
HAL Id: hal-02875379
https://hal.science/hal-02875379v3

Preprint submitted on 18 Feb 2021 (v3), last revised 3 Jun 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic proofs of retrievability with low server storage
Gaspard Anthoine, Jean-Guillaume Dumas, Michael Hanling, Mélanie de

Jonghe, Aude Maignan, Clément Pernet, Daniel S. Roche

To cite this version:
Gaspard Anthoine, Jean-Guillaume Dumas, Michael Hanling, Mélanie de Jonghe, Aude Maignan, et
al.. Dynamic proofs of retrievability with low server storage. 2021. �hal-02875379v3�

https://hal.science/hal-02875379v3
https://hal.archives-ouvertes.fr

Dynamic proofs of retrievability with low server storage

Gaspard Anthoine∗ Jean-Guillaume Dumas∗ Michael Hanling†

Mélanie de Jonghe∗ Aude Maignan∗ Clément Pernet∗ Daniel S. Roche†

Abstract

Proofs of Retrievability (PoRs) are protocols which allow a client to store data remotely and to
efficiently ensure, via audits, that the entirety of that data is still intact. A dynamic PoR system
also supports efficient retrieval and update of any small portion of the data. We propose new, simple
protocols for dynamic PoR that are designed for practical efficiency, trading decreased persistent storage
for increased server computation, and show in fact that this tradeoff is inherent via a lower bound proof
of time-space for any PoR scheme. Notably, ours is the first dynamic PoR which does not require any
special encoding of the data stored on the server, meaning it can be trivially composed with any database
service or with existing techniques for encryption or redundancy. Our implementation and deployment on
Google Cloud Platform demonstrates our solution is scalable: for example, auditing a 1TB file takes just
over 7 minutes and costs less than $0.12 USD. We also present several further enhancements, reducing
the amount of client storage, or the communication bandwidth, or allowing public verifiability, wherein
any untrusted third party may conduct an audit.

1 Introduction

1.1 The need for integrity checks

While various computing metrics have accelerated and slowed over the last half-century, one which undeniably
continues to grow quickly is data storage. One recent study estimated the world’s storage capacity at 4.4ZB
(4.4 · 1021), and growing at a rate of 40% per year [11]. Another study group estimates that by 2025, half of
the world’s data will be stored remotely, and half of that will be in public cloud storage [35].

As storage becomes more vast and more outsourced, users and organizations need ways to ensure the
integrity of their data – that the service provider continues to store it, in its entirety, unmodified. Customers
may currently rely on the reputations of large cloud companies like IBM Cloud or Amazon AWS, but even
those can suffer data loss events [2, 23], and as the market continues to grow, new storage providers without
such long-standing reputations need cost-effective ways to convince customers their data is intact.

This need is especially acute for the growing set of decentralized storage networks (DSNs), such as Filecoin,
Storj, SAFE Network, Sia, and PPIO, that act to connect users who need their data stored with providers
(“miners”) who will be paid to store users’ data. In DSNs, integrity checks are useful at two levels: from the
customer who may be wary of trusting blockchain-based networks, and within the network to ensure that
storage nodes are actually providing their promised service. Furthermore, storage nodes whose sole aim is to
earn cryptocurrency payment have a strong incentive to cheat, perhaps by deleting user data or thwarting
audit mechanisms.

∗Université Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS 5224, Grenoble INP. 700 avenue centrale, IMAG-
CS 40700, 38058 Grenoble, France. Gaspard.Anthoine@etu.univ-grenoble-alpes.fr, {Jean-Guillaume.Dumas,Aude.Maignan,
Clement.Pernet}@univ-grenoble-alpes.fr, dejonghe.melanie63@gmail.com.

†United States Naval Academy, Annapolis, Maryland, United States. mikehanling@gmail.com, roche@usna.edu

1

https://filecoin.io/
https://storj.io/
https://safenetwork.tech/
https://sia.tech/
https://www.pp.io/
mailto:Gaspard.Anthoine@etu.univ-grenoble-alpes.fr
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Aude.Maignan@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:Jean-Guillaume.Dumas@univ-grenoble-alpes.fr,Aude.Maignan@univ-grenoble-alpes.fr,Clement.Pernet@univ-grenoble-alpes.fr
mailto:dejonghe.melanie63@gmail.com
mailto:mikehanling@gmail.com
mailto:roche@usna.edu

1.2 Existing solutions

The research community has developed a wide array of solutions to the remote data integrity problem over
the last 15 years. Here we merely summarize the main lines of work and highlight some shortcomings that
this paper seeks to address; see Section 7 for a more complete discussion and comparison.

Provable Data Possession (PDP). PDP audits [27, 18, 39, 41] are practically efficient methods to
ensure that a large fraction of data has not been modified. They generally work by computing a small tag
for each block of stored data, then randomly sampling a subset of data blocks and corresponding tags, and
computing a check over that subset.

Because a server that has lost or deleted a constant fraction of the file will likely be unable to pass an
audit, PDPs are useful in detecting catastrophic or unintentional data loss. They are also quite efficient
in practice. However, a server who deletes only a few blocks is still likely to pass an audit, so the security
guarantees are not complete, and may be inadequate for critical data storage or possibly-malicious providers.

Proof of Retrievability (PoR). PoR audits, starting with [5], have typically used techniques such as
error-correcting codes, and more recently Oblivious RAM (ORAM), in order to obscure from the server
where pieces of the file are stored [30, 15]. Early PoR schemes did not provide an efficient update mechanism
to alter individual data blocks, but more recent dynamic schemes have overcome this shortcoming [38, 12].

A successful PoR audit provides a strong guarantee of retrievability: if the server altered many blocks,
this will be detected with high probability, whereas if only few blocks were altered or deleted, then the error
correction means the file can still likely be recovered. Therefore, a single successful audit ensures with high
probability that the entire file is still stored by the server.

The downside of this stronger guarantee is that PoRs have typically used more sophisticated cryptographic
tools than PDPs, and in all cases we know of require multiple times the original data size for persistent remote
storage. This is problematic from a cost standpoint: if a PoR based on ORAM requires perhaps 10x storage
on the cloud, this cost may easily overwhelm the savings cloud storage promises to provide.

For our purpose, we have identified two main storage outsourcing type of approaches: those which
minimizes the storage overhead and those which minimize the client and server computation. For each
approach, we specify in Table 1 which one meets various requirements such as whether or not they are
dynamic, if they can answer an unbounded number of queries and what is the extra storage they require.

Table 1: Attributes of some selected schemes
PoR Number of Extra

Protocol capable audits updates Storage

Sebé [36] X ∞ X o(N)
Ateniese et al. [5] X ∞ X o(N)
Ateniese et al. [6] X O(1) O(1) o(N)
Storj [40] X O(1) ∞ o(N)
Juels et al. [27] X O(1) X O(N)
Lavauzelle et al. [30] X ∞ X O(N)
Stefanov et al. [39] X ∞ ∞ O(N)
Cash et al. [12] X ∞ ∞ O(N)
Shi et al. [38] X ∞ ∞ O(N)
Here X ∞ ∞ o(N)

Section 7 gives a detailed comparaison with prior work.

Proof of Replication (PoRep) and others. While our work mainly falls into the PoR/PDP setting, it
also has applications to more recent and related notions of remote storage proofs.

Proofs of space were originally proposed as an alternative to the computation-based puzzles in blockchains
and anti-abuse mechanisms [4, 16], and require verifiable storage of a large amount of essentially-random
data. These are not applicable to cloud storage, where the data must obviously not be random.

2

A PoRep scheme (sometimes called Proof of Data Reliability) aims to combine the ideas of proof of space
and PoR/PDP in order to prove that multiple copies of a data file are stored remotely. This is important
as, for example, a client may pay for 3x redundant storage to prevent data loss, and wants to make sure
that three actual copies are stored in distinct locations. Some PoRep schemes employ slow encodings and
time-based audit checks; the idea is that a server does not have enough time to re-compute the encoding on
demand when an audit is requested, or even to retrieve it from another server, and so must actually store
the (redundantly) encoded file [3, 21, 42, 13]. The Filecoin network employs this type of verification. A
different and promising approach, not based on timing assumptions, has recently been proposed by [14]. An
important property of many recent PoRep schemes is public verifiability, that is, the ability for a third party
(without secrets) to conduct an audit. This is crucial especially for distributed storage networks (DSNs).

Most relevant for the current paper is that most of these schemes directly rely on an underlying PDP or
PoR in order to verify encoded replica storage. For example, [14] states that their protocol directly inherits
any security and efficiency properties of the underlying PDP or PoR.

We also point out that, in contrast to our security model, many of these works are based on a rational
actor model, where it is not in a participant’s financial interest to cheat, but a malicious user may break this
guarantee, and furthermore that most existing PoRep schemes do not support dynamic updates to individual
data blocks.

1.3 Our Contributions

We present a new proof of retrievability which has the following advantages compared to existing PDPs and
PoRs:

Near-optimal persistent storage. The best existing PoR protocols that we could find require between
2N and 10N bytes of cloud storage to support audits of an N -byte data file, making these schemes impractical
in many settings. Our new PoR requires only N +O(N/ logN) persistent storage.

Simple cryptographic building blocks. Our basic protocol relies only on small-integer arithmetic and
a collision-resistant hash function, making it very efficient in practice. Indeed, we demonstrate in practice
that 1TB of data can be audited in 7 minutes at a monetary cost of just 0.12 USD.

Efficient partial retrievals and updates. That is, our scheme is a dynamic PoR, suitable to large
applications where the user does not always wish to re-download the entire file.

Provable retrievability from malicious servers. Similar to the best PoR protocols, our scheme
supports data recovery (extraction) via rewinding audits. This means, in particular, that there is only a
negligible chance that a server can pass a single audit and yet not recover the entirety of stored data.

(Nearly) stateless clients. With the addition of a symmetric cipher, the client(s) in our protocol need
only store a single decryption key and hash digest, which means multiple clients may easily share access
(audit responsibility) on the same remote data store.

Public verifiability. We show a variant of our protocol, based on the difficulty of discrete logarithms
in large group, that allows any third party to conduct audits with no shared secret.

Importantly, because our protocols store the data unencoded on the server, they can trivially be used
within or around any existing encryption or duplication scheme, including most PoRep constructions. We
can also efficiently support arbitrary server-side applications, such as databases or file systems with their
own encoding needs.

The main drawback of our schemes is that, compared to existing PoRs, they have a higher asymptotic
complexity for server-side computation during audits, and (in some cases) higher communication bandwidth
during audits as well. However, we also provide a time-space lower bound that proves any PoR scheme must
make a tradeoff between persistent space and audit computation time.

Furthermore, we demonstrate with a complete implementation and deployment on Google Compute
Platform that the tradeoff we make is highly beneficial in cloud settings. Intuitively, a user must pay for the
computational cost of audits only when they are actually happening, maybe a few times a day, whereas the
extra cost of (say) 5x persistent storage must be paid all the time, whether the client is performing audits or
not.

3

1.4 Organization

The rest of the paper is structured as follows:
• Section 2 defines our security model, along the lines of most recent PoR works;
• Section 3 contains our proof of an inherent time-space tradeoff in any PoR scheme;
• Section 4 gives an overview and description of our basic protocol, with detailed algorithms and security

proofs delayed until Section 6;
• Section 5 discusses the results of our open-source implementation and deployment on Google Compute

Platform;
• together with the formal setting, Section 6 also contains a publicly verifiable variant. Section 7 gives

a detailed comparison with prior work.

2 Security model

We define a dynamic PoR scheme as consisting of the following five algorithms between a client C with state
stC and a server S with state stS . Our definition is the same as given by [38], except that we follow [27] and
include the Extract algorithm in the protocol explicitly.

