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Abstract—This paper deals with radar clutter statistical learn-
ing based on spatial Doppler fluctuation. In articles [1]–[4],
data is clustered cell by cell. In this article, we generalize the
previous model to extract information not only from each cell
independently, but also from the cells spatial correlation. We
first introduce the radar data, then the model and efficient
tools to estimate the model parameters. The model parame-
ters will be shown to be Hermitian Positive Definite Block-
Toeplitz matrices. Next we endow the manifold of Hermitian
Positive Definite Block-Toeplitz matrices with a Riemannian
metric coming from information geometry. Finally, we adapt
a supervised classification algorithm (the k-Nearest Neighbors)
and an unsupervised classification algorithm (the Agglomerative
Hierarchical Clustering) to this Riemannian manifold.

Index Terms—Radar clutter, multidimensional signals, spatio-
temporal correlation, machine learning, Information geometry,
Riemannian manifold, Block-Toeplitz matrices, Siegel disk.

I. INTRODUCTION

Radar installation on a new geographical site is long and
costly. We would like to shorten the time of deployment
by automatically recognizing pathological clutters with past
known diagnosed cases. This requirement will become more
and more important as new generation radar sensors will be
mobile and should work on the move and self-adapt to the
environment. The objective is therefore to develop machine
learning algorithms to recognize specific clutter characteristics
from their Doppler spectrum statistical fluctuations.

To recognize pathological radar environments using a pulse-
Doppler radar, we need to extract very precise Doppler in-
formation from a very small series of pulses (around 10).
In this context, the classical FFT (Fast Fourier Transform)
is not satisfactory due to its low resolution output for such
small time series. To overcome this difficulty, we propose
classification methods based on the signals spatio-temporal
covariance matrices.

To begin with, we briefly introduce the radar data which
we intend to analyze. For simplicity, we first consider one
fixed direction in which a radar sends radio waves and we
subdivide this direction into cells. The radar sends a burst of
radio waves in a direction and then receives the echoes. For

each echo we measure its amplitude r and phase φ, so it can
be represented by a complex number u = reiφ. As a result,
the original radar observation value of each cell is a complex
vector u = [u(0), u(1), ..., u(npulses − 1)]T , where npulses
is the number of radio waves emitted during the burst and
·T denotes the matrix transposition. We now group together
spatially close cells, say u0, ...,uncells−1, and try to extract
sharp Doppler information from each cell as well as spatial
correlations.

Instead of using directly the original observation values
recorded in an area, we implicitly vectorize the data registered
in this zone: uzone =

[
uT0 , ...,uTncells−1

]T
and estimate its

covariance matrix. Under our model assumptions, this covari-
ance matrix will be shown to be a Hermitian Positive Definite
Block-Toeplitz matrix. In other words, the new observation
value for each zone is a covariance matrix estimation, which
is a Hermitian Positive Definite Block-Toeplitz matrix due to
our model assumptions. Afterwards we define a metric on the
manifold of Hermitian Positive Definite Block-Toeplitz matri-
ces to consider it as a Riemannian manifold. The metric used
here comes from the information geometry metric on the set
of centered multidimensional complex Gaussian process with
null relation matrix (such process can be uniquely determined
by its covariance matrix). Then our classification problem
can be summarized as follows: regroup in a same class the
zones having close Hermitian Positive Definite Block-Toeplitz
covariances matrices with respect to the previously mentioned
metric.

We introduce the radar data in section II. We first present
the one-dimensional temporal model of articles [1]–[4] in
section III. Then we generalize this model to multidimensional
signals in section IV. In section V, we detail a particular
case of the multidimensional model presented in section IV
based on separate estimations of the spatial and temporal
correlation matrices. To illustrate our classification method,
we use this last model in section VI to simulate radar data
in order to perform the k-Nearest Neighbors classifier and the
Agglomerative Hierarchical Clustering.



