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Abstract

We consider testing distributional assumptions by using moment conditions. A general
class of moment conditions satisfied under the null hypothesis is derived and connected
to existing moment-based tests. The approach is simple and easy-to-implement, yet
reasonably powerful. In addition, we provide moment tests that are robust against
parameter estimation error uncertainty in the general case which includes the case of
serial correlation. In particular, we consider the location-scale model for which we derive
robust moment tests, regardless of the forms of the conditional mean and variance. We
study in detail the Student and Inverse Gaussian distributions. Simulation experiments
are conducted to assess the finite sample properties of the tests. We provide two empirical
examples on foreign exchange rates by testing the Student distributional assumption of
T-GARCH daily returns and on daily realized variance by testing the Inverse Gaussian
distributional assumption.
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1 Introduction

Recent developments in financial econometrics emphasize the importance of developing testing

procedures of general distributional assumptions. These developments include Value-at-Risk

calculations (Christoffersen, 1998), density forecasts (Diebold, Gunter and Tay, 1998), continuous

time modeling of interest rates (Aı̈t-Sahalia, 1996, and Conley, Hansen, Luttmer and Scheinkman,

1997), and modeling realized volatility (Forsberg and Bollerslev, 2002). The main goal of the

paper is to develop simple and easy-to-implement, yet reasonably powerful, tests of continuous

distributions, when one faces statistical issues like parameter estimation error uncertainty and

possible serial correlation of the data.

A common and popular approach to test normality of economic variables is to test whether

some ad hoc empirical moments of the data, often the third and fourth moments, fit well

with their theoretical counterparts. The method of moments leads to a statistic which, in

the case of the third and fourth moments, is asymptotically χ2(2) distributed. However, the

variable of interest is often unobservable, e.g. the disturbance errors in a regression model.

Consequently one often uses the fitted residuals instead of the true unknown error terms in

the statistic. The asymptotic distribution of this skewness-kurtosis test is generally no longer

χ2(2) distributed (Durbin’s problem, 1973). The literature on the method of moments (e.g.

Newey, 1985a, and Tauchen, 1985) provides a correction that takes into account this parameter

uncertainty. In a regression context, it coincides with the celebrated Jarque and Bera (1980)

test for normality. The Jarque-Bera test has been extensively used because it is easy to

interpret, simple to implement, and powerful against standard alternatives. This test can be

used with residuals but not with observed data for which the empirical mean and variance does

not equal zero and one respectively; see Bontemps and Meddahi (2005).1 These authors prove

that Hermite polynomials are robust against parameter estimation error uncertainty when one

considers a location-scale model and tests normality. The test statistic based on the third and

fourth Hermite polynomials is asymptotically χ2(2) distributed whether one uses the (generally

unknown) error terms or the fitted residuals. Likewise, serial correlation can be considered by

computing the long-run variance matrix of the moments in a GMM framework (Hansen 1982),

as in Richardson and Smith (1992).

The goal of this paper is to extend Bontemps and Meddahi (2005) to any continuous

distribution. Let x be a continuous random variable with some assumed probability density

function that one wants to test. Moment techniques will try to figure out whether the empirical

counterpart of E[h(x)] equals (asymptotically) its theoretical value, for a function h(·) chosen

by the econometrician, like the third and fourth moments in the normal case. Of course, one

needs to compute the expected value of h(x) in order to conduct the test. It can be done

theoretically or by simulations depending on the complexity of the considered function. In

1Jarque-Bera test is however valid for some examples studied in Fiorentini, Sentana, and Calzolari (2004).
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this paper, we derive, under mild regularity assumptions, a class of moment conditions for

which the expectation equals zero by construction. Importantly, this class encompasses any

regular moment and, hence, all moments traditionally used by empirical researchers. Moreover,

this class of moments coincides with one derived by Hansen and Scheinkman (1995) when the

variable of interest is a continuous time process and is related to Pearson’s contribution (see

Hansen, 2001, and Section 2).

We consider the case where the variable of interest is unobservable and/or where its

distribution may involve some unknown parameters that have to be estimated. We know that,

like for the normal case, the parameter estimation error uncertainty will affect the asymptotic

distribution of the test. Usually, one corrects the asymptotic variance of the moments. In our

paper, we provide conditions under which the asymptotic distribution of our moments does not

depend on the fact that one uses the unknown true values or the estimated ones (provided that

the estimators are square-root consistent). We call such moments, robust moments, (to the

parameter estimation error uncertainty). We also propose a solution to transform any moment

into a robust one. This consists of the projection of the original moment on the orthogonal of

the space spanned by the score function.

Interestingly, a robust moment in an i.i.d. context is also robust in a serially correlated

one. This is an attractive feature of our approach as the solution which consists in correcting

the variance of the moment taken at the estimated parameters can be cumbersome. Moreover,

it is generally difficult to analytically compute the long-run variance matrix in this case. One

can, however, use the Heteroskedastic-Autocorrelation-Consistent (HAC) methods of Newey

and West (1987) and Andrews (1991) to estimate it. Finally, we show that robust moments

in a location-scale model with constant mean and variance, for which the score function can

be computed easily, are indeed robust whatever the specification of the conditional mean and

variance, including ARMA/GARCH forms.

An alternative method to test a continuous distribution is to transform it (under the null

hypothesis) into a normal one (e.g. Lejeune, 2002, and Duan, 2003) or a uniform one (Diebold,

Gunter, and Tay, 1998). This method has several drawbacks. A rejection of the null hypothesis

does not inform how one should change the model.2 More importantly, handling the parameter

estimation error uncertainty is more cumbersome with the transformed data. For instance,

Hermite polynomials are no longer robust when one uses the normal transformation.

There is a trade-off between simplicity and consistency, i.e. having power against any

alternative. The Jarque-Bera test has become popular because of its simplicity. However, like

any M-test, it is inconsistent. It does not have any power against a distribution which has

the same first four moments as those of the standard normal distribution. Our tests are also

2For instance, if one rejects normality of the transformed variable due to the presence of skewness, one
cannot derive a general conclusion about the asymmetry of the original variable.
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inconsistent as we base our test statistic on a finite number of moments.3 In order to assess the

power properties of our tests, we consider two important examples from financial econometrics:

the Student distribution (in a GARCH framework) and the Inverse Gaussian distribution (in

a realized variance setting). Simulations suggest that the small sample properties are good

(both in terms of size and power) and that the proposed robust moments are powerful against

common alternative assumptions.

The rest of this paper is organized as follows. Section 2 provides a literature review. Section

3 introduces and studies the moment conditions of interest. The parameter estimation error

uncertainty is studied in Section 4. In particular we pay attention to the location-scale model

which is considered in a separate subsection. Section 5 provides simulations to assess the

performance, simplicity and easy-to-implement properties of our tests for the Student and

Inverse Gaussian cases. Two empirical examples are provided in Section 6, while Section 7

concludes. All the proofs and calculations are provided in the Appendices.

2 Literature review

2.1 Pearson family of distributions and their generalizations

In this subsection, we briefly review how moment-based tests have been used for financial

applications in relation to Pearson distributions.

2.1.1 The Pearson family of distributions

At the end of the nineteenth century Karl Pearson introduced his famous family of distributions

that extends the classical normal distribution. If a distribution with a probability density

function (p.d.f. hereafter) q(·) on (l, r) belongs to the Pearson family, then q′(·)/q(·) equals the

ratio of two polynomials A(·) and B(·), where A(·) is affine and B(·) is quadratic and positive

on (l, r):
q′(x)

q(x)
=
A(x)

B(x)
=

−(x+ a)

c0 + c1x+ c2x2
. (2.1)

The Pearson family includes, as special examples, the Normal, Student, Gamma, Beta, and

Uniform distributions.4

An important result derived by Pearson is the following recursive formula involving the

moments of the distribution:

(c2(j + 2)− 1)E[Xj+1] = (a− c1(j + 1))E[Xj]− c0jE[Xj−1], ∀j ≥ 1. (2.2)

Pearson uses Eq. (2.2), for j = 1, . . . , 4, to write the parameters a, c0, c1 and c2 as functions of

E[Xj] and then provides an estimator using the empirical counterpart of the moments (under

3One can extend our approach to test an infinite number of moments and, then, get consistent tests. This
extension is beyond the contribution of this paper which focuses on simple and easy-to-implement methods.

4For more details, see Johnson, Kotz and Balakrishnan (1994), pages 15-25.

3



the assumption that these moments exist). This is the introduction of the method of moments

(see Bera and Bilias, 2002, for a historical review).

Eq. (2.2) could also be used for testing purposes. Stein (1972), for example, uses it to

characterize the standard normal distribution (see Bontemps and Meddahi, 2005).

2.1.2 Scalar diffusions

Wong (1964) makes a connection between Pearson distributions and some diffusion processes.

He provides stationary continuous time models for which the marginal density is a Pearson

distribution. We recap here some results from Hansen and Scheinkman (1995). Assume that

the random variable xt is a stationary scalar diffusion process characterized by the stochastic

differential equation

dxt = µ(xt)dt+ σ(xt)dWt, (2.3)

whereWt is a scalar Brownian motion. The marginal distribution q(·) is related to the functions

µ(·) and σ(·) by the following relationship

q(x) = Kσ−2(x) exp

(∫ x

z

2µ(u)

σ2(u)
du

)
, (2.4)

where z is a real number in (l, r) and K is a scale parameter such that the function q(·)
integrates to one (see also Aı̈t-Sahalia, Hansen and Scheinkman, 2010, for a review of all the

properties of the diffusion processes considered here).