A subtle but important point to note is that, unlike the first four algorithms, Extract is not really
intended to be used in practice. In typical usage, a cooperating and honest server will pass all audits, and
the normal Read algorithm would be used to retrieve any or all of the data file reliably. The purpose of
Extract is mostly to prove that the data is recoverable by a series of random, successful audits, and hence
that the server which has deleted even one block of data has negligible chance to pass a single audit.

Our definitions rely on two distinct security parameters, κ for computational security and λ for statistical
security. Typically values of κ ≥ 128 and λ ≥ 40 are considered secure [19]. One may think of κ having to
do with offline attacks and λ corresponding only to online attacks which require interaction and where the
adversary is more limited. Carefully tracking both security parameters in our analysis will allow us to more
tightly tune performance without sacrificing security.

The client may use random coins for any algorithm; at a minimum, the Audit algorithm must be ran-
domized in order to satisfy retrievability non-trivially.

• (stC , stS) ← Init(1κ, 1λ, b,M): On input of the security parameters and the database M , consisting
of N bits arranged in blocks of b bits, outputs the client state stC and the server state stS .

• {mi, reject} ← Read(i, stC , stS): On input of an index i ∈ 1..dN/be, the client state stC and the server
state stS , outputs mi = M [i] or reject.

• {(st′C , st′S), reject} ← Write(i, a, stC , stS): On input of an index i ∈ 1..dN/be, data a, the client state
stC and the server state stS , outputs a new client state st′C and a new server state st′S , such that now
M [i] = a, or reject.

• {π, reject} ← Audit(stC , stS) : On input of the client state stC and the server state stS , outputs a
successful transcript π or reject.

• M ← Extract(stC , π1, π2, . . . , πe): On input of independent Audit transcripts π1, . . . , πe, outputs the
database M . The number of required transcripts e must be a polynomially-bounded function of N , b,
and κ.

2.1 Correctness

A correct execution of the algorithms by honest client and server results in audits being accepted and reads
to recover the last updated value of the database. More formally, correctness is:

Definition 1 (Correctness). For any parameters κ, λ,N, b, there exists a predicate IsValid such that,
for any database M of N bits, IsValid(M, Init(1κ, 1λ, b,M)). Furthermore, for any state such that
IsValid(M, stC , stS) and any index i with 0 ≤ i < dN/be, we have

• Read(i, stC , stS) = M [i];
• IsValid(M ′, Write(i, a, stC , stS)), where M ′[i] = a and the remaining M ′[j] = M [j] for every j 6= i;

4

• Audit(stC , stS) 6= reject;
• For e audits Audit1, . . . , Audite with independent randomness, with probability 1− negl(λ):

Extract(stC , Audit1(stC , stS), . . . , Audite(stC , stS))=M .

Note that, even though C may use random coins in the algorithms, a correct PoR by this definition should
have no chance of returning reject in any Read, Write or Audit with an honest client and server.

2.2 Authenticity and attacker model

The authenticity requirement stipulates that the client can always detect (except with negligible probability)
if any message sent by the server deviates from honest behavior. We use the following game between an
observer O, a potentially malicious server S̄ and an honest server S for the adaptive version of authenticity,
with the same game as [38]:

1. S̄ chooses an initial memory M . O runs Init and sends the initial memory layout stS to both S̄ and S.
2. For a polynomial number of steps t = 1, 2, ..., poly(λ), S̄ picks an operation opt where operation opt is

either Read, Write or Audit. O executes the operations with both S̄ and S.
3. S̄ is said to win the game, if any message sent by S̄ differs from that of S and O did not output reject.

Definition 2 (Authenticity). A PoR scheme satisfies adaptive authenticity, if no polynomial-time adversary
S̄ has more than negligible probability in winning the above security game.

2.3 Retrievability

Intuitively, the retrievability requirement stipulates that whenever a malicious server can pass the audit test
with high probability, the server must know the entire memory contents M . To model this, [12] use a black-
box rewinding access: from the state of the server before any passed audit, there must exist an extractor
algorithm that can reconstruct the complete correct database. As in [38], we insist furthermore that the
extractor does not use the complete server state, but only the transcripts from successful audits. In the
following game, note that the observer O running the honest client algorithms may only update its state
stC during Write algorithm, and hence the Audit algorithms are independently randomized from the client
side, but we make no assumptions about the state of the adversary S̄.

1. S̄ chooses an initial database M . O runs Init and sends the initial memory layout stS to S̄;
2. For t = 1, 2, ..., poly(λ), the adversary S̄ adaptively chooses an operation opt where opt is either Read,

Write or Audit. The observer executes the respective algorithms with S̄, updating stC and M according
to the Write operations specified;

3. The observer runs e Audit algorithms with S̄ and records the outputs π1, . . . , πe′ of those which did
not return reject, where 0 ≤ e′ ≤ e.

4. The adversary S̄ is said to with the game if e′ ≥ e/2 and Extract(stC , π1, . . . , πe) 6= M .

Definition 3 (Retrievability). A PoR scheme satisfies retrievability if no polynomial-time adversary S̄ has
more than negligible probability in winning the above security game.

3 Time-space tradeoff lower bound

As we have seen, the state of the art in Proofs of Retrievability schemes consists of some approaches with a
low audit cost but a high storage overhead (e.g., [27, 38, 12]) and some schemes with a low storage overhead
but high computational cost for the server during audits (e.g., [5, 36, 37]).

Before presenting our own constructions (which fall into the latter category) we prove that there is indeed
an inherent tradeoff in any PoR scheme between the amount of extra storage and the cost of performing
audits. By extra storage here we mean exactly the number of extra bits of persistent memory, on the client
or server, beyond the bit-length of the original database being represented.

5

Theorem 4 below shows that, for any PoR scheme with sub-linear audit cost, we have

(extra storage size) · audit cost

log(audit cost)
∈ Ω(data size). (1)

None of the previous schemes, nor those which we present, make this lower bound tight. Nonetheless,
it demonstrates that a “best of all possible worlds” scheme with, say, O(

√
N) extra storage and O(logN)

audit cost to store an arbitrary N -bit database, is impossible.
The proof is by contradiction, presenting an attack on an arbitrary PoR scheme which does not satisfy

the claimed time/space lower bound. Our attack consists of flipping k randomly-chosen bits of the storage.
First we show that k is small enough so that the audit probably does not examine any of the flipped bits,
and still passes. Next we see that k is large enough so that, for some choice of the N bits being represented,
flipping k bits will, with high probability, make it impossible for any algorithm to correctly recover the
original data. This is a contradiction, since the audit will pass even though the data is lost.

Readers familiar with coding theory will notice that the second part of the proof is similar to Hamming’s
bound for the minimal distance of a block code. Indeed, we can view the original N -bit data as a message,
and the storage using s+ c extra bits of memory as an (N + s+ c)-bit codeword. A valid PoR scheme must
be able to extract (decode) the original message from an (N + s+ c)-bit string, or else should fail any audit.

Theorem 4. For any Proof of Retrievability scheme which stores an arbitrary database of N bits, uses at
most N + s bits of persistent memory on the server, c bits of persistent memory on the client, and requires
at most t steps to perform an audit. Assuming s ≥ 0, then either t>N

4 , or

(s+ c)
t

log2 t
≥ N

12
. (2)

Proof. First observe that N = 0 and t = 0 are both trivial cases: either the theorem is always true, or the
PoR scheme is not correct. So we assume always that N ≥ 1 and t ≥ 1.

By way of contradiction, suppose a valid PoR scheme exists with s ≥ 0, t ≤ N
4 , and

(s+ c)
t

log2 t
<
N

12
. (3)

Following the definitions in Section 2, we consider only the Audit and Extract algorithms. The Audit

algorithm may be randomized and, by our assumption, examines at most t bits of the underlying memory.
At any point in an honest run of the algorithm, the server stores a (N + s)-bit string stS , the client stores
a c-bit string stC , and the client virtual memory in the language of [12] is the unique N -bit string M such
that IsValid(stC , stS ,M).

Define a map φ : {0, 1}N+s+c → {0, 1}N as follows. Given any pair (stC , stS) of length-N + s and length-
c bit strings, run Extract(stC , Audit1(stC , stS), . . . , Audite(stC , stS)) repeatedly over all possible choices
of randomness, and record the majority result. By Definition 1, we have that φ(stC , stS) = M whenever
IsValid(stC , stS ,M).

Observe that this map φ must be onto, and consider, for any N -bit data string M , the preimage φ−1(M),
which is the set of client/server storage configurations (stC , stS) such that φ(stC , stS) = M . By a pigeon-hole
argument, there must exist some string M0 such that

#φ−1(M0) ≤ 2N+s+c

2N
= 2s+c. (4)

Informally, M0 is the data which is most easily corrupted.
We now define an adversary S̄ for the game of Definition 3 as follows: On the first step, S̄ chooses M0

as the initial database, and uses this in the Init algorithm to receive server state stS . Next, S̄ chooses k
indices uniformly at random from the stS of (N + s) bits (where k is a parameter to be defined next), and
flips those k bits in stS to obtain a corrupted state st′S . Finally, S̄ runs the honest Audit algorithm 2e times
on step 3 of the security game, using this corrupted state st′S .

6

What remains is to specify how many bits k the adversary should randomly flip, so that most of the
2e runs of the Audit algorithm succeed, but the following call to Extract does not produce the original
database M0.

Let

k =

⌊
N + s

4t

⌋
. (5)

From the assumptions that s ≥ 0 and t ≤ N
4 , we have that k ≥ 1.

Let stC be the initial client state (which is unknown to S̄) in the attack above with initial database
M0. From the correctness requirement (Definition 1) and the definition of t in our theorem, running
Audit(stC , stS) must always succeed after examining at most t bits of stS . Therefore, if the k flipped
bits in the corrupted server storage st′S are not among the (at most) t bits examined by the Audit algo-
rithm, it will still pass. By the union bound, the probability that a single run of Audit(stC , st

′
S) passes is at

least

1− t k

N + s
≥ 3

4
.

This means that the expected number of failures in running 2e audits is e
2 , so the Markov inequality tells us

that the adversary S̄ successfully passes at least e audits (as required) with probability at least 1
2 .

We want to examine the probability that φ(stC , st
′
S) 6= M0, and therefore that the final call to Extract

in the security game does not produce M0 and the adversary wins with high probability. Because there are(
N+s
k

)
distinct ways to choose the k bits to form corrupted storage st′S , and from the upper bound of (4)

above, the probability that φ(stC , st
′
S) 6= M0 is at least

1− 2s+c − 1(
N+s
k

) . (6)

Trivially, if s + c = 0, then this probability equals 1. Otherwise, from the original assumption (3), and
because log2(4t)/(2t) ≤ 1 for all positive integers t, we have

s+ c+ 2 ≤ 3(s+ c) <
N log2 t

4t
≤
(
N

4t
− 1

)
log2(4t).

Therefore (
N + s

k

)
≥
(
N + s

k

)k
> (4t)

N+s
4t −1 ≥ 2s+c+2.

Returning to the lower bound in (6), the probability that the final Extract does not return M0 is at
least 3

4 . Combining with the first part of the proof, we see that, with probability at least 3
8 , the attacker

succeeds: at least e runs of Audit(stC , st
′
S) pass, but the final run of Extract fails to produce the correct

database M0.

4 Retrievability via verifiable computing

We first present a simple version of our PoR protocol. This version contains the main ideas of our approach,
namely, using matrix-vector products during audits to prove retrievability. It also makes use of Merkle hash
trees during reads and updates to ensure authenticity.

This protocol uses only N + o(N) persistent server storage, which is an improvement to the O(N)
persistent storage of existing PoR schemes, and is the main contribution of this work. The costs of our
Read and Write algorithms are similar to existing work, but we incur an asymptotically higher cost for
the Audit algorithm, namely O(

√
N) communication bandwidth and O(N) server computation time. We

demonstrate in the next section that this tradeoff between persistent storage and Audit cost is favorable in
cloud computing settings for realistic-size databases.