II. THE RADAR DATA

We introduce the input radar data in the form of the two-
dimensional complex matrix U :

U =



u0,0 u0,1 . . . u0,npulses−1

u1,0 u1,1 . . . u1,npulses−1

...
...

. . .
...

uncells−1,0 uncells−1,1 . . . uncells−1,npulses−1

...
...

. . .
...

un−1,0 un−1,1 . . . un−1,npulses−1


(1)

Here the first coordinate corresponds to the spatial axis
(index close to zero corresponds to cells close to the radar); the
second coordinate represents the temporal axis (pulse index in
the burst). In articles [1]–[4], the input data are the cells, i.e.
the rows of the matrix U . The input data is now a group of
spatially close cells: we gather several rows of the matrix U
and try to extract spatial correlation information in addition to
the Doppler information.

III. THE ONE-DIMENSIONAL TEMPORAL MODEL

In this section, data is clustered cell by cell as in articles
[1]–[4]. Instead of using directly the original observation
vector u of each cell, we assume it to be a realization of
a centered stationary complex Gaussian process and identify
it with its covariance matrix R = E[u uH ], where ·H denotes
the complex matrix conjugate transpose. The new observation
value for each cell is therefore a covariance matrix estimation,
which is Toeplitz due to the assumption of stationarity of
the process. We then develop efficient tools to estimate the
Toeplitz Hermitian Positive Definite covariance matrix of the
temporal signal u registered in each cell. Afterwards we endow
the set of THPD matrices with a Riemannian metric coming
from information geometry. Our classification problem can
be summarized as follows: regroup in a same class the cells
having close Toeplitz covariance matrices.

A. The model

We assume that the signal can be modeled as a centered
stationary autoregressive Gaussian process of order n− 1:

u(k) +

n−1∑
i=1

an−1i u(k − i) = w(k) (2)

where an−1i are the prediction coefficients and w is the
prediction error.

B. Equivalent representations
According to [9], [10], based on Verblunsky-Trench al-

gorithm, in case of locally stationary signal, the Levinson
algorithm gives us the following bijection:

T +
n → R∗+ × Dn−1

Rn 7→ (p0, µ1, ..., µn−1) (3)

where T +
n denotes the set of THPD matrices of size n; p0 is

the averaged quadratic power and µj = ajj (1 ≤ j ≤ n−1) are
the reflection coefficients, where aji denotes the ith coefficient
of the Gaussian autoregressive model of order j. It is therefore
equivalent to estimate the coefficients (p0, µ1, ..., µn−1) and
Rn.

In practice, we use the regularized Burg algorithm [12]
described in algorithm 1 to estimate the reflection coefficients.

Algorithm 1 The regularized Burg algorithm
Initialization:

f0,k = b0,k = uk k = 0, ..., n− 1 (4)

a0,k = 1 k = 0, ..., n− 1 (5)

p0 =
1

n

n−1∑
k=0

|uk|2 (6)

for i = 1, ...,M : do

µi = −

2
n−i

n−1∑
k=i

fi−1,k b̄i−1,k−1 + 2
i−1∑
k=1

βk,iak,i−1ai−k,i−1

1
n−i

n−1∑
k=i

|fi−1,k|2 + |bi−1,k−1|2 + 2
i−1∑
k=0

βk,i|ak,i−1|2

(7)
where:

βk,i = γ(2π)2(k − i)2 (8){
ak,i = ak,i−1 + µiāi−k,i−1 k = 1, ..., i− 1
ai,i = µi

(9){
fi,k = fi−1,k + µibi−1,k−1 k = i, ..., n− 1
bi,k = bi−1,k−1 + µ̄ifi−1,k k = i, ..., n− 1

(10)

end for
return (p0, µ1, ..., µn−1)

C. The Kähler metric
A centered complex Gaussian distribution with null relation

matrix is characterized by its covariance matrix, which belongs
to the manifold Pn of HPD matrices of dimension n. Hence the
Fisher metric naturally endows Pn with a Riemannian metric.
The restriction of the Fisher metric on the submanifold T +

n

of THPD matrices allows us to consider T +
n as a Riemannian

manifold.