Hansen and Scheinkman (1995) provide two sets of moment conditions related to the

marginal and conditional distributions of xt respectively. For the marginal distribution, they

show that

E[Ag(xt)] = 0, (2.5)

where the function g is assumed to be twice differentiable and square-integrable with respect

to the marginal distribution of xt and A is the infinitesimal generator associated with the

diffusion (2.3),

Ag(x) = µ(x)g′(x) +
σ2(x)

2
g′′(x). (2.6)

One limitation of the Pearson distributions is the shape of their p.d.f., as they cannot

have more than one mode. For this reason, Cobb, Koppstein and Chen (1983) extend the

Pearson system by allowing A(·) in Eq. (2.1) to be a polynomial of degree higher than one

and, hence, generate multimodal distributions. This extension has been exploited by Hansen

and Scheinkman (1995), Aı̈t-Sahalia (1996) and by Conley, Hansen, Luttmer and Scheinkman

(1997), for modeling the short-term interest rate whose marginal distribution looks like a

bimodal distribution. These authors strongly reject Pearson unimodal distributions.
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2.2 Orthogonal Polynomials

For any distribution, one can build orthogonal (or orthonormal) polynomials by using a Gram-

Schmidt method. In the case of Pearson distributions, these polynomials have a simple form

that one can get from the so-called Rodrigue’s formula

Pn(x) = αn
1

q(x)
[Bn(x)q(x)](n) , (2.7)

where f (n)(·) denotes the n-th derivative function of any function f(·) and αn is a scaling

parameter, which could be chosen to normalize the variance of Pn for any n.

Interestingly, the polynomials Pn(x) in Eq. (2.7) are also eigenfunctions of the infinitesimal

operator A in Eq. (2.6). When all the polynomials Pn are square-integrable with respect to

the p.d.f. q(·), like for the Normal, Gamma, Beta or Uniform distributions,5 one can prove

that this sequence is dense in L2(]l, r[), i.e. any square-integrable function may be expanded

onto the polynomials Pn, n = 0, 1, 2, etc. In this case, the p.d.f. of a random variable x equals

q(·) if and only if6

∀n ≥ 1, E[Pn(x)] = 0.

This result means that for testing purposes, one could focus on these orthogonal polynomials.

Appendix A provides a summary of the orthonormal polynomial families for the following

well-known distributions: Normal, Student, Gamma, Beta and Uniform; see Schoutens (2000)

for more details.

2.3 Serial Correlation

Two leading examples of the recent development in the financial literature emphasize the

importance of developing distributional test procedures that are valid in the presence of serial

correlation in the data.

The first one is modeling continuous time Markov models, particularly the short term

interest rate. Aı̈t-Sahalia (1996) and Conley, Hansen, Luttmer and Scheinkman (1997) develop

a specification test by testing whether the marginal distribution of the data coincides with

the one implied by the specification of the scalar diffusion. Aı̈t-Sahalia (1996) compares the

nonparametric estimator of the density function with its theoretical counterpart while Conley,

Hansen, Luttmer and Scheinkman use the moment conditions (2.5). Both papers use a HAC

procedure (Newey and West, 1987; Andrews, 1991) in the implementation of their tests. Using

such a procedure for testing serially correlated data has been done by Richardson and Smith

(1993), Bai and Ng (2005), Bontemps and Meddahi (2005), and Lobato and Velasco (2004) in

the context of normality.

5The problem of non-existence of such a family could occur for heavy-tailed distributions. The Student
distribution is one example.

6For a formal proof, see Gallant (1980, Theorem 3, page 192).
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The second example is the evaluation of density forecasts developed by Diebold, Gunter and

Tay (1998) in the univariate case, and by Diebold, Hahn and Tay (1999) in the multivariate

case. These papers highlight the importance of testing distributional assumptions for serially

correlated data. This evaluation is indeed done by testing that some variables are independent

and identically distributed (i.i.d.) and follow a uniform distribution on [0, 1]. However, the

non-independence and the non-uniformness of these data have different implications for the

specification of the model. When the model is rejected, one would like to have test procedures

which can detect which assumption is wrong (both or only one).

3 Test functions

3.1 Moment conditions

Let x be a random variable with a p.d.f. denoted q(·). We assume that the support of x

is (l, r), where l and r may be finite or not, and that the function q(·) is differentiable on

(l, r). Consider a differentiable function ψ(·) (we call it from now a test function) such that its

derivative function, ψ′(·), is integrable with respect to q(·).

Assumption L(imits): lim
x→l

ψ(x)q(x) = 0 and lim
x→r

ψ(x)q(x) = 0.

Assumption L is not very restrictive. In the normal case, any polynomial function satisfies

this assumption.

Proposition 3.1 Let m(·) be the function defined by

m(x) = ψ′(x) + ψ(x)(log q)′(x). (3.1)

Under assumption L,

E[m(x)] = E [ψ′(x) + ψ(x)(log q)′(x)] = 0. (3.2)

Conversely, let m(·) be an integrable function with respect to the density function q(·) such

that

Em(x) = 0. (3.3)

Then, the function ψ(·) defined by

ψ(x) =
1

q(x)

∫ x

l

m(u)q(u)du (3.4)

satisfies assumption L and is the test function that generates m(x) in Eq. (3.1).
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Proof. The proof is given in Appendix B.1

The first part of the proposition gives a class of restrictions that a random variable with a

density function q(·) should satisfy. It is the basis of our testing approach.

The second part of the proposition shows that one does not lose any generality by focusing

on moments defined by Eq. (3.1). Given that any integrable moment condition which satisfies

Eq. (3.3) can be written as in Eq. (3.1) with some particular test function ψ(·), the informational

content of the class of moment conditions (3.2) is substantial. In particular, it encompasses the

score and quantile functions, the moment conditions related to the so-called information-matrix

test (White, 1982) and its generalizations, i.e. the Bartlett identities tests (Chesher, Dhaene,

Gouriéroux and Scaillet, 1999).

The moment condition (3.2) is written marginally but it holds also when one considers a

conditional model given a variable z:

E

[
∂ψ(x, z)

∂x
+
ψ(x, z)

q(x, z)

∂q(x, z)

∂x
| z
]

= 0,

where ψ(x, z) is a test function that satisfies Assumption L and q(x, z) is the conditional p.d.f.

of x given z. A feasible test statistic can be based on unconditional moments of the form

E

[
w(z)

(
∂ψ(x, z)

∂x
+
ψ(x, z)

q(x, z)

∂q(x, z)

∂x

)]
= 0, (3.5)

where w(z) is a square-integrable function of z.

It is worth noting that Eq. (2.2) from Karl Pearson is exactly Eq. (3.2) with ψ(x) = xjB(x).

We haven’t found in the literature a systematic use of Eq. (3.2) for any distribution except for

Chen, Hansen and Scheinkman (2009) who explicitly use it in the multivariate continuous time

processes, and in Hansen (2001) who implicitly uses it in the case of scalar diffusion processes.

In this context, Eq. (2.5) of Hansen-Scheinkman is simply Eq. (3.2) with the test function

ψ = (g′σ2).

We propose in this paper to choose some particular test functions ψ(·) and to use the

moments m(·), derived by Eq. (3.2), for testing our distributional assumption. The optimal

choice of w(·) in (3.5) and ψ(·) is beyond the scope of this paper and is studied in Bontemps and

Meddahi (2011). Our tests, like every M-tests, are not consistent, though optimal against some

given directions (see Chesher and Smith, 1997). This paper however highlights moment tests

that are simple to implement, but still have good power properties against common alternative

models, as corroborated by our simulation results.

3.2 Asymptotic distribution of the test statistic

We discuss now the asymptotic distribution of the test statistic derived from Eq. (3.2).

Consider a sample x1, ..., xT of the variable of interest, xt, where there may exist some serial

correlation. The process (xt)t∈Z is assumed to be a stationary process. Let ψ1(·), ..., ψp(·),

7



be p differentiable test functions satisfying assumption L. Let m(xt) be the p-vector whose

components are ψ′i(xt) + ψi(xt)(log q)′(xt), i = 1, 2, ..., p. Eq. (3.2) implies

E[m(xt)] = 0.

Throughout the paper, we assume that the long-run variance matrix of m(xt), Σ, given

by Σ =
+∞∑

h=−∞

E[m(xt)m(xt−h)
>], is well-defined and positive definite (throughout the paper,

> denotes the matrix transpose operator). In the context of time series, this assumption rules

out long memory processes. Under some regularity conditions (Hansen, 1982), we know that(
1√
T

T∑
t=1

m(xt)

)>
Σ−1

(
1√
T

T∑
t=1

m(xt)

)
d−→

T→∞
χ2(p). (3.6)

A feasible test procedure requires the knowledge of the matrix Σ or a consistent estimator.

There are cases where one can explicitly compute the matrix Σ. When the data are i.i.d.

and are distributed according to a Pearson distribution, particular choices for m(·) are the

orthonormal polynomials associated with the distribution (see Section 2.2 and Appendix A).

