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Abstract. In 1995, in his seminal paper introducing the abstract argumentation framework, Dung has also established the first
relationship between this framework and a logical framework (in this case: logic programming). Since that time, a lot of work
have pursued this path, proposing different definitions, uses and exhibiting distinct relationships between argumentation and
logic. In this paper, we present a survey of existing works about this topic and more especially those that address the following
question: “How logic has been used for capturing various aspects or parts of Dung’s argumentation”. This survey covers many
different approaches but is not intended to be totally exhaustive due to the huge quantity of papers in this scope. Moreover, due
to the fact that each approach has its own specificities, sometimes antagonistic with the other approaches, and is also justified
by its own context of definition or use, the aim of this survey is not to identify one approach as being better than another.

Keywords: Abstract argumentation, logics

1. Introduction

Argumentation has become an essential paradigm for Knowledge Representation and, especially, for
reasoning from contradictory information [2,54] and for formalizing the exchange of arguments between
agents in, e.g., negotiation [3]. Two main classes of approaches exist in computational argumentation:
structured argumentation and abstract argumentation. The difference between these classes is on their
starting point: works corresponding to the first class are about building arguments and identifying their
relationships, whereas works in the second class consider that a collection of arguments interacting
with each other is given [54], thereby disregarding the topic of building altogether. Because of these
“abstract inputs”, abstract frameworks have greatly eased the modelling and study of argumentation,
allowing to focus, in particular, on the different ways for determining “acceptable” sets of arguments
called extensions.

The relationship between abstract argumentation and logic has actually been exploited right from the
start, in the seminal article [54] introducing abstract argumentation where Dung establishes a formal
equivalence between argumentation frameworks and logic programs. Since this work, this relationship
has been the theme of intensive research, and several correspondences between abstract argumentation
and different logical theories have been established. The number of works in this topic is so huge that
there is a critical need to clarify the links between all these works and that is the main aim of our paper.
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So, this article is a survey about abstract argumentation papers that have a strong emphasis on logic.
Two categories of approaches can be identified: (1) approaches taking advantage of logic to capture
various aspects of abstract argumentation; (2) approaches embedding “logical structures” into abstract
argumentation.1

For this paper, considering that this survey is published on the occasion of the 25 years of Dung’s
approach, we have chosen to discuss only works related to category (1) for the following reason: this a
well-delimited category whereas the second one is less clearly defined; in particular, one can found in
the second category some approaches also related to the structured argumentation and not only to the
abstract argumentation.

Focussing on the many papers that provide an answer to the question “How can logic be used for
achieving abstract argumentation?”, we attempt to follow the same pattern for each work reviewed:2

• Since at the heart of these works is a correspondence between argumentation frameworks and logi-
cal formulae (or sets thereof), we first identify the entry points of the correspondence. Indeed, while
the main input is usually an argumentation graph, some approaches handle an extended argumen-
tation graph, be it bipolar, recursive, weighted, with collective interactions, and so on. There may
also be extra inputs, for instance, special requirements and constraints, a distinguished subset of the
arguments in the graph, a given argumentative semantics.

• Second, the aim of the approach reviewed is explicited, whether is it to provide a logical encoding of
an argumentation graph, or to answer a question such as “is this subset of the arguments a preferred
extension of the argumentation graph?”.

• Third, we have a look at the type of logic employed in the work reviewed. Propositional logic is the
most widely used, either as such or extended to Quantified Boolean Formulae, but some approaches
resort to (possibly many-sorted) predicate logic, modal logics, as well as constructive logics (in-
cluding intuitionistic logic) either directly or through a theoretical account of logic programming.

• Fourth, we list the auxiliary items involved in the approach at hand, e.g., labellings, signed atoms.
• Fifth, we deal with the question: Has the work reviewed been implemented?

In addition, the main topic in each case is of course about the role of logic in the work reviewed.
We now present the content of our survey in more detail. Section 2 gives the necessary background

about abstract argumentation [6,28,31,54,81]. Then the presented works are split over several sections,
as follows.

Section 3 is devoted to a single approach, Abstract Dialectical Frameworks (see for instance [21]), a
general formalism for representing complex dependence links between arguments. In our terminology,
the input consists of a dependence graph (nodes represent arguments and edges represent dependence
links) together with an acceptance condition (in the form of a logical formula) attached to each node
and the outputs are the logical models of the acceptance conditions, permitting to retrieve labellings and
extensions.

The approaches reviewed in Section 4 aim at giving a logical theory (in propositional logic) that en-
codes an argumentation graph [30,33,52,67]. Multiple approaches are reviewed, that mainly vary on the
logic used for the encoding: propositional logic, either pure or extended in a number of alternative ways

1For instance, an encoding of logic programs under the form of argumentation frameworks, or the creation of an argumenta-
tion framework using logical knowledge bases (see for instance, papers as [14]).

2Note that, even if we tried to give an uniform presentation of the different approaches, some of them will be sometimes
over-represented, either because of the huge number of publications concerning them, or because of the need of some additional
explanations (examples have been added in order to illustrate some complex notions used in the presented approaches).



(sorted language, modal-like language). Additional properties may map models to extensions according
to a given semantics.

Section 5 reports on two approaches whose aim is to express properties over a given argumentation
graph, so that these properties can be used to characterize appropriate labellings of the graph [4,49,50].
Thus, the input consists of an argumentation graph (or an abstract dialectical framework, see Section 3)
together with an extension-based semantics σ . The main feature of both approaches is that the output
is a Quantified Boolean Formula whose models coincide with the σ -extensions of the graph (i.e., using
names of the nodes of the graph as propositional atoms, the models of the formula are exactly the σ -
extensions of the graph).

Section 6 is mainly devoted to an approach called YALLA [55],3 whose language permits not only
to express an argumentation framework by means of specific formulae of first-order logic but also to
express properties of update operators in dynamic argumentation. As an aside, a distinctive feature of
YALLA is that a reference universe of argumentation is assumed, which makes it possible to capture
cases of incomplete knowledge. The second approach reported in the same section proposes a proposi-
tional logic to specify and to check requirements in argumentation graphs [93]. The input consists of an
argumentation graph together with constraints (such as: argument a or argument b is acceptable) and the
outputs are formulae encoding the graph and the constraints, so that the models of the formulae capture
properties of the argumentation graph.

In Section 7 are reviewed two approaches, [11,12] and [59], that, given an extension-based semantics
σ , produce a formula �σ whose satisfiability answers the σ -extension problem for the input (usually, an
argumentation graph and a candidate subset of the arguments): given a candidate S, is S an extension
according to the semantics σ?

The purpose of the two approaches reviewed in Section 8, [25,36], is to encode labelling-based se-
mantics by means of a set of logical formulae (these express the different constraints associated with a
particular kind of labelling). Thus, the input is an argumentation graph together with a labelling-based
semantics s and the output is a logical theory characterizing the labelling-based semantics s (depending
on s, it can be that the logic needed is second-order).

The purpose of the works reviewed in Section 9 is to associate a logic program with an argumentation
graph in such a way that logic programming semantics, applied to the logic program, capture argumen-
tative semantics. In this research line, many works exist from the seminal work presented by Dung [54]:
for instance, [24,26,61,83,84,89]. So, this section describes different mappings which allow to trans-
form an argumentation graph into a logic program, all of them offering different characterizations of
argumentative semantics in terms of logic programming semantics.

Section 10 reviews three methods for expressing abstract argumentation in modal logic [25,70,93],
two of them taking as input an argumentation graph together with a labelling (the third method regards
argumentative semantics as primitives of the language) while the output consists of modal formulae
expressing the distinctive properties of a given argumentative semantics.

Section 11 deals with approaches resorting to a constructive logic (either intuitionistic or Nelson’s),
where constructive negation is used to represent an attack in argumentation graphs and the models of the
resulting formulae characterize the argumentative extensions of the input graph [63,68].

Lastly, Section 12 is an attempt to wrap all this up with proposing tentative conclusions suggested by
the comparisons discussed throughout Sections 3–11.

3YALLA: Yet Another Logic Language for Argumentation.



Disclaimer. We have adopted (or at least attempted to) a single procedure to present all the works
reviewed in our survey, in order to make it easier for the reader to compare these works. Please note that,
in the last section, we go through the same example treated in turn by all approaches in order to better
illustrate the behaviour of each of them. However, it is not our aim to assess them in any way, and we
are definitely not to claim that such and such approach is better than another approach.

Moreover, despite the apparent similarity in the approaches (they are all based on logic and all at-
tempt to capture Dung’s argumentation model), it would be a formidable task to provide a comparative
evaluation.

Finally, we make no claim for exhaustiveness. Some articles on the very topic of the survey may
have gone unnoticed from us, others have been left out because we felt them having more emphasis on
another topic or still other reasons. Of course, omitting to cite or to discuss these articles bears no quality
assessment whatsoever on our behalf.

2. Abstract argumentation: Definitions and notations

2.1. Argumentation frameworks

According to [54], an abstract argumentation framework consists of a set of arguments together with
a binary relation between arguments.

Def. 1 (AF [54]). An argumentation framework (AF) is a pair (A,R) where A is a set4 of abstract
arguments and R ⊆ A×A is a binary relation on A, called the attack relation: (a, b) ∈ R means that a

attacks b (a is the source of the interaction and b is the target).

An AF can be represented by a directed graph, called argumentation graph,5 with vertices as arguments
and edges as attacks.

Ex. 2.1.1. The AF defined by A = {a, b, c, d} and R = {(a, b), (b, c), (d, b)} can be represented by
the following graph (arguments are given in a circle, and attacks are denoted by simple arrows):

Many extensions of this framework have been proposed. For instance, bipolar abstract frameworks
have been introduced first in [71,91]. They include a second relation between arguments, the support
relation, that is a positive interaction (in contrast to the attack relation that is a negative one). In [31], the
support relation is left general so that the bipolar framework keeps a high level of abstraction.

Def. 2 (BAF [31]). A bipolar argumentation framework (BAF) is a triple (A,Ratt,Rsup) where A is a
set of abstract arguments, Ratt ⊆ A × A (resp. Rsup ⊆ A × A) is a binary relation on A, called the
attack (resp. support) relation.

4Generally assumed to be finite.
5We will often use “argumentation graph” in place of “argumentation framework”.



A BAF can still be represented by a directed graph with vertices as arguments and two kinds of edges
(attacks denoted by simple arrows and supports denoted by double arrows).

Ex. 2.1.2. Consider the following BAF with only one support.

However, there is no single interpretation of the support, and a number of researchers proposed spe-
cialized variants of the support relation (deductive support [17], necessary support [79,80], evidential
support [81,82]). These proposals have been developed quite independently, based on different intu-
itions and with different formalizations. In [32], is presented a comparative study in order to restate
these proposals in a common setting, the bipolar argumentation framework (see also [41] for another
survey).

For instance, evidential support is based on the intuition that every argument must be supported by
some chain of supports rooted in special arguments called prima-facie. Considering a BAF with an
evidential understanding of the support leads to Evidence-Based Argumentation Frameworks (EBAF)
which can be defined as follows [29]:6

Def. 3 (EBAF). An Evidence-Based Argumentation Framework (EBAF) is a 4-tuple (A,R, E,P) where
A is a set of arguments, R ⊆ 2A \ {∅} × A is the attack relation, E ⊆ 2A \ {∅} × A is the support
relation, and P ⊆ A is the set of distinguished prima-facie arguments.

Another extension of AF is the higher-order AF with the idea of encompassing attacks to attacks in
abstract argumentation frameworks (see [8] in the context of an extended framework handling argument
strengths and their propagation). Then, higher-order attacks have been considered for representing pref-
erences between arguments (second-order attacks in [76]), or for modelling situations where an attack
might be defeated by an argument, without contesting the acceptability of the source of the attack [7]. At-
tacks to attacks and supports have been first considered in [64] with higher level networks, then in [92];
and more generally, in [42] an Attack–Support Argumentation Framework is proposed which allows for
nested attacks and supports, i.e. attacks and supports whose targets can be other attacks or supports, at
any level. Different names are given to these higher-order AF, depending on the kind of interaction that
is handled: AFRA or RAF (with only attacks), ASAF or REBAF (with attacks and supports, necessary
supports for ASAF and evidential supports for REBAF).

For instance, the definition of a RAF is as follows.

Def. 4 (RAF [28]). A recursive argumentation framework (RAF) is a tuple 〈A,R, s, t〉 where A is a
finite and non-empty set of arguments, R is a finite set disjunct from A representing attack names, s is
a function from R to A mapping each interaction to its source, and t is a function from R to (A ∪ R)

mapping each interaction to its target.

Note that an AF can be viewed as a particular RAF with t being a mapping from R to A.
A RAF can also be represented graphically.

Ex. 2.1.3. The RAF in which an attack named α (with s(α) = a and t(α) = b ∈ A) being the target of
an attack β (with s(β) = c) can be represented by:

6The first definition of EBAF was given in [81] then modified in [87].



(arguments are in a circle and attack names are in a square)

Still other extensions exist such as frameworks with collective interactions (SETAF: the source of
interaction can be a set of arguments and not only one argument, as in EBAF or REBAF) and frameworks
with weights over arguments or interactions.

2.2. Acceptability semantics

Case of AF. Acceptability semantics can be defined in terms of extensions [54] following basic re-
quirements:

• An extension can “stand together”. This corresponds to the conflict-freeness principle.
• An extension can “stand on its own”, namely is able to counter all the attacks it receives. This

corresponds to the defence principle.
• Reinstatement is a kind of dual principle. An attacked argument which is defended by an extension

is reinstated by the extension and should belong to it.
• Stability expresses the fact that each argument that does not belong to the extension is attacked by

the extension.

Standard AF semantics are defined as follows:

Def. 5 (Extension-based semantics [54]). Given (A,R) and S ⊆ A.

• S is conflict-free iff (a, b) /∈ R for all a, b ∈ S.
• a ∈ A is acceptable w.r.t. S (or equivalently S defends a) iff for each b ∈ A with (b, a) ∈ R, there

is c ∈ S with (c, b) ∈ R.
• The characteristic function of (A,R) is defined by: F(S) = {a ∈ A such that a is acceptable

w.r.t. S}.
• S is admissible iff S is conflict-free and S ⊆ F(S).
• S is a complete extension of (A,R) iff it is conflict-free and a fixed point of F .
• S is the grounded extension of (A,R) iff it is the minimal (w.r.t. ⊆) fixed point7 of F .
• S is a preferred extension of (A,R) iff it is a maximal (w.r.t. ⊆) complete extension.
• S is a stable extension of (A,R) iff it is conflict-free and for each a /∈ S, there is b ∈ S with

(b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies the conflict-freeness,
defence and reinstatement principles.

Ex. 2.1.1 (cont’d) In this example, the set {a, c, d} is the grounded, complete, preferred and stable
extension.

7It can be proved that the minimal fixed point of F is conflict-free.



Acceptability semantics can also be defined in terms of labellings, as in [6], for instance.

Def. 6 (Labelling [6]). Let (A,R) be an AF. A labelling for (A,R) is a total function � : A →
{in,out,und}.

Let � be a labelling of (A,R).

• An in-labelled argument is said to be legally in iff all its attackers are labelled out.
• An out-labelled argument is said to be legally out iff at least one of its attackers is labelled in.
• An und-labelled argument is said to be legally und iff it doesn’t have an attacker that is labelled
in and not all its attackers are labelled out.

Standard labelling-based semantics are defined as follows:

Def. 7 (Labelling-based semantics [6]). Let � be a labelling for (A,R).

• � is an admissible labelling iff each in-labelled argument is legally in and each out-labelled
argument is legally out.