According to bijection (3), we can represent a THPD matrix
Ti by the corresponding coefficients (p0,i, µ1,i, ..., µn−1,i).
The following distance has been introduced by F. Barbaresco
in [10] on the set R∗+ × Dn−1 to make this bijection an
isometry:

d2T +
n

(T1, T2)

=d2T +
n

((p0,1, µ1,1, ..., µn−1,1), (p0,2, µ1,2, ..., µn−1,2))

=n log2

(
p0,2
p0,1

)
+

n−1∑
l=1

n− l
4

log2

1 +
∣∣∣ µl,1−µl,2

1−µl,1µ∗
l,2

∣∣∣
1−

∣∣∣ µl,1−µl,2

1−µl,1µ∗
l,2

∣∣∣
 (11)

Note that the metric on the product space R∗+ × Dn−1 is a
product metric, which greatly simplifies the computations. The
equations of the geodesics of the set R∗+×Dn−1 endowed with
the Kähler metric are described in [8].

The model presented in this section is based on Toeplitz
covariance matrices of one-dimensional temporal signals. We
now generalize this model to multidimensional signals.

IV. GENERALIZATION TO MULTIDIMENSIONAL SIGNALS

We present here the multidimensional linear autoregressive
model which generalize the one-dimensional model presented
in section III.

A. The multidimensional linear autoregressive model

We assume that the multidimensional signal can be mod-
eled as a centered stationary autoregressive multidimensional
Gaussian process of order n− 1:

U(k) +

n∑
j=1

An−1i U(k − j) = W (k) (12)

where W is the prediction error vector and the prediction
coefficients Anj are square matrices.

B. Three equivalent representation spaces

There is at least three equivalent spaces to repre-
sent our model parameter. The first one is the set of
Hermitian Positive Definite Block-Toeplitz matrices corre-
sponding to the covariance matrix of the vectorized data
U =

[
U(0)T , . . . , U(n− 1)T

]T
. The second one is a product

space: a HPD matrix (which characterize the average temporal
correlation matrix registered in a cell) and the coefficients(
Aii
)
i=1,...,n−1 (which characterize the multidimensional au-

toregressive model). The third representation space looks like
the second one: the coefficients Aii are slightly modified to
belong to the Siegel disk which metric has been studied in
[5], [14].

C. The Yule-Walker equations

The Yule-Walker equations link the first two represen-
tation spaces described previously. We define the auto-
correlation coefficient Rt of a stationary signal U(k) as
Rt

def
= E

[
U(k + t)U(k)H

]
. By applying E

[
(·)U(k)H

]
on

each side of the equation (12) for different values of k, we
obtain the Yule-Walker equations:

Ãn R̃n = −Ṽn
Ãn = [An1 , . . . , A

n
n]

Ṽn = [R1, . . . , Rn]

(13)

R̃n =


R0 R1 R2 . . . Rn−1
RH1 R0 R1 . . . Rn−2
RH2 RH1 R0 . . . Rn−3

...
...

...
. . .

...
RHn−1 RHn−2 RHn−3 . . . R0

 (14)

Note that R̃n is almost the covariance matrix of the vector-
ized data U =

[
U(0)T , . . . , U(n− 1)T

]T
.

D. The transformation

The following bijection is defined in [5]:

B+n,N → PN × SDn−1N

R̃n 7→ (P0,Ω1, ...,Ωn−1) (15)

where B+n,N denotes the set of Hermitian Positive Def-
inite Block-Toeplitz matrices of size n × N (n blocks
of size N ), PN is the set of HPD matrices and
SDN = {Ω ∈ CN×N |I − ΩΩH > 0} is called the Siegel disk
of dimension N (warning: there also exists a more restrictive
definition of the Siegel disk).