In this case, Σ is simply the identity matrix (see Bontemps and Meddahi, 2005, for the normal

case with Hermite polynomials). When the data are dependent, Σ can also be diagonal for some

particular time series processes, in particular for any scalar diffusion process whose marginal

distribution is among the Pearson family and whose drift is affine. This is the case for the AR(1)

Normal model (Bontemps and Meddahi, 2005), the square-root process of Cox, Ingersoll and

Ross (1984), for which the marginal distribution is a Gamma one, and for the Jacobi diffusion

(Karlin and Taylor, 1981, page 335) associated to the Beta distribution (see Gouriéroux and

Jasiak (2006) for financial applications).

However, in some i.i.d. cases and in most of the serially correlated cases, deriving Σ

explicitly is difficult. One can therefore use any consistent estimator Σ̂T of Σ like the HAC

estimator proposed by Newey-West (1987) or Andrews (1991).

4 Parameter estimation error uncertainty

A probability density function generally involves some unknown parameters. Moreover the

variable of interest x may be unobservable and the function which relates it to observable

variables may involve some unknown parameters. All these parameters need to be estimated

before testing the distributional assumption.

It is well known from the GMM literature that the asymptotic distribution of the feasible

test statistic based on (3.6) is generally different from the infeasible one that uses the true

(unknown) parameters. The problem is traditionally solved by correcting the test statistic (see

Newey, 1985b, Tauchen, 1985).
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An alternative solution is to transform the moments into robust ones, moments for which

the asymptotic distribution of the feasible and infeasible test statistics coincide. There exist

different transformations like the solution proposed by Wooldridge (1990) in a conditional

context or the one proposed by Duan (2003). Bontemps and Meddahi (2005) prove that

Hermite polynomials are robust when one considers location-scale models in the Gaussian

case.

In this paper we follow the last approach. We characterize robust moments and propose a

transformation to build from any moment such a robust one.

We assume that the p.d.f. depends on a parameter β. In addition, we assume that the

variable of interest xt is related to the observable variables, yt, through a one-to-one function

ht which can depend on some parameter7 φ = (θ, β) where θ is an additional parameter:

xt = ht(yt, φ
0). (4.1)

The function ht is indexed by t in order to summarize the possibility of having explanatory

variables zt which can be part of the relation between xt and yt, such as in a regression model.

Assume one wants to use a momentm(·, β) such thatE[m(xt, β
0)] = 0 to test the distributional

assumption. In practice, one uses the estimates β̂ and θ̂ of the unknown true values to work

with the function

gt(yt, φ̂) = m(ht(yt, φ̂), β̂). (4.2)

Assuming that the estimators are square-root consistent ones, we now characterize the conditions

under which the moment gt(·, φ) (or equivalently m(·, β)) is robust and propose a construction

to transform a given moment into a robust one.

4.1 Orthogonality to the score function

From now, we assume, without loss of generality, that ht involves some conditioning variables

zt (which can be exogeneous variables and/or past values of yt). The case without zt is treated

in Appendix B.4. A standard Taylor expansion proves that a moment gt(·, φ) is robust when

Pg = E

[
∂gt

∂φ>
(yt, φ

0)

]
= 0, (4.3)

where the expectation is taken with respect to the joint distribution of yt and zt (see Eq.

(B.4) in Appendix B.2). The next proposition uses the generalized information equality to

characterize moments which satisfy Eq. (4.3).

Proposition 4.1 Let st(yt, φ) be the conditional (on zt) score function of the observable yt. A

moment gt(·, φ) is robust when it is orthogonal to this score function:

E[gt(yt, φ
0)s>t (yt, φ

0)] = 0 (4.4)

7In the following, the superscript 0 is our notation for the unknown true value.
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In practice, one uses the moment m(·). Given that

E[gt(yt, φ
0)s>t (yt, φ

0)] = E[m(xt, β
0)s>t (h−1

t (xt, φ
0), φ0)],

Eq. (4.4) implies that the moment m(·) is robust when

E[m(xt, β
0)s>t (h−1

t (xt, φ
0), φ0)] = 0.

The next proposition addresses the issue when Eq. (4.4) does not hold.

Proposition 4.2 Let m(·, β) a moment whose expectation under the null equals zero. A robust

moment to the parameter estimation error uncertainty is given by

m⊥(xt, φ) = m(xt, β)− Et[m(xt, β)s>t (h−1
t (xt, φ), φ)]

(
Vts

>
t (h−1

t (xt, φ), φ)
)−1

st(h
−1
t (xt, φ), φ),

(4.5)

where Et and Vt denote the expectation and variance relative to the conditional distribution

yt|zt.

This proposition states that when the moment of interest m(·) (or gt(·)) is not robust, one

can transform it into a robust one by projecting it on the score function and by taking the

residual as the new moment. It is of interest to note that Bai’s (2003) method, which uses the

martingale approach of Khmaladze (1981) to transform a process into a martingale one, is a

similar one.

4.2 Wooldridge’s approach and related methods

There are many transformations, in the literature, of the original moments m(·) which can

lead to robust moments. For example, let S be a matrix such that SPg = 0 and define the

new moment n(xt, β) = Sm(xt, β). A similar argument than the one in the previous section

proves that this new moment n(·) is robust. This approach is however not always possible. In

particular, the dimension of m(·) should exceed the dimension of φ. In this case, when one

assumes that Pg has a full rank, Wooldridge (1990) proposes8

S = Ip − Pg[P
>
g Pg]

−1P>g . (4.6)

Eq. (4.4) proves that any robust moment is orthogonal to the score function. We propose

here a particular projection different from the transformations proposed by Wooldridge (1990)

or Duan (2003). When ht, the link between yt and xt, involves some conditioning variables zt,

Wooldridge changes the instruments (a function of zt) to ensure the orthogonality condition

(4.4). For our part, we project the moment onto the orthogonal space to the one spanned by

the conditional score.

8Observe that the solution Eq. (4.6) is not unique, i.e. when one has more structure on the model, one can
derive other matrices S such that SPg = 0 like in Duan (2003).
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In a context of MLE, our test statistic is exactly the correction derived in Newey (1985b)

and Tauchen (1985) (see Appendix B.5). However, in other contexts, correcting the statistic

can be difficult to do because of complications in calculating the likelihood function. Our

approach can, in these cases, provide a statistic which is simple to derive and which takes into

account the parameter estimation error uncertainty, though there may exist a loss of power

with respect to the methods of Newey (1985b) and Tauchen (1985); see Khmaladze and Koul

(2004). This attractiveness is now characterized in the special context of location-scale models.

We prove that robust moments of constant location-scale models are still robust when one has

a varying conditional mean or variance as in ARMA/GARCH models.

4.3 Location-scale model

Let us assume that we want to test whether yt is distributed according to a given parametric

distribution with p.d.f. q(·, θ) up to a location and a scale parameter:

∃µ0, σ0, θ0 ∈ R2 ×Θ such that yt = µ0 + σ0xt,

where the p.d.f. of xt is q(xt, θ
0).

Let m(·, θ) be a moment such that

Em(xt, θ
0) = 0.

We apply Proposition 4.2 to transform any moment into a robust one to the estimation of µ,

σ and θ.

It shows that m(·, θ) is robust if it is orthogonal to the three functions
∂ log q

∂x
(xt, θ),

x
∂ log q

∂x
(xt, θ),

∂ log q

∂θ
(xt, θ) (see Appendix B.6). Otherwise, we can build a robust moment

m⊥(xt, θ) by projecting m(xt, θ) onto the orthogonal space to the one spanned by the last three

functions.

Interestingly, the moment m⊥(·, θ) is also robust for any specification of the location

and scale. Assume, for example, that yt = mt(φ) + σt(φ)xt, where θ is part of φ. Under

differentiability assumptions on mt(φ) and σt(φ), we can derive similarly the score function

s(y, φ):

s(y, φ) =−
∂µt

∂φ
(φ)

σ(φ)

∂ log q

∂x
(x, θ)− ∂ log σt

∂φ
(φ)

(
1 + x

∂ log q

∂x
(x, θ)

)
+
∂ log q

∂φ
(x, θ). (4.7)

This score function is a linear combination (up to the constant term −∂ log σ
∂φ

(φ)) of the

three functions used in the previous location-scale model. A moment orthogonal to these three

functions is therefore orthogonal to this new score function.

In the Normal case, q(·) is the p.d.f. of the standard normal distribution
∂ log q

∂x
(x, θ) = −x.

Any moment orthogonal to x and x2 − 1 is therefore robust to the parameter estimation error

11



uncertainty, independently of the parametric specification of µ and σ. It is for example the

case of the Hermite Polynomials of order greater or equal to 3 considered in Bontemps and

Meddahi (2005).9

The result of this section is particularly important when one wants to test a distributional

assumption on some residuals, like the estimated innovations in general ARMA-GARCH

processes. In many cases, the model is estimated by Gaussian QMLE for simplicity or

tractability. The exact correction can be difficult to compute. Our result states that we

can use the robust moments in the constant mean and variance case to test the distribution.

This moment is robust to any specification of the ARMA and GARCH parts.

We provide in Appendix C.2 moments which are robust in a location-scale model for testing

the Student distributional assumption. These moments can therefore be used for testing any

T-GARCH process independently of the specification of the volatility process.

4.4 Robust test functions

The general class of moment conditions (3.2) is given in terms of the test function ψ(·). It is

therefore interesting to characterize the functions ψ(·) that lead to robust moments (which we

call robust test functions). For the sake of simplicity, we omit in this subsection the dependence

of ψ on the parameters β or φ.