• � is a complete labelling iff each in-labelled argument is legally in, each out-labelled argument
is legally out, and each und-labelled argument is legally und.

• � is the grounded labelling iff it is the complete labelling that minimizes (w.r.t. ⊆) the set of in-
labelled arguments.

• � is a preferred labelling iff it is a complete labelling of (A,R) that maximizes (w.r.t. ⊆) the set of
in-labelled arguments.

• � is a stable labelling iff it is a complete labelling with no und-labelled argument.

Alternative characterizations of complete labellings can be found in [25]. Let us recall them as they
will be used in the remainder of this document:

Prop. 1 (Characterizing complete labellings). Let � be a labelling for (A,R).

(1) � is a complete labelling iff for each argument a, it holds that:

• If a is in-labelled, then all its attackers are out-labelled
• If a is out-labelled, then it has at least one attacker that is in-labelled
• If a is und-labelled, then it has at least one attacker that is not out-labelled and it does not

have an attacker that is in-labelled

(2) � is a complete labelling iff for each argument a, it holds that:

• a is in-labelled iff all its attackers are out-labelled
• a is out-labelled iff it has at least one attacker that is in-labelled.

Case of extended AF (BAF, RAF). The associated semantics are very often defined using a flattening
process: the extended AF is turned into an AF, then the AF semantics are applied (see for instance [7]).
In recent works (see for instance [29]), semantics for extended AF have been defined directly.

3. ADF (Abstract Dialectical Frameworks)

The aim of the ADF approach is the definition of a general framework for representing complex de-
pendence links between arguments (these links impact the acceptability of the arguments). It is rather



a theoretical approach but several implementations have been proposed. This approach has been intro-
duced many years ago and one of the more recent synthetic paper about ADF is [21].

The input consists of a dependence graph (nodes are arguments, statements or positions and edges are
dependence links) together with an acceptance condition attached to each node. This condition can be
a propositional formula8 expressing the way the status of the argument is impacted by the status of its
parents in the graph. Following the acceptance conditions, one can encode an AF, a BAF (with different
meanings for the support relation), a framework with sets of attacking arguments (SETAF). One can
also encode an AF with higher-order interactions through the addition of meta-arguments representing
interactions.

The outputs are the interpretations of the set of acceptance conditions. These interpretations allow to
retrieve some labellings and extensions.

In this approach, the logic is used for encoding and interpretating the dependence links.

3.1. Main definitions

An ADF is a directed graph defined as follows:

Def. 8. An abstract dialectical framework (ADF) is a tuple D = (S, L, C) where S is a finite set of
nodes, L ⊆ S × S is a set of links, and C = {ϕs |s ∈ S} is a set of propositional formulae (acceptance
conditions). Each ϕs ∈ C is built over the set par(s) = {a ∈ S|(a, s) ∈ L} (i.e. par(s) is the set of the
parents of s).

So the status of an argument depends on the status of its parents in the graph following the acceptance
condition attached to the argument. The ideas are the following ones:

First, the status “accepted” (resp. “rejected”, “unknown”) of an argument is related to its assignment
with the truth value t (resp. f , u).9

Second, let s be an argument, let par(s) be the set of the parents of s in the dependence graph, let
ϕs be the acceptance condition associated with s and consider R ⊆ par(s). ϕs(R) denotes the truth
value of ϕs using the truth value of the elements of R. Then ϕs(R) is used for determining the status
of s: if ϕs(R) = t (resp. f , u) then s is accepted (resp. rejected, unknown).

Note that the dependence links can be extracted from the acceptance conditions. So in general the
ADF is defined only with the set of arguments and their acceptance conditions: D = (S, {ϕs |s ∈ S}).
ADF semantics. In terms of semantics, two operators can be defined, one for two-values semantics and
another one for three-valued semantics. The idea behind these operators is the following one: starting
from a given interpretation, the use of the operator allows to browse the set of possible interpretations
(two-valued or three-valued) taking into account the impact of acceptance conditions on the interpreta-
tions. The aim is to find a fixed point if it exists (it is always the case for three-valued operators).

Def. 9 (Two-valued operator). Let D = (S, {ϕs |s ∈ S}) be an ADF. The two-valued operator GD takes
a two-valued interpretation v of each argument and returns a two-valued interpretation v′ mapping each
argument s to the truth value that is obtained by evaluating its acceptance condition ϕs with v.

Thus, for v a two-valued interpretation, GD(v) = v′ where for s ∈ S, v′(s) = v(ϕs).

8In ADF, this condition is generally a propositional formula, but there also exist some works on ADF that specify acceptance
conditions as Boolean functions that may be represented in different ways. In this survey, we only consider the case where
acceptance conditions are propositional formulae.

9t for true, f for false and u for unknown.



In the case of a three-valued operator, the idea is similar. However, due to the existence of the third
value (u for unknown) a specific technique must be used:

Def. 10 (Three-valued operator). Let D = (S, {ϕs |s ∈ S}) be an ADF. The three-valued operator
�D takes a three-valued interpretation v of each argument and returns a three-valued interpretation v′
corresponding to the consensus truth value for the acceptance condition where this consensus takes into
account all possible two-valued interpretations w that extend the input interpretation v.

Then semantics for interpretations can be defined using either a two-valued operator or a three-valued
operator and a preordering between interpretations. Two preorderings can be defined:

Def. 11 (Preordering �t on two-valued interpretations). Let (S, {ϕs |s ∈ S}) be an ADF. Let v1 and v2

be two-valued interpretations. v1 �t v2 if and only if ∀s ∈ S, v1(s) = t ⇒ v2(s) = t .

Def. 12 (Preordering �i on three-valued interpretations). Let (S, {ϕs |s ∈ S}) be an ADF. Let v1 and v2

be three-valued interpretations. v1 �i v2 if and only if ∀s ∈ S, v1(s) ∈ {t, f } ⇒ v2(s) = v1(s).

Some semantics can be defined as follows:10

Def. 13. Let D = (S, {ϕs |s ∈ S}) be an ADF. Let v be a three-valued interpretation.

• v is complete for D iff v = �D(v).
• v is admissible for D iff v �i �D(v).
• v is preferred for D iff v is �i-maximal admissible.
• v is grounded for D iff v is the �i-least fixed point of �D.

Note that the well-known relationships between AF semantics also hold for ADF semantics:

Prop. 2. Let D = (S, {ϕs |s ∈ S}) be an ADF.

• Each stable model of D is a two-valued model of D.
• Each two-valued model of D is a preferred interpretation of D.
• Each preferred interpretation of D is complete.
• Each complete interpretation of D is admissible for D.
• The grounded interpretation of D is complete.11

ADF as a modelling tool. An ADF can be used for modelling variants of abstract argumentation frame-
works such as AF, BAF, RAF. A significant survey can be found in [85,86].

• Case of AF: Let (A,R) be an AF, its associated ADF is defined by the pair (A, {ϕa|a ∈ A}) with
ϕa = ∧

b∈A,(b,a)∈R ¬b. Each Dung’s semantics can be retrieved using ADF semantics.
• Case of AF with annotated links and/or preferences: An ADF can be used for expressing the impact

of annotated links representing qualitative or quantitative preferences and/or preorderings between
arguments.
First, consider the case of a weighted AF (i.e. an AF with numerical weights attached to each
interaction representing quantitative preferences).

10The definition for the stable models is not given here but can be found in [21] (a model being an interpretation v such that
∀s ∈ S, v(s) = v(ϕs)).

11Note that the grounded interpretation is unique.



∗ A positive (resp. negative) value on a link means that this link is a support (resp. attack) link;
∗ A link is said “active” if its source node is accepted;
∗ A node will be accepted if the sum of the weights of all the active links pointing to it is positive

(strategy sum-of-weights – sow).

Example 3.2.6 given in the next section illustrates the above ideas.
Qualitative preference can be handled in a similar way, particularly for the input arguments. Note
also that these kinds of annotated links can be used for expressing richer interactions such as,
for instance, those used in legal reasoning (notions of “valid”, “strong”, “credible” and “weak”
arguments and principles of “scintilla of evidence”, “preponderance of evidence”).

• Case of BAF: An annotated AF can be used for modelling a BAF (particularly the qualitative version
with + on the support links and − on the attack links). Nevertheless, as different meanings exist for
the support, several encodings can be defined (see Ex. 2.1.2 in the next section).

• Case of AFRA, RAF: In an ADF, no recursive link exists. So in order to represent an AFRA or a
RAF with an ADF, flattening techniques must be used (for instance, the one described in [7] for
translating an AFRA into an AF). See Ex. 2.1.3 in the next section.

3.2. Some examples

The previous ADF definitions are illustrated on the following examples (most of them are issued from
[21]).

Ex. 3.2.1. Consider the ADF represented by:

Intuitively, ϕa states that a should be accepted. Condition ϕb expresses a kind of self-support for b. ϕc

says that c will be accepted if both a and b are accepted whereas ϕd says that d is attacked by b. Note
that strictly speaking, the attack from b to d is represented by the assertion “If b is accepted then d is
not accepted” or equivalently “If d is accepted then b is not accepted”, which is a necessary condition
for the acceptance of d. It is worth noticed that such statements refer, implicitly, to argumentation se-
mantics. The converse condition which writes “If b is not accepted then d is accepted” expresses a kind
of reinstatement. So, at least for the attack links, the acceptance condition is a necessary and sufficient
condition.

The mechanism used for the two-valued operator is illustrated by Fig. 3 (given at the end of this paper)
that represents the evolution of interpretations by the operator GD (nodes = interpretations and edges =
the relation between two interpretations defined by the operator).

Consider for instance v = {a �→ t, b �→ t, c �→ t, d �→ t}. For each acceptance condition, it can be
seen how the operator produces the updated interpretation v′:



• ϕa = 
: so v′(a) = t (v has no impact since a has no parent in the ADF);
• ϕb = b: so v′(b) = v(b) = t (v has an impact since b is its own parent);
• ϕc = a ∧ b: so v′(c) = v(a) ∧ v(b) = t (v has an impact since a and b are the parents of c);
• ϕd = ¬b: so v′(d) = ¬v(b) = f (v has an impact since b is the parent of d).

So, the operator applied to v = {a �→ t, b �→ t, c �→ t, d �→ t} produces the interpretation GD(v) =
v′ = {a �→ t, b �→ t, c �→ t, d �→ f }.

Consider now v′ = {a �→ t, b �→ t, c �→ t, d �→ f } and, using the same way, compute the interpreta-
tion GD(v′) = v′′. It is easy to see that v′′ is exactly v′. So v′ is a fixed point for the operator GD. Note
that, in this example, there exist 2 fixed points (each fixed point being by definition a two-valued model).

This example also illustrates the preordering �t , see Fig. 4 (given at the end of this paper). Note that
the set of two-valued interpretations over �t consists of a complete lattice (the top element of the lattice
is at the top of the figure and the bottom element is at the bottom of the figure).

Unfortunately, due to the important number of three-valued interpretations of this example (34 = 81
three-valued interpretations), we do not represent the �i preordering and the corresponding complete
meet-lattice in a figure. Nevertheless, some interesting three-valued interpretations can be identified:

• v0 = {a �→ t, b �→ u, c �→ u, d �→ u},
• v1 = {a �→ t, b �→ t, c �→ t, d �→ f } that is also a two-valued interpretation and a fixed point of

GD (so a two-valued model),
• v2 = {a �→ t, b �→ f, c �→ f, d �→ t} that is also a two-valued interpretation and a fixed point of

GD (so a two-valued model),
• v = {a �→ t, b �→ f, c �→ f, d �→ u}.
Following Def. 13, v0, v1 and v2 are complete (they are the only fixed points of �D). Moreover v1 and

v2 are preferred and v0 is grounded. It can be shown that v is admissible.12

The next example illustrates the three-valued operator and the �i preordering.

Ex. 3.2.2. Consider the ADF represented by:

Figure 5 (given at the end of this paper) represents the evolution of interpretations by the three-valued
operator �D for the ADF (nodes = interpretations and edges = the relation between two interpretations
defined by the operator).

First, consider v = {a �→ u, b �→ f, c �→ t}. The two possible two-valued interpretations that extend
v are: w1 = {a �→ t, b �→ f, c �→ t} and w2 = {a �→ f, b �→ f, c �→ t}. Consider now each acceptance
condition and let us see how the operator produces the updated interpretation v′:

12Moreover, v2 is also the stable model of the ADF.



• With w1:

∗ ϕa = ⊥: so w′
1(a) = f (w1 has no impact since a has no parent in the ADF);

∗ ϕb = a ∨ b ∨ ¬c: so w′
1(b) = t (w1 has an impact since b as three parents – a, b and c –);

∗ ϕc = ¬a ∨ ¬b: so w′
1(c) = t (w1 has an impact since c as two parents – a and b –);

• With w2:

∗ ϕa = ⊥: so w′
2(a) = f (w2 has no impact since a has no parent in the ADF);

∗ ϕb = a ∨ b ∨ ¬c: so w′
2(b) = f (w2 has an impact since b as three parents – a, b and c –);

∗ ϕc = ¬a ∨ ¬b: so w′
2(c) = t (w2 has an impact since c as two parents – a and b –);

Then, using w′
1 and w′

2, one can compute the consensus truth value for each argument: v′(a) = f (since
w′

1(a) = w′
2(a) = f ), v′(b) = u (since w′

1(b) �= w′
2(b)), v′(c) = t (since w′

1(c) = w′
2(c) = t).

Another example of this process can be given with the interpretation v′ = {a �→ f, b �→ u, c �→ t}.
The two possible two-valued interpretations that extend v′ are: w′

1 = {a �→ f, b �→ t, c �→ t} and
w′

2 = {a �→ f, b �→ f, c �→ t}.
With w′

1, we obtain w′′
1(a) = f , w′′

1(b) = t and w′′
1(c) = t .

With w′
2, we obtain w′′

2(a) = f , w′′
2(b) = f , w′′

2(c) = t .
Then, using w′′

1 and w′′
2 , the consensus truth value for each argument is v′′(a) = f , v′′(b) = u,

v′′(c) = t . This three-valued interpretation is one of the three fixed points of this example.
In this example, the preordering �i is given by Fig. 6 (given at the end of this paper). Note that the

set of three-valued interpretations over �i consists of a complete meet-lattice (the top elements of the
meet-lattice are at the top of the figure and the bottom element is at the bottom of the figure).

Here are some interesting three-valued interpretations:

• v0 = {a �→ f, b �→ u, c �→ t},
• v1 = {a �→ f, b �→ t, c �→ t} (that is also a two-valued model),
• v2 = {a �→ f, b �→ f, c �→ t} (that is also a two-valued model).

v0, v1 and v2 are complete (they are the only fixed points of �D), v1 and v2 are preferred and v0 is
grounded.

The following examples illustrate the use of ADF as a modelling tool.

Ex. 3.2.3. The sequence of two attacks can be translated into the following ADF:

Applying the GD or the �D operators gives only one fixed point: v = {a �→ t, b �→ f, c �→ t}. That
corresponds to the complete, preferred and grounded extension.

Ex. 3.2.4. Two attacks to the same argument can be translated into the following ADF:



Ex. 3.2.5. An even-length cycle of attacks can be translated into the following ADF:

Applying the �D operator gives three fixed points: v0 = {a �→ u, b �→ u}, v1 = {a �→ t, b �→ f } and
v2 = {a �→ f, b �→ t}. That corresponds to the complete extensions, v0 being the grounded one and v1,
v2 being the preferred ones.

Ex. 3.2.6. The following graph represents a weighted AF.