7

Later, in Section 6, we give a more general protocol and prove it secure according to the PoR definition
in Section 2. That generalized version shows how to achieve O(1) persistent client storage with the same
costs, or alternatively to trade arbitrarily small communication bandwidth during Audits for increased client
persistent storage and computation time.

4.1 Overview

A summary of our four algorithms is shown in Table 2, where dashed boxes are the classical, Merkle hash
tree authenticated, remote read/write operations.

Our idea is to use verifiable computing schemes as, e.g., proposed in [20]. Our choice for this is to treat
the data as a square matrix of dimension roughly

√
N ×

√
N . This allows for the matrix multiplication

verification described in [22] to be used as a computational method for the audit algorithm.
Crucially, this does not require any additional metadata; the database M is stored as-is on disk, our

algorithm merely treats the machine words of this unmodified data as a matrix stored in row-major order.
Although the computational complexity for the Audit algorithm is asymptotically O(N) for the server, this
entails only a single matrix-vector multiplication, in contrast to some prior work which requires expensive
RSA computations [5].

To ensure authenticity also during Read and Write operations, we combine this linear algebra idea above
with a standard Merkle hash tree.

Table 2: Client/server PoR protocol with low storage server

Server Communications Client

Init

N = mn log2 q u
$← Rmq

vᵀ ← uᵀM.

MTInit
←− κ, λ, b,M

M, TM ←− −→ rM

Stores M and TM Stores u,v, and rM

Read

M, TM −→
MTVerifiedRead

←− i, j, rM
−→Mij

Returns Mij

Write

M, TM −→
MTVerifiedWrite

←− i, j,M′
ij , rM

M′, T ′M ←− −→Mij , r
′
M

v′j ← vj + ui(M
′
ij −Mij)

Stores updated M′, T ′M Stores updated r′M,v
′

Audit

x←− x
$← Rnq

y←Mx
y−→ uᵀy

?
= vᵀx

4.2 Matrix based approach for audits

The basic premise of our particular PoR is to treat the data, consisting of N bits organized in machine
words, as a matrix M ∈ Rm×nq , where Rq is a suitable finite ring of size q. Crucially, the choice of ring Rq
detailed below does not require any modification to the raw data itself; that is, any element of the matrix
M can be retrieved in O(1) time. At a high level, our audit algorithm follows the matrix multiplication
verification technique of [22].

8

In the Init algorithm, the Client chooses a secret random control vector u ∈ Rmq and computes a second
secret control vector v ∈ Rnq according to

vᵀ = uᵀM. (7)

Note that u is held constant for the duration of the storage. This does not compromise security because
no message which depends on u is ever sent to the Server. In particular, this means that multiple clients
could use different, independent, control vectors u as long as they have a way to synchronize Write operations
(modifications of their shared database) over a secure channel.

To perform an audit, the client chooses a random challenge vector x ∈ Rnq , and asks the server to compute
a response vector y ∈ Rmq according to

y = Mx (8)

Upon receiving the response y, the client checks two dot products for equality, namely

uᵀy
?
= vᵀx. (9)

The proof of retrievability will rely on the fact that observing several successful audits allows, with high
probability, recovery of the matrix M, and therefore of the entire database.

The audit algorithm’s cost is mostly in the server’s matrix-vector product. The client’s dot products are
much cheaper in comparison. For instance if m = n are close to

√
N , the communication cost is bounded by

O(
√
N) as each vector has about

√
N values. We trade this infrequent heavy computation for no additional

persistent storage, justified by the significantly cheaper cost of computation versus storage space.
A sketch of the security proofs is as follows; full proofs are provided along with our formal and general

protocol in Section 6. The Client knows that the Server sent the correct value of y with high probability,
because otherwise the Server must know something about the secret control vector u chosen randomly at
initialization time. This is impossible since no data depending on u was ever sent to the Server. The
retrievability property (Definition 3) is ensured from the fact that, after

√
N random successful audits, with

high probability, the original data M is the unique solution to the matrix equation MX = Y, where X is
the matrix of random challenge vectors in the audits and Y is the matrix of corresponding response vectors
from the Server.

Some similar ideas were used by [36] for checking integrity. However, their security relies on the difficulty
of integer factorization. Implementation would therefore require many modular exponentiations at thousands
of bits of precision. Our approach for audits is much simpler and independent of computational hardness
assumptions.

4.3 Merkle hash tree for updates

While the audit operates on the data in word-size chunks as members of a finite ring Rq, retrieving data is
done at the byte level with support for retrieving any range of bytes (that is legal with the size of the data).
A Merkle hash tree with block size b is used here to ensure authenticity of individual Read operations. This
is a binary tree, stored on the server, consisting of O(N/b) hashes, each of size 2κ for collision resistance.

The Client stores only the root hash, and can perform, with high integrity assurance, any read or write
operation on a range of k bytes in O(k + b + log(N/b)) communication and computation time. When the
block size is large enough, the extra server storage is o(N); for example, b ≥ logN means the hash tree can
be stored using O(Nκ/ logN) bits.

Merkle hash trees are a classical result, commonly used in practice, and we do not claim any novelty in
our use here [31, 29]. To that end, we provide three algorithms to abstract the details of the Merkle hash
tree.

These are all two-party protocols between a Server and a Client, but without any requirement for secrecy.
A vertical bar | in the inputs and/or outputs of an algorithm indicates Server input/output on the left, and
Client input/output on the right. When only the Client has input/output, the bar is omitted for brevity.

The MTVerifiedRead and MTVerifiedWrite algorithms may both fail to verify a hash, and if so, the
Client outputs reject and aborts immediately. Our three Merkle tree algorithms are as follows.

9

MTInit(1κ, b,M) 7→ (M,TM | rM). The Client initializes database M for storage in size-b blocks. The
entire database M is sent to the Server, who computes hashes and stores the resulting Merkle hash tree
TM . The Client also computes this tree, but discards all hashes other than the root hash rM . The cost in
communication and computation for both parties is bounded by O(|M |) = O(N).

MTVerifiedRead(M,TM | range, rM) 7→ Mrange. The Client sends a contiguous byte range to the
server, i.e., a pair of indices within the size of M . This range determines which containing range of blocks
are required, and sends back these block contents, along with left and right boundary paths in the hash tree
TM . Specifically, the boundary paths include all left sibling hashes along the path from the first block to
the root node, and all right sibling hashes along the path from the last block to the root; these are called
the “uncles” in the hash tree. Using the returned blocks and hash tree values, the Client reconstructs the
Merkle tree root, and compares with rM . If these do not match, the Client outputs reject and aborts.
Otherwise, the requested range of bytes is extracted from the (now-verified) blocks and returned. The cost
in communication and computation time for both parties is at most O(|range|+ b+ log(N/b)).

MTVerifiedWrite(M,TM | range,M ′range, rM)
7→ (M ′, T ′M |Mrange, r

′
M).

The Client wishes to update the data M ′range in the specified range, and receive the previous value of that
range, Mrange, as well as an updated root hash rM . The algorithm begins as MTVerifiedRead with the
Server sending all blocks to cover the range and corresponding left and right boundary hashes from TM . After
the Client retrieves and verifies the old value Mrange with the old root hash rM , she updates the blocks with
the new value M ′range and uses the same boundary hashes to compute the new root hash r′M . Separately,
the Server updates the underlying database M ′ in the specified range, then recomputes all affected hashes
in T ′M . The asymptotic cost is identical to that for the MTVerifiedRead algorithm.

5 Experiments with Google cloud services

As we have seen, compared to other dynamic PoR schemes, our protocol aims at achieving the high security
guarantees of PoR, while trading near-minimal persistent server storage for increased audit computation
time.

In order to address the practicality of this tradeoff, we implemented and tested our PoR protocol using
virtual machines and disks on the Google Cloud Platform service.

Specifically, we address two primary questions:
• What is the monetary cost and time required to perform our O(N) time audit on a large database?
• How does the decreased cost of persistent storage trade-off with increase costs for computation during

audits?
Our experimental results are summarized in Tables 4 to 6. For a 1TB data file, the O(

√
N) communication

cost of our audit entails less than 12MB of data transfer, and our implementation executes the O(N) audit
for this 1TB data file in around 7 minutes for a monetary cost of less than $0.12 USD.

By contrast, just the extra persistent storage required by other existing PoR schemes would cost at least
$40 USD or as much as $200 USD per month, not including any computation costs for audits. Thees results
indicate that he communication and computation costs of our Audit algorithm are not prohibitive in practice
despite their unfavorable asymptotics; and furthermore, our solution is the most cost-efficient PoR scheme
available when few audits are performed per day.

We also emphasize again that a key benefit to our PoR scheme is its composability with existing software,
as the data file is left in-tact as a normal file on the Server’s filesystem.

The remainder of this section gives the full details of our implementation and experimental setup.
The source code is available via the following anonymized github repository: https://anonymous.4open.

science/r/c4295d1d-692a-4075-b233-1d7ab5468b43/

10

https://anonymous.4open.science/r/c4295d1d-692a-4075-b233-1d7ab5468b43/
https://anonymous.4open.science/r/c4295d1d-692a-4075-b233-1d7ab5468b43/

5.1 Parameter selection

To balance the bandwidth (protocol communications) and the client computation costs, we represent M as
a square matrix with dimensions m = n =

√
N/64, where the 64 comes from our choice of Rq corresponding

to 64-bit words (see Section 5.2). We also fixed the Merkle tree block size at 8KiB for all experiments and
used SHA-512/224 for the Merkle tree hash algorithm. The resulting asymptotic costs for these parameter
choices are summarized in Table 3.

Table 3: Proof of retrievability via square matrix verifiable computing

Server Comm. Client

Storage N + o(N) O(
√
N)

C
o
m

p
u
t. Init O(N) N O(N)

Audit O(N) O(
√
N) O(

√
N)

Read/Write O(log(N)) O(log(N)) O(log(N))

5.2 Two Prime Calculations

In order to leave the data file unmodified in persistent storage, while allowing constant-time random access
to individual matrix elements, we break the data into word-sized (8 byte) blocks, and choose a finite ring
Rq with q ≥ 264.

One possibility would be to set q as a prime larger than 264, but this would entail costly multiple-
precision computations for the modular arithmetic. Instead, we chose the ring Rq = Fp1 × Fp2 as the direct
product of two finite fields, each of large prime order. When q = p1p2 ≥ 264, this ensures unique recovery
of the database from images in Rq via Chinese remaindering, and also allows efficient computation without
extended precision.

In our implementation, we chose p1 = 231 − 1 and p2 = 236 − 5. That p1 is a Mersenne prime makes
computations with it particularly efficient, but a second Mersenne prime of similar size does not exist. For
the actual arithmetic we used the low-level routines provided by the open-source high performance number
theory library Flint [24].

This two-prime setup is equivalent to storing two databases M1 and M2 in finite fields Fp1 and Fp2
respectively, and so the formal security proof of Theorem 6 applies as long as the smaller prime p1 is larger
than the column dimension n of the database matrix M (see Section 6 for more details). This means our
implementation parameters satisfy the security proof requirements for sizes up to N = 144PB.

5.3 Experimental Design

Our implementation provides the Init, Read, Write, and Audit algorithms as described in the previous
section, including the Merkle hash tree implementation for read/write integrity. As the cost of the first three
of these are comparable to prior work, we focused our experiments on the Audit algorithm.

We ran two sets of experiments, using virtual machines and disks on Google Cloud’s Compute Engine∗.
The client machine was a basic f1-micro instance, 1 vCPU with 0.6GB memory, residing in Western

Europe. All server virtual machines (VMs) were in the central U.S.: the main server was an n1-standard-2,
2 vCPU with 7.5GB memory, and the parallel VMs running MPI in the second set of experiments were all
n1-standard-1 instances with 1 vCPU and 3.75GB memory. The data itself was stored on an attached 1.3TB
SSD persistent disk. Test files of size 1GB, 10GB, 100GB, and 1TB were generated with random bytes.
The server time in Table 4 measures CPU time only; all other times are “wall time” in actual seconds for
operation completion.