Proposition 4.3 Let ψ(·) be a test function which satisfies Assumption L. Assume in addition

that it is also satisfied for ψ(xt)s
>
t (h−1

t (xt, φ), φ) and ∂
∂x
st(h

−1
t (xt, φ), φ)s>t (h−1

t (xt, φ), φ). Define

M = Et

[
∂
∂x
st(h

−1
t (xt, φ), φ) ∂

∂x
s>t (h−1

t (xt, φ), φ)
]

and G = Et[ψ(xt)
∂
∂x
s>t (h−1

t (xt, φ), φ)]. Then,

the function ψ?(·) defined by

ψ?(xt, φ) = ψ(xt)−GM−1 ∂

∂x
st(h

−1
t (xt, φ)), (4.8)

is a robust test function.

Proposition 4.3 is the counterpart of Proposition 4.2 for ψ(·). A moment m(·) derived from

Eq. (3.2) is robust if ψ(·) is orthogonal to the derivative of the conditional score function

(G = 0 in Eq (4.8)). Otherwise, it is possible to project ψ(·) on this derivative and take

the residual function for testing purposes. The advantage of using Proposition 4.3 compare to

Proposition 4.2 is that, in some particular cases, it is easier to numerically handle the derivative

of the score than the score itself, like in the Student case considered in Section 5.1.

4.5 Transformation and parameter uncertainty

In many cases, it is convenient to transform the variable of interest in order to get a variable

whose distribution is simple, e.g. for testing purposes. For instance, in their density forecast

9This result was proved in the special case of the Hermite family using local expansions, specific to these
polynomials, and without the general argument provided here.
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analysis, Diebold, Gunter and Tay (1998) transform the variable of interest into a Uniform

one. Duan (2003) and Kalliovirta (2006) transform the variable of interest into a Normal one.

However, this solution has several drawbacks.

First, it is important to notice that testing some specific moment on the transformed

variable has a very difficult interpretation in terms of the original variable. Furthermore, the

conditions for having robustness with respect to the parameter estimation error uncertainty

depend also on the transformation itself. A moment which is robust for an observable variable

is generally no longer robust when the variable is the result of a transformation. Assume

for example that yt is observable and follows a distribution whose c.d.f. (conditional or

unconditional) is Qt(·, θ0) and whose p.d.f. is qt(·, θ0). Without loss of generality, assume

that we transform yt in a standard normally distributed variable xt:

xt = Φ−1 ◦Qt(yt, θ
0).

If we know that under the null hypothesis, Em(xt) = 0, the matrix Pg in Eq. (4.3) can be

written:

Pg = E

[
−m(xt)

∂ log qt
∂θ>

(
Q−1

t (Φ(xt), θ
0), θ0

)]
. (4.9)

We know from Bontemps and Meddahi (2005) that the Hermite polynomials Hi(·), i ≥ 3,

are robust in the case of a general regression context. However this is no longer the case when

one uses the general transformation given above. It seems very complicated to derive explicitly

Pg in many cases. Simulations in the Monte Carlo section highlight that estimating Pg in the

sample could give poor small sample size properties.

5 Monte Carlo Evidence

In this section we provide Monte Carlo simulations to study the performances of our test

procedures. We focus on two examples: the Student and the Inverse Gaussian distributions.

These two distributions are also considered in the empirical section (see Section 6).

This section has several objectives. The first one is to illustrate the simplicity of the test

procedures. The second one is to provide the implementation of the tests, in particular the

construction of robust moments, when one uses either a test function ψ(·) (Proposition 4.3) or

a moment condition m(·) (Proposition 4.2). The third objective is to study the small sample

properties in terms of size and power. All the simulations are based on 10,000 replications.

Three sample sizes are considered: 100, 500 and 1,000. In all of the tables, we report the

rejection frequencies for a 5% significance level test.
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5.1 The Student distribution

We first study the Student distribution which is often used in financial applications due to

its thick tail property. Without having any prior knowledge about the degrees of freedom,

ν, it seems difficult to use polynomials since we need our moments to be square-integrable.

For instance, in the empirical section, the lowest value for ν is 5.54, which implies that any

polynomial of degree three or higher has an infinite variance. A moment whose expectation

(with respect to the Student distribution) is zero expands mainly onto rational functions (see

Wong, 1964, for details). We will therefore focus on the class of moments built from the test

function

ψα,β(x) =
xβ

(x2 + ν)α
.

The corresponding moments are:

mα,β(x, ν) =
βνxβ−1 − (2α+ ν + 1− β)xβ+1

(ν + x2)α+1
. (5.1)

Observe that even values of β lead to odd moments mα,β(·), and, conversely. Considering

even moment conditions for symmetric alternatives or odd moment conditions for asymmetric

alternatives increases the power of the tests.

We consider univariate moments mα,β(·) based on a particular set of values of α and β.

The simulation results show that most of the even/odd moments are highly correlated. The

percentages of rejections are therefore quite similar in a given family. To avoid too many

redundancies, we only display the results for seven moments; three are even moments with

(α, β) being equal to (0, 1), (1/2, 1) and (5/2, 1), three are odd moments with values (1/2, 0),

(1, 0) and (1, 2). The last moment is the joint moment mj which has one even component,

m5/2,1, and one odd component, m1,2.

5.1.1 Location-scale model

We first assume that we observe n realizations of a random variable y, y1, ..., yn, which are

assumed to be i.i.d. and we want to test that y follows a T-distribution in a constant location-

scale model like the one in Section 4.3. The true values for µ and σ are respectively 0 and

1.

We use the first, second and fourth moments of y to estimate µ, σ and ν. The results

derived from a ML estimation of these parameters are similar and therefore not provided here.

From Section 4, we know that mα,β(x, ν) is no longer robust to the parameter estimation

error uncertainty when one estimates µ, σ and ν. We use Proposition 4.3 to construct a robust

moment m?
α,β(x, ν) (see Appendix C for the numerical details).

We first study the size properties of our tests. We also compute the Kolmogorov-Smirnov

test (denoted KS) and the test developed by Bai (2003) denoted SBai. We display here the
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results when ν equals 5.10 In Table 2, we assume that µ, σ and ν are first known (in the first

block of columns) and then estimated (second and third blocks of columns). For the last two

blocks, we provide the tests’ performances when the variances of the moments are computed

theoretically and estimated in the sample.

The size performances are globally good and the rejection frequencies are close to the

nominal level. Unsurprisingly, the non-robust moments mα,β(x, ν) are very bad when the

parameters are estimated. This highlights that the parameter estimation error uncertainty

can have a severe impact on the tests performances. When the variance of the moments are

computed empirically (third block of columns), size properties are, in this case, comparable.

The KS test has good properties when the parameters are estimated but a high distortion

toward under-rejection when they are estimated.11 Bai’s test presents severe size distortions

due to the estimation of both the location parameter (as in the KS test) and the degrees of

freedom of the Student distribution. These distortions could be severe even when the sample

size is large.12

The last panel of the third block provides normality tests implemented as follows. We first

transform the variable xi into a standard Normal variable and then test the normality using

three tests based on the third and fourth Hermite polynomials H3, H4 and H3−4 (see Bontemps

and Meddahi, 2005). These moments are no longer robust and therefore we have to transform

them to obtain robust ones, i.e. having Pg = 0 in Eq. (4.9). It is also no longer possible to

compute the correction analytically, implying that expectations of interest are estimated in the

sample. As a result, the size properties are very poor.13 We recover the nominal 5% rejection

rate for very large sample sizes (at least 5,000). This result is in line with similar ones found

in the context of the Information Matrix test for probit models (see Orme, 1990).

In Table 3, we study the power properties of our tests against an asymmetric distribution

and against the mixture of two normals. We first consider asymmetric distributions: χ2(p)

distributions with p = 5, 15, 30. When p increases, the percentage of rejections decreases

because the χ2(p) variable converges to a location-scale transformation of a standard normal

variable, which is the limit of a T(ν) when ν → +∞. Our joint test performs fairly well also.

The results clearly highlight that our tests based on even moments have very good power,

much better than the power of Bai’s test which are displayed here for comparison. It seems

that this test suffers from a lack of power against asymmetric alternatives.

We then consider some mixtures of two centered normals. The weights (p, 1 − p) of the

10The cases ν = 10 and ν = 20 lead to similar results.
11It is worth noting that this distortion vanishes when one does not estimate the location parameter. The KS

test is therefore more sensitive to the estimation of the location than the estimation of the variance. Further
simulations in the Normal and Student cases without location confirm this result. See also Boldin (1982). We
are grateful to a referee for pointing out this result.

12Some additional simulations, not provided here, show that one recovers the nominal rejection rate when
the sample size reaches 5,000 for this particular example.

13Consequently, we do not use these tests for the power properties.
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normal distributions are respectively set to the values (0.7, 0.3), (0.8, 0.2), (0.9, 0.1). The

variances of the two distributions are chosen to fit the second and fourth moments of a T(5)

and a T(20). When p increases, the sixth moment of the mixture distribution increases; we

report in Appendix C.3 the corresponding moments as well as the theoretical variance of each

component of the mixture. Of course, even moments perform better than odd ones since the

expectations of odd moments are zero under the null and under the alternative. The results

suggest that our tests have a very good power whatever the sample size when the variance of

the true distribution fits the one of a T(5), more than the one of Bai (2003). The joint test is

less powerful, as it combines a symmetric and an asymmetric moment but still performs well.

