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Abstract. This paper deals with unsupervised radar clutter clustering to char-
acterize pathological clutter based on their Doppler fluctuations. Operationally,
being able to recognize pathological clutter environments may help to tune radar
parameters to regulate the false alarm rate. This request will be more important
for new generation radars that will be more mobile and should process data on the
move. We first introduce the radar data structure and explain how it can be coded
by Toeplitz covariance matrices. We then introduce the manifold of Toeplitz co-
variance matrices and the associated metric coming from information geometry.
We have adapted the classical k-means algorithm to the Riemaniann manifold
of Toeplitz covariance matrices in [1], [2]; the mean-shift algorithm is presented
in [3], [4]. We present here a new clustering algorithm based on the p-mean defi-
nition in a Riemannian manifold and the mean-shift algorithm.

Keywords: radar clutter · machine learning · unsupervised classification · p-
mean-shift · autocorrelation matrix · Burg algorithm · reflection coefficients ·
Kähler metric · Tangent Principal Components Analysis · Capon spectra.

1 Introduction

Radar installation on a new geographical site is long and costly. We would like to
shorten the time of deployment by recognizing automatically pathological clutters with
past known diagnosed cases. This requirement will become more important because
new generation radar sensors will be mobile and should work on the move and self-
adapt to the environment. The objective is therefore to develop machine learning algo-
rithms to recognize specific clutter characteristics from their Doppler Spectrum statisti-
cal fluctuations. Future work will study the spatial variations of the Doppler information
to characterize the clutter.

To recognize pathological radar environments using a pulse-Doppler radar, we need
to extract very precise Doppler information from a very small series of pulses (around
10). In this context, the classical FFT (Fast Fourier Transform) is not satisfactory due
to its low resolution output for such small time series. To overcome this difficulty, we
propose a clustering method based on the signals Toeplitz covariance matrices.

To begin with, we briefly introduce the radar data which we intend to analyze. For
simplicity, we first consider one fixed direction in which a radar sends radio waves and
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we subdivide this direction into cells. The radar sends a burst of radio waves in a direc-
tion and then receives the echoes. For each echo we measure its amplitude r and phase
φ, so that it can be represented by a complex number u = reiφ. As a result, the original
radar observation value of each cell is a complex vector u = [u(0), u(1), ..., u(n−1)]T ,
where n is the number of radio waves emitted in each burst and ·T denotes the matrix
transposition. We now try to extract sharp Doppler information from this short time se-
ries. Instead of using directly the original observation vector u of each cell, we assume
it to be a realization of a centered stationary complex Gaussian process and identify it
with its covariance matrix R = E[u uH ], where ·H denotes the complex matrix conju-
gate transpose. In other words, the new observation value for each cell is a covariance
matrix estimation, which is Toeplitz due to the assumption of stationarity of the process.
Then our clustering problem can be summarized as follows: regroup in a same cluster
the cells having close Toeplitz covariances matrices.

In order to achieve this clustering problem, three fundamental issues should be ad-
dressed. The first one is how to estimate a Toeplitz covariance matrix from each original
radar observation vector ui. The second one is to define a metric on the set of Toeplitz
covariance matrices. The third one is to adapt our clustering algorithms to the newly de-
fined metric space of Toeplitz covariance matrices. The first question will be answered
in section 4.1 through autoregressive models, the second one will be answered in sec-
tion 4.2 by giving to the set of Toeplitz covariance matrices a Riemannian structure
and the last issue will be answered in section 5 by studying a new clustering algorithm
called the p-mean-shift. Finally, clustering experiments on simulated data are presented
in section 6.1 and clustering results on real data are discussed in section 6.2 in which
we tackle the issue of clustering signals of different lengths.

2 Introduction to signal processing theory

2.1 From radar data to complex matrices

In this study, the input data will be taken on a single burst for a single elevation corre-
sponding to the horizontal beam.