∗https://cloud.google.com/compute/docs/machine-types.

11

https://cloud.google.com/compute/docs/machine-types

The client and server processes communicated over a trans-Atlantic TCP connection. As a baseline, we
used ping and scp to determine the client-server network connection: it had an average round-trip latency
of 101ms and achieved throughput as high as 19.1 MB/sec.

5.4 Audit compared to checksums

For the first set of experiments, we wanted to address the question of how “heavy” the hidden constant in
the O(N) is. For this, we compared the cost of performing a single audit, on databases of various sizes, to
the cost of computing a cryptographic checksum of the entire database using MD5 or SHA256.

Table 4: Single-threaded experiments on Google Cloud
Values indicate the median number of seconds for a single run. For all except the 1TB column, each experiment was

performed 5 times. In all cases, after discarding at most one outlier value, the maximum relative difference between the runs
was less than 3%.

Operation 1GB 10GB 100GB 1TB

Init
Server 6.38 72.72 743.99 7728.03

Wall 6.39 80.77 837.91 8586.08

Audit
Server 4.92 61.93 615.51 6372.50

Wall 4.98 62.58 616.24 6373.48

MD5
Server 2.15 26.20 264.61 2635.60

Wall 2.16 39.56 397.35 3976.68

SHA256
Server 6.02 62.77 633.02 6326.87

Wall 6.03 62.85 633.24 6330.03

In a sense, a cryptographic checksum is another means of integrity check that requires no extra storage,
albeit without the malicious server protection that our PoR protocol provides. Therefore, having an audit
cost which is comparable to that of a cryptographic checksum indicates the O(N) theoretical cost is not too
heavy in practice.

The experiment took place in 4 stages. First, each file was run through the initialization algorithm,
including creating the Merkle tree in a second pass. Then, each file was run through the Audit algorithm.
Third, an MD5 digest was calculated for each file. Finally, a SHA256 digest was computed for each file. A
Merkle tree was also created over each file. The results are organized into Table 4.

Per operation, the timings report the CPU time from the server side, and the total wall time from the
client side. The difference is due mostly to I/O overhead; even for the audit, the client-side work to compute
the two dot products is minimal.

There are two main conclusions to draw from the experiments. The first deals with our Audit algorithm
following the theoretical bounds that were expected, and the second deals with how the run time compares
to that of the hash functions.

Because the server computation time for an audit is O(N), we expect the times to scale linearly, and our
results support this. We also see that the running time is consistently between that of MD5 and SHA256
checksums, both in wall time and CPU time. This justifies the fact that the O(N) time Audit algorithm,
while more costly than other PoR and PDP schemes, is comparable to that of computing a cryptographic
checksum.

We were surprised by the large disparity between the Server Time and the Wall Time in these experiments,
both for our own Audit algorithm and for the checksum comparisons. We determined that this disparity
is mostly due to I/O within the cloud datacenter, caused by the CPU waiting for the reads to the external
drive.

12

5.5 Parallel audits using MPI

Our first round of experiments indicated that our Audit algorithm on the server was I/O bound, despite
the favorable linear access pattern of the matrix-vector product computation. It seems that Google Cloud
Platform throttles disk-to-VM I/O on a per-VM basis, so that even with many cores, the situation did not
improve.

However, we were able to achieve good parallel speedup when running the Audit algorithm over multiple
VMs in parallel using MPI. In this setup, the server VM waits for a connection from a client, who requests
an audit, which is in turn performed by some number of VMs running in parallel, after which the results
are collected and returned to the client. The simplicity of our Audit algorithm makes it trivially paral-
lelizable, where each parallel VM performs the matrix-vector product on a contiguous subset of rows of M,
corresponding to a contiguous segment of the underlying file.

Because the built-in MD5 and SHA256 checksum programs do not achieve any parallel speedup, we
focused only on our Audit algorithm for this set of experiments using MPI. The results are reported in
Table 5. Our parallel speedup is not quite linear, but was sufficient to gain a significant improvement in the
audit time, to just under 7 minutes in the case of a 1TB file using 16 VMs.

We also used these times to measure the total cost of running each audit in Google Cloud Platform,
which features per-second billing of VMs and persistent disks, as reported in Table 5 as well. Note that
the monetary cost for increasing parallel VMs is slightly decreasing for larger file sizes, indicating that even
higher levels of parallelization may decrease the running time even further with no extra monetary cost.

Table 5: Audit with parallel VMs on Google Cloud
Values indicate the median number of seconds for a single run. For all except 4VM/1TB, each experiment was performed 5

times.
VMs Metric 1GB 10GB 100GB 1TB

1

Audit 4.98 62.58 616.2 6373

Speedup 1x 1x 1x 1x

Cost $0.00007 $0.0009 $0.012 $0.496

4

Audit 2.46 16.97 169.9 1651

Speedup 2.02x 3.69x 3.63x 3.86x

Cost $0.00013 $0.0009 $0.010 $0.194

16

Audit 1.60 4.91 42.00 410.3

Speedup 3.11x 12.75x 14.67x 15.53x

Cost $0.00034 $0.00104 $0.0091 $0.113

5.6 Communication and client computation

Besides the O(N) complexity for server computation during an audit, the O(
√
N) cost of client computa-

tion and communication bandwidth in our scheme is also asymptotically worse than existing PoR schemes.
However, our experiments suggest that in practice these are not significant factors.

The time it took the client to compute the two dot products to finish the audit never took more than
0.12 seconds in any case tested. This indicates that even low-powered client machines should be able to run
this Audit algorithm without issue.

The time spent communicating the challenge and response vectors, x and y, becomes insignificant in
comparison to the server computation as the size of the database increases. In the case of our experiments,
Table 6 summarizes that communication time of both x and y remains under three seconds. The amount of
data communicated is also given to confirm the square root scaling.

In this experiment, as before, the client was located in a western European datacenter, while the server
(and associated VMs) were co-located in the central United States. Comparing to the total audit times in
Table 5, we see that the communication delays are insignificant compared to computation time.

13

Table 6: Amount of Communication Per Audit with 16 VMs
Values indicate the median number of seconds for a single run. Each experiment was performed 5 times, with a maximum

variance of 19% between runs.

Metric 1GB 10GB 100GB 1TB

Comm. (kB) 358 1131 3578 11314

Time (s) 1.20 1.68 2.19 2.71

6 Formalization and Security analysis

In this section we present our PoR protocol in most general form, prove it satisfies the definitions of PoR
correctness, authenticity, and retrievability, analyze its asymptotic performance and present a variant that
also satisfies public verifiability.

Recall that our security definition and protocol rely on two security parameters: κ for computational
security and λ for statistical security. In our main protocol, the only dependence on computational assump-
tions comes from the use of Merkle trees and the hardness of finding hash collisions. The κ parameter will
also arise when we use encryption to extend the protocol for externalized storage and public verifiability.

Instead, the security of our main construction mostly depends on the statistical security parameter λ.
Roughly speaking, this is because in order to produce an incorrect result that the client will accept for an
audit, the adversary must provably guess a result and try it within the online audit protocol; even observing
correct audits does not help the adversary gain an advantage. This intuition, rigorously analyzed below,
allows us to instantiate our protocol more efficiently while providing strong security guarantees.

6.1 Improvements on the control vectors

The control vectors u and v stored by the Client in the simplified protocol from Section 4 can be modified
to increase security and decrease persistent storage or communications.

Security assumptions via multiple checks. In order to reach a target bound 2−λ on the probability
of failure for the authenticity, it might theoretically be necessary to choose multiple independent u vectors
during initialization and repeat the audit checks with each one. We will show that in fact only one vector is
necessary for reasonable settings of λ, but perform the full analysis here for completeness.

First, to ease independence considerations we forget the two prime ring and consider instead that tests
are performed in Fq, a finite field of size q. Second, we model multiple vectors by inflating the vectors u and
v to be blocks of t non-zero vectors instead; that is, matrices U and V with t rows each. To see how large
t needs to be, consider the probability of the Client accepting an incorrect response during an audit. An
incorrect answer z to the audit fails to be detected only if

U · (z− y) = 0, (10)

where y = Mx is the correct response which would be returned by an honest Server.
If U is sampled uniformly at random among matrices in Ft×mq with non-zero rows, then since the Server

never learns any information about U, audit fails only if the Server can guess a vector in the right nullspace
of U. This happens with probability at most 1/qt.

Achieving a probability bounded by 2−λ, requires to set t =
⌈

λ
log2(q)

⌉
. In practice, reasonable values of

λ = 40 and q > 264 mean that t = 1 is large enough. If an even higher level of security such as λ = 80 is
required, then still only 2 vectors are needed.

Random geometric progression. Instead of using uniformly random vectors x and matrices U, one can
impose a structure on them, in order to reduce the amount of randomness needed, and the cost of commu-
nicating or storing them. We propose to apply Kimbrel and Sinha’s modification of Freivalds’ check [28]:

14

select a single random field element ρ and form xᵀ = [ρ, . . . , ρn], thus reducing the communication volume
for an audit from m+ n to m+ 1 field elements.

Similarly, we can reduce the storage of U by sampling uniformly at random t distinct non-zero elements
s1, . . . , st and forming

U =

[
s1 ··· sm1
...

...
st ··· smt

]
∈ Ft×mq . (11)

This reduces the storage on the client side from mt+ n to only t+ n field elements.
Then with a rectangular database and n > m, communications can be potentially lowered to any small

target amount, at the cost of increased client storage and greater client computation during audits.
This impacts the probability of failure of the authenticity for the audits. Consider an incorrect answer z

to an audit as in (10). Then each element s1, . . . , st is a root of the degree-(m − 1) univariate polynomial
whose coefficients are z − y. Because this polynomial has at most m − 1 distinct roots, the probability of
the Client accepting an incorrect answer is at most(

m−1
t

)(
q
t

) ≤
(
m

q

)t
, (12)

which leads to setting t =
⌈

λ
log2(q)−log2(m)

⌉
in order to bound this probability by 2−λ. Even if N = 253 for

1PB of storage, assuming m ≤ n, and again using λ = 40 and q ≥ 264, still t = 1 suffices.

Externalized storage. Lastly, the client storage can be reduced to O(κ) by externalizing the storage of
the block-vector V at the expense of increasing the volume of communication. Clearly V must be stored
encrypted, as otherwise the server could answer any challenge without having to store the database. Any
IND-CPA symmetric cipher works here, with care taken so that a separate IV is used for each column; this
allows updates to a column of V during a Write operation without revealing anything about the updated
values.

In the following we will thus simply assume that the client has access to an encryption function EK
and a decryption function DK , both parameterized with a secret key K. In order to assess the authenticity
of each communication of the ciphered V from the Server to the client, we will use another Merkle-Hash
tree certificate for it: the client will only need to keep the root of a Merkle-Tree built on the encryption of
V. With this, we next show how to efficiently and securely update both the database and this externalized
ciphered control vector. Further, this ensures non-malleability outside of the encryption scheme: INT-CTXT
(integrity of ciphertexts) together with IND-CPA implies IND-CCA2 [7, Theorem 2].

Since this modification reduces the client storage but increases the overall communication, we consider
both options (with or without it; extern=T or extern=F), and we state the algorithms for our protocol with
a Strategy parameter, deciding whether or not to externalize the storage of V.

Table 7: Proof of retrievability via rectangular verifiable computing with structured vectors
(N = mn log2 q is the size of the database, κ ≥ λ are the computational and statistical security parameters, b > κ logN is the

Merkle tree block size. Assume log2 q is a constant.)