The power is somewhat lower when p equals 0.8.

In contrast, the power decreases significantly when the true distribution has the same

variance as a T(20) one. We also perform the likelihood ratio test where the critical values are

computed by simulations for each sample size. We know by the Neyman-Pearson Lemma that

this test is the optimal one. The simulated rejection frequencies are 6.3%, 9.6%, and 12.7%

when the sample size equals 100, 500, and 1,000 respectively. It means that any test has a low

power against these particular alternatives example for such sample sizes.

5.1.2 The GARCH(1,1) model with Student innovations

We now implement our test procedure for the T-GARCH(1,1) model of Bollerslev (1987). This

is a popular model in empirical finance where the implied kurtosis fits empirically better the

observed one than the Normal-GARCH(1,1) model. Using the results derived previously, we

can implement moment-based tests quite simply while controlling the parameter estimation

error uncertainty. We consider the following model:

yt = µ+
√
vtut, vt = ω + α(yt−1 − µ)2 + βvt−1, ut =

√
ν − 2

ν
xt, xt ∼ T(ν), (5.2)

where µ = 0, ω = 0.2, α = 0.1 and β = 0.8. We only present here the case ν = 5; other values

leading to similar results as previously.

The parameters µ, ω, α and β are estimated by Gaussian QMLE which is known to be

consistent provided that the conditional mean and variance process of yt are correctly specified

(Bollerslev and Wooldridge, 1992). We then construct an estimator of ut by using ût =

(yt − µ̂)/
√
v̂t. Under H0, ut is a linear transformation of a Student distribution. We estimate

ν using the fourth moment of ut, i.e. Eu4
t = 3(ν − 2)/(ν − 4). Therefore:

x̂t =

√
ν̂

ν̂ − 2

(yt − µ̂)√
v̂t

.

We know from Section 4.3 that the moments used in Tables 2 and 3, m?
α,β(x, ν), are also robust

in the GARCH context. The results are reported in Table 4. The size properties are quite

comparable to those of Table 2. For the power analysis, we use the same distributions as in
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Table 3. We observe qualitatively the same results as in the location-scale case with a slight

lack of power due to the estimation of five parameters instead of three.

5.1.3 The serial correlation case

We now study the finite sample properties of our tests when the variable of interest is serially

correlated with unknown dependence structure. We use the same tests as previously combined

with the HAC method to estimate the variances of the moments. The HAC method is developed

by using the quadratic kernel with an automatic lag selection procedure as in Andrews (1991).

However, we do not perform Bai’s test given that it is not valid for serial correlation cases.

The process xt is defined as xt = ut/
√
st where the variables ut and st are independent,

the distribution of ut is N (0, 1) while st follows a Gamma (ν/2,2/ν,0) distribution, where ν

equals 5 or 20 as in our previous simulations. There is a dependence in ut while st is i.i.d.

We assume that the conditional distribution of ut, given its past, is N (ρut−1, 1 − ρ2) where

ρ equals 0.4 or 0.9. Consequently, the unconditional distribution of xt is T(ν) but there is

serial correlation. When studying the power of the tests, we simulate an AR(1) process xt,

xt = ρxt−1 + εt, whose innovation process εt is, as in the previous simulations, a mixture of

two normals where p equals 0.7.

The results are reported in Table 5. There exists some size distortion for ρ = 0.9, a case

for which it is known that the HAC performs worse. Otherwise the size and power properties

are similar to the ones in the previous tables.

5.2 The Inverse Gaussian Distribution

This subsection considers testing Inverse Gaussian (IG) distributions. It is common to model

positive variables by lognormal distributions. Unfortunately, the lognormal distribution is not

robust to temporal aggregation, i.e. the sum of independent lognormal random variables is

not lognormal. The robustness to temporal aggregation could be an important property when

one models time series like volatility. It turns out that this is the case for the IG distribution.

Another advantage of IG distributions is in modeling conditional variance models. Specifically,

we assume that the conditional distribution of a return r given the variance σ2 is N (0, σ2),

while the unconditional distribution of σ2 is IG. Then, the return’s unconditional distribution

is Normal Inverse Gaussian. Forsberg and Bollerslev (2000) used the two properties of IG

distribution in order to model realized variance and daily returns. We will consider the same

empirical example in the next section.

The Inverse Gaussian distribution with parameters µ, λ is defined by its p.d.f. q(·) on

[0,+∞[:

q(x) =

√
λ

2πx3
exp

(
−λ(x− µ)2

2µ2x

)
. (5.3)
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We can therefore construct moments using Eq. (3.2) from the test functions ψk(x) = xk+1,

k ∈ Z:

mk(x) = xk+1 − 2µ2

λ
(k − 1

2
)xk − µ2xk−1.

We assume here that we observe x and test the Inverse Gaussian distributional assumption. We

first estimate µ and λ by Maximum Likelihood and construct robust moments m⊥
k (x) following

Section 4. Additional details are provided in Appendix D for the analytical expression of the

variance matrix. As for the Student case, our procedure allows us to derive simple test statistics

which perform well in terms of size and power.

5.2.1 The i.i.d. case

We first study the size and power properties for i.i.d. observations in Table 6, the alternative

p.d.f. being the standard lognormal distribution.

We consider four tests based on a single moment: m⊥
−1(x), m

⊥
1 (x), m⊥

2 (x) and m⊥
3 (x). We

do not include m0(x) because it is generated by the score, and therefore not useful for testing

purposes. We also consider three joint moment tests m⊥
j,g(x) which combine the first g single

moments of the previous list (g = 2, 3 or 4). The size properties are good and the power is the

highest with the single moment m⊥
−1(x). The tests behave better in terms of size and power

when the variance of the moments is computed theoretically.

5.2.2 The serial correlation case

We also generate samples which are serially correlated as in the case of realized variance studied

in the empirical section. For this purpose, we simulate the stationary diffusion process

dxt =

(
−λ

2
x2

t +
µ2

2
xt +

λµ2

2

)
dt+

√
2µxtdWt,

where Wt is a standard Brownian process. The marginal distribution of xt is IG(λ, µ) (see

Appendix D).

Table 7 displays the size and power properties. The size properties are similar to the

ones found in the previous tables. For the power properties, we generate a series by taking the

exponential of a Gaussian AR(1) with a standard normal marginal distribution and correlation

equal to ρ = 0.4 and 0.9 respectively. The power performances decrease when ρ increases. It

is worth noting that, like in the i.i.d. case, we can improve the small sample properties of the

tests in terms of power if we use the theoretical variance to replace the estimated one.14

14The rejection frequencies for the test related to m⊥
−1 equal respectively 41.0%, 92.6%, 99.6% when ρ = 0.4

and 9.8%, 22.5%, 42.7% when ρ = 0.9. It may however cause the estimated matrix to be not positive definite
in small sample.

18



6 Empirical examples

6.1 GARCH(1,1) model with Student innovations for exchange rates

As mentioned earlier, the GARCH(1,1) model with Student innovations seems to fit financial

returns well (for a survey on GARCH models, see Bollerslev, Engle and Nelson, 1994). Using

a Bayesian likelihood criterion, Kim, Shephard and Chib (1998) show that a T-GARCH(1,1)

outperforms the lognormal stochastic volatility model of Taylor (1986), popularized by Harvey,

Ruiz and Shephard (1994) and Jacquier, Polson and Rossi (1994).

Using the same data15 - observations of weekday close exchange rates from 1/10/81 to

28/6/85 (U.K. Pound, French Franc, Swiss Franc and Japanese Yen, all versus the U.S. Dollar)

- we now test the Student distributional assumption for the innovations in a T-GARCH(1,1)

model (see Equation 5.2). The results are provided in Table 8.

The model is estimated by Gaussian QML. We find that the degrees of freedom of the

returns of FF-US$, UK-US$, SF-US$, and Yen-US$, equal respectively 9.61, 9.56, 6.64, and

5.54. Except for the SF-US$ case, none of our tests reject the Student distributional assumption.

For the SF-US$, the rejection is due to even values for β, i.e. odd moments, which would infer

that the fitted residuals are not symmetric.16 Bai’s test does not reject the assumption but the

simulations highlight that this test is not very good for detecting asymmetric distributions.

However, Bai’s test rejects the Student assumption for the Yen-US$ rate, which conflicts with

the results of our tests. It could be due to the size distortions of Bai’s test suggested by the

Monte Carlo experiments. Except for the SF-US$ series, our results corroborate the findings

of Kim, Shephard and Chib (1998).

6.2 Distribution of Realized Variance

The recent literature on volatility highlights the advantage of using high-frequency data to

measure volatility of financial returns (Andersen and Bollerslev, 1998, Andersen, Bollerslev,

Diebold and Labys, 2001, and Barndorff-Nielsen and Shephard, 2001). The realized variance is

the sum of squared intra-day returns. Andersen, Bollerslev, Diebold and Labys (ABDL, 2003)

suggests that it is lognormally distributed; an assumption formally rejected by Bontemps and

Meddahi (2005). In contrast, Forsberg and Bollerslev (2000) assume that the distribution is

an Inverse Gaussian one. We now test this distributional assumption.

We consider the same data as in ABDL (2003), i.e. returns of three exchange rates, DM-

US$, Yen-US$ and Yen-DM, from December 1, 1986 through June 30, 1999. The realized

variances are based on observations at five and thirty minutes. We therefore have six series.