The bijection is given explicitly by P0 = R0 and for
l = 1, ..., n− 1 we compute:

Ωl := −L−1/2l−1 (Rl −Ml−1)K
−1/2
l−1 (16)

Ll−1 = R0 − [R1, ..., Rl−1] R̃−1l−1[R1, ..., Rl−1]H (17)

Kl−1 = R0 − [RHl−1, ..., R
H
1 ] R̃−1l−1[RHl−1, ..., R

H
1 ]H (18)

Ml−1 = [R1, ..., Rl−1] R̃−1l−1[RHl−1, ..., R
H
1 ]H (19)

A recursive algorithm can be found in [5], [9] taking
advantage of the Block-Toeplitz structure of matrix R̃n.

E. The model parameters estimation

We use algorithm 2 to estimate the multidimensional reflec-
tion coefficients of the linear autoregressive model performed
on the sequence of vectors U0, . . . , Un−1.

In our study, we choose to perform the linear autoregressive
model along the spatial axis: the input sequence will therefore
be the vectors u0, ...,uncells−1 from a single zone.

For any positive-definite matrix R, we denote R
1
2 the

lower triangular matrix satisfying R = R
1
2

(
R

1
2

)H
(Cholesky

decomposition of R). R
1
2 can be made unique by requir-

ing the diagonal elements to be positive. We also denote

R−
1
2

def
=
(
R

1
2

)−1
.



Algorithm 2 Estimate multidimensional reflection coefficients
Input A vector sequence U0, . . . , Un−1.
Initialization:

F 0,k = B0,k = Uk k = 0, ..., n− 1 (20)

P0 =
1

n

n−1∑
k=0

Uk U
H
k (21)

for i = 1, ..., n− 1: do

RFi−1 =

n−1∑
k=i

F i−1,kF i−1,k
H (22)

RBi−1 =

n−1∑
k=i

Bi−1,k−1Bi−1,k−1
H (23)

RFBi−1 =

n−1∑
k=i

F i−1,kBi−1,k−1
H (24)

Mi = −RFi−1
− 1

2 RFBi−1

(
RBi−1

− 1
2

)H
(25)

{
F i,k = F i−1,k +MiBi−1,k−1 k = i, ..., n− 1

Bi,k = Bi−1,k−1 +Mi
HF i−1,k k = i, ..., n− 1

(26)

end for
return (P0,M1, ...,Mn−1)

Theorem 1. The matrices Mi of algorithm 2 satisfies,
∀i ∈ J1, n− 1K:

I −Mi Mi
H ≥ 0 (27)

i.e. the matrix Mi has singular values of magnitude less or
equal to one [6].

Proof. Let i ∈ J1, n− 1K, we first define the matrices Ef
and Eb containing respectively the forward and backward
prediction errors:

Ef
def
= [Fi−1,i, . . . , Fi−1,n−1] (28)

Eb
def
= [Bi−1,i−1, . . . , Bi−1,n−2] (29)

and

Ẽf
def
=
(
Ef E

H
f

)− 1
2 Ef ,

(
Ẽf Ẽ

H
f = I

)
(30)

Ẽb
def
=
(
Eb E

H
b

)− 1
2 Eb,

(
ẼbẼ

H
b = I

)
(31)

With these definitions, we can write:

Mi = Ẽf Ẽ
H
b (32)

since

RFi−1 = EfE
H
f RBi−1 = EbE

H
b RFBi−1 = EfE

H
b . (33)

We now consider:

0 ≤

[
Ẽf
Ẽb

] [
ẼHf ẼHb

]
(34)

=

[
I Mi

MH
i I

]
(35)

=

[
I Mi

0 I

] [
I −MiM

H
i 0

0 I

] [
I 0

MH
i I

]
(36)

⇐⇒ I −MiM
H
i ≥ 0 (37)

Note that if the number of linearly independent columns of

the matrix

[
Ẽf
Ẽb

]
is greater or equal to its number of rows,

then we have:
I −MiM

H
i > 0. (38)

Under our model hypotheses, it occurs almost surely when:
i ≤ ncells − 2 ∗ npulses.