Server Communication Client

Strategy extern=T extern=F extern=T extern=F

Storage N +O(Nκ/b) O(κ) O (nκ)

C
om

p
u

t. Setup O(N) N + o(N) N O(N)

Audit N O(m+ nκ) O(m) O(κ(m+ n))

Read/Write O(b+ κ logN) O(b+ κ logN) O (b+ κ logN)

15

6.2 Formal protocol descriptions

Full definitions of the five algorithms, Init, Read, Write, Audit and Extract, as Algorithms 1 to 5, are
given below, incorporating the improvements on control vector storage from the previous subsection. They
include subcalls to the classical Merkle hash tree operations defined in Section 4.3.

Then, a summary of the asymptotic costs can be found in Table 7.

Algorithm 1 Init(1κ, 1λ,m, n, q, b,M, Strategy)

Input: 1κ, 1λ;m,n, q, b ∈ N; M ∈ Fm×nq

Output: stS , stC
1: t← dλ/(log2 q)e ∈ N;

2: Client: s
$← Ftq with non-zero distinct elements {Secrets}

3: Client: Let U← [sji]i=1...t,j=1...m ∈ Ft×mq

4: Client: V← UM ∈ Ft×nq {Secretly stored or externalized}
5: Both: (M, TM | rM)←MTInit(1κ, b,M)
6: if (Strategy = externalization) then

7: Client: K
$← K;

8: Client: W← EK(V) ∈ Ct×nq ;
9: Client: sends m,n, q,M,W to the Server;

10: Both: (W, TW | rW)←MTInit(1κ, b,W)
11: Server: stS ← (m,n, q,M, TM, Strategy,W, TW);
12: Client: stC ← (m,n, q, t, s, rM, Strategy,K, rW);
13: else
14: Client: sends m,n, q,M to the Server;
15: Server: stS ← (m,n, q,M, TM, Strategy);
16: Client: stC ← (m,n, q, t, s, rM, Strategy,V);
17: end if

Algorithm 2 Read(stS , stC , i, j)

Input: stS ,stC , i ∈ [1..m], j ∈ [1..n]
Output: Mij or reject

1: Both: Mij ←MTVerifiedRead(M, TM | (i, j), rM)
2: Client: return Mij

6.3 Security

Before we begin the full security proof, we need the following technical lemma to prove that the Extract

algorithm succeeds with high probability. The proof of this lemma is a straightforward application of Chernoff
bounds.

Lemma 5. Let λ, n ≥ 1 and suppose e balls are thrown independently and uniformly into q bins at random.
If e = 4n+ 24λ and q ≥ 4e, then with probability at least exp(−λ), the number of non-empty bins is at least
e/2 + n.

Proof. Let B1, B2, . . . , Be be random variables for the indices of bins that each ball goes into. Each is a
uniform independent over the q bins. Let X1,2, X1,3, . . . , Xe−1,e be

(
e
2

)
random variables for each pair of

indices i, j with i 6= j, such that Xi,j equals 1 iff Bi = Bj . Each Xi,j is a therefore Bernoulli trial with
E[Xi,j] = 1

q , and the sum X =
∑
i 6=j Xi,j is the number of pairs of balls which go into the same bin.

16

Algorithm 3 Write(stS , stC , i, j,M
′
ij , Strategy)

Input: stS , stC , i ∈ [1..m], j ∈ [1..n],M′
ij ∈ Fq

Output: st′S , st
′
C or reject

1: Both: (M′, T ′M |Mij , r
′
M)

←MTVerifiedWrite(M, TM | (i, j),M′
ij , rM)

2: if (Strategy = externalization) then
3: Both: W1..t,j ←MTVerifiedRead(W, TW | (1..t, j), rW)
4: Client: V1..t,j ← DK(W1..t,j) ∈ Ftq;
5: end if
6: Client: Let U1..t,i ← [sik]k=1...t ∈ Ftq
7: Client: V′1..t,j ← V1..t,j + U1..t,i(M

′
ij −Mij) ∈ Ftq;

8: if (Strategy = externalization) then
9: Client: W′

1..t,j ← EK(V′1..t,j) ∈ Ctq
10: Both: (W′, T ′W |W1..t,j , r

′
W)

←MTVerifiedWrite(W, TW | (1..t, j),W′
1..t,j , rW)

11: Server: Update st′S using M′, T ′M,W
′, and T ′W

12: Client: Update st′C using r′M and r′W
13: else
14: Server: Update st′S using M′ and T ′M
15: Client: Update st′C using r′M and V′

16: end if

We will use a Chernoff bound on the probability that X is large. Note that the random variables Xi,j are
not independent, but they are negatively correlated: when any Xi,j equals 1, it only decreases the conditional
expectation of any other Xi′,j′ . Therefore, by convexity, we can treat the Xi,j ’s as independent in order to
obtain an upper bound on the probability that X is large.

Observe that E[X] =
(
e
2

)
/q < e/8. A standard consequence of the Chernoff bound on sums of independent

indicator variables tells us that Pr[X ≥ 2E[X]] ≤ exp(−E[X]/3); see for example [34, Theorem 4.1] or [25,
Theorem 1].

Substituting the bound on E[x] then tells us that Pr[X ≥ e/4] ≤ exp(−e/24) < exp(−λ). That is, with
high probability, fewer than e/4 pair of balls share the same bin. If nk denotes the number of bins with k
balls, the number of non-empty bins is:

q∑
k=1

nk =

(
e−

q∑
k=2

knk

)
+

q∑
k=2

nk = e−
q∑

k=2

(k − 1)nk

≥ e−
q∑

k=2

(
k

2

)
nk.

The latter is > 3
4e with high probability, which completes the proof, since 3e/4 = e/2+e/4 = e/2+n+6λ.

We now proceed to the main result of the paper.

Theorem 6. Let κ, λ,m, n ∈ N, Fq a finite field satisfying q ≥ 16n+96λ be parameters for our PoR scheme.
Then the protocol composed of:

• the Init operations in Algorithm 1;
• the Read operations in Algorithm 2;
• the Write operations in Algorithm 3;
• the Audit operations in Algorithm 4; and
• the Extract operation in Algorithm 5 with e=4n+24λ

satisfies correctness, adaptive authenticity and retrievability as defined in Definitions 1 to 3.

17

Algorithm 4 Audit(stS , stC , Strategy)

Input: stS , stC
Output: accept or reject

1: Client: ρ
$← Fq and sends it to the Server;

2: Let xᵀ ← [ρ1, ρ2, . . . , ρn]
3: Server: y←Mx ∈ Fmq ; {M from stS}
4: Server: sends y to Client;
5: if (Strategy = externalization) then
6: Both: W←MTVerifiedRead(W, TW | (1..t, 1..n), rW);
7: Client: V← DK(W) ∈ Ft×nq

8: end if
9: Client: Let U← [sji]i=1...t,j=1...m ∈ Ft×mq

10: if (Uy = Vx) then
11: Client: return accept

12: else
13: Client: return reject

14: end if

Algorithm 5 Extract(stC , (x1,y1), . . . , (xe,ye))

Input: stC and e ≥ 4n+ 24λ audit transcripts (xi,yi), of which more than e/2 are successful.
Output: M or fail

1: `1, . . . , `k ← indices of distinct successful challenge vectors x`i
2: if k < n then
3: return fail

4: end if {Now X is Vandermonde with distinct points}
5: Form matrix X← [x`1 | · · · |x`n] ∈ Fn×nq

6: Form matrix Y ← [y`1| · · · |y`n] ∈ Fm×nq

7: Compute M← Y X−1

8: return M

Proof. Correctness comes from the correctness of the Merkle hash tree algorithms, and from the fact that,
when all parties are honest, Uy = UMx = Vx.

For authenticity, first consider the secret control block vectors U and V. On the one hand, in the local
storage strategy, U and V never travel and all the communications by the Client in all the algorithms are
independent of these secrets. On the other hand, in the externalization strategy, U never travels and V
is kept confidential by the IND-CPA symmetric encryption scheme with key K known only by the client.
Therefore, from the point of view of the server, it is equivalent, in both strategies, to consider either that these
secrets are computed during initialization as stated, or that they are only determined after the completion
of any of the operations.

Now suppose that the server sends an incorrect audit response z 6= Mx which the Client fails to reject,
and let Let f ∈ Fq[X] be the polynomial with degree at most m − 1 whose coefficients are the entries of
(z−Mx). Then from (10) and (11) in the prior discussion, each of the randomly-chosen values s1, . . . , st is
a root of this polynomial f . Because f has at most m− 1 distinct roots, the chance that a single si is a root
of f is at most (m− 1)/q, and therefore the probability that all f(s1) = · · · = f(st) = 0, is at most (m/q)t.

From the choice of t = dλ/ log2(q/m)e, the chance that the Client fails to reject an incorrect audit
response is at most 2−λ, which completes the proof of authenticity (Definition 2).

For retrievability, we need to prove that Algorithm 5 succeeds with high probability on the last step
of the security game from Definition 3. Because of the authenticity argument above, all successful audit
transcripts are valid with probability 1 − negl(λ); that is, each y = Mx in the input to Algorithm 5.
This Extract algorithm can find an invertible Vandermonde matrix X ∈ Fn×nq , and thereby recover M

18

successfully, whenever at least n of the values ρ from challenge vectors x are distinct.
Therefore the security game becomes essentially this: The experiment runs the honest Audit algorithm

e = 4n + 24λ times, each time choosing a value ρ for the challenge uniformly at random from Fq. The
adversary must then select e/2 of these audits to succeed, and the adversary wins the game by selecting e/2
of the e random audit challenges which contain fewer than n distinct ρ values.

This is equivalent to the balls-and-bins game of Lemma 5, which shows that the Extract algorithm
succeeds with probability at least 1− exp(−λ) > 1− 2−λ for any selection of e/2 out of e random audits.

6.4 Publicly verifiable variant

These algorithms can also be adapted to support public verifiability.
There a first type of client (now called a Writer) is authorized to run the Init, Write, Read and Audit

algorithms, while a second type of client (now called a Verifier) can only run the last two. For our protocol,
the idea is to provide equality testing on ciphered values, without deciphering. In a group where the discrete
logarithm is hard this can be achieved, while preserving security, thanks to the additive homomorphic
property of exponentiation. Any linearly homomorphic encryption could also be used, but as we do not need
to be able to decipher, exponentiation suffices.

For this, there and in the following, gA, for a matrix A, denotes the exponentiation coefficient by
coefficient. Similarly, WB, as in (gA)B, is actually WB = gAB, but this can be computed in the exponents

if needed:
(
g[a c]

)[b d]ᵀ

= (ga)
b

(gc)
d

= gab+cd.
For instance on the Externalized strategy of Section 6.1, the informal modifications are:

1. Build a group G of large prime order p and generator g.
2. Init, in Algorithm 1, is run identically, except for two modifications: first, W is ciphered in G:

W ← E(V) = gV; second, the Writer also publishes an encryption of U as: K ← gU over an
authenticated channel.

3. All the verifications of the Merkle tree root in Algorithms 2 to 4 remain unchanged, but the Writer
must publish the new roots of the trees after each Write also over an authenticated and timestamped
channel to the Verifiers.

4. Updates to the control vector, in Algorithm 3 are performed homomorphically, without deciphering
W: the Writer computes in clear, ∆← (M′

ij −Mij)U1..t,i, then updates W′
1..t,j ←W1..t,j · g∆.

5. The dotproduct verification, in Algorithm 4 is performed also homomorphically: Ky ?
= Wx.

Remark 7. For the discrete logarithm to be hard, one has to increase the size of the field. Using a prime
field implemented with a residue number system, the cost of performing the arithmetic grows linearly in the
field size. This overhead is compensated by the equivalent decrease in the size of the matrix (recall that for a
database of size N bits, we form a m×n matrix of bit-size log2(q), so that N = mn log2(q)). Further, with
an increased size of coefficient domain and classical security parameters, multiple checks are in fact usually
not required anymore. So overall, only the setup and the dotproduct times are modified, see Table 9 for the
latter with a 283 bits prime.