15We are grateful to Neil Shephard for providing us the data. These data are used in Harvey, Ruiz and
Shephard (1994) and Kim, Shephard and Chib (1998).

16It is common however to assume that foreign exchange rates have symmetric distributions.
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Table 9 provides the empirical results. The second row of the table displays the estimates

of the parameters µ and λ of the Inverse Gaussian distribution defined in Eq. (5.3). The

Inverse Gaussian assumption is rejected. In the lognormal case, the skewness was one of the

reasons for rejecting the distributional assumption. Here, except for the DM-US series, this is

no longer the case. The rejection comes mostly from the moment labeled m1 which is related

to the expectations of x and x2. This is a constraint of the Inverse Gaussian distribution that

is not satisfied by the data.

As pointed out in Bontemps and Meddahi (2005), a potential limitation of the analysis

done above is the presence of long memory in realized variance. We assume that the long-run

variance matrix of the moments is well defined, excluding long memory. Such analysis is

devoted for future work.

Another possible explanation might be the presence of jumps. We therefore use the data

from Huang and Tauchen (2007), i.e. the five-minute returns of the S&P index cash 1997-2002.

We compute two different measures of the within-day price variance, the realized variance and

the realized bipower variation. The latter is known to be a consistent estimator of the integrated

variance with or without jumps. Table 10 displays the results of the same tests than in Table

9. The distributional assumption for the two measures is still strongly rejected. However, the

test statistics are lower when one uses the realized bipower variation. The presence of jumps

has an impact on the results but it does not seem to be the main reason for the rejection of

the inverse Gaussian assumption.

7 Conclusion

We develop in this paper generic moment-based tests for testing parametric, continuous and

univariate distributional assumptions. Our approach is simple. We consider the problem

of parameter estimation error uncertainty and show how to construct robust moments with

respect to this problem. Importantly, we derive moment tests in location-scale models that are

robust, whatever the form of the conditional mean and variance, as for the ARMA/GARCH

models. We also use the HAC method to handle some potential serial correlation in the

variable of interest. An extensive simulation exercise for the Student and the Inverse Gaussian

distributions assesses that the finite sample properties of our tests are very good, in particular

in terms of power.

Our solution to take into account the problem of parameter estimation error uncertainty

is to project the moment of interest on the space orthogonal to the one spanned by the score

function. It could be done in population or in sample. Like for Wooldridge’s (1990) approach

or others, ours consists of modifying the moment of interest. It should be noted that any robust

moment is orthogonal to the score function, but, of course, there are many ways to transform

a moment into a robust one. Our transformation differs from Wooldridge’s one.
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It is important to stress the attractiveness of our moment-based tests. Using our framework,

the choice of the moment is left to the researcher who can adapt the strategy to the problem

or the alternative that is being considered. More importantly, this approach can be adapted to

various cases such as discrete distributions (Bontemps, 2009) or multivariate ones (Bontemps,

Feunou and Meddahi, 2011).

There are still some open questions. Optimality is one of them. We propose here a solution

which consists of picking some particular moments which are appealing for their tractability.

The question of optimality is a difficult task which is devoted to a separate paper (Bontemps

and Meddahi, 2011). There is a trade-off between optimality and simplicity and, in this

paper, we focus on providing simple tests, yet powerful for the Student and Inverse Gaussian

distributions.
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Appendix

A Orthogonal Polynomial and Pearson family

Let q(·) be the p.d.f. of a Pearson distribution:

q′(x)

q(x)
=
A(x)

B(x)
=

−(x+ a)

c0 + c1x+ c2x2
. (A.1)

Let Pn be the polynomial of degree n which generates the orthonormal family17 with positive

coefficient on the highest degree term. It is defined using some adaptation (to ensure the unit

variance) of the Rodrigues Formula:

Pn = αn
1

q(x)
[Bn(x)q(x)](n) , (A.2)

where

αn =
(−1)n√

(−1)nn!dn

∫ r

l
Bn(x)q(x)dx

, dn =
n−1∏
k=0

(−1 + (n+ k + 1)c2) .

The sequence of polynomials satisfies

n ≥ 1, Pn+1(x) = − 1

an

((bn − x)Pn(x) + an−1Pn−1(x)) , P0(x) = 1 P−1(x) = 0, (A.3)

where

an =
αndn

αn+1dn+1

, bn = nµn − (n+ 1)µn+1, µn =
−a+ nc1
−1 + 2nc2

.

Table 1 reports the expression of the coefficients an and bn, and the first polynomial for the

well-known Pearson distributions.

B Proof of the propositions

B.1 Proof of Proposition 3.1

An integration by parts leads to:

E[ψ′(x)] = [ψ(x)q(x)]rl − E[ψ(x)
q′(x)

q(x)
],

where E[·] denotes the expectation with respect to the distribution of x. Hence, we get that

E [ψ′(x) + ψ(x)(log q)′(x)] = 0, (B.1)

17This family is infinite and also dense in L2 for all the distributions considered in Table 1, except for the
Student case.
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under the assumption L.

Conversely, if the moment m is given, it is not difficult to find the expression of the test-

function ψ such that:

m(x) = ψ′(x) + ψ(x)(log q)′(x).

This is a linear differential equation and the solution is

ψ(x) =
1

q(x)

∫ x

l

m(u)q(u)du.

Observe that assumption L is equivalent to E[m(x)] = 0. It is important to keep in mind

that the connection in Eq. (3.1) holds without the expectation operator. Consequently, the

statistical properties (size, power) of a test based on (3.2) coincide with those of a test based

on (3.3).

As pointed out in Section 2.1.2, Hansen and Scheinkman (1995) provide test functions of

marginal distributions of continuous time processes. These test functions coincide with Eq.

(3.2). More precisely, from Eq. (2.4), one gets

q′(x)

q(x)
=

2µ(x)− (σ2)′(x)

σ2(x)
. (B.2)

As a consequence, by plugging µ(x) from Eq. (B.2) in Eq. (2.5), one gets after some

manipulations

E[(g′σ2)′(x) + (log q)′(x)(g′σ2)(x)] = 0, (B.3)

which is exactly Eq. (3.2) using the test function ψ = (g′σ2). Hansen and Scheinkman (1995)

assume that the variable xt is Markovian to derive it, while we do not make this assumption

to derive Eq. (3.2).

B.2 Proof of Proposition 4.1

Let h−1
t (·, φ) be the inverse function of ht (yt = h−1

t (xt, φ
0)) and let gt(y, φ) = m(ht(y, φ), β),

g0
t (y) = gt(y, φ

0),
∂g0

t

∂φ>
(y) =

(
∂

∂φ>
gt(y, φ)

)
φ=φ0

and m0(x) = m(x, β0).

φ0 = (θ0, β0)> is estimated using a procedure which provides a square-root consistent

estimator φ̂ (like a ML or a GMM estimator). A Taylor expansion can be used to derive the

asymptotic distribution of
1√
T

T∑
t=1

gt(yt, φ) at the estimated value, φ̂:

1√
T

T∑
t=1

gt(yt, φ̂) =
1√
T

T∑
t=1

g0
t (yt) + E

[
∂g0

t

∂φ>
(yt)

] [√
T (φ̂− φ0)

]
+ oP (1). (B.4)

It is a function of the asymptotic deviation of φ̂ and its covariance with
1√
T

T∑
t=1

g0
t (yt). However,

it is clear that a sufficient condition for the robustness of gt against the parameter estimation
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error uncertainty is

Pg = E

[
∂g0

t

∂φ>
(yt)

]
= 0. (B.5)

As the expectation of gt(·, φ) w.r.t. the conditional distribution of yt is zero for any φ in the

parameter space, ∫
gt(yt, φ)qt(yt, φ)dyt = 0,

we can derive the previous expression w.r.t. φ to obtain:

Et

[
∂g0

t

∂φ>
(yt)

]
+ Et

[
g0

t (yt)s
>
t (yt, φ

0)
]

= 0, (B.6)

where st(yt, φ
0) is the conditional score function of the variable yt given zt andEt the expectation

with respect to the conditional distribution of yt given zt. Equation (B.6) is the generalization

of the information matrix equality, which has been used, for instance, in Newey and McFadden

(1994). This equation generalizes to an unconditional expectation by the law of iterated

expectations. Consequently, the condition Pg = 0 holds if and only if g0
t (·) is orthogonal to the

score st(·, φ0), i.e.

0 = E[g0
t (yt)s

>
t (yt, φ

0)] = E[m(xt, β
0)s>t (h−1

t (xt, φ
0), φ0)]. (B.7)

B.3 Proof of Proposition 4.2

Let m⊥(x, φ) be defined in (4.5):

m⊥(xt, φ) = m(xt, β)− Et[m(xt, β)s>t (h−1
t (xt, φ), φ)]

(
Vts

>
t (h−1

t (xt, φ), φ)
)−1

st(h
−1
t (xt, φ), φ).

First, it is a linear combination of m(x, β) and st(h
−1
t (xt, φ), φ) which are both of expectation

equal to zero under the null at the true value. The expectation of m⊥(x, φ0) is therefore also

equal to zero.

Second,

Et

[
m⊥(xt, φ

0)s>t (h−1
t (xt, φ

0), φ0)
]

= Et

[
g⊥t (yt, φ

0)s>t (yt, φ
0)
]

= 0,

with g⊥t (y, φ) = m⊥(ht(y, φ), φ). This equality extends to unconditional expectation. Consequently,

using the general information matrix equality (B.6), m⊥(·) is a robust moment as it is, by

construction, orthogonal to the score function.