Therefore, the radar provides us a 2D complex matrix of size (#impulses) ×
(#cells):

U =


u0,0 u0,1 u0,2 . . . u0,p−1
u1,0 u1,1 u1,2 . . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

 (1)

where n denotes the number of pulses of the burst, p the number of cells.
The complex coefficient uij represents the amplitude and phase after pulse com-

pression of the echo beam at time index i (ith impulse) at distance index j from the
radar.

The data to classify are the cells, each cell being represented by a column of the
matrix U .
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2.2 Model and hypotheses

We now focus on a single column of the matrix U defined in equation (1) and define its
autocorrelation matrix.

We denote by ·T the matrix transposition, ·H the complex matrix conjugate trans-
pose and ·∗ the complex scalar conjugate.

We denote:
u = [u(0), u(1), ..., u(n− 1)]T (2)

the one dimensional complex signal registered in a cell.
We assume this signal to be stationary with zero mean:

E[u(k)] = 0 ∀k (3)

We also assume that this signal can be modeled as an autoregressive Gaussian pro-
cess of order n− 1:

u(k) +

n−1∑
i=1

an−1i u(k − i) = w(k) (4)

where an−1i are the prediction coefficients and w is the prediction error.
Interested readers may refer to [6] for a comprehensive course on complex signal

processing theory.

2.3 From the input vector to the autocorrelation matrix

We define the autocorrelation matrix:

R = E[u uH ] (5)

ri,j = E[u(k + i)u(k + j)∗] (6)

We define the time lag: t = i− j.

Proposition 1 (autocorrelation and stationarity). The signal is supposed to be sta-
tionary, so ri,j depends only of the lag t.

ri,j = E[u(k + i)u(k + j)∗]
= E[u(k + i− j)u(k)∗]
= E[u(k + t)u(k)∗]
= rt

(7)

Proposition 2 (autocorrelation and conjugation).

r−t = E[u(k − t)u(k)∗]
= E[u(k)u(k + t)∗]
= E[u(k + t)u(k)∗]∗

= r∗t

(8)
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Consequence R is a Toeplitz Hermitian Positive Definite matrix.

R =


r0 r∗1 r∗2 . . . r∗n−1
r1 r0 r∗1 . . . r∗n−2
r2 r1 r0 . . . r∗n−3
...

...
...

. . .
...

rn−1 rn−2 rn−3 . . . r0

 (9)

Note that the assumptions made in section 2.2 that the signal can be modeled as
a complex stationary autoregessive Gaussian process with zero mean has the follow-
ing equivalent vectorial formulation: u = R1/2x with R a Toeplitz Hermitian Positive
Definite matrix and x a standard complex Gaussian random vector which dimension is
equal to the number of pulses. In the section 3, we present a simulation model strongly
related to this vectorial formulation of our hypotheses.

3 The simulation model

Each cell is simulated independently. For each cell, we simulate a complex vector using
a SIRV (Spherically Invariant Random Vectors) model [12], [13]:

Z =
√
τR1/2

s x︸ ︷︷ ︸
information coming from the environment

+ bradar︸ ︷︷ ︸
thermal noise coming from the radar itself

(10)

with:

τRs: the environment autocorrelation matrix.
τ : clutter texture; it is a positive real random variable independent from x and bradar.
Rs: scaled environment autocorrelation matrix (Toeplitz Hermitian Positive Definite).
x, bradar: independent standard complex Gaussian random vectors whose dimension

is equal to the number of pulses.

To construct the scaled autocorrelation matrix Rs, we learn experimentally from a
great number of radar measures the power spectral density Sf of the clutter we want
to simulate. The scaled autocorrelation coefficients rs(k) of the Toeplitz matrix Rs can
then be computed from the power spectral density using the inverse Fourier transform.