F. The metric

The metric of the space PN × SDn−1N is well described in
[5], [9], we only provide an overview here.

We define the distance between two points of our represen-
tation space as follows:

d2BT

(
T̃1, T̃2

)
= d2BT ((P0,1,Ω1,1, ...,Ωn−1,1), (P0,2,Ω1,2, ...,Ωn−1,2))

(39)

= n log
(
P
−1/2
0,1 P0,2 P

−1/2
0,1

)2
F

+ (40)

n−1∑
l=1

n− l
4

trace

(
log2

(
1 + C

1/2
l

1− C1/2
l

))
 Cl = (Ωl,2 − Ωl,1)

(
I − ΩHl,1 Ωl,2

)−1(
ΩHl,2 − ΩHl,1

)(
I − Ωl,1 ΩHl,2

)−1
A gradient descent tool is described in [5], [9] to estimate

the mean of a set of points on the Siegel disk.

V. THE SPATIO-TEMPORAL MODEL

A. The model

The spatio-temporal model presented here is a particular
case of the multidimensional model presented in section IV.
We assume the matrix signal Z, without noise from the radar
measurement, has the following spatio-temporal correlation:

Z = T 1/2R1/2
s NRTt

1/2︸ ︷︷ ︸
information coming from

the environment

(41)

where Rs and Rt are the spatial and temporal autocorrelation
matrices. We assume them to be THPD covariance matrices,



i.e. the signal is assumed to be stationary spatially and tempo-
rally. This model is more restrictive than the model presented
in section IV: the spatio-temporal autocorrelation matrix R̃st
of the vectorized data will be shown to be a tensor product
between the spatial correlation matrix Rs and the transpose of
the temporal correlation matrix Rt. An almost similar model
is described in [7].

B. The simulation model

The simulation model is the following:

Z = T 1/2R1/2
s NRTt

1/2︸ ︷︷ ︸
information coming from

the environment

+ Bradar︸ ︷︷ ︸
thermal noise coming
from the radar itself

(42)

with:

• Z: input radar data of size (ncells, npulses).
• T : clutter texture; it is a diagonal matrix of size (ncells,
ncells). Its diagonal coefficients are independent positive
real random variables. They are also independent from
N and Bradar.

• Rs: spatial autocorrelation matrix of size (ncells, ncells).
It is a THPD matrix since the signal is assumed to be
stationary on the spatial axis. Its diagonal coefficients are
equal to 1.

• Rt: temporal autocorrelation matrix of size (npulses,
npulses). It is a THPD matrix since the signal is assumed
to be stationary on the temporal axis. Its diagonal coef-
ficients are equal to 1.

• N , Bradar: matrices of size (ncells, npulses). They are
filled with independent standard complex Gaussian ran-
dom variables.

C. Equivalent simulation model

We now present an equivalent simulation model:

Z̃ = T̃ 1/2R̃
1/2
st Ñ︸ ︷︷ ︸

information coming from
the environment

+ B̃radar︸ ︷︷ ︸
thermal noise coming
from the radar itself

(43)

with:

• Z̃: input radar data of size (ncells ∗ npulses, 1).
• T̃ : clutter texture; it is a diagonal matrix of size (ncells ∗
npulses, ncells ∗ npulses). Its diagonal coefficients are
independent positive real random variables. They are also
independent of Ñ and B̃radar.

• R̃st: spatio-temporal autocorrelation matrix of size
(ncells ∗npulses, ncells ∗npulses). Its diagonal coefficients
are equal to 1.

• Ñ , B̃radar: matrices of size (ncells ∗ npulses, 1). They
are filled with independent standard complex Gaussian
random variables.

