file sets up
a cell-occupancy internal state that tracks the identifiers for the
oxygens. As in previous cases, this leads to three types of events,
corresponding to the nearby, surplus, and cell-based particles, in
addition to cell-boundary events.

Taggers and their tags are listed in the [TagActivator]
section. Taggers are generally utilized as in other configuration
files. The internal state is specified in the [TagActivator] sec-
tion. As set up in the [SingleActiveCellOccupancy] section,
it features an oxygen_indicator charge (set in the [Oxy-
genIndicator] section). The oxygen-indicator charge is non-
zero only for the oxygens. In consequence, the oxygen cell system
(defined in the [OxygenCell] section) tracks only oxygens. This
reproduces published data (see Fig. 17, 3⃝).

5.3.3. Molecular Coulomb cell-veto, Lennard-Jones inverted
The configuration file water/coulomb_cell_veto_lj_

inverted.ini for the water system corresponds to the same
factors as in Section 5.3.2. As a preliminary step towards the
treatment of all long-range interactions with the cell-veto algo-
rithm, in Section 5.3.4, molecular Coulomb factors are realized
here (for non-excluded cells of the active cell) with a cell-veto
event handler.

Taggers and their tags are listed in the [TagActivator] sec-
tion, and they are generally similar to those of other configuration
files. In addition, the internal state for the Coulomb system is
defined in the [TagActivator] section and further described
in the [SingleActiveCellOccupancy] section. The latter de-
scribes the cell level (which serves for the water molecules) as
on the root node level (cell_level = 1), the barycenter of the
leaf-node positions of each water molecule. (Root-node and leaf-
node positions are set in the random input handler, which itself
uses a water random node creator.)

The event handlers consistently update all leaf-node positions
and root-node positions from a valid initial configuration ob-
tained in an instance of the WaterRandomNodeCreator class.

13 An instance of the TwoCompositeObjectSummedBoundingPoten-
tialEventHandler class.
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Consistency will be deteriorated over long runs, but this is of
little importance for the simple example case presented here. The
configuration file reproduces published data (see Fig. 17, 4⃝).

5.3.4. Molecular Coulomb cell-veto, Lennard-Jones cell-veto
The configuration file water/coulomb_cell_veto_lj_cell

_veto.ini offers no new factors compared to Sections 5.3.2 and
5.3.3, but it uses, for illustrative purposes, two cell-occupancy
systems and two cell-veto event handlers. As nearby and surplus
particles are excluded from the cell-veto treatment, this implies
two sets of cell-veto, nearby, and surplus event handlers in
addition to two cell-boundary event handlers. For the molec-
ular Coulomb factors, the cell-veto event handler receives as
a factor potential the sum of pairwise merged-image Coulomb
potentials with attractive and repulsive charge combinations. The
corresponding cell-occupancy system tracks the barycenter of
individual water molecules, and consistency between root-node
units and leaf-node units is of importance. Although the Lennard-
Jones potential can be inverted, the configuration file sets up a
second cell-occupancy system for the Lennard-Jones potential.
The cell-occupancy system tracks only leaf-node particles that
correspond to oxygen atoms.

Taggers and their tags are listed in the [TagActivator]
section. This section is of interest as it sets up the internal state as
two cell-occupancy systems, both instances of the same Single-
ActiveCellOccupancy class. They require different parameters,
and are therefore presented under aliases, in the [OxygenCell]
and [MoleculeCell] sections. Each of these cell-occupancy sys-
tems uses a separate cell system instance of the same class. As
the two cell systems have the same parameters, they do not
need to be aliased in the configuration file. The configuration file
reproduces published data (see Fig. 17, 5⃝).

6. License, GitHub repository, Python version

JF, the Python application described in this paper, is an open-
source software project that grants users the rights to study and
execute, modify and distribute the code. Modifications can be fed
back into the project.

6.1. License information, used software

JF is made available under the GNU GPLv3 license (for details
see the JF LICENSE file). The use of the Python MDAnalysis
package [33,34] for reading and writing .pdb files, of the Python
Dill package [35,36] for dumping and restarting a run of the ap-
plication, and of the Python Matplotlib [37] and NumPy [38,39]
packages for the graphical analysis of output is acknowledged.