The formalization of the obtained modified protocol, thus without multiple checks, is given as a Protocol
in Table 8.

Under Linearly Independent Polynomial (LIP) Security [1, Theorem 1]†, the Protocol of Table 8 adds
public verifiability to our dynamic proof of retrievability. Indeed, LIP security states that in a group G
of prime order, the values (gP1(s), . . . , gPm(s)) are indistinguishable from a random tuple of the same size,
when P1, . . . , Pm are linearly independent multivariate polynomials of bounded degree and s is the secret.

Therefore, in our modified protocol, each row gUi =
(
gs
j
i

)
j=1..m

is indistinguishable from a random tuple of

size m since the polynomials Xj , j = 1..m are independent distinct monomials. Then the idea is to reduce

†LIP security reduces to the MDDH hypothesis, a generalization of the widely used decision linear assumption [1, 33]

19

Table 8: Publicly verifiable Client/server PoR protocol with low storage server

Server Communications Client

Init

N = mn log2 q s
$← S ⊆ Zp

G of order p and gen. g form u← [sj]j=1...m ∈ Zmp
vᵀ ← uᵀM, wᵀ ← gv ∈ Gn.

MTInit
←− κ, λ, b,M,w

M, TM,w, Tw ←− −→ rM, rw

Store M, TM,w, Tw Publish rM, rw and K = gu

Read

M, TM −→
MTVerifiedRead

←− i, j, rM
−→Mij

Return Mij

Write

M, TM,w, Tw −→
MTVerifiedRead

←− i, j, rM, rw
−→Mij ,wj

δ ← ui(M
′
ij −Mij)

i,j,M′
ij ,w

′
j←− w′j ← wj · gδ

Update M′, T ′M,w
′, T ′w Publish r′M, r

′
w

Audit

r←− r
$← S ⊆ Z∗p

y←Mx form x← [ri]i=1...n ∈ Znp

w, Tw −→
MTVerifiedRead

←− rw
−→ w

Ky ?
= wx

breaking the public verifiability to breaking a discrete logarithm. For this, the discrete logarithm to break
will be put inside U.

These modifications give rise to the following Theorem 8. Compared to Theorem 6, this requires the LIP
security assumptions and a larger domain of the elements.

Theorem 8. Under LIP security in a group G of prime order p ≥ max{16n + 96λ,m22κ}, where dis-
crete logarithms are hard to compute, the Protocol of Table 8 satisfies correctness, adaptive authenticity and
retrievability, and is publicly verifiable.

Proof. In Table 8, Correctness is just to verify the dotproducts, but in the exponents; this is: Ky = gUy =
gUMx = Wx.

Public verifiability is guaranteed as K and U, as well as the roots rM and rw of the Merkle trees for M
and W, are public.

Now for Authenticity: first, any incorrect W is detected by the Merkle hash tree verification. Second,
with a correct W, any incorrect y is also detected with high probability, as shown next.

Suppose that there exist an algorithm A(M,K,W, r) that can defeat the verification with a fake y, with
probability ε. That is the algorithm produces ȳ, with ȳ 6= y = Mx, such that we have the t equations:

Ky = Wx = Kȳ. (13)

We start with the case t = 1. Let A = ga be a DLOG problem.
Then we follow the proof of [17, Lemma 1] and simulate Init via the following inputs to the attacker:

• r
$← S ⊆ Z∗p and let x = [r, r2, . . . , rn]ᵀ;

• Sample M
$← Sm×n ⊆ Zm×np and U

$← Sm ⊆ Zmp .

20

• Randomly select also k ∈ 1..m and, then, compute K = gUAek , so that K = gU+aek , where ek is the
k-th canonical vector of Zmp .

• Under LIP security [1, Theorem 3.1], K is indistinguishable from the distribution of the protocol (gs
j
i).

• finally compute W = KM, thus also indistinguishable from the distribution of the protocol.
To simulate any number of occurences of Write, it is then sufficient to randomly select M′

ij . Then compute

and send to the attacker: W′
1..t,j ←W1..t,j ·K

M′
ij−Mij

1..t,i (since g∆ = g(M′
ij−Mij)U1..t,i = K

M′
ij−Mij

1..t,i).

After that, the attacker answers an Audit, with ȳ 6= y satisfying Equation (13). This is g(U+aek)ȳ =
g(U+aek)Mx, equivalent to:

(U + aek)(ȳ −Mx) ≡ 0 mod p. (14)

Since ȳ 6= y mod p, then there is at least one index 1 ≤ j ≤ m such that ȳj 6= yj mod p. Since k is
randomly chosen from 1..m, the probability that ȳk 6= yk mod p is at least 1/m. If this is the case then
with z = ȳ− y, we have zk 6= 0 mod p and Uz+ azk ≡ 0 mod p, so that a ≡ −z−1

k Uz mod p. This means
that the discrete logarithm is broken with advantage ≥ ε/m.

Finally for any t ≥ 1 the proof is similar except that A is put in different columns for each of the t rows
of U. Thus the probability to hit it becomes ≥ t/m and the advantage is ≥ tε/m ≥ ε/m. This gives the
requirement that p ≥ m22κ to sustain the best generic algorithms for DLOG.

Retreivability comes from the fact that y and x are public values. Therefore this part of the proof is
identical to that of Theorem 6.

Remarks 9. • If a writer wants to verify, she does not need to use the public key K, nor to store it.

Just compute Uy directly, then check that gUy
?
= Wx.

• Even if U is structured, K hides this structure and therefore requires a larger storage. But any Verifier
can just fetch it and rW from the authenticated channel (for instance, electronically signed), as well
as fetch W from the Server, and perform the verification on the fly. Optimal communications for the
Verifier are then when m = O(

√
N) = n.

• To save some constant factors in communications, sending W or any of its updates W′
i,j is not manda-

tory anymore: the Server can now recompute them directly from M, K and M′.

In terms of performance, the only modifications are for the client computation time, in the Audit part. Ta-
ble 9 shows the difference between the private verification of Algorithm 4 and the public one (last line/column
of Table 8). Public verification is more expensive but this remains doable in a few seconds or minutes even
on a constrained device.

Table 9: Out-of-the-box Client average computation time for private and public audits using PBC-F type
curves (Baretto-Naerig curves of embedding degree 12 from crypto.stanford.edu/pbc) on the client machine
of Section 5. Times are median values of 11 runs, maximum relative difference with the median was 4.12%
for the private audits and 0.87% for the public ones.

N κ log2(q) m = n private public

1GB 135.3 283 5510 0.004s 5.0s P
B

C
-F

2
8
3

10GB 134.4 283 17422 0.014s 16.0s

100GB 133.6 283 55094 0.044s 50.5s

1TB 132.8 283 176300 0.141s 161.7s

7 Detailed state of the art

PDP schemes, first introduced by [5] in 2007, originally only considered static data storage. The original
scheme was later adapted to allow dynamic updates by [18] and has since seen numerous performance

21

https://crypto.stanford.edu/pbc/

improvements. However, PDPs only guarantee (probabilistically) that a large fraction of the data was not
altered; a single block deletion or alteration is likely to go undetected in an audit.

PoR schemes, first introduced at the same CCS conference in 2007 by [27], provide a stronger guarantee
of integrity: namely, that any small alteration to the data is likely to be detected. In this paper, we use the
term PoR to refer to any scheme which provides this stronger level of recoverability guarantee.

PoR and PDP are usually constructed as a collection of phases in order to initialize the data storage,
to access it afterwards and to audit the server’s storage. Dynamic schemes also propose a modification of
subsets of data, called write or update.

Since 2007, different schemes have been proposed to serve different purposes such as data confidentiality,
data integrity, or data availability, but also freshness and fairness. Storage efficiency, communication effi-
ciency and reduction of disk I/O have improved with time. Some schemes are developed for static data (no
update algorithm) , others extend their audit algorithm for public verification, still others require a finite
number of Audits and Updates. For a complete taxonomy on recent PoR schemes, see [41] and references
therein.

7.1 Low storage overhead

The schemes of Ateniese et al. [5] or Sebé et al. [36] are in the PDP model. Both of them have a storage
overhead in o(N). They use the RSA protocol in order to construct homomorphic authenticators, so that a
successful audit guaranties data possession on some selected blocks. When all the blocks are selected, the
audit is deterministic but the computation cost is high. So in practice, [5] minimizes the file block accesses,
the computation on the server, and the client-server communication. For one audit on at most f blocks,the
S-PDP protocol of [5] gives the costs seen in Table 10. A robust auditing integrates S-PDP with a forward
error-correcting codes to mitigate arbitrary small file corruption. Nevertheless, if the server passes one audit,
it guarantees only that a portion of the data is correct.

Table 10: S-PDP on f blocks : The file M is composed of N/b blocks of bit-size b. The computation is
made mod Q, where Q is the product of two large prime numbers.

Server Communication Client

Storage N +m O(1)

C
o
m

p
u
t. Setup N + f O(bf)

Audit O(f) O(1) O(f)

Later, Ateniese et al. [6] proposed a scheme secure under the random oracle model based on hash
functions and symmetric keys. It has an efficient update algorithm but uses tokens which impose a limited
number of audits or updates.

Alternatively, verifiable computing can be used to go through the whole database with Merkle hash trees,
as in [9, §6]. The latter proposition however comes with a large overhead in homomorphic computations and
does not provide an Audit mechanism. Verifiable computing can provide an audit mechanism, as sketched
in the following paper [20], but then it is not dynamic anymore.

Storj [40] (version 2) is a very different approach also based on Merkle hash trees. It is a dynamic PoR
protocol with bounded Audits. The storage is encrypted and cut into m blocks of size b. For each block and
for a selection of σ salts, a Merkle Hash tree with σ leaves is constructed. The efficiency of Storj is presented
Table 11.

Storj allows only a fixed number of audits (the number of seeds) before the entire data must be re-
downloaded to restart the computation. This is a cost of O(Nσ) operations for the client every σ audits,
and thus an average cost of O(N). Our PoR supports unlimited and fast audits, of cost always O(log n).

22

Table 11: Storj-V2: The file M is composed of N/b blocks of bit-size b. σ is the number of salts.
Server Comm. Client

Storage N+O(N
b
σ) O(N

b
σ)

C
o
m

p
u
t. Setup N+O(N

b
σ) O(Nσ)

Avg. Audit O(N + N
b
σ) O(N

b
log σ + N

σ
) O(N)

Update b+O(σ) O(bσ)

7.2 Fast audits but large extra storage

PoR methods based on block erasure encoding are a class of methods which guarantee with a high probability
that the client’s entire data can be retrieved. The idea is to check the authenticity of a number of erasure
encoding blocks during the data recovery step but also during the audit algorithm. Those approaches will
not detect a small amount of corrupted data. But the idea is that if there are very few corrupted blocks,
they could be easily recovered via the error correcting code.

Lavauzelle et al., [30] proposed a static PoR. The Init algorithm consists in encoding the file using a
lifted q-ary Reed-Solomon code and encrypting it with a block-cipher. The Audit algorithm checks if one
word of q blocks belongs to a set of Reed-Solomon code words. This algorithm has to succeed a sufficient
number of times to ensure with a high probability that the file can be recovered. Its main drawback is that
it requires an initialization quadratic in the database size. For a large data file of several terabytes this
becomes intractable.

In addition to a block erasure code, PoRSYS of Juels et al. [27] use block encryptions and sentinels in
order to store static data with a cloud server. Shacham and Waters [37] use authenticators to improve the
audit algorithm. A publicly verifiable scheme based on the Diffie-Hellman problem in bilinear groups is also
proposed.