For example, if we want to simulate a clutter which spectrum has the shape of a
Gaussian distribution of mean m and variance σ2 with a power coefficient P , i.e.:

Sf (ξ) = P
1√
2πσ2

e−
(ξ−m)2

2σ2 (11)
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We compute the corresponding autocorrelation function Rf :

Rf (τ) = Ŝf (−τ)
(

since Sf (τ) = R̂f (τ)
)

= P
1√
2πσ2

̂(
x 7→ e−

(x−m)2

2σ2

)
(−τ)

= P
1√
2πσ2

e−i2πm(−τ) ̂(
x 7→ e−

x2

2σ2

)
(−τ)

= P
1√
2πσ2

ei2πmτ
√

π
1

2σ2

e−2σ
2π2(−τ)2

= Pei2πmτe−2π
2σ2τ2

(12)

Finally, if we want to simulate a signal f which sampling period is T , the scaled
autocorrelation matrix Rs (which is Toeplitz) will be defined by its coefficients:

rs(k) = Rf (kT ) (13)

In the rest of the study, we will assume that the environment autocorrelation matrix
τRs has diagonal coefficients sufficiently larger than one to consider that the whole
signal autocorrelation matrix R will be close enough to the environment autocorrelation
matrix τRs to characterize the clutter. For the simulated datasets used in section 6.1,
the clutter texture τ is a Weibull distribution of scale parameter λ = 0.7418 and shape
parameter k = 0.658; the mean of this probability law is µ = 1. The scaled environment
autocorrelation matrixRs is computed using Gaussian distributions of power coefficient
P = 104.

We now explain how to estimate the autocorrelation matrix R from the data vector
u.

4 The data representation space

4.1 Autocorrelation matrix estimation

In our clustering problem, the autocorrelation matrix Ri of the whole signal (environ-
ment and radar noise) will be estimated independently for each cell ui:

U =


u0,0 u0,1 u0,2 . . . u0,p−1
u1,0 u1,1 u1,2 . . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1


↓ ↓ ↓ ↓

R̂0 R̂1 R̂2 R̂p−1
(14)
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Empirical covariance matrix To estimate the Toeplitz autocorrelation matrix R from
the data vector u, we can estimate each coefficient rt by the following empirical mean:

r̂t =
1

n− t

n−1−t∑
k=0

u(k + t)u(k)∗ t = 0, ..., n− 1 (15)

Note that this method is unprecise when the vector length n is small, especially
when the lag t is close to n − 1. We now propose a more robust method to estimate
the autocorrelation matrix with few data based on the estimation of autoregessive co-
efficients and the relation between the autoregressive model and the autocorrelation
matrix.

According to [5] the Levinson algorithm gives us the following bijection:

T +
n → R∗+ × Dn−1

Rn 7→ (p0, µ1, ..., µn−1) (16)

where T +
n denotes the set of Positive Definite Hermitian Toeplitz matrices of size n;

p0 = r0 is the averaged quadratic power and µj = ajj (1 ≤ j ≤ n−1) are the reflection
coefficients, where aji denotes the ith coefficient of the Gaussian autoregressive model
of order j.

It is therefore equivalent to estimate the coefficients (p0, µ1, ..., µn−1) and Rn.

Burg algorithm The regularized Burg algorithm is based on the optimization of the
prediction coefficients aji of the autoregressive model for 1 ≤ i ≤ j ≤ n−1 to lower the
predictions errors. It allows us to transform the original complex vector u into a power
factor p0 in R∗+ and reflection coefficients µj = ajj (1 ≤ j ≤ n − 1) lying in Dn−1,
where D represents the complex unit disk. The regularized Burg algorithm of order M
and regularization coefficient γ is detailed in [1], [2], [7], [8], [14], [17]. One of the
interests of representing the data in R∗+ × Dn−1 rather than T +

n is the nice expression
of the metric in R∗+ × Dn−1 presented in section 4.2; it also offers the possibility to
compare signals of different lengths (see section 6.2).

4.2 The Kähler metric

Each data vector ui is now represented by an estimation of its autocorrelation matrix R̂i
which is a Toeplitz Hermitian Positive Definite matrix. We define the metric on the set
T +
n of Toeplitz Hermitian Positive Definite matrices as coming from the Fisher metric

on the manifold of complex Gaussian distributions with zero means, Toeplitz Hermitian
Positive Definite covariance matrices and null relation matrices.