Considering that the set {a, c} is the subset of the input arguments that are accepted (so even if b is
an input argument it is not considered as accepted), this weighted AF by an ADF can be turned into the
following ADF:

Ex. 2.1.2 (cont’d) Consider a BAF with only one support from a to b. Following [21], the encoding of a
support could be done using a positive link between a and b in the corresponding ADF. Nevertheless, in
order to find the best encoding of the BAF into an ADS, we must identify the direction of this link and the
acceptance conditions. These elements will depend on the meaning of the used support (indeed, recall
that several meanings exist for the support relation in the literature); in this example, we are interested in
the deductive and necessary supports. Moreover, in an ADF, it is important to note that the acceptance
condition can be viewed as a sufficient and necessary condition.



Let consider the following possible encoding: a positive link from a to b with ϕb = a and ϕa = 
. So,
in this case, ϕb corresponds to the two following conditions: “if a is accepted then b is accepted” (that is
the sufficient condition), and “a is accepted if b is accepted” (that is the necessary condition).

Consider now that the support is a deductive one. Then the meaning of this support in argumentation
semantics can be described by the following assertion (the target of the support is impacted by its source):

“if a is accepted then b is accepted”.

With the proposed encoding, the sufficient condition given by ϕb encodes exactly the deductive mean-
ing of the support but the necessary condition issued from ϕb gives an additional constraint and we can
easily see that this additional constraint corresponds to the necessary meaning of the support.

Indeed, the meaning of the necessary support from a to b in argumentation semantics can be described
by the following assertion (the target of a support impacts its source):

“a is accepted if b is accepted”.

The same problem appears when we try to represent a necessary support from a to b or when we
use another encoding changing the direction of the link and the acceptance condition (a positive link
from b to a with ϕa = b and ϕb = 
). In each case, we obtain a formula that encodes both the
deductive meaning of the support (“if a is accepted then b is accepted”) and the necessary meaning of
the support (“a is accepted if b is accepted”). Even if there is a difference between the two ADFs (the
formula is attached either to b – deductive support –, or to a – necessary support –), when there is no
other interaction from, or to, these two arguments, the acceptance conditions do not allow to distinguish
between the two meanings of the supports in argumentation semantics.

A synthesis of the above remarks is given in the following table. Let us consider a support from a to
b, denoted by the pair (a, b):

in ADF Sufficient condition of
ϕb = a

Necessary condition of
ϕb = a

Sufficient condition of
ϕa = b

Necessary condition of
ϕa = b

in BAF Deductive meaning of
(a, b)

Necessary meaning of
(a, b)

Necessary meaning of
(a, b)

Deductive meaning of
(a, b)

In conclusion, as the acceptance condition in an ADF reads as a necessary and sufficient condition, and
without another mechanism (specific interpretations for instance), it seems difficult to capture a support
which is not both necessary and deductive in argumentation semantics.

Ex. 2.1.3 (cont’d) Consider the RAF with an attack named α (from a to b) attacked by another attack
named β whose source is c.

Using the flattening technique, this RAF can be turned into the following AF (the RAF is translated
into an AF by the addition of new arguments, one for each attack, and the definition of a new set of
attacks; for more details, see for instance [7]):



This AF can be in turn represented by the following ADF:

3.3. Some implementations

Several implementations have been proposed for ADF (see [22,23]). Here are some of them:13

DIAMOND (DIAlectictal MOdels eNcoDing) is based on Answer Set Programming (ASP). DIA-
MOND translates an ADF into an ASP program whose stable models correspond to models of
the ADF with respect to several semantics (i.e. admissible, complete, stable, grounded).

QADF is a system for solving reasoning problems on ADF using Quantified Boolean Formulae
(QBF).14 Given an ADF and a reasoning problem as input, QADF returns the encoding of the
reasoning problem as a QBF for that ADF. Then, a subsequent QBF solver solves the reasoning
task.

UNREAL (Uniform Account of Realizability in Abstract Argumentation) is a system based on ASP
for deciding realizability of a given set of interpretations. It supports AFs, ADFs, the subclass of
bipolar ADFs (BADFs), and frameworks with sets of attacking arguments (SETAFs). For each
of these formalisms, realizability can be tested for the standard semantics, namely admissible,
complete, preferred and two-valued models (stable semantics for (SET)AFs). In words, given a
set of interpretations V , a formalism F and a semantics σ , UNREAL computes all knowledge
bases K of type F having σ(K) = V . Optionally, the output can be converted into the format
readable by ASPARTIX (see Section 9.3) or DIAMOND.

GrappaVis is a Java tool for specifying and evaluating GRAPPA and ADF instances (GRAPPA be-
ing a semantical framework for graph-based argument processing − GRAPPA = GRaph-based
Argument Processing based on Patterns of Acceptance). GrappaVis is a graphical tool for speci-
fying GRAPPA and ADF-instances, evaluating them and visualizing the results of the evaluation.

13This list is not exhaustive. For instance, the reader can also refer to YADF [19] or to k++ADF [75].
14These formulae are a generalization of the propositional formulae in which both existential quantifiers and universal quan-

tifiers can be applied to each variable.



GrappaVis itself is a JAVA-application based on the JGraphX framework and therefore provides
intuitive tools to draw GRAPPA / ADF instances. For the evaluation it makes use of two different
types of ASP encodings.

3.4. Related works

As shown before, the ADF approach is able to encompass several approaches of abstract argumen-
tation. The main difficulty rests in the choice of the right acceptance conditions appropriate to a given
framework.

The idea to attach an acceptance condition to an AF has also been used in [43]. In this approach, a
constrained argumentation framework (CAF) has been defined as an AF associated with an acceptance
condition that is a propositional formula. As in ADF, this propositional formula is defined over a vocab-
ulary built on the set of arguments. Nevertheless there exist important differences between a CAF and
an ADF:

• the graph used in [43] is a standard argumentation graph (links encode attacks) and not a dependence
graph,

• there is a unique acceptance condition in [43] and not one attached to each argument,
• In [43] are defined new semantics by combining standard semantics with the satisfaction of the

acceptance condition.

The following example illustrates this approach.

Ex. 3.4.1. Consider the CAF built with the following AF and the propositional formula C = a ∧ ¬e:

There are 2 preferred extensions {a} and {b, d} for the AF.
Then taking into account the acceptance condition C, only the first one can be considered as an exten-

sion for the CAF.

4. Translation of AF into propositional logic

The approaches reviewed in this section aim at giving a logical theory (in propositional logic) that
encodes an AF. That is, for each of these approaches, the input is an AF and the output is a theory in
propositional logic. They are theoretical approaches, but the output theories supplemented with formulae
capturing a given argumentation semantics, can be fed into a SAT solver. In these approaches, the logic
(propositional logic, either pure or extended in a number of alternative ways: sorted language, modal-
like language) is used to encode the AF. Additional properties may map models to extensions according
to a given semantics.



4.1. The syntactic sugar way

The simplest approach for encoding an AF consists of introducing special propositional atoms in the
language in order to denote the edges of the argumentation graph (Atta,b in [52], ra,b in [56]15). These
special atoms are considered as always true.

The description needs not include propositional atoms of the form Arga (or the like) that would
explicitly list the nodes of the argumentation graph.

4.2. The approach by Cayrol et al.

This approach has been presented in several papers [30,33,34]. The definitions presented here are
those given in the more recent paper [33].

In the case of an AF, the atoms are of the form Acc(a) and Nacc(a). For a node a of the argumenta-
tion graph, Acc(a) expresses the status of being accepted, whereas Nacc(a) expresses that a cannot be
accepted (implicitly: with regard to a given argumentation semantics). Note that the meaning of Nacc(a)

is stronger than “a is not accepted”.
The theory generated by [33] consists of the following axioms:
For every aRb in the input AF

(
Acc(a) → Nacc(b)

)
For every argument b in the input AF

(
Nacc(b) → ¬Acc(b)

)
Such formulae express (by transitivity of material implication) conflict-freeness of extension-based

semantics: Acc(a) → ¬Acc(b) whenever aRb. Such formulae also express that if an argument cannot
be accepted then it is not accepted: Nacc(b) → ¬Acc(b), or, equivalently, ¬(Acc(b) ∧ Nacc(b)).

In the case of RAFs, the authors use a two-sorted logic with equality. There are arg a sort for
arguments and att a sort for attacks. In addition to Acc(a) and Nacc(a) as above, the language also
admits atoms of the form Val(e) for attack names in the input RAF (intuitively, Val(e) means that the
attack named e is valid in the input RAF with regard to a given argumentation semantics). Lastly, two
function symbols s and t can be applied to objects of the sort att to capture source and target of the
attack. The target can be either of sort arg or of sort att and the source can only be of sort arg (as the
source of an attack in a RAF is restricted to a single argument, see Definition 4, in Section 2).

The generated theory is bigger than for AFs. First, there are the following conflict-freeness axioms:

∀e : att,
((

Val(e) ∧ Acc
(
s(e)

)) → ¬Val
(
t (e)

))
if t (e) is of sort att

∀e : att,
((

Val(e) ∧ Acc
(
s(e)

)) → Nacc
(
t (e)

))
if t (e) is of sort arg

and the coherence axiom as above:

∀a : arg, Nacc(a) → ¬Acc(a)

15See also Section 6. In the YALLA language, a specific predicate has been introduced for encoding an attack between sets
of arguments: x � y.



Of course, the generated theory includes RAF-dependent axioms (assuming the arguments of the input
RAF are a1, . . . , an and the attack names are e1, . . . , em) as follows:

s(e) = x ∧ t (e) = y for every edge e from x to y

∀a : arg, a = a1 ∨ · · · ∨ a = an

∀e : att, e = e1 ∨ · · · ∨ e = em

¬(ai = aj ) ∧ ¬(ei = ej ) i �= j

Additional formulae are introduced for encoding the different principles that govern argumentation
semantics. There are formulae for capturing the defence principle, the reinstatement principle and the
stability principle. Then extensions under a given semantics (admissible, complete, preferred, grounded,
or stable semantics) can be characterized by models of logical theories obtained by combining some of
these formulae. See an example in Section 12.2.

4.3. The approach by Gabbay and Gabbay

In [67], for every AF, a theory is generated with the axiom:

Na → ¬a, for all a ∈ A,

where Na is a special propositional atom with the same reading as Nacc(a) in the Cayrol–Fariñas–
Lagasquie approach. Also, a is to play here the same role as Acc(a) in the Cayrol–Fariñas–Lagasquie
approach.

Similarly, a conflict-freeness axiom is needed:

a → Nb, for all a and b such that aRb.

The theory generated by [67] consists of four kinds of formulae:

(1) {x|¬∃y(yRx)}
(2) {y ↔ ∧

z∈R−(y) Nz} for each argument y16

(3) {z → Ny|(zRy)}
(4) {(∧z∈R−(y) ¬z ∧ ∨

z∈R−(y) ¬Nz) → ¬y ∧ ¬Ny} for each argument y17

The complete extensions correspond to the models of the above theory. See an example in Sec-
tion 12.2.

Note that the above formulae fail to provide a modular encoding of some principles of argumenta-
tion semantics such as for instance the defence or the reinstatement principles (so, it is not so easy to
characterize, e.g., admissibility). This is a difference with the Cayrol–Fariñas–Lagasquie approach.

An additional axiom is introduced for characterizing stable semantics:

a ∨ Na, for all a.

16If y is unattacked then this formula is equivalent to y ↔ 
 as the conjunction of an empty set of formulae is always true.
17If y is unattacked then the formula

∨
z∈R−(y) ¬Nz is equivalent to ⊥ as the disjunction of an empty set of formulae is

always false.



The corresponding stability axiom given in [33] is:

¬Acc(a) →
∨

b∈R−(a)

Acc(b)

Both [30] and [67] prove that the models of the respective theory coincide with the extensions of the
AF (the list of semantics dealt with in [30] is longer).

4.4. Some implementations

The approach of [30,33,34] has been implemented in GRAFIX, a Java software for representing graph-
ically argumentation frameworks with higher-order interactions (see [35]).

5. QBF-formalization of AF

The aim of both approaches [4,50] reviewed in this section is to express properties over a given AF,
so that these properties can be used to characterize extensions of the AF. Thus, the input consists of an
AF (or an ADF [49]) together with an extension-based semantics. The output is a quantified Boolean
formula (QBF)18 whose models coincide with the extensions of the AF (i.e., using names of the nodes
of the argumentation graph as propositional atoms, the models of the formula are exactly the extensions
of the AF). The definitions are formulated in terms of labellings over the AF, and translated in a logical
language (QBF). The translation is shown to establish a one-to-one correspondence (i.e., a bijection) be-
tween the extensions of the AF and the models of the resulting quantified Boolean formula. The logic is
used to encode the AF (nodes of the argumentation graph are injectively mapped to propositional atoms
and edges are injectively mapped to special propositional atoms that are taken to be always true), with
quantification serving to express minimality/maximality w.r.t. a property (e.g., there exists no complete
labelling larger than the current labelling). The propositional atoms denoting nodes are duplicated, with
a plus version and a minus version (e.g., for a node of name a, the language at hand includes a⊕ and a�).
These signed atoms are used to encode the truth values t , f , u according to the labels as assigned (e.g.,
if a is assigned u by the current labelling then this is captured by letting both a⊕ and a� to be false).
A general constraint rules out the possibility for a⊕ and a� to be both true.

These are theoretical approaches but implementations are afoot using QBF solvers, and indeed such
an implementation is QADF, due to Diller, Wallner & Woltran [50].

5.1. Main definitions

We first describe the approach due to Arieli and Caminada [4,5].
Let us recall that a labelling � for an AF (A,R), is a total function �: A → {in,out,und}. We

consider complete labellings, characterized by the following conditions (see Section 2.2):
For each argument a,

• If a is in-labelled, then all its attackers are out-labelled;

18These formulae are a generalization of the propositional formulae in which both existential quantifiers and universal quan-
tifiers can be applied to each variable. With this formalism, one can ask whether a quantified sentential form over a set of
Boolean variables is true or false. An example of QBF formula: ∀x∃y∃z((x ∨ z) ∧ y).



• If a is out-labelled, then it has at least one attacker that is in-labelled;
• If a is und-labelled, then it has at least one attacker that is not out-labelled and it does not have

an attacker that is in-labelled.

The assignments of truth values to (name of) nodes are captured syntactically, that is, through formu-
lae. This is done as follows:

Def. 14. For an unsigned atom a and unsigned formulae φ, ψ , define the following signed formulae:

τ+(a) = a⊕ τ−(a) = a�

τ+(¬φ) = τ−(φ) τ−(¬φ) = τ+(φ)

τ+(φ → ψ) = ¬τ−(φ) ∨ τ+(ψ) τ−(φ → ψ) = τ+(φ) ∧ τ−(ψ)

The encoding then expands to

Def. 15. For an unsigned formula φ:

val(φ, t) = τ+(φ) ∧ ¬τ−(φ)

val(φ, f ) = ¬τ+(φ) ∧ τ−(φ)

val(φ, u) = ¬τ+(φ) ∧ ¬τ−(φ)

The main definition is:19

Def. 16. Let AF = (A,R) and x ∈ A. Define

LABAF(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

val(x, t) → ∧
y∈A(att(y, x) → val(y, f ))

val(x, f ) → ∨
y∈A(att(y, x) ∧ val(y, t))

val(x, u) →
(

(¬∧
y∈A(att(y, x) → val(y, f )))

∧(¬∨
y∈A(att(y, x) ∧ val(y, t)))

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The role of LABAF(x) is to ensure that the three conditions for a complete labelling are satisfied, for
x ranging over all arguments of AF. Then, the formula characterizing complete labellings over AF =
(A,R) is:

CMP(AF) =
⋃
a∈A

LABAF(a) ∪ {¬(a⊕ ∧ a�)}

Also, stable extensions can be captured:

STB(AF) = CMP(AF) ∪ {
a⊕ ∨ a�|a ∈ A

}
19att(y, x) means that (y, x) ∈ R.