B.4 The case without conditioning variables

When the link between yt and xt reduces to a transformation ht which does not involve

conditioning variables zt, the conditional expectations and joint expectation which appear

in Proposition 4.1 simplify to marginal expectations (ht reduces to h and gt to g). Proposition
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4.1 can simply be rewritten by considering marginal distributions instead of conditional ones.

Therefore, g(·) is robust if

Pg = E

[
∂g0

∂φ>
(yt)

]
= 0. (B.8)

A robust moment m⊥(·) can be built by the projection of m(·) onto the orthogonal space to

the one spanned by the marginal score, s(·):

m⊥(xt, φ) = m(xt, β)− E[m(xt, β)s>(h−1
t (xt, φ), φ)]

(
V s>(h−1

t (xt, φ), φ)
)−1

s(h−1
t (xt, φ), φ).

B.5 Orthogonalization when the parameters are estimated by Maximum
Likelihood

Assume now that we are in the marginal case and that the parameters are estimated by MLE.

Like before, the functions st, mt and gt reduce to s, m and g. Under standard regularity

assumptions, the ML estimator φ̂T satisfies the First Order Condition:

1√
T

T∑
t=1

s(yt, φ̂T ) = 0.

So, using the definition of g⊥(·), g⊥(yt, φ) = m⊥(h(yt, φ), φ) from Eq. (4.5), we obtain that

1√
T

T∑
t=1

g(yt, φ̂T ) =
1√
T

T∑
t=1

g⊥(yt, φ̂T ).

Furthermore the variance of g⊥(yt, φ
0) is equal to:

V
(
g⊥(yt, φ

0)
)

= V
(
g(yt, φ

0)
)
− E

[
g(yt, φ

0)s>(yt, φ
0)
]
V
(
s(yt, φ

0)
)−1

E
[
s(yt, φ

0)g>(yt, φ
0)
]
,

because g⊥(yt, φ
0) = g(yt, φ

0)− E
[
g(yt, φ

0)s>(yt, φ
0)
]
V (s(yt, φ

0))
−1
s(yt, φ

0).

From Newey (1985b)18, we know that:

1√
T

T∑
t=1

g(yt, φ̂T )
d−→

T→∞
N(0, V

(
g⊥(yt, φ

0)
)
).

Consequently, the statistics built from our moment g⊥(·) and the one derived from the

non-robust moment g(·) - after having corrected for the parameter estimation uncertainty

error - are the same.

B.6 Parameter uncertainty in a location-scale model

Assume y = µ + σx, where x ∼ Pθ, a parametric distribution indexed by θ and with p.d.f.

q(·, θ).
18See the limit of the quantity in Eq (2.11), p. 1052, with LT = [Is, 0] using the notations of the paper.
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With the notations of Section 4,

x = h(y, µ, σ) =
y − µ

σ
.

The score function can therefore be expressed directly:

s(y, (µ, σ, θ)) =
∂

∂(µ, σ, θ)>

[
− log σ + log q

(
y − µ

σ
, θ

)]
=

 sµ(y) = − 1
σ

∂ log q
∂x

(x, θ)

sσ(y) = − 1
σ
− 1

σ
x∂ log q

∂x
(x, θ)

sθ(y) = ∂ log q
∂θ

(x, θ)

 .
(B.9)

If m(x, θ), a moment such as

E (m(x, θ)) = 0,

is orthogonal to
∂ log q

∂x
(x, θ), x

∂ log q

∂x
(x, θ) and

∂ log q

∂θ
(x, θ), it is orthogonal to the score

function s(y, (µ, σ, θ)).

Assume now that y = µ(φ) + σ(φ)x, where x ∼ Pθ and where θ is part of φ. Under

differentiability assumptions on m(φ) and σ(φ), we can derive similarly the score function

s(y, φ), with x = y−µ(φ)
σ(φ)

:

s(y, φ) =−
∂µ
∂φ

(φ)

σ(φ)

∂ log q

∂x
(x, θ)− ∂ log σ

∂φ
(φ)

(
1 + x

∂ log q

∂x
(x, θ)

)
+
∂ log q

∂θ
(x, θ). (B.10)

This score function is a linear combination (up to the constant term −∂ log σ
∂φ

(φ)) of the

three functions used in the previous location-scale model. A moment orthogonal to these three

functions is therefore orthogonal to this new score function.

Assume now that yt = µt(φ) + σt(φ)xt, where µt(φ) = E(yt|yτ , τ ≤ t − 1), σ2
t (φ) =

V (yt|yτ , τ ≤ t− 1) and xt ∼ Pθ, i.i.d. Under differentiability assumptions on mt(φ) and σt(φ),

we can derive similarly the score function st(yt, φ), with xt = yt−µt(φ)
σt(φ)

:

st(yt, φ) =−
∂µt

∂φ
(φ)

σt(φ)

∂ log q

∂x
(xt, θ)−

∂ log σt

∂φ
(φ)

(
1 + xt

∂ log q

∂x
(xt, θ)

)
+
∂ log q

∂θ
(xt, θ). (B.11)

Any moment of xt orthogonal to the three functions in (B.9) is orthogonal to this score

function as xt is independent from yτ , τ ≤ t− 1.

B.7 Proof of Proposition 4.3

We define ψ? in Eq. (4.8). For the sake of simplicity, we replace q(x, β) by q, st(h
−1
t (x, φ), φ)

by st, ψ
?(x, β) by ψ?, ψ(x, β) by ψ, ∂

∂x
by ′ and ∂2

∂x2 by ′′. We have:

ψ? = ψ − Et[ψs
′>
t ][Ets

′
ts
′>
t ]−1s′t.
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The moment constructed from the robust test function ψ? is:

m? = ψ′? + ψ? q
′

q

= ψ′ + ψ
q′

q
− Et[ψs

′>
t ][Ets

′
ts
′>
t ]−1

(
s′′t + s′t

q′

q

)
.

Using the same integration by parts as in Eq. (3.2), we prove that m? is orthogonal to the

score function:

Et

(
m?s>t

)
= Et

[
(ψ′ + ψ

q′

q
)s>t

]
− Et[ψs

′>
t ][Ets

′
ts
′>
t ]−1Et

[
(s′′t + s′t

q′

q
)s>t

]
=

∫ (
(ψ′q + ψq′)s>t

)
dx− Et[ψs

′>
t ][Ets

′
ts
′>
t ]−1

∫ (
(s′′t q + s′tq

′)s>t
)
dx

= −
∫
ψqs′>t dx+ Et[ψs

′>
t ][Ets

′
ts
′>
t ]−1

∫
s′tqs

′>
t dx (by integration by parts)

= −Et[ψs
′>
t ] + Et[ψs

′>
t ][Ets

′
ts
′>
t ]−1Et[s

′
ts
′>
t ] = 0.

B.8 Transformation and parameter uncertainty

Let us denote by Qt (resp. qt), the c.d.f. (resp. the p.d.f.) of yt (eventually conditional on zt if

there are some instruments involved). We transform yt in some i.i.d. standard normal variable

xt using

xt = Φ−1 ◦Qt(yt, θ
0),

where Φ is the c.d.f. of the standard normal distribution. Under the null, xt is i.i.d., normally

distributed. The score function w.r.t. the observable yt is equal to:

st(yt, θ) =
∂ log qt
∂θ

(yt, θ).

Consequently, a moment m(xt) is robust if it is orthogonal to the last function taken at

yt = Q−1
t (Φ(xt), θ

0) and at the true value θ = θ0:

E
[
m(xt)s

>
t

(
Q−1

t (Φ(xt), θ
0), θ0

)]
= 0.

C Computations for the Student distribution

C.1 Preliminaries

Let

ψα,β(x) =
xβ

(x2 + ν)α
.

We use in our Monte Carlo exercise values for β such as β ≤ 2α + 2. This ensures that the

moment constructed is O(x) and therefore of finite variance provided that ν > 2.
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Following (3.2), the (non-robust) moment derived from ψα,β is equal to

mα,β(x, ν) =
βνxβ−1 − (2α− β + ν + 1)xβ+1

(ν + x2)α+1
.

For the computations of the robust moments, we use the following expectations w.r.t. the

T (ν) distribution. For any positive value α,

Aν
α = Bν

α,0 = E

[
1

(x2 + ν)α

]
=

1

να

Γ(α+ ν
2
)

Γ(ν
2
)

Γ(ν+1
2

)

Γ(α+ ν+1
2

)
. (C.1)

For any even β such as β ≤ 2α+ 1 + ν/2,

Bν
α,β = E

[
xβ

(x2 + ν)α

]
= Bν

α−1,β−2 − νBν
α,β−2. (C.2)

For any odd β,Bν
α,β = 0 by symmetry.

We can, also, derive from (C.2) the following quantity:

Cov (mα,β(x, ν),mα′,β′(x, ν)) =(2α− β + ν + 1)(2α′ − β′ + ν + 1)Bν
α+α′+2,β+β′+2

− ν (β(2α′ − β′ + ν + 1) + β′(2α− β + ν + 1))Bν
α+α′+2,β+β′

+ ββ′ν2Bν
α+α′+2,β+β′−2.

(C.3)

C.2 Location-scale model

In the location-scale model:

y = µ+ σx, x ∼ T (ν).