We have the following correspondence between the two
models:

Z =


ZT0
ZT1

...
ZTncells−1

 Z̃ =



Z0

Z1

...

Zncells−1


(44)

R̃st = Rs ⊗RTt (45)

T̃ = T ⊗ In pulses (46)

The first model is used to simulate the data, the second
model is used to represent the structure of the simulated data.
The matrix R̃st is a Block-Toeplitz matrix. If we assume the
signal to be stationary in space, then the matrix R̃st is a Block-
Toeplitz matrix with Toeplitz structured blocks.

D. The model parameters estimation

We estimate the spatial and temporal correlation matrices
Rs and Rt performing respectively the regularized Burg algo-
rithm (1) on the spatial and temporal axis of the observation
matrix Z presented in equation (42).

We estimate the temporal correlation matrix Rt performing
the regularized Burg algorithm on the columns matrix Z. In
practice, we perform the regularized Burg algorithm on each
column of the matrix Z to estimate the reflection coefficients
of each cell. Then we compute the average reflection coeffi-
cients on the manifold Dn−1 endowed with the Kähler metric
described in section III-C. We can then estimate the temporal
correlation matrix Rt using the inverse of bijection (3), i.e.
the inverse of the Levinson algorithm described in [5].

We estimate the spatial correlation matrix using the same
method, but performing the regularized Burg algorithm on the
rows of the matrix Z instead of its columns.

We can now estimate the spatio-temporal correlation matrix
using formula (45): it is the tensor product of the spatial
correlation matrix and the transpose of the temporal correlation
matrix.

Finally, we use bijection (15) to represent our data in
PN×SDn−1N . We prefer this last representation space because
the associated metric is a product metric (see section IV-F).
When performing classification algorithms, for computational
reasons it is preferable to work in PN × SDn−1N which is a
product of several low dimensional spaces endowed with a
product metric rather than in the single higher dimensional
space as B+n,N .

VI. CLASSIFICATION

The difficulty here is to adapt classification algorithms
to the Riemannian manifold described in section IV. We
present a supervised classification algorithm: the k-Nearest
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Fig. 1. Confusion matrix for the KNN classifier

Neighbors and an unsupervised classification algorithm: the
Agglomerative Hierarchical Clustering. They both only use a
distance as a geometrical tool to perform the classification.
For more details on these algorithms, refer to the Python
public package for machine learning on Riemannian manifolds
Geomstats [15].

For these classification experiments, we simulated a training
and a target dataset using the spatio-temporal model described
in equation (42). The training and target datasets, simulated
with the same model parameters, use a single temporal cor-
relation matrix Rt (in order to show the interest of our
spatio-temporal model compared with the one-dimensional
temporal model) and 3 different spatial correlation matrices
Rs: the identity matrix R1 = I and the geometrical correlation
matrices R2 =

((
1
3

)|i−j|)
i,j

and R3 =
((

2
3

)|i−j|)
i,j

. The

AHC, as unsupervised, is performed directly on the target
dataset.

A. Supervised classification: the k-Nearest Neighbors
The k-Nearest Neighbors (KNN) classifier principle is quite

simple: each point of the target dataset is labeled according to
the k nearest points of the training set, i.e. a majority vote is
performed on their labels. Figure 1 shows the result the KNN
performed on the Riemannian manifold PN × SDn−1N on the
simulated dataset described previously for k = 5.

B. Unsupervised classification: the Agglomerative Hierarchi-
cal Clustering

The Agglomerative Hierarchical Clustering (AHC) works
as follows: at the initial state, each point corresponds to a
cluster. Then, until the desired number of cluster is reached,
merge the two closest clusters. Here we defined the distance
between two clusters as the average distance between two
points belonging to each of these clusters (other choices
are possible). The clustering result of the AHC performed
on our simulated dataset is shown on figure 2. To plot the
confusion matrix of an unsupervised algorithm, we performed
all possible permutations to find the best matching between
the clustering result and the true labels.
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