Stefanov et al. [39] were the first to consider a dynamic PoR scheme. Later improvements by Cash et
al. or Shi et al. [12, 38] allow for dynamic updates and reduce the asymptotic complexity (see Table 12).
However, these techniques rely on computationally-intensive tools, such as locally decodable codes and
Oblivious RAM (ORAM), and incur at least a 1.5x, or as much as 10x, overhead on the size of remote
storage.

Recent variants include Proof of Data Replication or Proof of Data Reliability, where the error correction
is performed by the server instead of the client [3, 42]. Some use a weaker, rational, attacker model [32, 13],
and in all of them the client thus has to also be able to verify the redundancy; but we do not know of
dynamic versions of these.

Table 12: Shi et al. [38]: The file M is composed of N
b blocks of bit-size b.

Server Communication Client

Storage O(N) O(b)

C
o
m

p
u
t. Setup N +O(N

b
) O(N logN)

Audit O(b logN) O(b+ logN) O(b+ logN)

Update O(b logN) O(b+ logN) O(b+ logN)

Table 13 compares the additional server storage and audit costs between [38] and the two variants of our
protocol: the first one saving on communication, and the second one, externalizing the storage of the secret
audit matrix V . In the former case, an arbitrary parameter α can be used in the choice of the dimensions:
m = Nα and n = N1−α/ log2(q). This balances between the communication cost O(Nα) and the Client
computation and storage O(N1−α).

Note that efficient solutions to PoR for dynamic data do not consider the confidentiality of the file M ,
but assume that the user can encrypt its data in a prior step if needed.

23

Table 13: Comparison of our low server storage protocol with that of Shi et al. [38].

Shi Here Here

et al. [38] extern=T extern=F

Server extra-
storage

5N o(N) o(N)

Server audit cost O(b logN) N+o(N) N+o(N)

Communication O(b+ logN) O(
√
N) O(Nα)

Client audit cost O(b+ logN) O(
√
N) O(N1−α)

Client storage O(b) O(1) O(N1−α)

8 Conclusion

We presented new protocols for dynamic Proof of Retrievability, based on randomized linear algebra verifica-
tion schemes over a finite ring. Our protocols does not require any encoding of the database and is therefore
near optimal in terms of persistent storage on the server side. They include also efficient unlimited partial
retreivals and updates as well as provable retreivability from malicious servers. They are implementable with
simple cryptographic building blocks and are very efficient in practice as shown for instance on a Google
Compute platform instance. With the addition of any IND-CPA symmetric cipher the clients become nearly
stateless; adding a group where the discrete logarithm is hard also enables a public verification.

On the one hand, private proofs are very fast, less than a second on constrained devices. On the other
hand, while still quite cheap, the public verification could nonetheless be improved. Precomputations of
multiples of elements of K and U, combined with dedicated methods for dotproduct in the exponents
(generalizing of Shamir’s trick for simultaneous exponentiations) might improve the running time. More
generally, our verification is a dotproduct, or a polynomial evaluation when the control vectors are structured.
This verification itself could be instead computed on the Server side and only verified by a client in a recursive
manner, using for instance succinct non-interactive arguments of knowledge, like [8].

References

[1] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. An algebraic framework for pseudorandom
functions and applications to related-key security. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, pages 388–409, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg. doi:10.1007/978-3-662-47989-6_19.

[2] Lawrence Abrams. Amazon AWS Outage Shows Data in the Cloud is Not Always Safe. Bleeping
Computer, September 2019.

[3] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O. Karame. Mirror: En-
abling proofs of data replication and retrievability in the cloud. In 25th USENIX Security Symposium,
pages 1051–1068, Austin, TX, August 2016. USENIX Association. URL: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/armknecht.

[4] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of Space: When Space
Is of the Essence. In Security and Cryptography for Networks, pages 538–557. Springer, 2014. doi:

10.1007/978-3-319-10879-7_31.

[5] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Peterson, and
Dawn Song. Provable data possession at untrusted stores. In 14th ACM CCS, pages 598–609. ACM,
2007. doi:10.1145/1315245.1315318.

24

https://doi.org/10.1007/978-3-662-47989-6_19
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/armknecht
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/armknecht
https://doi.org/10.1007/978-3-319-10879-7_31
https://doi.org/10.1007/978-3-319-10879-7_31
https://doi.org/10.1145/1315245.1315318

[6] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable and efficient
provable data possession. In 4th international conference on Security and privacy in communication
networks, page 9. ACM, 2008. doi:10.1145/1460877.1460889.

[7] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Advances in Cryptology
— ASIACRYPT 2000, pages 531–545, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. doi:

10.1007/s00145-008-9026-x.

[8] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling Outside
the Box Improves Soundness. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference (ITCS 2020), volume 151 of LIPIcs, pages 5:1–5:32, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2020.5.

[9] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of computation over
large datasets. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 111–131,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:10.1007/978-3-642-22792-9_7.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sakura: A flexible coding for tree
hashing. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography
and Network Security, pages 217–234, Cham, 2014. Springer International Publishing.

[11] Erik Cambria, Anupam Chattopadhyay, Eike Linn, Bappaditya Mandal, and Bebo White. Storages are
not forever. Cognitive Computation, 9:646–658, 2017. doi:10.1007/s12559-017-9482-4.

[12] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability via oblivious RAM.
J. Cryptol., 30(1):22–57, January 2017. doi:10.1007/s00145-015-9216-2.

[13] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels. Pies: Public incompressible encodings for
decentralized storage. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, London, UK, November 11-15, 2019, pages 1351–1367. ACM, 2019. doi:

10.1145/3319535.3354231.

[14] Ivan Damg̊ard, Chaya Ganesh, and Claudio Orlandi. Proofs of replicated storage without tim-
ing assumptions. In Advances in Cryptology – CRYPTO 2019, pages 355–380. Springer, 2019.
doi:10.1007/978-3-030-26948-7_13.

[15] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness amplification. In
Theory of Cryptography, pages 109–127. Springer, 2009. doi:10.1007/978-3-642-00457-5_8.

[16] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of
space. In Advances in Cryptology – CRYPTO 2015, pages 585–605. Springer, 2015. doi:10.1007/

978-3-662-48000-7_29.

[17] Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, and Refik Molva. Efficient techniques for publicly
verifiable delegation of computation. In 11th ACM AsiaCCS, pages 119–128, New York, NY, USA,
2016. ACM. doi:10.1145/2897845.2897910.

[18] C. Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia. Dynamic prov-
able data possession. ACM Trans. Inf. Syst. Secur., 17(4):15:1–15:29, April 2015. doi:10.1145/

2699909.

[19] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic introduction to secure multi-party
computation. Foundations and Trends in Privacy and Security, 2(2-3):70–246, 2018. URL: http:

//dx.doi.org/10.1561/3300000019, doi:10.1561/3300000019.

25

https://doi.org/10.1145/1460877.1460889
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/s12559-017-9482-4
https://doi.org/10.1007/s00145-015-9216-2
https://doi.org/10.1145/3319535.3354231
https://doi.org/10.1145/3319535.3354231
https://doi.org/10.1007/978-3-030-26948-7_13
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1145/2897845.2897910
https://doi.org/10.1145/2699909
https://doi.org/10.1145/2699909
http://dx.doi.org/10.1561/3300000019
http://dx.doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019

[20] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and matrix
computations, with applications. In ACM CCS, pages 501–512, New York, NY, USA, 2012. ACM.
doi:10.1145/2382196.2382250.

[21] Ben Fisch. PoReps: Proofs of Space on Useful Data. Technical Report 678, IACR Cryptology ePrint
Archive, 2018. URL: http://eprint.iacr.org/2018/678.

[22] Rūsiņš Freivalds. Fast probabilistic algorithms. In J. Bečvář, editor, Mathematical Foundations of
Computer Science 1979, volume 74 of Lecture Notes in Computer Science, pages 57–69, Olomouc,
Czechoslovakia, September 1979. Springer-Verlag. doi:10.1007/3-540-09526-8_5.

[23] Alissa Greenberg. Google Lost Data After Lightning Hit Its Data Center in Belgium. Time, August
2015.

[24] W. B. Hart. Fast Library for Number Theory: An Introduction. In Third International Congress
on Mathematical Software, ICMS’10, pages 88–91, Berlin, Heidelberg, 2010. Springer-Verlag. http:

//flintlib.org.

[25] Nick Harvey. Chernoff bound, balls and bins, congestion minimization. Lecture 3 from CPSC 536N:
Randomized Algorithms, 2015. URL: https://www.cs.ubc.ca/~nickhar/W15/Lecture3Notes.pdf.

[26] Markus Jakobsson, Frank Thomson Leighton, Silvio Micali, and Michael Szydlo. Fractal merkle
tree representation and traversal. In Marc Joye, editor, Topics in Cryptology - CT-RSA 2003, The
Cryptographers’ Track at the RSA Conference 2003, San Francisco, CA, USA, April 13-17, 2003,
Proceedings, volume 2612 of Lecture Notes in Computer Science, pages 314–326. Springer, 2003.
doi:10.1007/3-540-36563-X_21.

[27] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In 14th ACM CCS, pages
584–597. ACM, 2007. doi:10.1145/1315245.1315317.

[28] Tracy Kimbrel and Rakesh Kumar Sinha. A probabilistic algorithm for verifying matrix products using
O(n2) time and log2 n + O(1) random bits. Information Processing Letters, 45(2):107–110, February
1993. doi:10.1016/0020-0190(93)90224-W.

[29] B. Laurie, A. Langley, E. Kasper, and Google. Certificate Transparency. RFC 6962, IETF, June 2013.
URL: https://tools.ietf.org/html/rfc6962.

[30] Julien Lavauzelle and Françoise Levy dit Vehel. New proofs of retrievability using locally decodable
codes. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 1809–1813, July
2016. doi:10.1109/ISIT.2016.7541611.

[31] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance,
editor, Advances in Cryptology — CRYPTO ’87, pages 369–378, Berlin, Heidelberg, 1988. Springer
Berlin Heidelberg. doi:10.1007/3-540-48184-2_32.

[32] Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs of storage. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019, Santa Barbara,
CA, USA, August 18-22, volume 11692 of Lecture Notes in Computer Science, pages 381–409. Springer,
2019. doi:10.1007/978-3-030-26948-7_14.

[33] Paz Morillo, Carla Ràfols, and Jorge L. Villar. The kernel matrix Diffie-Hellman assumption. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, pages
729–758, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. doi:10.1007/978-3-662-53887-6_27.

[34] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
doi:10.1017/CBO9780511814075.

26

https://doi.org/10.1145/2382196.2382250
http://eprint.iacr.org/2018/678
https://doi.org/10.1007/3-540-09526-8_5
http://flintlib.org
http://flintlib.org
https://www.cs.ubc.ca/~nickhar/W15/Lecture3Notes.pdf
https://doi.org/10.1007/3-540-36563-X_21
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1016/0020-0190(93)90224-W
https://tools.ietf.org/html/rfc6962
https://doi.org/10.1109/ISIT.2016.7541611
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-030-26948-7_14
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1017/CBO9780511814075

[35] David Reinsel, John Gantz, and John Rydning. The Digitization of the World from Edge to Core.
Technical Report US44413318, ”International Data Corporation (IDC)”, 2018.

[36] Francesc Sebé, Josep Domingo-Ferrer, Antoni Mart́ınez-Ballesté, Yves Deswarte, and Jean-Jacques
Quisquater. Efficient remote data possession checking in critical information infrastructures. IEEE
Transactions on Knowledge and Data Engineering, 20:1034–1038, 2008. doi:10.1109/TKDE.2007.

190647.

[37] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 90–107. Springer, 2008.
doi:10.1007/978-3-540-89255-7_7.