Quantified Boolean formulae enter the picture as minimization or maximization is required. For an
AF such that A = {a1, . . . , an}, an example is:

∀x⊕
1 x�

1 · · · x⊕
n x�

n[
CMP(AF)[x1, . . . , xn] →

(
(
∧

ai∈A(val(xi, t) → val(ai, t)))

→ (
∧

ai∈A(val(ai, t) → val(xi, t)))

)]

This formula can be read as follows. Considering a current labelling a1, . . . , an for the n arguments
in A, look at all labellings x1, . . . , xn so that if one of them satisfies CMP(AF) and is smaller than
the current labelling (this is what

∧
ai∈A(val(xi, t) → val(ai, t)) expresses) then the current la-

belling must be in fact the same as this labelling. In other words, any model of this formula and of
CMP(AF)[a1, . . . , an] defines a minimal complete extension, so that (according to well-known results
in abstract argumentation) it defines the grounded extension.

5.2. An example

Ex. 3.4.1 (cont’d)

The corresponding theory is:20

val(a, t) → val(b, f )

val(b, t) → val(a, f )

val(c, t) → (
val(b, f ) ∧ val(e, f )

)
val(d, t) → val(c, f )

val(e, t) → val(d, f )

val(a, f ) → val(b, t)

val(b, f ) → val(a, t)

val(c, f ) → (
val(b, t) ∨ val(e, t)

)
val(d, f ) → val(c, t)

val(e, f ) → val(d, t)

20This set of rules is partitioned in 3 subsets: rules for assigning to each argument the value t , then f , then u.



val(a, u) → (¬val(b, f ) ∧ ¬val(b, t)
)

val(b, u) → (¬val(a, f ) ∧ ¬val(a, t)
)

val(c, u) → (¬(val(b, f ) ∧ val(e, f )
) ∧ ¬(val(b, t) ∨ val(e, t)

))
val(d, u) → (¬val(c, f ) ∧ ¬val(c, t)

)
val(e, u) → (¬val(d, f ) ∧ ¬val(d, t)

)
In the signed language,

(
a⊕ ∧ ¬a�) → (

b� ∧ ¬b⊕)(
b⊕ ∧ ¬b�) → (

a� ∧ ¬a⊕)(
c⊕ ∧ ¬c�) → ((

b� ∧ ¬b⊕) ∧ (
e� ∧ ¬e⊕))(

d⊕ ∧ ¬d�) → (
c� ∧ ¬c⊕)(

e⊕ ∧ ¬e�) → (
d� ∧ ¬d⊕)

(
a� ∧ ¬a⊕) → (

b⊕ ∧ ¬b�)(
b� ∧ ¬b⊕) → (

a⊕ ∧ ¬a�)(
c� ∧ ¬c⊕) → ((

b⊕ ∧ ¬b�) ∨ (
e⊕ ∧ ¬e�))(

d� ∧ ¬d⊕) → (
c⊕ ∧ ¬c�)(

e� ∧ ¬e⊕) → (
d⊕ ∧ ¬d�)

(¬a⊕ ∧ ¬a�) → (¬(b� ∧ ¬b⊕) ∧ ¬(b⊕ ∧ ¬b�))(¬b⊕ ∧ ¬b�) → (¬(a� ∧ ¬a⊕) ∧ ¬(a⊕ ∧ ¬a�))((¬c⊕ ∧ ¬c�) → [¬((b� ∧ ¬b⊕) ∧ (
e� ∧ ¬e⊕)) ∧ ¬((b⊕ ∧ ¬b�) ∨ (

e⊕ ∧ ¬e�))]
¬d⊕ ∧ ¬d�) → (¬(c� ∧ ¬c⊕) ∧ ¬(c⊕ ∧ ¬c�))(¬e⊕ ∧ ¬e�) → (¬(d� ∧ ¬d⊕) ∧ ¬(d⊕ ∧ ¬d�))
¬(a⊕ ∧ a�) ∧ ¬(b⊕ ∧ b�) ∧ ¬(c⊕ ∧ c�) ∧ ¬(d⊕ ∧ d�) ∧ ¬(e⊕ ∧ e�)

5.3. A QBF approach for ADF

The QBF-based formalization due to Diller, Wallner and Woltran [49,50] concerns ADFs.
This approach also uses a signed language, with the same atoms as given in Def. 14, namely a⊕ and

a� for every a ∈ A (interestingly, the notation for these atoms is the same in both approaches).



The same constraint (see CMP(AF) above) ruling out a contradictory assignment of truth values is
enforced, i.e., for every a ∈ A:

¬(a⊕ ∧ a�)
The main difference with the approach due to Arieli and Caminada is that the existence of the ac-

ceptance condition ϕa in ADF is addressed by Boolean quantification, even prior to any minimiza-
tion/maximization:21

∀x⊕
1 x�

1 · · · x⊕
n x�

n[∧
a∈A

((
a⊕ → a

) ∧ (
a� → ¬a

)) →
∧
a∈A

((
a⊕ → ϕa

) ∧ (
a� → ¬ϕa

))]

This formula expresses that the current labelling is admissible. It can then be used to obtain a formula
CMP for complete labellings, again using Boolean quantification. In turn, Boolean quantification over
CMP can be used to obtain, e.g., a formula characterizing the grounded extension.

5.4. Implementation

The QBF approach has been implemented in the form of the QADF system (see the description in
Section 3.3).

6. Dedicated languages for abstract argumentation

6.1. YALLA (Yet Another Logic Language for Argumentation)

The aim of this approach is the definition of a first-order logical theory capable of describing an AF
and its standard semantics. In the basic language YALLA, an AF is described by specific axioms of
the theory and formulae are interpreted by argumentation graphs. A variant of the basic language called
YALLAU has been defined for describing AFs built on a given universe U. Such a universe is supposed
to specify exactly what arguments and interactions are possible w.r.t. the studied case.

It is a theoretical approach (no implementation yet) introduced in order to express the properties of up-
date operators in dynamic argumentation. Moreover, YALLAU enables to express incomplete knowledge
about an AF, and to describe a set of AFs by one formula (each model of this formula corresponding to
a particular AF).

6.1.1. Main definitions
[55] has proposed a framework for handling change in argumentation (addition or removal of ar-

guments or attacks). All the definitions are related to a specific AF, called universe, setting the set of
possible arguments together with their interactions. This universe is supposed to be finite and is denoted
by the pair (AU,RU). For instance, if the domain is a knowledge base then AU and RU are the set of
all arguments and interactions that may be built from the formulae of the base. In the following example
issued from [55], it is assumed that AU and RU are explicitly provided:

21The quantification ensures ranging over all interpretations: conjunction over all a ∈ A fails to bind other propositional
atoms that presumably occur in ϕa .



Ex. 6.1.1. During a trial concerning a defendant (Mr. X), several arguments can be involved to determine
his guilt. The set of arguments AU and the graphical representation of the relation RU are given below.

a0 Mr. X is not guilty of premeditated murder of Mrs. X, his wife.
a1 Mr. X is guilty of premeditated murder of Mrs. X.
a2 The defendant has an alibi, his business associate has solemnly sworn that he met him at the time of the murder.
a3 The close working business relationships between Mr. X and his associate induce suspicions about his testimony.
a4 Mr. X loves his wife so deeply that he asked her to marry him twice. A man who loves his wife cannot be her killer.
a5 Mr. X has a reputation for being promiscuous.
a6 The defendant had no interest to kill his wife, since he was not the beneficiary of the huge life insurance she contracted.
a7 The defendant is a man known to be venal and his “love” for a very rich woman could be only lure of profit.

In [55], an AF is defined w.r.t. to a given universe (AU,RU), so the definition differs slightly from the
definition of [54] in the sense that arguments and interactions must be built according to the universe.

Def. 17. An AF on (AU,RU) is a pair (A,R) where

• A ⊆ AU and
• R ⊆ RU ∩ (A × A).

The set of AFs that can be built on the universe (AU,RU) is denoted by �U.

An example of AF on the universe (AU,RU) described in Ex. 6.1.1 could be:

Ex. 6.1.2. The prosecutor is trying to make accepted the guilt of Mr. X. She is not omniscient and knows
only a subset of the arguments of the universe presented in Example 6.1.1 (a subset that is not necessarily
shared with other agents). Moreover, her knowledge being based on the universe, any argument or attack
that does not appear in the universe cannot appear in her graph. Here is her AF (AFPro):

[55] has proposed a first-order logical theory capable of describing abstract AFs built on a given finite
universe (AU,RU), where AU = {a1, a2, . . . , ak} with k being the cardinal of AU. The signature of the
associated language YALLAU is defined as follows:22

Def. 18 (Signature). �U = (Vconst, Vf , VP ) where the set of constants Vconst = {c⊥, c1, . . . , cp} with
p = 2k − 1, the set of functions Vf = {union2} and the set of predicates VP = {on1,�2, ⊆2}.

22For each function or predicate symbol, the arity is indicated by an exponent attached to the symbol.



As the logical theory has been built for describing AFs on a given universe, terms and formulae of
the language YALLAU will be interpreted on AFs built on this universe. Formally, the semantics of
YALLAU is defined thanks to a structure over �U, on which terms and formulae will be interpreted. So
a structure is associated with an AF built on the universe (AU,RU) and its domain is D = 2AU , which
is not empty.

Def. 19 (Structure). A structure M over the signature �U, associated with (A,R), is a pair (D, I)

where D = 2AU is the domain of the structure and I is an interpretation function associating:

(1) a unique element of D to each constant symbol ci (in particular the empty set is associated with the
constant symbol c⊥),

(2) the binary set theoretic union operator (function from D2 to D) to the function symbol union,
(3) the characterization of the subsets of A to the predicate symbol on: on(S) if and only if S ⊆ A,
(4) the binary set theoretic inclusion relation (binary relation on D2) to the predicate symbol ⊆,
(5) the binary relation of attack between sets of arguments induced by R, and defined by S1RS2 if and

only if S1 ⊆ A, S2 ⊆ A and ∃x1 ∈ S1, ∃x2 ∈ S2, such that x1Rx2, to the predicate symbol �.

Among the formulae that can be built on the signature �U, we find the specific axioms of the theory,
that will allow to describe AFs on the universe:

Let x, y, z be variables of YALLAU,

Axioms for set inclusion

• ∀x (c⊥ ⊆ x)

• ∀x (x ⊆ x)

• ∀x, y, z ((x ⊆ y ∧ y ⊆ z) =⇒ x ⊆ z)

Axioms for set operators

• ∀x, y (x ⊆ union(x, y))

• ∀x, y (y ⊆ union(x, y))

• ∀x, y, z (((x ⊆ z) ∧ (y ⊆ z)) =⇒ (union(x, y) ⊆ z))

Axioms combining set operators and attack relation

• ∀x, y, z (((x � y) ∧ (x ⊆ z)) =⇒ (z � y))

• ∀x, y, z (((x � y) ∧ (y ⊆ z)) =⇒ (x � z))

• ∀x, y, z ((union(x, y) � z) =⇒ ((x � z) ∨ (y � z)))

• ∀x, y, z ((x � union(y, z)) =⇒ ((x � y) ∨ (x � z)))

Axioms for the predicate on

• on(c⊥)

• ∀x, y ((on(x) ∧ (y ⊆ x)) =⇒ on(y))

• ∀x, y ((on(x) ∧ on(y)) =⇒ on(union(x, y)))

• ∀x, y ((x � y) =⇒ (on(x) ∧ on(y)))

An AF belonging to �U can be described by its characteristic formula in the language YALLAU.



Def. 20 (Formula describing an AF). Let the function �U be defined as follows:

�U : a�U → YALLAU

(A,R) �→ on(A)∧∧
x∈AU\A

¬on
({x})∧

∧
(x,y)∈R

({x} � {y})∧
∧

(x,y)∈RU\R
¬({x} � {y})

�U(A,R) is called the characteristic formula of (A,R).23

Note that (A,R) determines the unique structure (Def. 19) which is a model of �U(A,R).
Some additional notations are used for encoding the argumentation semantics: let t1 and t2 be terms of

YALLAU,

t1 = t2
def≡ (t1 ⊆ t2) ∧ (t2 ⊆ t1),

t1 �= t2
def≡ ¬(t1 = t2),

singl(t1)
def≡ (t1 �= c⊥) ∧ ∀t2

((
(t2 �= c⊥) ∧ (t2 ⊆ t1)

) =⇒ (t1 ⊆ t2)
)
.

The following property obviously holds: (A,R) |= singl(t) if and only if the term t is interpreted by a
singleton of A.

Then the principles used in argumentation semantics can be encoded in terms of YALLAU formulae:

Prop. 3. Let AU be a set of arguments and (A,R) be an AF such that A ⊆ AU and R ⊆ A×A. Let t ,
t1, t2, t3 be terms of YALLAU.

• t is conflict-free in (A,R) if and only if (A,R) |= on(t)∧(¬(t � t)). The latter formula is denoted
by F(t).

• t1 defends each element of t2 in (A,R) if and only if (A,R) |= (∀t3 ((singl(t3) ∧ (t3 � t2)) =⇒
(t1 � t3))). The latter formula is denoted by t1 �� t2.

• t is admissible in (A,R) if and only if (A,R) |= (F (t) ∧ (t �� t)). The latter formula is denoted
by A(t).

• t is a complete extension of (A,R) if and only if (A,R) |= (A(t)∧∀t2 ((singl(t2)∧ (t �� t2)) =⇒
(t2 ⊆ t))). The latter formula is denoted by C(t).

• t is the grounded extension of (A,R) if and only if (A,R) |= (C(t) ∧ ∀t2 (C(t2) =⇒ (t ⊆ t2))).
The latter formula is denoted by G(t).

23When t denotes a term of YALLAU, t is identified with the subset of AU which interprets t . It is the case for {x} for
instance.



• t is a stable extension of (A,R) if and only if (A,R) |= (F (t) ∧ ∀t2 ((singl(t2) ∧ ¬(t2 ⊆ t)) =⇒
(t � t2))). The latter formula is denoted by S(t).

• t is a preferred extension of (A,R) if and only if (A,R) |= (A(t) ∧ ∀t2 (((t2 �= t) ∧ (t ⊆ t2)) =⇒
¬A(t2))). The latter formula is denoted by P(t).

Due to the finite size of a universe, each YALLAU formula can be viewed as a propositional formula
and the satisfiability problem of a YALLAU base is a NP-complete problem.

In [55] YALLAU is used for expressing update in argumentation dynamics. For instance, in the case
of a debate, classical update amounts to consider a formula ϕ in YALLAU representing a current state
of knowledge about exchanged arguments (i.e., it may encompass several possible AFs), and a new
piece of information α stating that the debate has evolved in such a way that α now holds (i.e., the
current state of the debate is inside a set of AFs satisfying α). Updating ϕ by α gives a formula ϕ � α

that represents the set of AFs corresponding to an evolution of the debate where a change has been
done imposing α. Nevertheless, an AF can only evolve by an allowed operation made by an agent
(according to the agent’s own AF and her target). That means that some transitions are not allowed. So
the update operators in argumentation dynamics must take into account these constraints: let T be a set
of authorized transitions, an update operator is a mapping from YALLAU ×YALLAU to YALLAU which
associates with any formula ϕ and any formula α a formula, denoted by ϕ ♦T α satisfying T . In [55], a
general update operator is defined following this idea. Then refinements are proposed in order to give a
logical translation of previous characterizations proposed in [15,27].