According to the previous bijection, we can represent a Toeplitz Hermitian Positive
Definite matrix Ti by the corresponding coefficients (p0,i, µ1,i, ..., µn−1,i). The follow-
ing distance has been introduced by F. Barbaresco in [9] on the set R∗+×Dn−1 to make
this bijection an isometry. In the Encyclopedia of Distance by Deza [10], this distance
is called Barbaresco distance:
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d2T +
n
(T1, T2) = d2T +

n
((p0,1, µ1,1, ..., µn−1,1), (p0,2, µ1,2, ..., µn−1,2))

= n log2
(
p0,2
p0,1

)
+

n−1∑
l=1

n− l
4

log2

1 +
∣∣∣ µl,1−µl,21−µl,1µ∗l,2

∣∣∣
1−

∣∣∣ µl,1−µl,21−µl,1µ∗l,2

∣∣∣
 (17)

Note that the metric on the product space R∗+×Dn−1 is a product metric, which greatly
simplifies the computations. The equations of the geodesics of the set R∗+ × Dn−1
endowed with the Kähler metric are described in [7].

To work on the metric space R∗+×Dn−1 endowed with the Kähler metric described
previously, we now introduce the notion of mean of a set of points lying in a Riemannian
manifold.

4.3 The Riemannian p-mean

The p-mean of a dataset (xi)i=1,...,N is defined in [7] as the set of minimizers of the
function:

g : x 7→ 1

N

N∑
i=1

d(x, xi)
p (18)

We can see in equation (17) that the squared distance between two matrices T1 and
T2 is a linear combination of squared distances between the coordinates (p0,1, µ1,1, ..., µn−1,1)
and (p0,2, µ1,2, ..., µn−1,2). Hence the coordinates can be averaged independently:

T0 7→ ( p0,0, µ1,0, · · · , µn−1,0 )
...

...
...

...
Tm−1 7→ ( p0,m−1, µ1,m−1, · · · , µn−1,m−1 )

↓ ↓ ↓
T ← ( p0, µ1, · · · , µn−1 )

(19)

The p-mean can be approximated performing a gradient descent on the function g,
which is equivalent to a gradient descent on each coordinate. This decomposition is one
of the reason we choose R∗+ × Dn−1 rather than T +

n for the computations.

4.4 The p-mean for p ∈ [1,∞[

For p ∈ [1,+∞[, the function g has a unique global minimizer ep in R∗+ × Dn−1
endowed with the Kähler metric (see [7] for a proof). e1 is called the median, e2 is
called the mean.
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4.5 The p-mean for p ∈]0, 1[

For p ∈]0, 1[, there are several local minimizers of the function g. The derivative of the
function x 7→ xp is the function x 7→ pxp−1 whose value tends towards infinity when
x tends towards zero, x being positive. Therefore there is a local minimizer located
at each point of the dataset. These minima are rather sharp and thin, like the function
x 7→ xp for x close to zero. There might be additional smooth local minimizers in
areas gathering many points. The large scale shape of the function g defined in equation
(18) is a smooth function depending on the shape of the dataset with in addition sharp
local minimizers related to each point of the dataset. If each point can step out of its
local minimum, we can think of a clustering algorithm performing a gradient descent
on the function g, and then clustering the points according to which local minimizer
they arrived at. We now present this algorithm that we called p-mean-shift.

5 The p-mean-shift clustering algorithm

5.1 The generalized mean-shift algorithm

In the usual mean-shift algorithm, we use a kernel function k (of size s) to define a
function f estimating the density of the dataset (xi)i=,...,N :

f(x) =
1

N

N∑
i=1

ks(d(x, xi)) (20)

where d(x, xi) represents the distance between x and xi. A kernel function taking
into account the curvature of the manifold is described in [15] and adapted to the Kähler
metric in [3]. The function f is now generalized in the sense that we do not impose ks
to be positive and the integral of f to be equal to one over the Riemaniann manifold;
ks : R+ 7→ R is only assumed to be decreasing and smooth almost everywhere.