[38] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs of retrievability.
In ACM CCS, pages 325–336, New York, NY, USA, 2013. ACM. URL: http://elaineshi.com/docs/
por.pdf, doi:10.1145/2508859.2516669.

[39] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A scalable cloud file system with
efficient integrity checks. In 28th ACSAC, pages 229–238. ACM, 2012. doi:10.1145/2420950.2420985.

[40] Storj labs Inc. Storj: A decentralized cloud storage network framework. Technical Report v2, 2016.
URL: https://storj.io/storjv2.pdf.

[41] Choon Beng Tan, Mohd Hanafi Ahmad Hijazi, Yuto Lim, and Abdullah Gani. A survey on proof of
retrievability for cloud data integrity and availability: Cloud storage state-of-the-art, issues, solutions
and future trends. J. Network and Comp. Applications, 110:75–86, 2018. doi:10.1016/j.jnca.2018.

03.017.

[42] Dimitrios Vasilopoulos, Melek Önen, and Refik Molva. PORTOS: Proof of data reliability for real-
world distributed outsourced storage. In 16th International Joint Conference on e-Business and
Telecommunications - Volume 2: SECRYPT,, pages 173–186. INSTICC, SciTePress, 2019. doi:

10.5220/0007927301730186.

A Requirements for a Merkle hash tree implementation and overview
of the formalized protocol with the externalization strategy

Table 14 presents an overview of the fully formalized protocol.
This table is a merge of the algorithms in Section 6, for the Externalization strategy. Its correctness,

authenticity and retrievability are proven in Theorem 6. It uses two Merkle hash trees, one for the database
M and one for the externalized control vectors W.

We here give more details on the functions required in Section 4.3 for the handling of the Merkle hash
trees. A Merkle tree [31] is a tree where the value associated with a node is a one-way function of the values
of the node’s children. We here consider only binary Merkle Hash trees.

For our purpose, an implementation of such trees must provide the following algorithms:
• T ←MTCreateTree(X) creates a Merkle hash tree from a database X.
• r ←MTRootFromLeaves(X) computes the root of the Merkle hash tree of the whole database X.
• (L1, L2) ←MTElementAndPath(index, range,X, T) is an algorithm providing the client with the

requested list L1 of contiguous leaf elements Xi=index,j∈range, together with
the list L2 constituted by the blocks containing Xi=index,j∈range and by the corresponding lists of
Merkle tree uncles.

• r ← MTRootFromPath(index, range, L1, L2) computes the root of the Merkle hash tree from a
list L1 of contiguous leaf elements and the associated blocks and path of uncles L2.

27

https://doi.org/10.1109/TKDE.2007.190647
https://doi.org/10.1109/TKDE.2007.190647
https://doi.org/10.1007/978-3-540-89255-7_7
http://elaineshi.com/docs/por.pdf
http://elaineshi.com/docs/por.pdf
https://doi.org/10.1145/2508859.2516669
https://doi.org/10.1145/2420950.2420985
https://storj.io/storjv2.pdf
https://doi.org/10.1016/j.jnca.2018.03.017
https://doi.org/10.1016/j.jnca.2018.03.017
https://doi.org/10.5220/0007927301730186
https://doi.org/10.5220/0007927301730186

Table 14: Externalized PoR
Server Communications Client

Init
DB with N bits M ∈ Fm×nq

1λ,m,n,q,b←− rM ←MTRootFromLeaves(M)

Stores M
M←− t← dλ/ log2(q)e

TM ←MTCreateTree(M) s
$← St ⊆ Ftq

Form U← [sji]i=1...t,j=1...m ∈ Ft×mq

K
$← K

Stores W
W←− V← UM, W← EK(V)

TW ←MTCreateTree(W) rW ←MTRootFromLeaves(W)

discard M,V,W

Read
i,j←−

Mij (Mi,j , LM)←MTElementAndPath(i, j,M, TM)
Mij ,LM−→ rM

?
= MTRootFromPath(i, j,Mij , LM)

Write rM ←MTRootFromPath(i, j,M′ij , LM)

M′ij
(W1..t,j , LW)←MTElementAndPath(1..t, j,W, TW)

W1..t,j ,LW−→ rW
?
= MTRootFromPath(1..t, j,W1..t,j , LW)

V1..t,j ← DK(W1..t,j)

V1..t,j ← V1..t,j + (M′ij −Mij)U1..t,i

Mij ←M′i,j
M′
ij ,W

′
1..t,j←− W′

1..t,j ← EK(V1..t,j)

W1..t,j ←W′
1..t,j rW ←MTRootFromPath(1..t, j,W′

1..t,j , LW)

Audit
Form x← [r, r2, . . . , rn]ᵀ

r←− r
$← S ⊆ Fq

y ←Mx
y,W−→ rW

?
= MTRootFromLeaves(W)

V← DK(W)

Form x← [r, r2, . . . , rn]ᵀ

Uy
?
= Vx

The requirements are thus that:

∀i, r,X,MTRootFromLeaves(X) =

MTRootFromPath (i, r,

MTElementAndPath(i, r,X,MTCreateTree(X))) (15)

As mentioned in Section 4.3, we need to consider two formats which contain the same N bits of data:
• A row-major matrix M ∈ Fm×nq where N = m × n × blog2qc. In this format, and for 1 ≤ i ≤ m and

1 ≤ j ≤ n, Mij ∈M is named a slot.
• The outsourced data can also be represented as a single continuous file F of dN/be equal sized blocks:
B1, B2, . . . , BdN/be, of size b. This blocking is independent of that used for M .

Then, let H be a hash function, {0, 1}∗ → {0, 1}2λ, for a security parameter λ ≥ 128, that is a hash
function on more than 256 bits.

For instance, for MTElementAndPath, the client wants to read the slot Mij . This corresponds to the

block position k =
⌈

(i−1)n+j
b

⌉
. She more precisely receives from the server Mij , the block Bk containing

Mij and the set of hash tree uncles Lk corresponding to Bk. She can then check the root of the hash tree
with Bk and Lk.

Note that in practice, the algorithms for handling Merkle tree operations might need slightly more
inputs (taken implicitly from the respective states of the Client and the Server) than those mentioned in
Equation (15). In the following, whenever needed, these extra inputs will be added to the specification.

To be able to run this algorithm, the Server must therefore handle the Merkle hash tree associated to a
database. This means having access to an algorithm creating the hash tree, and another algorithm to access
the nodes. For these two tasks we use classical implementations:

28

• More precisely, T ←MTCreateTree(X) computes all the nodes of the Merkle hash tree of the whole
database X viewed as an array of blocks of size b. A possibility is then to use [26, Algorithm 1].

• h ← MTNode(level, index, T) provides access to the node numbered index at the required level of
the tree. If all the nodes are stored by the Server this is just a labelling of all these nodes. Another
possibility for the server is to have a time/memory trade-off as in [26, Algorithm 3]. The idea is to
store only the root of subtrees and to recompute hashes within subtrees.

For this, the server arranges hashes of the blocks as leafs in a binary hash tree of depth δ satisfying:

δ =

⌈
log2

(
N

b

)⌉
. (16)

The nodes above the leafs are hashes of their two children.
The size of this tree T is

∑d
i=1 2λ2i = 2λ(2δ+1−1) < 8λb = 8λNb . This size is negligible if 1024 ≤ 8λ� b.

For instance the following choice for b gives an always negligible size: b = O (λ log(N)).
Assuming the hash function is linear to compute, the cost of producing the tree is O(N). This additional

algorithm also immediatly gives a possible implementation for the computation of the root: build the tree
and output its root as in Algorithm 6.

Algorithm 6 rX ←MTRootFromLeaves(X)

Input: a data base X - System parameter: b -
Output: the root of the Merkle Hash tree rX

1: T ←MTCreateTree(X);
2: return root of T .

Now, to fetch a slot and compute the path of uncles, one just needs to have access to the tree nodes, as
illustrated in Algorithm 7. The case of a range of contiguous slots is similar: consider just the uncles of the
sub-tree linking all these contiguous blocks.

Algorithm 7 (Xij , L)←MTElementAndPath(i, j,X, T)

Input: i ∈ [1..m], j ∈ [1..n], X the database, T the Merkle hash tree - System parameter: n,m, b -
Output: Xij and L the list constituted by the block containing Xij and by the corresponding list of Merkle

tree hashes.
1: k ←

⌈
(i−1)n+j

b

⌉
; B ← k-th block of X; L← {B};

2: for i = 1..depth(T) do
3: if k is odd then
4: L← L ∪ {MTNode(i, k − 1, T)};
5: else
6: L← L ∪ {MTNode(i, k + 1, T)};
7: end if
8: k ← bk/2c;
9: end for

10: return (Xi,j , L)

Finally, to check the correctness of a slot Xij , we need the block Bk and the list of δ uncles and to recom-
pute the root, only from this list and the block. Therefore, a possible implementation of this recomputation
is given in Algorithm 8, first with a single block. Here also the case of a range of contiguous slots is similar.
The idea is to consider L as the union of the list of uncles and the block itself as its first element. Then the
new slot Xij to be considered replaces (for instance after a write operation) the old slot within the block Bk
and the root is computed from this new block and the path of hashes.

29

Algorithm 8 r ←MTRootFromPath(i, j,Xi,j , L)

Input: i ∈ [1..m], j ∈ [1..n], a slot Xij , a list L constituted by the block Bk and the corresponding list of
hashes - System parameter: n,m, b -

Output: r the root of the Merkle Hash tree.
1: B ← L[1]; `← (i− 1)n+ j mod b;
2: B` ← Xi,j ; {Update with the new value}
3: r ← H(B); k ←

⌈
(i−1)n+j

b

⌉
.

4: for i = 2..length(L) do
5: if the (i− 1)th bit of k is 1 then
6: r ← H(L[i], r);
7: else
8: r ← H(r, L[i])
9: end if

10: end for
11: return r

The cost to recompute the root is that of hashing one block, and then of computing δ additional hashes
of two hashes, that is O(b+ δλ). The difficulty for an attacker to pass this integrity test is that of the second
preimage of the hash function, see [10], e.g., for more details.

From these, it is then easy to implement the API of Section 4.3: Table 15 propose an overview of the
implementation of MTInit, MTVerifiedRead and MTVerifiedWrite.

Table 15: Implementation of MTInit, MTVerifiedRead and MTVerifiedWrite.

• MTInit(1λ, b,X) 7→ (rM |M,TM)

Verifier rM ←MTRootFromLeaves(M)

Comm. (M) ↓
Server TM ←MTCreateTree(M)

• MTVerifiedRead(i, j, rM |M,TM) 7→Mi,j

V. rM
?
= MTRootFromPath(Mi,j , i, j, LM)

C. (i, j) ↓ (Mi,j , LM) ↑
S. MTElementAndPath(i, j,M, TM)→ (Mi,j , LM)

• MTVerifiedWrite(i, j,M ′i,j , rM |M,TM)

After MTVerifiedRead(i, j, rM |M,TM):

V. rM ←MTRootFromPath(M ′i,j , i, j, LM)

C.
(
M ′i,j

)
↓

S. updates M , TM

30

	Introduction
	The need for integrity checks
	Existing solutions
	Our Contributions
	Organization

	Security model
	Correctness
	Authenticity and attacker model
	Retrievability

	Time-space tradeoff lower bound
	Retrievability via verifiable computing
	Overview
	Matrix based approach for audits
	Merkle hash tree for updates

	Experiments with Google cloud services
	Parameter selection
	Two Prime Calculations
	Experimental Design
	Audit compared to checksums
	Parallel audits using MPI
	Communication and client computation

	Formalization and Security analysis
	Improvements on the control vectors
	Formal protocol descriptions
	Security
	Publicly verifiable variant

	Detailed state of the art
	Low storage overhead
	Fast audits but large extra storage

	Conclusion
	Requirements for a Merkle hash tree implementation and overview of the formalized protocol with the externalization strategy