6.1.2. Some examples
Ex. 3.2.4 (cont’d) Let us consider the AF given in Ex. 3.2.4 as the universe (AU = {a, b, c}, RU =
{(a, b), (c, b)}). Let (A1,R1) and (A2,R2) be the two AFs built the universe (AU,RU) defined by:
A1 = {a, b, c}, R1 = {(a, b)}, A2 = {a, b}, R2 = {(a, b)}.

Let ϕ1 be the formula on({a, b, c}) ∧ ({a} � {b}) and ϕ2 be the formula on({a, b}) ∧ ({a} � {b}).
We have (A1,R1) |= ϕ1, (A1,R1) |= ϕ2, (A2,R2) |= ϕ2. However (A2,R2) is not a model of ϕ1, as

{a, b, c} is not a subset of A2.
Moreover, following Definition 20, we have:24

�U(A1,R1) = on
({a, b, c}) ∧ ({a} � {b}) ∧ ¬({c} � {b})

�U(A2,R2) = on
({a, b}) ∧ ¬(on

({c})) ∧ ({a} � {b}) ∧ ¬({c} � {b})

Fig. 1. An example of argumentation graphs built on a universe.

24Note that the absence of an attack is expressed only if this attack is in the universe: ¬({c} � {b}) is in �U(A1,R1) as c
attacks b in U, whereas ¬({b} � {a}) is not in �U(A1,R1) as b does not attack a in U.



Fig. 2. Two possible cases for the argumentation graph of Agent Agb.

More complex assertions can be expressed in YALLAU, such as, for instance, the fact that b does not
belong to the grounded extension of (A1,R1):

�U(A1,R1) ∧ �t
(
G(t) ∧ ({b} ⊆ t

))
YALLAU also enables the expression of incomplete knowledge held by an agent about AFs built on

the universe, as shown by the following example:

Ex. 6.1.1 (cont’d) Let us consider the universe (AU,RU) given in the trial example. Assume that Agent
Aga has only a partial knowledge about the AF built by Agent Agb. Indeed, Aga hesitates between two
possible situations for Agb’s AF, namely (A1,R1) and (A2,R2) given in Fig. 2. So Agent Aga has a
doubt about the existence of a7 and of the attacks from a7 to a4 and from a2 to a1.

The knowledge held by Aga can be expressed by the following YALLAU formula:

ϕ = on
({a0, a1, a2, a4}

) ∧
¬(on

({a3}
)) ∧ ¬(on

({a5}
)) ∧ ¬(on

({a6}
)) ∧({a4} � {a1}

) ∧ ({a1} � {a0}
) ∧

¬({a0} � {a1}
) ∧ ¬({a3} � {a2}

) ∧ ¬({a5} � {a4}
) ∧

¬({a6} � {a1}
) ∧⎛

⎝ (on({a7}) ∧ ({a7} � {a4}) ∧ ({a2} � {a1}))
∨

(¬(on({a7})) ∧ ¬({a7} � {a4}) ∧ ¬({a2} � {a1}))

⎞
⎠

ϕ is satisfied by only two structures which correspond to (A1,R1) and (A2,R2).
Note that ϕ ≡ �U(A1,R1) ∨ �U(A2,R2).

6.1.3. Related works
Other works propose dedicated logical languages for dealing with dynamics in argumentation frame-

works. See for instance [18,44,45,48,51,52]. Moreover, it is worth noticed that a survey has been done
in the context of dynamics in argumentation frameworks, see [53].

6.2. The approach by Villata et al.

In [93] is proposed a propositional logic of argumentation to specify and verify requirements in AFs.
Note that a modal variant of this logic has been proposed (see Section 10).

The input consists of an AF together with requirements to be satisfied. The outputs are formulae
encoding the framework and formulae encoding the requirements. Examples of such requirements are:



“Argument a attacks argument b”; “argument a defends argument b”; “argument a or argument b is
acceptable”; “if argument a is accepted (in an extension) then argument b is accepted too (in the same
extension) and argument c is not accepted”.

The basic ideas of the logic for specification and verification are close to the ideas of YALLA. A model
of the logic represents an AF, and such a model satisfies formulae representing the fact that arguments
attack or defend each other, or whether sets of arguments are extensions. Moreover the models are built
on a given universe of arguments.

Atoms of the language represent sets of arguments. The attack relation is explicitly encoded by a new
logical connective �. The formula p�q is interpreted in (A, R) as “there is an argument in p that attacks
an argument in q”, where p, q denote subsets of A. There is also a logical connective for defence, which
can be defined in terms of the attack connective, as follows:

a � b ≡
∧
c⊆A

(
(c � b) → (a � c)

)

The above connectives allow the specification of requirements related to the structure of an AF.
In order to specify requirements related to the semantics, new kinds of formulae are considered such

as F(p), A(p), or G(p) for instance. The formula F(p) (resp. A(p), G(p)) is interpreted in (A, R) as
“the set of arguments of A denoted by p is conflict-free (resp. admissible, the grounded extension) in
(A, R)”. The semantics are thus considered as primitives of the language.

Note that all the verifications need a model-theoretic approach, as the logic has not been axiomatized.
So the verifications have to be made at the AF level.

7. Encoding of extension-based semantics

In this section are reviewed two approaches that, given an extension-based semantics σ , produce a
formula �σ whose satisfiability answers the σ -extension problem for the input (usually, an AF and a
candidate subset of the arguments). The role of the logic (it is propositional logic) is to specify the
semantics but there is no encoding of the graph itself as it is done by the approaches presented in
Section 4. Both approaches are theoretical as well as practical: implementations exist.

7.1. The approach by Besnard and Doutre

The original proposal is [11], extended in [12]. Independently, an equivalent proposal is [94].
The idea is as follows. Let σ be an extension-based semantics, (A,R) be an AF and S be a subset

of A. A formula �(σ, S) is produced which is satisfiable iff S is a σ -extension of the AF (“Satisfiability
approach”). A semantics being defined by a set of principles, a formula associated with each principle is
produced, then composing these formulae results in the formula �(σ, S).

Logic is used for specifying the principles of the semantics and the produced formula is parametrized
by S (and by σ of course).

7.1.1. Description of the approach
For a given (A,R), a set of propositional symbols a, b, c, . . . is introduced to represent the elements

of A. For simplicity, the same symbol is used, i.e., a is regarded as a propositional symbol whenever
a ∈ A. An argumentative semantics σ can then be mapped to a propositional formula (dependent on a
subset S of A) that happens to be satisfiable iff S is a σ -extension of (A,R).



Such a formula is constructed in view of the interpretation for a propositional symbol a: a is true
means that a is in the extension.

Also, the usual conditions underlying admissibility in extension-based semantics are captured:

Conflict-free∧
aRb

(a → ¬b)

Admissible∧
bRa

∨
cRb

c

Complete (∧
bRa

∨
cRb

c

)
→ a

and so on . . .

General test:. S ⊆ A is a σ -extension of (A,R) iff the formula below is satisfiable:∧
a∈S

a ∧
∧

a∈A\S
¬a ∧ �σ

In the above formula, �σ captures the conditions expressing that S is a σ -extension of (A,R).
For example, in the formula enabling to determine whether S is a stable extension of (A,R) there is:

�s =
∧
a∈A

(
a ↔

∧
bRa

¬b

)
.

As to the case of complete extensions,

�c =
∧
a∈A

[(
a →

∧
aRb

¬b

)
∧
(

a ↔
∧
bRa

∨
cRb

c

)]
.

7.1.2. Some implementations
Besnard and Doutre’s approach has been used in many different implementations. Here we focus on

four examples.
In [12,13] and thanks to the project SESAME (see [10]), an implementation has been proposed under

the form of a software allowing the definition of semantics with logical formulae (aggregation of formu-
lae, each of them representing a requirement that must be respected by the set of arguments candidate,
such as conflict-freeness, or defence).

In [95], the encoding proposed by Besnard and Doutre in [11] is extended in order to take into account
the semi-stable semantics. Then two extensions of SAT are used, the minimal correction sets (MCS)
and the backbone (BB): consider a CNF propositional formula �, the MCS problem consists in the



computation of the minimal sets of clauses issued from � such that, after their removal, � becomes
satisfiable; the BB problem consists in identifying the litterals that are true in each model of �. The idea
of this paper is to establish links between the MCS and BB problems and the computation of semi-stable,
eager and ideal extensions.

In [72], the encoding proposed by Besnard and Doutre in [11] is used in two different ways. First, it
is used directly in a SAT solver for computing the semantics that are in the first level of the polynomial
hierarchy. Secondly, it is extended with some weights for computing the semantics that are in the second
or more level of the polynomial hierarchy (with a flavour of constraints programming techniques) then
used in a Partial Max-SAT solver (the Partial Max-SAT problem is an optimisation problem that consists
in satisfying the more possible clauses of a given formula with respect to the weights given to each
clause). These algorithms have been implemented in a software called CoQuiAAS.

In [74], the encoding proposed by Besnard and Doutre in [11] is extended for the computation of three
new problems: find an extension that is maximal in terms of cardinality, repair a set of arguments in order
to transform it into an extension, and adjust an extension such that it contains (or not) a given argument.
Each of these new problems is encoded in logic and solved either by an iteration of SAT solver calls, or
by a Max-SAT solver call.

7.2. The CEGARTIX approach

In [59], a specific encoding of some extension-based semantics is proposed, using two propositional
symbols for each argument (for an argument a, the symbols are xa and ya). For instance, the formula
corresponding to the complete semantics is the following one:

For a given (A,R),

�c =
∧

(a,b)∈R
(¬xa ∨ ¬xb) ∧

∧
(b,a)∈R

(
xa →

∨
(c,b)∈R

xc

)
∧

∧
b∈A

(
yb ↔

(
xb ∨

∨
(c,b)∈R

xc

))
∧
∧
a∈A

(( ∧
(b,a)∈R

yb

)
→ ya

)

As it is said in [59]: “The first line declares the conditions for admissible sets following the definition:
any admissible set must be (i) conflict free and (ii) each argument in the set must be defended by the set.
The second line declares (i) the value of auxiliary atoms ya (ya is true iff either xa is true or some xb is
true where b attacks a in the AF), and that (ii) each argument a defended by the extension is contained
in the extension.”

Here is a small illustration to give some insight into the intuition behind the items xa and ya; let us
prove that the end of the second line of �c implies that each argument defended by the conflict-free
extension is contained in the extension:

a is defended by the extension is encoded by (
∧

(b,a)∈R
∨

(c,b)∈R xc) → xa .
Let us assume that: ∀b s.t. (b, a) ∈ R,

∨
(c,b)∈R xc.

By definition of yb (first part of the second line of �c), we have that: ∀b s.t. (b, a) ∈ R yb.
From the end of the second line of �c, we can deduce ya , that is by definition, xa ∨ ∨

bRa xb.
Moreover, from the first part of the first line of �c (conflict-free requirement), we have that xa →
¬(

∨
(b,a)∈R xb).

So we obtain xa .



Models of �c characterize the complete extensions of (A,R) in the sense that xa is true in a model I

(xa ∈ I ) iff the argument a is in the extension characterized by I .
Then this encoding is used in a software called CEGARTIX (see [58,60]) that computes skeptical and

credulous acceptance under given semantics. It is based on NP-oracles (basically the MiniSAT solver).

8. Encoding of labelling-based semantics

The purpose of the works reviewed in this section is to encode labelling-based semantics25 by a set
of logical formulae. These formulae express the different constraints associated with a kind of labelling
(complete, grounded, stable, preferred). One of the approaches has led to implemented systems for
computing semantics.

8.1. The approach by Caminada and Gabbay

In [25], metalevel approaches are proposed for talking about argumentation. A metalevel approach
describes an argumentation framework from “above”, using another language and logic. The metalevel
language can be classical logic or modal logic. The case of modal logic will be presented in Section 10.
Here, we focus on the metalevel approach that uses classical logic for encoding argument labellings.

The logical language includes the equality predicate (“=”), a binary predicate R and the three unary
predicates Q0, Q1 and Q?.

Intuitively, given an AF denoted by (A,R), and a labelling �, an interpretation of the language can be
obtained: A is taken as the domain, the predicate R is interpreted by the attack relation R of the AF and
� is used to get the interpretation of the predicates Q0, Q1 and Q? as follows: a ∈ Q0 iff � labels a as
out, a ∈ Q1 iff � labels a as in; a ∈ Q? iff � labels a as und.

Let us consider the following classical theory denoted by 
(R, Q0, Q1, Q?) (or 
 for short):

(1) ∀x(Q0(x) ∨ Q1(x) ∨ Q?(x))

(2) ¬∃x(Qi(x) ∧ Qj(x)) for i �= j , i, j ∈ {0, 1, ?}
(3) ∀y(∀x(xRy → Q0(x)) → Q1(y))

(4) ∀y(∃x(xRy ∧ Q1(x)) → Q0(y))

(5) ∀y(∀x(xRy → (Q0(x) ∨ Q?(x))) ∧ ∃x(xRy ∧ Q?(x)) → Q?(y))

Any model of the above theory 
 with domain D defines an argumentation framework (A,R) with
A = D, R = R and a complete labelling � defined from the elements satisfying the predicates Q0, Q1

and Q?.
Then other labellings can be characterized as particular models of 
. For instance, the grounded

labelling is obtained with a model that minimizes Q1, whereas the preferred labellings are obtained with
models that maximize Q1. Note that second-order formulae are needed in order to express the concept
“Q1 is minimal” or “Q1 is maximal”. That leads to the circumscription technique.26 In short, standard
circumscription gives the minimal relation(s) that enjoy a given set of properties (e.g., circumscribing
∀xy R(x, y)∨R(y, x) gives all total antisymmetric relations over the domain). Maximization is obtained
dually (although this is usually not called circumscription).

When dealing with a specific AF, additional axioms are needed. They use “=” and constant names for
denoting the arguments. Let �(AF) denote the set of axioms describing AF = (A,R):

25Various definitions have been recalled in Section 2 and Section 5.
26An example of the use of circumscription in order to solve AF reasoning problems is described in [1].



(1) ∀x (
∨

a∈A x = a)

(2)
∧

a,b∈A,a �=b a �= b

(3)
∧

(a,b)∈R aRb

Let 
(AF) = 
∪�(AF). It can be shown that characterizing some of the labellings is easier, since for a
given AF, the set of arguments is finite. For instance, the grounded labelling of AF can be characterized
as the set of x such that 
(AF) � Q1(x). Moreover, as the set of arguments is finite, circumscription
becomes first-order.

8.2. The approach by Cerutti et al.

In [36], three propositional symbols are defined for each argument: Ia , Oa and Ua meaning that the
value of a in the labelling is respectively in, out or und. Moreover, for each value of the labelling,
two formulae are given for expressing the necessary and the sufficient conditions corresponding to the
assignment of this value. For instance, considering an AF denoted by (A,R), we have for the value in:( ∨

b|(b,a)∈R
¬Ob

)
∨ Ia (sufficient condition for Ia)

∧
b|(b,a)∈R

(Ob ∨ ¬Ia) (necessary condition for Ia)

Other formulae are defined for expressing some constraints about labellings. For instance, the fact that
“an argument has one and only one value in a labelling” is expressed by the formula:∧

a∈A

(
(Ia ∨ Oa ∨ Ua) ∧ (¬Ia ∨ ¬Oa) ∧ (¬Ia ∨ ¬Ua) ∧ (¬Ua ∨ ¬Oa)

)

or the fact that “unattacked arguments must be in” is encoded by:∧
a|�b,(b,a)∈R

Ia

Several combinations of these formulae are proposed in order to encode complete labellings.
Note that in the case of a finite AF, the encodings of complete labellings proposed in [36] and [25] can

be matched, owing to the equivalence between the alternative definitions of complete labellings provided
in [25] (see Section 2.2).