To reach a local maximum of the estimated density function, we shift each point
according to a gradient ascent on the function f :

∇f(x) = 1

N

N∑
i=1

∇ (ks(d(x, xi)))

=
1

N

N∑
i=1

∇d(x, xi) k′s(d(x, xi))

=
1

N

N∑
i=1

−−−→x xi
d(x, xi)

k
′

s(d(x, xi))

(21)

where −−→x xi, also written exp−1x (xi), denotes the element of the tangent space of
the manifold R∗+ × Dn−1 at x such that the geodesic starting at x at time 0 with inital
tangent vector −−→x xi arrives at xi at time 1.
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5.2 Comparison of the generalized mean-shift algorithm and the p-mean-shift
algorithm

Comparison of the generalized mean-shift algorithm and the p-mean-shift algo-
rithm for p ∈]0, 1[. Note that the following problems are equivalents:

Minimize x 7→ 1

N

N∑
i=1

d(x, xi)
p

⇐⇒Maximize x 7→ 1

N

N∑
i=1

−d(x, xi)p

⇐⇒Maximize x 7→ 1

N

N∑
i=1

kp(d(x, xi)) with kp : x 7→ −|x|p

(22)

From this point of view, the p-mean-shift algorithm is a particular case of the gen-
ralized mean-shift algorithm in which we allow the function k to be negative and f to
be non-integrable over the Riemaniann manifold. Note that the extrema of the functions
defined in equation (22) are scale independent: if all the distances are multiplied by the
same positive constant c, the whole functions are multiplied by cp, hence the extrema
does not change.

Comparison of the generalized mean-shift algorithm and the p-mean-shift algo-
rithm for p −−→

p>0
0. For p = 0, the functions of equation (22) are constant. To

extend the p-mean-shift algorithm for p = 0, we notice that the minima of the function

x 7→ 1
N

N∑
i=1

d(x, xi)
p are the same than those of the function x 7→

(
1
N

N∑
i=1

d(x, xi)
p

) 1
p

.

We then study the behaviour of this last function when p −−→
p>0

0.

Proposition 3. Let µ be a probability measure on a measurable space M ; and g be a
function defined on M such that there exists two positive constants a and b for which
0 < a < g < b and such that the function x 7→ ln(g(x)) is integrable on M for the
measure µ. Then we have the following result:

‖g‖Lp,µ −−−→p→0
p>0

exp

(∫
M

ln(g(x))dµ(x)

)
(23)
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Demonstration 1(∫
M

g(x)pdµ(x)

) 1
p

= exp

(
1

p
ln

(∫
M

g(x)pdµ(x)

))
= exp

(
1

p
ln

(∫
M

exp(p ln(g(x)))dµ(x)

))
= exp

(
1

p
ln

(∫
M

(1 + p ln(g(x)) + o(p ln(g(x))))dµ(x)

))
= exp

(
1

p
ln

(∫
M

(1 + p ln(g(x)) + o(p) ln(g(x)))dµ(x)

))
= exp

(
1

p
ln

(
1 + p

∫
M

ln(g(x))dµ(x) + o(p)

∫
M

ln(g(x))dµ(x)

))
= exp

(
1

p
ln

(
1 + p

∫
M

ln(g(x))dµ(x) + o(p)

))
= exp

(
1

p

(
p

∫
M

ln(g(x))dµ(x) + o(p)

))
= exp

(∫
M

ln(g(x))dµ(x) + o(1)

)
(24)

Proposition 4. Using the previous result for the discrete measure f = 1
N

∑N
i=1 δxi on

our Riemannian manifold, we obtain for all x different from any point xi of the dataset:

(
1

N

N∑
i=1

d(x, xi)
p

) 1
p

−−−→
p→0
p>0

exp

(
1

N

N∑
i=1

ln(d(x, xi)))

)
(25)

The following problems are then equivalents:

Minimize x 7→

(
1

N

N∑
i=1

d(x, xi)
p

) 1
p

for p −−→
p>0

0

⇐⇒Minimize x 7→ exp

(
1

N

N∑
i=1

ln(d(x, xi))

)

⇐⇒Minimize x 7→ 1

N

N∑
i=1

ln(d(x, xi))

⇐⇒Maximize x 7→ 1

N

N∑
i=1

−ln(d(x, xi))

⇐⇒Maximize x 7→ 1

N

N∑
i=1

k(d(x, xi)) with k : x→ −ln(x)

(26)
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As for p ∈]0, 1[, the case p −−→
p>0

0 is a particular case of the generalized mean-shift

algorithm in which we allow the function k to be negative and f to be non-integrable
over the Riemaniann manifold. As for p ∈]0, 1[, the extrema of the functions defined in
equation (26) are scale independent.

Conclusion: The p-mean-shift algorithm is a particular case of the generalized mean-
shift algorithm for specific functions k. The corresponding function f defined in equa-
tion (20) does not approximate the density of the dataset anymore. However, the max-
ima of f are still located in areas regrouping many points.

One of the advantages of the p-mean-shift algorithm over the mean-shift algorithm
is the simplicity of the tuning parameter p ∈ [0, 1[ which is bounded. This algorithm is
scale independent, which means that the parameter p will be tuned according the shape
of the dataset and not its scale. Due to the rather important influence of the function k
over distant points compared with the usual mean-shift kernel functions k, there might
be less outliers left alone in their own cluster. Its main drawback is the presence of a
local minimum (or maximum if you consider the opposite function) at each point of the
dataset. To help the point starting at xi to step out the local minima associated with xi,
we do not take into account the point xi in the first step of the gradient descent.

6 Results

6.1 Results on simulated data

Using the model described in section 3, we have simulated 30 vectors with the model
parameters (τ1, R1) and 30 vectors with the model parameters (τ2, R2), τi being a
random process and Ri a constant matrix. To be more precise, the matrices R1 and
R2 have been computed using the model detailed in section 3 to simulate clutter with
a spectrum of Gaussian shape of parameters m1 = 0.1, σ2

1 = 0.0018 and m2 = −0.2,
σ2
2 = 0.0018 respectively. Operationally, we often try to center the average Doppler

of each signal to zero to cluster the signals using their width and shape rather than
their average Doppler; this scenario would correspond to the simulation parameters
m1 = m2 = 0, and σ2

1 6= σ2
2 which has been dealt with in [1], [2].

Then for each vector ui we try to recover the parameters (τi, Ri) used to simu-
late it. In practice we use the Burg algorithm to recover the equivalent parameters
(p0,i, µ1,i, ..., µn−1,i). In this paper, we classify the data only on the scaled autocor-
relation matrixR, represented by the reflection coefficients (µ1, ..., µn−1). Future work
might also use the texture parameter τ , influencing the power coefficient p0, to classify
the data.

Each vector ui is now represented by its reflection coefficients (µi,1, ..., µi,n−1) in
the metric space Dn−1 endowed with the Kähler metric.

We show in figure 1 the Tangent Principal Components Analysis (TPCA) of the
simulated dataset. The TPCA is an extension of the classical Principal Components
Analysis (PCA) to a Riemannian manifold. The first step is to compute the mean x
of the dataset and then represent each point xi of the dataset by the tangent vector
−−→x xi which we renormalize according to the scalar product at the mean. Hence, we
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Fig. 1. The Tangent Principal Components Analysis on Dn−1 using the Kähler metric

represent each point xi of the Riemannian manifold by a vector in the tangent space
at the mean which is a vector space and therefore suitable for Principal Components
Analysis. Interested readers may refer to [16] for more details on the TPCA. In figure
1, the 30 points simulated with the model parameters (τ1, R1) are represented by blue
disks and the 30 points simulated with the model parameters (τ2, R2) are represented
by red stars. The large blue disk and the large red star represent the positions computed
with the Levinson algorithm of the scaled environment autocorrelation matrices R1

and R2. The TPCA can be useful to visualize the shape of the dataset and choose the
clustering algorithm accordingly; it can also be used to visualize the clustering result.