6.2. GitHub repository

JeLLyFysh, the public repository for all the codes and the
documentation of the application, is part of a public GitHub
organization.14 The repository can be forked (that is, copied to
an outside user’s own public repository) and from there studied,
modified and run in the user’s local environment. Users may
contribute to the JF application via pull requests (see the JF
README.md and CONTRIBUTING.md files for instructions and
guidelines). All communication (bug reports, suggestions) take
place through GitHub ‘‘Issues’’, that can be opened in the reposi-
tory by any user or contributor, and that are classified in GitHub
projects on JeLLyFysh.

14 The organization’s url is https://github.com/jellyfysh.

6.3. Python version, coding conventions

JF-V1.0 is compatible with Python 3.5 (and higher) and with
PyPy 7 (and higher), a just-in-time compiling Python alternative
to interpreted CPython (see the JF documentation for details). JF
code adheres to the PEP8 style guide for Python code, except for
the linewidth that is set to 120 (see the CONTRIBUTING.md file
for details).

Following the PEP8 Python naming convention, JF modules
and packages are spelled in snake case and classes in camel case
(the state_handler module thus contains the StateHandler
class). In configuration files, section titles are in camel case and
enclosed in square brackets (see Fig. 13).

Versioning of the JF project adopts two-to-four-field version
numbers defined as Milestone.Feature.AddOn.Patch. Version 1.0,
as described, represents the first development milestone which
reproduces published data [21]. Patches and bugfixes of this
version will be given number 1.0.0.1, 1.0.0.2, etc. (Finer-grained
distinction between versions is obtained through the hashes of
master-branch GitHub commits.) New configuration files and re-
quired extensions are expected to lead to versions 1.0.1, 1.0.2, etc.
Version 1.1 is expected to fully implement different dimensions
and arbitrary rectangular and cuboid shapes of the JF poten-
tial package. Versions 1.2 and 1.3 will consistently implement
nac ≥ 1 independent active particles (on a single processor)
and eliminate unnecessary time-slicing for some events triggered
by pseudo-factors and for unconfirmed events. All development
from Versions 1.0 to 2.0 can be undertaken concurrently. Fully
parallel code is planned for Version 3.0. In JF development, two-
field versions (2.0, 3.0, etc.) may introduce incompatible code,
while three- and four-field version numbers are intended to be
backward compatible.

7. Conclusions, outlook

As presented in this paper, JF is a computer application for
ECMC simulations that we hope will be useful for researchers in
different fields of computational science. The JF-V1.0 constitutes
its first development milestone: built on the mediator design
pattern, it systematically formulates the entire ECMC time evo-
lution in terms of events, from the start-of-run to the end-of-run,
including sampling, restarts (that is, end-of-chain), and the factor
events. A number of configuration files validate JF-V1.0 against
published test cases for long-range interacting systems [21].

For JF-V1.0, consistency has been the main concern, and code
has not yet been optimized. Also, the handling of exceptions
remains rudimentary, although this is not a problem for the
cookbook examples of Section 5.

All the methods are written in Python. Considerable speed-up
can certainly be obtained by rewriting time-consuming parts of
the application in compiled languages, in particular of the poten-
tial package. One of the principal limitations of JF-V1.0 is that
pseudo-factor-related and unconfirmed events are time-sliced,
leading to superfluous trashing and re-activation of candidate
events. Optimized bounding potentials for many-particle factor
potentials also appear as a priority.

The consistent implementation of an arbitrary number nac
of simultaneously active particles is straightforward, although
it has also not been implemented fully in JF-V1.0. (As men-
tioned, this is planned for JF (Version 2.0)). This will enable full
parallel implementations on multiprocessor machines. Simplified
parallel implementations for one-dimensional systems and for
hard-disk models in two dimensions are currently being proto-
typed. The parallel computation of candidate events (using the
MultiProcessMediator class implemented in JF-V1.0) is at
present rather slow. Bringing the full power of parallelization and
of multi-process ECMC to real-world applications appears as its
outstanding challenge for JF.

https://github.com/jellyfysh
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