8.3. Some implementations

At least three systems have been developed using the approach proposed in [36].
In [36], an algorithm using a SAT solver is proposed for computing the preferred semantics. This

algorithm is called PrefSAT.
In [37], a system called ArgSemSAT is proposed including PrefSAT for computing the preferred

semantics. It also includes an approach proposed by the same authors using a decomposition of the
argumentation graph in its strong connected components (SCC) and the computation of the preferred
extensions by a propagation process across these SCCs with a call to a SAT solver for each SCC.



In [9], a software called LabSAT allows the computation of extensions for several semantics (com-
plete, stable, preferred, grounded) and also the resolution of the credulous and skeptical acceptance
problems. It uses the encoding proposed in [36].

Moreover, due to the ICCMA competition [16], many other solvers have been developed. See for
instance [38–40,62,77] (once again this list is not exhaustive).

9. Argumentation frameworks and logic programming

The close connection between AF semantics and Logic Programming (LP) semantics goes back to
Dung’s work [54]. Dung introduced a transformation from LP to AF, and showed that stable models
(resp. the well-founded model) of a logic program correspond to stable extensions (resp. the grounded
extension) of the associated AF. These results have been extended by connections between LP 3-valued
stable models (resp. regular models) and complete (resp. preferred) extensions [24,96]. Roughly speak-
ing, the purpose of these works is to provide an argumentative semantics for logic programs. So follow-
ing our choice presented in Section 1, these works are out of the scope of this survey.

In the same paper [54], Dung also introduced a converse transformation from AF to LP, and showed
that stable extensions (resp. the grounded extension) of an AF can be obtained as stable models (resp.
the well-founded model) of the associated logic program. These results have been extended to relate
other AF semantics to LP semantics [24,26,61,83,84,89]. In that case, the purpose is rather to apply
computational techniques of Logic Programming to argumentation and so matches with the topic we
are interested in. In this context, note that the relationship between argumentation and logic program-
ming has been the subject of intensive research. Currently, there are different mappings which allow to
transform an AF into a logic program, all of them offering different characterizations of argumentation
semantics in terms of LP semantics. A summary of these characterizations can be found in [83] with all
the associated references. Moreover, some works have also considered the issue of using ASP-solvers to
compute the extensions of AFs under different semantics [47,61,69,90].

In the following, we first consider some works relating a (simple) AF and Logic Programs. Then we
consider generalizations to enriched argumentation frameworks (BAF, RAF). The works reviewed in
this section can be distinguished according to the following features:

• AF semantics can be encoded under the form of extension-based semantics as in [54,84], or under
the form of labelling-based semantics (as for instance in [24,89]).

• Different semantics of AF correspond to different semantics of a same logic program as in [24,54]
or different semantics of AF are all characterized by the single 2-valued stable model semantics of
different transformed programs as in [89].

Note that all the logic programs that we consider below are normal logic programs, that is logic
programs whose rules may contain weak negation (i.e. negation as failure, with the symbol not) but not
strong negation (i.e. the classical negation of classical logic), and where the head of each rule is a single
atom. From now, normal logic programs will be called logic programs. Atoms of the form not a will be
called weak atoms and the weak part of a rule consists in the set of its weak atoms.

9.1. From an AF to a logic program

The input is an AF. The output consists of a logic program P together with the characterization of some
of the standard argumentation semantics (at least the grounded semantics and the stable semantics) using
the models of P (two-valued or three-valued models depending on the considered approach).



The logical formalism enables to encode attacks. Moreover, depending of the approaches, the concept
of attack is encoded in an explicit way (as for instance in [26,54,84]) or in an implicit way (as for instance
in [24]).

Two kinds of work can be distinguished. The first kind lies in the spirit of Dung’s work and concerns
works using two-valued models for LP semantics. The second kind of works uses three-valued models
for LP semantics.

Towards logic programs under 2-valued semantics. Let us start by the initial approach of [54]. Given
an AF (A,R), the associated logic program consists of three parts:

• The rules describing the attacks in R: {attack(x, y) ← |(x, y) ∈ R}.
• The rules defining acceptability: acc(x) ← not d(x).
• The rules defining defeat: d(x) ← attack(y, x), acc(y)

where acc(x) stands for “the argument x is acceptable” and d(x) stands for “the argument x is defeated”.
The approaches described in [26,83,84] propose an alternative transformation considering not only

attackers but also defenders. The common idea is to encode attack in an explicit way through a literal
def (x) meaning “x cannot belong to an admissible set”. So the logic program P contains rules that define
def (x) given the attackers of x.

The characteristic features of these approaches are:

• The logic program includes weak negation (i.e. negation as failure, with the symbol not).
• The encoding captures both conflict-freeness and admissibility principles.
• The predicate def is used. def (x) means “x is defeated” or equivalently “x cannot belong to an

admissible set”.
• The logic program P contains two parts P− and P+: P− encodes conflict-freeness and P+ encodes

admissibility.

∗ P− contains rules of the form def (x) ← not def (y) if y attacks x. So, P− defines def (x) given
the attackers of x.

∗ P+ contains rules of the form def (x) ← def (z1), . . . , def (zn) if z1, . . . , zn are all the attackers of
some y attacker of x. Such a rule defines def (x) given the defenders of x against y.

• Then, acceptability can be encoded through the predicate acc, where acc(x) means “x can be con-
sidered as accepted”, with the rule acc(x) ← not def (x).

• There are correspondences between standard argumentation semantics (grounded, stable, preferred,
complete) and two-valued models of the logic program (well-founded, stable, p-stable, supported
models).

Note that acceptability is defined by default. That is close to the reinstatement principle. In particular,
if an argument x is not attacked, it does not appear as the head of any rule, so x will be accepted.

Ex. 3.2.3 (cont’d) We consider here the AF corresponding to a sequence of two attacks (a attacks b that
in turn attacks c). The associated logic program is:

def (b) ← not def (a)

def (c) ← not def (b)

def (b) ← 




def (c) ← def (a)

acc(x) ← not def (x) (x being a variable)

Ex. 3.2.4 (cont’d) We consider here the AF corresponding to an argument attacked by two other argu-
ments (a and c attack b). The associated logic program is:

def (b) ← not def (a)

def (b) ← not def (c)

def (b) ← 

acc(x) ← not def (x) (x being a variable)

Ex. 9.1.1. Consider the following AF:

The associated logic program is:

def (b) ← not def (a)

def (a) ← not def (b)

def (c) ← not def (a)

def (b) ← def (b)

def (a) ← def (a)

def (c) ← def (b)

acc(x) ← not def (x) (x being a variable)

Ex. 3.4.1 (cont’d) The associated logic program is:

def (a) ← not def (b)

def (b) ← not def (a)

def (c) ← not def (b)

def (c) ← not def (e)

def (d) ← not def (c)

def (e) ← not def (d)

def (a) ← def (a)



def (b) ← def (b)

def (c) ← def (a)

def (c) ← def (d)

def (d) ← def (b), def (e)

def (e) ← def (c)

acc(x) ← not def (x) (x being a variable)

The unique stable model is {def (a), def (c), def (e), acc(b), acc(d)}. That characterizes the unique stable
extension of the AF {b, d}.

The approach of [89] is rather different in the sense that it proposes several transformations of an
AF in different logic programs, each one encoding a labelling-based semantics. These semantics are all
characterized by the single 2-valued stable model semantics.

Given an AF, each logic program consists of two parts:

• the rules encoding admissibility, which will belong to all the different programs,
• the rules specific to each semantics.

For instance, let us give the program representing the grounded semantics. The first part contains rules
defined as follows:27

• in(x) ← out(y1), . . . , out(yn), where y1, . . . , yn are all the attackers of x.
• out(x) ← in(y) for each y attacker of x.
• ← in(x), not out(y) for each y attacker of x.
• ← out(x), not in(y1), . . . , not in(yn), where y1, . . . , yn are all the attackers of x.

The part specific to the grounded semantics contains rules of the form: und(x) ← not in(x),

not out(x).

Ex. 3.2.3 (cont’d) The associated logic program under the grounded semantics is:

in(c) ← out(b); in(b) ← out(a); in(a) ←;
out(b) ← in(a); out(c) ← in(b);
← in(c), not out(b); ← in(b), not out(a);
← out(c), not in(b); ← out(b), not in(a); ← out(a);
und(x) ← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {in(a), out(b), in(c)}.

27Note that the rules with an empty head represent constraints.



Ex. 3.2.4 (cont’d) The associated logic program under the grounded semantics is:

in(c) ←; in(b) ← out(a), out(c); in(a) ←;
out(b) ← in(a); out(b) ← in(c);
← in(b), not out(a); ← in(b), not out(c);
← out(c), not in(b); ← out(b), not in(a), not in(c);
← out(a); ← out(c);
und(x) ← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {in(a), out(b), in(c)}.
Ex. 9.1.1 (cont’d) The associated logic program under the grounded semantics is:

in(a) ← out(b); in(b) ← out(a); in(c) ← out(a);
out(a) ← in(b); out(b) ← in(a); out(c) ← in(a);
← in(a), not out(b); ← in(b), not out(a); ← in(c), not out(a);
← out(a), not in(b); ← out(b), not in(a); ← out(c), not in(a);
und(x) ← not in(x), not out(x) (for x ∈ {a, b, c}).

The unique stable model is {und(a), und(b), und(c)}.
Towards logic programs under 3-valued semantics. Let us consider the approach described in [24]. The
idea is to encode attack in an implicit way, that is as a rule of the logic program, without any additional
predicate. Each argument generates a rule with the name of the argument as its head and the name of the
attackers in the weak part of its body. The characteristic features of this approach are:

• No predicate is needed.
• Each argument becomes an atom of the program P.
• The logic program includes weak negation (i.e. negation as failure, with the symbol not).
• The logic program contains rules of the form x ← not y1, . . . , not yn, where y1, . . . , yn are all the

attackers of x.
• The logic program is a simple program, that is a program with at most one rule with head x for each

argument x. Moreover for each rule of the program the body only contains weak atoms (atoms of
the form not a).

• There are correspondences between standard argumentation semantics (complete, stable, grounded,
preferred) and three-valued models (3-valued stable, 2-valued stable, well-founded, regular) of the
logic program.

Ex. 3.2.3 (cont’d) The associated logic program is:

b ← not a

c ← not b

a ←



Ex. 3.2.4 (cont’d) The associated logic program is:

b ← not a, not c

a ←
c ←

Ex. 9.1.1 (cont’d) The associated logic program is:

b ← not a

a ← not b

c ← not a

This logic program has three 3-valued stable models: (∅,∅), ({a}, {b, c}), ({b, c}, {a}) corresponding
respectively to the three complete extensions of the AF: ∅, {a} and {b, c}.
Ex. 3.4.1 (cont’d) The associated logic program is:

b ← not a

a ← not b

c ← not b, not e

d ← not c

e ← not d

Ex. 9.1.2. Consider the following AF:

The associated logic program is:

a ← not a, not b

b ← not b, not a, not c

c ← not d

d ← not c

9.2. Generalizations to enriched frameworks

Now we consider generalizations to enriched argumentation frameworks: a framework accounting for
both attack and support interactions, called AFN, and a framework accounting for higher-order interac-
tions.



9.2.1. AFNs and logic programs
Let us briefly review the work done by F. Nouioua (unpublished report, private communication). That

work examines the connections between an Argumentation Framework with Necessities (AFN) and
logic programs under three-valued semantics. Both directions are considered but following our choice
we discuss only the case when an AFN is encoded into a logic program.

An AFN [78] is a kind of BAF, where the support is collective and is interpreted as a “necessary
support”: Given E a non-empty set of arguments and a an argument, E is a “necessary support” for a

means that the acceptance of a requires the acceptance of at least one argument of E. Note that in AFN
semantics, acyclicity of the support relation is required among accepted arguments. In other words, in
a given extension, support for each argument is provided by at least one of its necessary arguments and
there is no risk of deadlock due to necessity cycles.

An AFN is encoded into a logic program as follows:

• For each argument a, an atom a and a rule ra of head a are created.
• For each set of arguments E that necessary supports an argument, an atom e is created.
• The body of the rule ra contains all the weak atoms not bi , with bi attacks a, and all the strong

atoms ej , with Ej supports a.
• For each support E, there is a rule e ← x for each x ∈ E.
• There are correspondences between AFN labelling-based semantics and three-valued semantics of

the program which is obtained.

Ex. 9.2.1. Consider the following AFN:

The associated logic program is:

a ← not b

b ← not a

c ← e1, not e

d ← not c

e ← not d

f ← e2, not e

g ← not g

e1 ← b

e2 ← g

This program has three 3-valued stable models: (∅,∅), ({b, e1}, {a}), ({a, d}, {b, c, e, e1}) correspond-
ing respectively to the three complete labellings of the AFN.



9.2.2. Argumentation frameworks with higher level attacks and logic programs by Gabbay
In [65] higher level extended argumentation frameworks are considered, where attacks on other attacks

are allowed, at any level. A translation from a higher level framework into a logic program is suggested,
as follows:

• The atoms of the logic program are all the arguments and all the attacks.
• For each e, argument or attack, if e is not attacked, the rule e ← is created.
• Assume that e is attacked by the arguments a1, . . . , ak through the attacks named α1, . . . , αk.

Assume that each αi is itself attacked by the arguments b1
i , . . . , b

k(i)
i through the attacks named

β1
i , . . . , β

k(i)
i . Then the following formula is created: e ← ∧

i=1,k(not ai ∨ ∨
j=1,k(i)(β

j

i ∧ b
j

i )).
• The above formula must be turned into several clauses in order to get a normal logic program.

Gabbay, in [65], proposes to define the semantics of a higher level extended argumentation framework
through known semantics for logic programs, using the above transformation.

However, to the best of our knowledge, this way was not pursued by the author. Instead, Gabbay in [66]
proposes to give up the logic programming approach for defining the semantics of higher level argumen-
tation frameworks. Indeed, the new approach consists in rewriting higher level attacks as frameworks
with a special kind of collective attacks (called joint attacks).

Note that another connection could be considered between another variant of higher level extended
argumentation frameworks, called REBAF, and logic programs (private communication by J. Fandinno).
A REBAF [29] is a generalization of AF that allows the representation of both recursive attacks and
evidential supports. It is also a generalization of EBAF (see Section 2) with attacks and supports targeting
other attacks or supports. Nevertheless, this connection is not in the scope of this survey since this is the
encoding of a logic program into a REBAF and, up to now, the other direction (from a REBAF to a logic
program) has not been considered.

9.3. Some implementations

Some implementations using logic programming have been proposed. The first one uses a translation
of an AF into a logic program. The other ones do not propose a translation of an AF into a logic program
but use logic programming for computational issues.

ASPARTIX (Answer Set Programming Argumentation Reasoning Tool) supports reasoning in AFs us-
ing the ASP formalism (see [57] for the description of the tool and many references).
The core of ASPARTIX handles AFs. It provides encodings for computing extensions or per-
forming credulous/skeptical reasoning in AFs. A broad range of argumentation semantics is dealt
with.
ASPARTIX also handles several other frameworks built on top of AFs, including for instance AFs
augmented with preferences (PAFs), BAFs, AFRAs, SETAFs (AFs where attacks are carried by
sets of arguments).

[46] presents dialectical proofs for the credulous acceptance problem in constrained argumentation
frameworks (CAF, see Section 3.4). A CAF is a generalization of AF that allows additional con-
straint on arguments to be taken into account in the definition of admissible sets of arguments.
A dialectical proof is formalized by a dialogue between two players, the proponent and the oppo-
nent. Dialectical proofs are computed by an ASP program which consists of facts encoding a CAF
and rules encoding what a dialectical proof is (that is the legal-move function of the dialogue).