We now cluster these points using the p-mean-shift algorithm introduced in section
5. In figure 2, we plot the number of clusters obtained on our dataset for different values
of p ∈ [0, 1]. This number should decrease when p increases and will be equal to 1 for
p = 1 (uniqueness of the median on Dn−1 endowed with the Kähler metric [7]). We
then choose a value of p in an area in which the number of clusters looks stable: this
means that this number of clusters in well adapted to the shape of the dataset. To get
a meaningful clustering, do not choose the stable areas for which each point is in a
different cluster (p ≤ 0.1 on figure 2) or for which every points are in the same cluster
(p ≥ 0.5 on figure 2). For the rest of the study, we choose p = 0.4 which correspond to
3 clusters on the graphic.

We then compare the p-mean-shift algorithm to the well-known mean-shift [3] and
the k-means [1] [2] algorithms, all adapted to the space Dn−1 endowed with the Kähler
metric. In figure 3 we plot the FFT and the Capon spectra [17] of the simulated data
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Fig. 2. The number of clusters as a function of p for the p-mean-shift algorithm on Dn−1 using
the Kähler metric

Fig. 3. FFT, Capon spectra and clustering results of the p-mean-shift for p = 0.4, the mean-shift
and the k-means algorithms on the space Dn−1 endowed with the Kähler metric
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on the left graphics, and the corresponding clusterings obtained with the p-mean-shift
for p = 0.4, the mean-shift and the k-means algorithms on the right graphics. Note that
each of these clustering algorithms has parameters to tune which might influence greatly
the result of the clustering: the parameter p for the p-mean-shift algorithm, the kernel
function and the kernel size for the mean-shift algorithm and the number of clusters k
for the k-means algorithm.

To visualize the p-mean-shift clustering for p = 0.4 on the Capon spectra, we plot
in figure 4 the Capon spectrum of each point of the dataset and color it according to the
clustering obtained on figure 3.

In figure 5 we color each point of the dataset in Dn−1 according the p-mean-shift
clustering for p = 0.4. For convenience, only the four first coefficients of reflection are
represented. Note that the expression of the first coefficient of reflection µ1 is given by
the Levinson algorithm [5] in a simple manner with respect to the autocorrelation co-
efficients: µ1 = − r1r0 . Using equation 13, we can then express explicitly the theoretical
position of the first coefficient of reflection µ1 in the complex unit disk D of the spec-
trum of Gaussian shape of parameters m, σ2 and sampling period T = 1 as a simple
function of m and σ2:

µ1 = −r1
r0

= −Pe
i2πme−2σ

2π2

P
= −ei2πme−2σ

2π2

. (27)

Hence the parameter m influences the argument of µ1 and the parameter σ2 influences
its modulus. The reflection coefficients µi, i ≥ 2 can also be expressed explicitly as
functions of m of σ2 using the Levinson algorithm. Note that the reflection coefficients
estimation is less precise as the order of the coefficient grows; see in figure 5 the position
of the estimated reflection coefficients compared with the position of the autocorrelation
matrices used to simulate the data. This decrease in precision comes from the difficulty
of estimating the coefficients of an autoregressive model of high order with few data. In
the Burg algorithm the coefficients are estimated recursively on the order of the model;
the approximation error of a coefficient thus propagates to the next coefficient. To avoid
very irregular spectra, the Burg algorithm has a regularization parameter that tends to
reduce the modulus of the reflection coefficients.