The models of the logic program correspond to the dialectical proofs of the CAF (see [73] for the
description of the ASP solver ASPeRiX and its application to the credulous acceptance problem
in a CAF).

[88] proposes a Boolean algebra to encode acceptability semantics for AFs. A subset of arguments is
represented by a Boolean vector and the attack relation is represented by a Boolean matrix. Then
series of Boolean operations on vectors and matrices are introduced so that acceptability semantics
(namely the admissible, stable and complete semantics) can be encoded by Boolean constraints.
These constraints are translated into logic programs and solved using a Constraint Logic Program-
ming over Boolean variables (CLPB) system, which is an instance of the general CLP scheme that
extends logic programming with reasoning over Boolean domains. The implementation uses SWI-
Prolog, a Prolog system equipped with a CLPB system. Experiments have been conducted, with a
comparison with the approach using the solver ArgSemSAT [37] (see Section 8.3).

10. Argumentation frameworks and modal logic

As outlined in [25], there exist several methods for expressing argumentation in modal logic, among
which the object-level approach and the meta-level approach. Roughly speaking, in the object-level
approach, an AF and its logical translation share the same language (each argument becomes a logical
atom), whereas a meta-level approach talks about an AF from “above”, using another language and logic
(for instance a modal logic).

We first recall some modal logic background. Then, we present three examples of meta-level ap-
proaches. In the first two, the input consists of an AF together with a labelling. The output consists of
modal formulae that express the characteristic properties of complete and stable semantics.

Finally, we briefly present an object-level approach.

10.1. Modal logic preliminaries

The modal logic K is a propositional system with the modal operator � (and its dual ♦), the usual
logical connectives, the symbols 
, ⊥ and atomic propositions q1, q2, . . . .

Models for K have the form (S, R, h) where S �= ∅ is the set of possible worlds, R ⊆ (S × S), and h

is the assignment function giving for each atomic proposition q a subset h(q) of S.
Satisfaction is defined as follows:

• t � q iff t ∈ h(q)

• t � (A ∧ B), (¬A), (A ∨ B), (A → B) as usual
• t � (�A) iff for all s such that tRs, s � A

• A holds in (S, R, h) iff for all t ∈ S, t � A

The system K can be axiomatized as follows:

• propositional tautologies
• �(A → B) → (�A → �B)

• If � A then � �A



10.2. The approach by Grossi

In [70] a well-known modal logic (the extension of K with universal modality) is used to formalize
basic notions of argumentation theory.

Let AF = (A,R). AF is viewed as a modal frame, where the set of possible worlds is the set of
arguments A and the accessibility relation is the inverse of the attack relation (intuitively the “being
attacked” relation).

An assignment I on (A,R) is a function from a set of propositional atoms to the subsets of argu-
ments.28 The fact that an argument a belongs to I (p) can be interpreted as “argument a has property
p”.

An argumentation model has the form (AF, I ) where I is an assignment on AF. As an example of
assignment, we find the labellings: A labelling function � on A can be viewed as an assignment on the
propositional symbols 1, 0, ? (intuitively in,out,und).

The following statements are interesting in argumentation theory:

• “argument a is attacked by the set of arguments E”;
• “argument a is defended by the set of arguments E”;
• “the set of arguments E attacks an attacker of argument a”.

In order to express these statements, two modal operators are used:

• 〈←〉 whose intuitive reading is “there exists an argument attacking the current one such that”, and
• 〈∀〉 whose intuitive reading is “there exists an argument such that”.

As usual, there are also the dual operators [←] and [∀].
The semantics is as follows: In a given model (AF, I ):

• a � 〈←〉φ iff there exists s such that s attacks a in AF and s � φ.
• a � 〈∀〉φ iff there exists s such that s � φ.

Consider for instance the particular case of a labelling. Let a be an argument. a � 〈←〉1 reads “there
exists at least one attacker of a labelled in”.

Given an argumentation model (AF, I ), the statement “argument a is attacked by an argument in the
set of arguments of A that satisfy the property φ” can be encoded as a � 〈←〉φ. As s � φ reads “s
belongs to the set of arguments in A that satisfy φ”, it follows that a � 〈←〉φ encodes the statement
“argument a is attacked by the set of arguments in A that satisfy φ”. Similarly, the statement a � 〈←
〉〈←〉φ encodes the statement “argument a is defended by the set of arguments in A that satisfy φ”.

The modal logic that is obtained is an extension of the modal logic K , denoted by K∀. It enables to
capture basic principles of argumentation semantics, as for instance:

• [∀](φ → [←]¬φ) encodes that �φ� 29 is conflict-free.
• [∀](φ → [←]〈←〉ψ) encodes that �φ� is acceptable w.r.t. �ψ �.
• [∀](φ ↔ [←]¬φ) encodes that �φ� is stable.

Consider the particular case of a labelling. A labelling � is a complete labelling for AF iff the model
(AF, �) satisfies the following formula:

[∀]((1 ↔ [←]0) ∧ (0 ↔ 〈←〉1) ∧ Label)

28That is, the codomain of I is the powerset of A.
29 �φ� denotes the set of arguments in AF that satisfy φ.



where Label is the formula (1 ∧¬0 ∧¬?)∨ (¬1 ∧ 0 ∧¬?)∨ (¬1 ∧¬0∧?), meaning that each argument
can get at most one label. See an example given in Section 12.2.

Then model-checking can be used in order to determine whether a given formula is conflict-free,
admissible, stable.

Furthermore, Grossi, in [70], presents a game-theoretic proof procedure based on model-checking
games for the logic K∀. In such a game, a proponent tries to prove that a � φ holds in a given model
(AF, I ) while an opponent tries to disprove it.

Note that an additional modal machinery including a least fixed point operator is needed to capture
the notion of grounded extension.

10.3. The meta-level approach of Caminada and Gabbay

The meta-level approach of [25] is close to the approach of [70]. It can be summarized as follows.
Given AF = (A,R),

• Arguments are viewed as possible worlds; so AF becomes a modal frame for the modal logic K .
• The attack relation becomes the accessibility relation.
• A labelling becomes an assignment of three propositional atoms q0, q1, q?.

More precisely, given � a labelling on AF, the associated assignment I is defined as follows:

t ∈ I (q0) (or t � q0) iff �(t) = out;
t ∈ I (q1) (or t � q1) iff �(t) = in;
t ∈ I (q?) (or t � q?) iff �(t) = und.

The modality � means “being attacked by”, namely a � �φ iff for all s such that s attacks a in AF,
s � φ. As usual, ♦ denotes the dual modality.

Note that the modality � corresponds to the modality [←] of [70]. However there is no modality
corresponding to [∀].

Complete labellings can be characterized with a set of axioms including for instance:

�q0 → q1 (if all attackers of t are out then t is in)

♦q1 → q0 (if t is attacked by an argument which is in then t is out).

Then, stable and complete extensions are characterized by the following equations. Let E be a propo-
sitional letter denoting a set of arguments (see an example given in Section 12.2).

• E is stable iff E = �¬E.
• E is a complete extension iff E = �(¬E ∧ ♦E).

The extensions can be obtained as fixed point solutions for the above equations.

10.4. The modal setting of Villata et al.

The purpose of the work reported in [93] is to define a logic for specifying and verifying requirements
for AFs. A propositional variant has been presented in Section 6. Here we consider the modal variant,



which allows the expression that some semantics admit multiple extensions and also the expression of
properties of the attack relation (such as irreflexivity, or symmetry for instance).

The main difference with the modal approaches of [25] and [70] is that these works describe semantics
in the modal language, whereas [93] considers semantics as primitives of the language.

The approach of [93] presents the following features:

• Sets of arguments are viewed as possible worlds.
• The attack relation is interpreted as an accessibility relation among worlds. That implies that the

attack relation represents a collective attack (a set of arguments taken together may attack another
set of arguments).

• There are two modal operators: �1 and �2. The modality �1 means “attacks”, namely p � �1φ iff
for all q such that p attacks q in the AF, q � φ. �2 is a universal modality (as [∀] in [70]).

As in the propositional variant, primitives of the modal language (such as F(p), A(p)) represent
semantics. Moreover, in order to abbreviate formulae, a connective for collective attack is defined as
follows: p � q ≡ �2(p → �1¬q).

The modal logic that is obtained enables to express characterizations such as:

• For any pair (p, q) of sets of arguments such that p attacks q, they cannot be subsets of a conflict-
free extension: �2(p � q) → F(¬p ∨ ¬q)

• The grounded semantics admits a single extension: � (G(p) ∧ G(q)) → �2(p ↔ q)

10.5. The object-level approach of Caminada and Gabbay

The object-level approach of [25] can be summarized as follows. Given AF = (A,R),

• Arguments are viewed as atomic propositions in the modal provability logic LN3.
• The content of AF is represented by a formula M(AF) of the logic LN3.
• The possible world models of M(AF) are in one-to-one correspondence with the labellings of AF.

The modal formula M(AF) is as follows:

M(AF) =
⎛
⎝(G((�⊥) ∨ (

∧
y has attackers yi

(y ↔ ∧
i ♦¬yi))))∧

(
∧

x is not attacked Gx)

⎞
⎠

where GA stands for A ∧ �A.
The provability logic LN3 has the following axioms and rules:

(1) axioms and rules of modal logic K

(2) ♦A → ♦(A ∧ �¬A)

(3) �A → ��A

(4) (♦A ∧ ♦B) → ♦(A ∧ B) ∨ ♦(A ∧ ♦B) ∨ ♦(B ∧ ♦A)

(5) ���⊥

11. Translation of an AF into intuitionistic logic

The translation of an AF into an intuitionistic logic theory has been first considered in [68]. The idea
is to use intuitionistic negation to model an attack. The intuitionistic models of the obtained theory
characterize the complete extensions.



More recently, [63] presents a translation of an AF into Nelson’s constructive logic, an extension of
intuitionistic logic including the notion of strong negation as a means to deal with constructive falsity.
This logic allows to capture an AF under the stable semantics, at the object level, in the sense that ar-
guments in AF become atoms in the corresponding logical theory and interactions between arguments
are expressed by logical connectives. Moreover the translation allows to deal with enriched argumenta-
tion frameworks such as frameworks with collective attacks, and frameworks with attacks and evidential
supports.

11.1. Background about intuitionistic logic

Let us recall that:

• Intuitionistic implication φ1 → φ2 can be understood as a means to construct a proof of the truth of
φ2 in terms of a proof of the truth of φ1.

• Strong negation ∼ φ can be understood as the existence of a proof of the falsity of φ.
• Intuitionistic negation is defined as ¬φ ≡ (φ → ⊥). It can be understood as a means to obtain a

proof of a contradiction from a proof of the truth of φ (or roughly speaking as “there cannot be a
proof of the truth of φ”).

Then, a new implication connective, ⇒, allows the formalization of the “non contradictory” inference
principle (NC): “no belief can be held based on contradictory evidence”.

φ1 ⇒ φ2 ≡ (¬ ∼ φ1 ∧ φ1) → φ2

Intuitively, φ1 ⇒ φ2 can be understood as a means to construct a proof of the truth of φ2 given a
proof of the truth of φ1 and the fact that there cannot be a proof of its falsity (or in other words given a
“consistent” proof of φ1).

11.2. Abstract argumentation and intuitionistic logic

In [63], intuitionistic logic is used for translating an AF or an EBAF.

Translation of an AF. The translation presented in [63] relies on the following intuition: under the
constructive logic point of view, an attack is a “means to construct a proof of the falsity of the attacked
argument based on the acceptability of the attacker”. Moreover, the acceptability of φ is identified with
having a consistent proof of it (i.e. there is a proof of the truth of φ and there cannot be a proof of the
falsity of φ).

Then the above intuition of the notion of attack is formalized by a new connective:

φ1 � φ2 ≡ φ1 ⇒ ∼ φ2

In other words, φ1 � φ2 says that the acceptability of φ1 allows to construct a proof of the falsity of
φ2, and a proof of the falsity of φ2 is identified with φ2 being defeated.

Given AF = (A,R), the associated theory in constructive logic is:

C(AF) ≡ A ∪ {
a � b|(a, b) ∈ R

}



[63] proves that there is a one-to-one correspondence between the stable extensions of AF and the
equilibrium models of the theory C(AF), where the equilibrium models of a theory are a particular
selection of constructive logic models of this theory.

Regarding how other extension-based semantics could be characterized in constructive logic is an
open topic.

Translation of evidential argumentation frameworks. In the case of an argumentation framework with
collective attacks and evidential supports (EBAF) the translation uses the connectives

∧
, � and ⇒.

Let EBAF = (A,R, E,P). Recall that the attack relation R is a subset of 2A \ ∅ × A, the support
relation E is a subset of 2A \ ∅ × A, and P ⊆ A is the set of distinguished prima-facie arguments (see
Section 2.1).

Using the notation
∧

B that denotes “the conjunction of the elements of B”, the associated theory in
constructive logic is:

C(EBAF) ≡ P ∪
{∧

B � b

∣∣∣(B, b) ∈ R
}

∪
{∧

B ⇒ b

∣∣∣(B, b) ∈ E
}

Note that the support from the set of arguments B to an argument b is translated by the formula∧
B ⇒ b which says that the acceptability of B enables to construct a proof of the truth of b.
As for the case of an AF, in [63] it is proved that there is a one-to-one correspondence between the

stable extensions of an EBAF (defined in [29]) and the equilibrium models of the theory C(EBAF).

12. Analysis and conclusion

In this section, we first compare the reviewed approaches according to several criteria. Then, we
illustrate the associated encodings on an example. And finally we will conclude this survey.

12.1. Comparison criteria

Recall that our initial choice was to identify and to compare approaches that “use logic for doing
argumentation”.30

At least four criteria can be used:

(1) The first comparison criterion is about the input taken into account by the different approaches. In
each case, the input consists at least of a graph. Except in the ADF approach, this graph usually
represents an AF. Moreover, in some approaches, the AF is extended into either a bipolar AF, or
a recursive AF, or an AF with collective interactions, or with weighted arguments/interactions, or
with preferences, or built on a given universe.
In some approaches, an additional input is needed: either constraints or requirements that must be
satisfied by the output or “candidates” that must be studied in order to satisfy some properties.
Table 1 synthetizes all these cases.

(2) The second criterion is about the aim of the approaches that use logic for doing argumentation and
is related to the produced output. Two kinds of aim can be encountered:

30The other direction could be the object of another survey that would cover the relationship between logical frameworks
and formal argumentation, including structured argumentation.



Table 1
The first comparison criterion: the input

Input graph Approaches
Case of an input graph that represents an AF

Dung [4,5,11,12,24–26,30,36,43,49,50,52,54,55,59,65,67,70,83,84,89,93]
Bipolar [63]
Recursive [34,65]
Weighted none
With preference [56]
With collective interactions [55,63]
On a universe [55]

Case of an input graph that does not represent an AF
Dependence graph ADF approach [20,21]

Other input Approaches
Acceptance conditions • (on each argument) ADF approach [20,21]: depending on the chosen acceptance

conditions, the dependence graph can represent any type of AF, from Dung AFs to AFs with
collective interactions
• (on the AF) Constrained AF [43]: the acceptance condition is used only for removing some
extensions

Requirements On the AF or the semantics [93]: the requirements are used for constraining the structure of
the AF or the resulting labellings

Candidates Are these candidates actual extensions or labellings for the given semantics?
[11,12,25,36,59,70]

Table 2

The second comparison criterion: the aim

Aim Approaches
Translation of an AF [24,26,30,34,52,55,56,67,84]
Encoding of semantics Case of extension-based semantics [11,12,24–26,30,34,52,54–56,59,63,65,67,78,83,84,89,93]

Case of labelling-based semantics [4,5,25,25,36,49,50,70]

• Either the aim is to obtain a logical encoding of the input AF; in this case, the output is a set of
formulae;

• Or the aim is to encode argumentative semantics; in this case, the output is a set of logical for-
mulae whose models correspond to extensions or labellings for a given argumentation semantics
possibly with additional constraints; sometimes, it is also possible to check whether some “can-
didates” are actual extensions or labellings for a given semantics.

It is worth noting that if an approach covers the first aim, it also covers at least part of the sec-
ond one. Indeed, it is very difficult to encode an argumentation graph without taking into account
the meaning attached to the notion of attack (at least the notion of conflict-freeness). Table 2 syn-
thetizes the aims of the reviewed approaches.

(3) The third criterion is about logic. Several logics are encountered: propositional logic, first-order
logic, QBF formalism, logic programming, modal logic, intuitionistic logic. Table 3 synthetizes
the different cases.



Table 3
The third comparison criterion: the used logic

Used logics Approaches
Propositional [11,12,20,21,43,52,56,59,67]
First-order (with finite domains) [25,30,34,36,55,93]
QBF [4,5,49,50]
Logic programming [24,26,54,65,78,83,84,89]
Modal [25,70,93]
Intuitionistic [63]

Table 4

The fourth comparison criterion: the implementations

Some existing implementations Approaches
None [25,43,55,63,67,70,93]
DIAMOND, UNREAL, GrappaVis [20,21]
GRAFIX [30,34]
SESAME, CoQuiAAS [11–13,72,74,95]
CEGARTIX [59]
QADF [20,21,49,50]
PrefSAT, ArgSemSAT [36,37]
LabSAT [9,9]
ASPARTIX, ASPeRiX, ASP-solvers [24,26,46,54,61,69,83,84,88,89]

Note that the complexity of the chosen logic must be taken into account: it is more or less difficult
to compute models and to establish the link between these models and the output that must be
produced. This point is related to the next criterion.

(4) The fourth criterion is about the existence of implementations: some approaches are yet to be
implemented, whereas some others have led to different implementations, some of them being used
in the ICCMA competition (see for instance [72]). Table 4 synthetizes all these implementations.

12.2. An illustrating example

The following example illustrates the different encodings that can be obtained.

Ex. 2.1.1 (cont’d) The AF is a simple Dung’s framework that has only one complete extension: {a, d, c}.

With ADF approach (translation of the AF into a dependence graph): See Section 3. The AF is en-
coded by the following dependence formulae:

ϕa = 
, ϕb = ¬a ∧ ¬d, ϕc = ¬b, ϕd = 
.



The language is propositional with the vocabulary V = {a, b, c, d}. Then, using the ADF machin-
ery (the computation of the fixed points of the �D operator) a 3-valued model is produced, which
corresponds to the complete extension {a, d, c}.

Translation of the AF into a logical base: Several approaches exist, each of them including an encod-
ing of semantics.

[30,33,34]: See Section 4.2. The vocabulary is defined as follows:

V = {
Acc(a), NAcc(a), Acc(b), NAcc(b), Acc(c), NAcc(c), Acc(d), NAcc(d)

}
.

Note that it is a first-order approach whose term models are finite so it is equivalent to a
propositional approach.
The AF is encoded by the set of formulae:

� = {
Acc(a) → NAcc(b), Acc(d) → NAcc(b),

Acc(b) → NAcc(c),

NAcc(a) → ¬Acc(a), NAcc(b) → ¬Acc(b),

NAcc(c) → ¬Acc(c), NAcc(d) → ¬Acc(d)
}
.

The different requirements of the standard semantics are also logically encoded. For instance,
for the complete semantics, the defence and the reinstatement principles are respectively
encoded by:

�d = {¬Acc(b), Acc(c) → (
Acc(a) ∨ Acc(d)

)}
�r = {

Acc(a), Acc(d), Acc(a) → Acc(c), Acc(d) → Acc(c)
}
.

Then, the models of � ∪ �d ∪ �r characterize the complete extensions (here there is only
one model corresponding to the unique complete extension {a, d, c}).

[67]: See Section 4.3. The language is propositional with the vocabulary V = {a, b, c, d, Na,

Nb, Nc, Nd}. The AF and some requirements corresponding to the semantics are logically
encoded. However, the logical encoding mixes the part issued from the input AF and the
part issued from the encoding of semantics. Moreover, it is not possible to identify the part
issued from each principle in the logical encoding of a semantics. For the considered AF, the
resulting base is:31

{Na → ¬a, Nb → ¬b, Nc → ¬c, Nd → ¬d,

a, d, a → Nb, d → Nb, b → Nc,

a ↔ 
, d ↔ 
, b ↔ (Na ∧ Nd), c ↔ Nb,

(¬a ∧ ¬d ∧ (¬Na ∨ ¬Nd)) → (¬b ∧ ¬Nb),

(¬b ∧ ¬Nb) → (¬c ∧ ¬Nc)}.
31Without trivial formulae such as, for instance, (
 ∧ ⊥) → (¬a ∧ ¬Na).



The models of this base characterize the complete extensions (here there is only one model
corresponding to the unique complete extension {a, d, c}).

[55]: See Section 6.1. The language is first-order. Considering that the input AF is also the uni-
verse, the encoding produces the formula �:(

on
({a, b, c, d})) ∧ ({a} � {b}) ∧ ({d} � {b}) ∧ ({b} � {c}).

Then, considering a set of arguments t , one can check whether t is an extension for the given
semantics. For instance, t is a complete extension if the following formula is a tautology:

� →

⎛
⎜⎜⎝

on(t)

∧¬(t � t)

∧(t �� t)

∧∀t2((singl(t2) ∧ (t �� t2)) → (t2 ⊆ t))

⎞
⎟⎟⎠

[26,83,84]: See Section 9.1. The approach uses logic programming. The AF is encoded by the
following logic program:

def (b) ← not def (a)

def (b) ← not def (d)

def (c) ← not def (b)

def (c) ← def (a), def (d)

def (b) ← 

acc(a) ← not def (a)

acc(b) ← not def (b)

acc(c) ← not def (c)

acc(d) ← not def (d)

The complete extensions are characterized by the supported models of the logic program.
Here, there is only one supported model ({acc(a), acc(c), acc(d), def (b)}) corresponding to
the unique complete extension ({a, c, d}).

[24]: See Section 9.1. The approach also uses logic programming, with propositional symbols.
The AF is encoded by the following logic program:

b ← not a, not d

c ← not b

a ←
d ←

There are correspondences between 3-valued models of the logic program and argumentation
semantics. For instance, the complete extensions of the AF are characterized by the 3-valued
stable models of the associated logic program.



[63]: See Section 11. The logic is equilibrium logic, with the vocabulary V = {a, b, c, d}. The
AF is encoded by the base:

a

b

c

d

a � b

d � b

b � c

However, only the stable semantics has been characterized in terms of equilibrium models.

Encoding of semantics The approaches presented above allow the characterization of some semantics,
given the logical encoding of the AF. Some other approaches give a characterization of semantics
without encoding the input AF. They try to identify and to encode some principles governing
the input semantics. In some cases, the produced formulae can be instantiated on a given AF,
particularly in order to compute the extensions/labellings, or to check whether a given set of
arguments is an extension (or whether a given labelling is correct w.r.t. the input semantics).

[11]: See Section 7.1. The language is propositional with the vocabulary V = {a, b, c, d}. For the
considered AF, the complete extensions are characterized by the following formula �:

[(a → ¬b) ∧ (a ↔ 
)]∧
[(d → ¬b) ∧ (d ↔ 
)]∧
[(b → ¬c) ∧ (b ↔ ⊥)]∧
[(c → 
) ∧ (c ↔ (a ∨ d))]

Then, given a set of arguments S, it can be checked whether S is a complete extension.
[59]: See Section 7.2. The language is propositional with the vocabulary V = {xa, ya, xb, yb, xc,

yc, xd, yd}. For the considered AF, the complete extensions are characterized by the follow-
ing formula �:

[(¬xa ∨ ¬xb) ∧ (¬xd ∨ ¬xb) ∧ (¬xb ∨ ¬xc)]∧
[(¬xb) ∧ (xc → (xa ∨ xd))]∧
[(ya ↔ xa) ∧ (yd ↔ xd)]∧
[yb ↔ (xb ∨ xa ∨ xd)]∧
[yc ↔ (xc ∨ xb)]∧
[ya ∧ yd ∧ ((ya ∧ yd) → yb)]∧
[yb → yc]



Models of � characterize the complete extensions of the AF (xi is true in the model iff the
argument i belongs to the extension).

[4,5]: See Section 5. The logic uses quantified Boolean formulae (QBF formalism). The formu-
lae can be instantiated on a given AF. For the considered AF, the complete labellings are
characterized by the following formula:[

val(a, t) ∧ ¬val(a, f ) ∧ ¬val(a, u)
]∧[

val(d, t) ∧ ¬val(d, f ) ∧ ¬val(d, u)
]∧[

val(b, t) → (
val(a, f ) ∧ val(d, f )

)]∧[
val(b, f ) → (

val(a, t) ∨ val(d, t)
)]∧[

val(b, u) →
( ¬(val(a, f ) ∧ val(d, f ))

∧(¬(val(a, t) ∨ val(d, t)))

)]
∧

[
val(c, t) → val(b, f )

]∧[
val(c, f ) → val(b, t)

]∧[
val(c, u) → (¬val(b, f ) ∧ ¬val(b, t)

)]∧[¬(a⊕ ∧ a�)]∧[¬(b⊕ ∧ b�)]∧[¬(c⊕ ∧ c�)]∧[¬(d⊕ ∧ d�)]
[25] with first-order logic: See Section 8.1. For the considered AF, the complete labellings are

characterized by the following formula:[
Q0(a) ∨ Q1(a) ∨ Q?(a)

]∧[
Q0(b) ∨ Q1(b) ∨ Q?(b)

]∧[
Q0(c) ∨ Q1(c) ∨ Q?(c)

]∧[
Q0(d) ∨ Q1(d) ∨ Q?(d)

]∧[¬(Q0(a) ∧ Q1(a)
) ∧ ¬(Q0(a) ∧ Q?(a)

) ∧ ¬(Q?(a) ∧ Q1(a)
)]∧[¬(Q0(b) ∧ Q1(b)

) ∧ ¬(Q0(b) ∧ Q?(b)
) ∧ ¬(Q?(b) ∧ Q1(b)

)]∧[¬(Q0(c) ∧ Q1(c)
) ∧ ¬(Q0(c) ∧ Q?(c)

) ∧ ¬(Q?(c) ∧ Q1(c)
)]∧[¬(Q0(d) ∧ Q1(d)

) ∧ ¬(Q0(d) ∧ Q?(d)
) ∧ ¬(Q?(d) ∧ Q1(d)

)]∧[(
Q0(a) → Q1(b)

) ∧ (
Q0(d) → Q1(b)

) ∧ Q1(a) ∧ Q1(d)
]∧[

Q0(b) → Q1(c)
]∧[((

Q1(a) ∨ Q1(d)
) → Q0(b)

) ∧ (
Q1(b) → Q0(c)

)]∧



[((
Q0(b) ∨ Q?(b)

) ∧ Q?(b)
) → Q?(c)

]∧⎡
⎣
⎛
⎝ (Q0(a) ∨ Q?(a))

∧(Q0(d) ∨ Q?(d))

∧(Q?(a) ∨ Q?(d))

⎞
⎠ → Q?(b)

⎤
⎦

[25] with modal logic: See Section 10.3. The modal formula characterizing the complete exten-
sions is quite simple. The difficulty lies in computational issues.

E is a complete extension iff E = �(¬E ∧ ♦E)

[70]: See Section 10.2. The logic is a modal logic. The modal formula characterizing the complete
extensions is the following one:

[∀]
⎛
⎝ (1 ↔ [←]0)

∧(0 ↔ 〈←〉1)

∧[(1 ∧ ¬0 ∧ ¬?) ∨ (¬1 ∧ 0 ∧ ¬?) ∨ (¬1 ∧ ¬0 ∧ ?)]

⎞
⎠

Here again, the difficulty lies in computational issues.

12.3. Conclusion

Considering that this survey is published on the occasion of the 25 years of Dung’s approach, we
have chosen to discuss approaches that relate logical theories and abstract argumentation in a specific
sense: “How logic has been used for capturing various aspects or parts of Dung’s argumentation”. In
view of the numerous proposals on the topic, it seemed to us of interest to look at them in the same place
(this paper) and in a common way (whereas authors often introduce their approaches with some bias, no
matter how sensible and well-taken). So, the presentation of each approach has been designed in order
to answer the same set of questions: What is the aim? What are the “inputs” and the “outputs”? What is
the type of the logic used? Do implementations exist?

In Section 12.1, we have given some criteria/traits/features/properties to get comparisons [similarities
and differences] out of the answers to these questions; then in Section 12.2, a same example has been
used in order to illustrate the behaviour of the presented approaches. The number and the diversity of
these approaches are so huge that this comparison is limited but we still believe it has some value. Indeed,
each presented approach has its own specificities, sometimes antagonistic with the other approaches,
but also justified by its own context of definition or use. And we think that it is difficult and perhaps
impossible to give here a more precise evaluation.

Nevertheless, some “use cases” could be proposed for which an approach makes a better choice that
another one.

A first example of “use cases” could be: when your “input” is an AF (only simple attacks between
arguments) and we are only interested in a very efficient computation of extensions, an encoding using
[11,12] coupled with a SAT solver could be a good choice (note that some of the best solvers of the
ICCMA competition do this choice [16]).

Another example of “use cases” could be: your “input” is an argumentation framework with several
enrichments such as weighting functions, and we want to compute labellings. Obviously the approach



Fig. 3. ADF approach, Example 3.2.1: set of two-valued interpretations and GD operator.

defined in [11,12] cannot be used whereas an encoding by an ADF [21] coupled with one of the ADF
solvers (and there are many ADF solvers) could be a better choice.

But if your input is an argumentation framework with recursive interactions, perhaps it would be better
to use an encoding of this framework using the approach proposed in [33] coupled with a SAT solver in
order to obtain the extensions.

Another point of view could be the size of the logical knowledge base corresponding to the encoded
framework: clearly the encoding in propositional logic proposed in [59] is lengthy compared to the
encoding in modal logic proposed by [70].

On another hand, expressiveness can also be taken into account since it differs depending on the
approach under consideration. An example can be found when we compare the YALLA approach for
instance with the encoding proposed in [33]: both use a first-order language, but YALLA is also able to
reason about extensions, and not only about argument acceptance (for each semantics, there is a first-
order formula in YALLA expressing that a subset of arguments is an extension under this semantics).



Fig. 4. ADF approach, Example 3.2.1: the complete lattice built from the set of two-valued interpretations and the �t preorder-
ing.

And of course, in a computational point of view, an existing and efficient implementation could offer a
preponderant advantage. For instance, this is generally the case of approaches using propositional logic
[11,59] compared to those using modal logic [25,70].

All previous “use cases” clearly show the multiplicity of points of view and that leads us to conclude
that one cannot obtain a definite answer to the question of what approach is best.
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Fig. 5. ADF approach, Example 3.2.2: set of three-valued interpretations and �D operator.



Fig. 6. ADF approach, Example 3.2.2: the complete meet-lattice built from the set of three-valued interpretations and the �i preordering.
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