When working on simulated data, once the clustering results are obtained for each
clustering algorithm, we compute the corresponding F1 score to evaluate and compare
the clustering algorithms performances. The F1 score is a way of measuring the per-
formance of a supervised classification algorithm. We adapted it to our unsupervised
classification algorithms by doing all possible permutations in the clustering labels in
order to find the best matching with the expected result knowing the simulation param-
eters of each point of the dataset; the best matching being defined as the best F1 score.
Finally we plot in figure 6 the normalized confusion matrix of each clustering algorithm
using the labels corresponding to the best F1 score.

6.2 Results on real data

We now present some results on real radar data. We display on figure 7 a ground map
of Saint-Mandrier in which the position of the radar is represented by a red dot. The
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Fig. 4. Results of the p-mean-shift clustering for p = 0.4 on the Capon spectra
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Fig. 5. Results of the p-mean-shift clustering for p = 0.4 on the four first coefficients of reflection
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Fig. 6. Confusion matrices and F1 scores of the p-mean-shift for p = 0.4, the mean-shift and the
k-means algorithms on the space Dn−1 endowed with the Kähler metric

Fig. 7. Ground map Saint-Mandrier
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dataset contains 150 bursts of different shapes: both the number of pulses n and the
number of cells p (see the matrix U defined in (1)), vary from one burst to another.

Fig. 8. Power map Saint-Mandrier

We plot on figure 8 a map of the averaged power registered by the radar cell per
cell. The power is represented from blue to yellow, yellow meaning that a lot of power
has been registered. The two well delimited grey zones in the south may correspond to
areas where the radar was in listen-only mode and did not emit any signals.

We then would like to cluster the data cell by cell. As the length of the signals
varies from one burst to another, we decided to represent every signal in Dn−1 where
n denotes the length of shortest signals, and to ignore the last coefficients of reflection
of the signals longer than n. As the main Doppler information is contained in the first
coefficients of reflection, the loss of information is minor.

The figure 9 represents the result of the k-means clustering for four classes on Dn−1
endowed with the Kähler metric. In figure 10, we visualize the clustering result on the
four first coefficients of reflection; the colors correspond to those of figure 9. We can
see that the clustering mainly depends on the argument of the first reflection coefficient
which is related to the average Doppler of the signal as shown in equation(27). In future
work we will center the average Doppler of the signals before the clustering to cluster
the signals on their shape rather than on their average Doppler.

We chose the k-means algorithm here rather than the p-mean-shift for complexity
reasons: the complexity of the k-means algorithm is linear with respect to the number of
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Fig. 9. Clustering map obtained with the k-means algorithm for 4 classes on the reflection coeffi-
cients

points of the dataset whereas the complexity of the p-mean-shift algorithm is quadratic,
as the mean-shift algorithm. However the p-mean-shift and the mean-shift algorithms
are better suited to datasets with nested shapes than the k-means algorithm. The choice
of the clustering algorithm is therefore influenced by the dataset. The Tangent Princi-
pal Components Analysis can help to visualize the shape of the dataset to choose an
appropriate clustering algorithm.

7 Conclusion

We presented a new clustering algorithm: the p-mean-shift. The idea of this algorithm
comes from the non-uniqueness of the p-mean for p ∈]0, 1[ and the classical mean-shift
algorithm. This algorithm has been adapted to the Riemannian manifold Dn−1 endowed
with the Kähler metric. The value of the parameter p is of great influence on the number
of clusters obtained; the graphic of the number of clusters as a function of p drawn for
our dataset on figure 2 helped us to choose a meaningful value of p. Proposing another
clustering algorithm, this article completes [1], [2] in which the k-means algorithm is
adapted to the space Dn−1 and the articles [3], [4] for the mean-shift algorithm.

These clustering algorithms can help delimiting areas of homogeneous Doppler
characteristics. Further work will study the spatial Doppler fluctuations inside these
areas of homogeneous Doppler characteristics for finer clutter characterizations.
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Fig. 10. Visualization of the clustering result obtained with the k-means algorithm for 4 classes
on the four first coefficients of reflection
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