We denote by q(·, ν) the p.d.f. of the Student distribution with ν degrees of freedom. The

score function for this location-scale model has been derived before in (B.9). In the particular

case of the Student distribution, it is equal to:

s(y) =


ν+1
σ

x
ν+x2

− 1
σ

(
1− (ν+1)x2

ν+x2

)
∂
∂ν

log q(x, ν)

 . (C.4)

In consequence, its derivative with respect to y is:

∂

∂y
s(y) =

 −ν+1
σ2

(ν−x2)
(ν+x2)2

= −ν+1
σ2 (2νψ2,0(x, ν)− ψ1,0(x, ν))

−2ν(ν+1)
σ2

x
(ν+x2)2

= −2ν(ν+1)
σ2 ψ2,1(x, ν)

1
σ

x−x3

(ν+x2)2
= 1

σ
((ν + 1)ψ2,1(x, ν)− ψ1,1(x, ν))

 . (C.5)
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C.2.1 β is even

When β is even, ψα,β(x) is symmetric and orthogonal to any asymmetric function, in particular

the last two components of the score function. If we want to compute ψ?, we only need to

make it orthogonal to 2νψ2,0(x, ν)− ψ1,0(x, ν). Following (4.8) and (C.2),

E [ψα,β(x, ν)(2νψ2,0(x, ν)− ψ1,0(x, ν))] = 2νBν
α+2,β −Bν

α+1,β,

E (2νψ2,0(x, ν)− ψ1,0(x, ν))
2 = 4ν2Aν

4 − 4νAν
3 + Aν

2.

Then we have an exact expression for the robust test function:

ψ?
α,β(x, ν) = ψα,β(x, ν)−

2νBν
α+2,β −Bν

α+1,β

4ν2Aν
4 − 4νAν

3 + Aν
2︸ ︷︷ ︸

k3(α,β,ν)

(2νψ2,0(x, ν)− ψ1,0(x, ν)).

The robust moment m?
α,β(x, ν) can be written in a closed form:

m?
α,β(x, ν) = mα,β(x, ν)−

2νBν
α+2,β −Bν

α+1,β

4ν2Aν
4 − 4νAν

3 + Aν
2

(2νm2,0(x, ν)−m1,0(x, ν))

=
βνxβ−1 − (2α− β + ν + 1)xβ+1

(ν + x2)α+1
−

2νBν
α+2,β −Bν

α+1,β

4ν2Aν
4 − 4νAν

3 + Aν
2

(
(ν + 3)x3 − νx(ν + 7)

(x2 + ν)3

)
.

(C.6)

The coefficients Aν
α and Bν

α,β are given in (C.1) and (C.2), the variances and covariances

can be deduced from (C.3).

C.2.2 β is odd

When β is odd, ψα,β(x) is orthogonal to the first component of the score function. To be robust,

it has to be orthogonal to the last two components which is equivalent to being orthogonal to

ψ2,1(x, ν) and ψ1,1(x, ν).

The coefficients can be derived from (4.8):

[
k1(α, β, ν)
k2(α, β, ν)

]
=

[
Eψ2

1,1(x, ν) E(ψ1,1(x, ν)ψ2,1(x, ν))
E(ψ1,1(x, ν)ψ2,1(x, ν)) Eψ2

2,1(x, ν)

]−1 [
E(ψα,β(x, ν)ψ1,1(x, ν)
E(ψα,β(x, ν)ψ2,1(x, ν)

]
=

1

Bν
2,2B

ν
4,2 − (Bν

3,2)
2

[
Bν

4,2 −Bν
3,2

−Bν
3,2 Bν

2,2

] [
Bν

α+1,β+1

Bν
α+2,β+1

]
.

(C.7)

We derive the robust-moment and the expression of its variance in a similar way as before:
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m?
α,β(x, ν) =mα,β(x, ν)− k1(α, β, ν)m1,1(x, ν)− k2(α, β, ν)m2,1(x, ν)

=
βνxβ−1 − (2α− β + ν + 1)xβ+1

(ν + x2)α+1

−
Bν

4,2B
ν
α+1,β+1 −Bν

3,2B
ν
α+2,β+1

Bν
2,2B

ν
4,2 − (Bν

3,2)
2

ν − (2 + ν)x2

(x2 + ν)2

−
Bν

2,2B
ν
α+2,β+1 −Bν

3,2B
ν
α+1,β+1

Bν
2,2B

ν
4,2 − (Bν

3,2)
2

ν − (4 + ν)x2

(x2 + ν)3
.

(C.8)

C.2.3 Particular test-statistic for testing the Student Distribution

Following the previous computations, we can derive a family of test statistics associated with

m?
α,β(x, ν) for any positive value α and any integer β (provided that β + 1− 2(α+ 1) < ν

2
).

ξα,β =

T

(
1
T

T∑
t=1

m?
α,β(xt, ν)

)2

V m?
α,β(xt, ν)

d−→
T→∞

χ2(1). (C.9)

The variance V m?
α,β(xt, ν) can be derived analytically from Eq. (C.3). These statistics

have power against symmetric alternatives when β is odd, and power against asymmetric

alternatives when β is even. They are valid for any specification of µ and σ, in particular for

any T-GARCH model.

In the simulations, it appears that one joint moment combining one odd moment and one

even moment has good power against a wide range of alternatives. We therefore propose

the following statistic using m?
5/2,1 and m?

1,2 (the two individual statistics are asymptotically

independent):

BMT = ξ5/2,1 + ξ1,2

= T

 1

V m?
5/2,1(xt, ν)

(
1

T

T∑
t=1

m?
5/2,1(xt, ν)

)2

+
1

V m?
1,2(xt, ν)

(
1

T

T∑
t=1

m?
1,2(xt, ν)

)2
 .

(C.10)

which is asymptotically χ2(2) distributed under the null. The expression of the moments

are given in (C.6) and (C.8).

C.3 Mixtures of normals used in the power analysis

In the Monte Carlo section, we consider a mixture of two random normal variables as alternative

for our power analysis. Let p be the weight associated to the first normal distribution. We

compute the variances of the two normal distributions, denoted respectively σ2
1(p, ν) and
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σ2
2(p, ν), to fit the first five moments of a T-distribution with ν degrees of freedom. We

have

σ2
1(p, ν) =

ν

ν − 2

(
1−

√
1− p

p

2

ν − 4

)
and σ2

2(p, ν) =
ν

ν − 2

(
1 +

√
p

1− p

2

ν − 4

)
.

The following tabular displays the first three even moments of these mixtures for various

values of p and the corresponding moments of the T-distribution they are supposed to match.

Moments of the mixtures and of the t-distribution

Panel A: ν = 5
EX2 EX4 EX6

T (ν) 1.66 25 —

Mixture
p = 0.7 1.66 25 657.6
p = 0.8 1.66 25 780.7
p = 0.9 1.66 25 1009.9

Panel B: ν = 20
EX2 EX4 EX6

T (ν) 1.11 4.16 29.76

Mixture
p = 0.7 1.11 4.16 29.09
p = 0.8 1.11 4.16 29.66
p = 0.9 1.11 4.16 30.72

D Computations for the Inverse Gaussian Distribution

The p.d.f. of the Inverse Gaussian distribution (IG) with parameters µ, λ is equal to:

q(x) =

√
λ

2πx3
exp

[
−λ(x− µ)2

2µ2x

]
,

and therefore:
q′(x)

q(x)
= −

(
3

2x
+
λ(x2 − µ2)

2µ2x2

)
.

We must first note that, except for some degenerate case where λ is equal to 0 (and the

variance is infinite), this distribution does not belong to the Pearson family of distributions.

Taking ψk(x) = xk+1, Assumption L is satisfied for this choice for positive and negative

values of k. The moment mk constructed from this test function using Eq. (3.2) is given, up

to some scale value, by the following expression:

mk(x) = xk+1 − 2µ2

λ
(k − 1

2
)xk − µ2xk−1. (D.1)
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We derive consequently:

ak = Exk =
2µ2

λ
(k − 3

2
)ak−1 + µ2ak−2, (D.2)

using the initial conditions a0=1 and a1 = µ. The ak are used to derive the exact expression

of Vk = V mk(x).

For example,

Emk(x)x
j =

2µ2

λ
jak+j, (D.3)

and

Emk(x)mj(x) =
4µ2

λ2
([(k + 1)(j + 1)− 3/2] ak+j + λak+j−1) . (D.4)

If we observe x, the parameter estimation error uncertainty concerns only the parameters

of the distribution, i.e. λ and µ. The score function sλ,µ is equal to:

sλ,µ(x) =

[
sλ(x)
sµ(x)

]
=

[ ∂ log q
∂λ

(x)
∂ log q

∂µ
(x)

]
=

[ −1
2µ2m0(x) + ( 1

λ
+ 1

µ
− x−1)

λ
µ3 (x− µ)

]
. (D.5)

The variance of the score is:

V sλ,µ =

[
1

2λ2 0
0 λ

µ3

]
, (D.6)

and the robust moments are derived using (D.3) and (D.4):

m⊥
k (x) = mk(x)− 2λ2E

[
mk(x)

∂ log q

∂λ
(x)

]
∂ log q

∂λ
(x)− µ3

λ
E

[
mk(x)

∂ log q

∂µ
(x)

]
∂ log q

∂µ
(x)

= mk(x) + 2µ2(2k − 1)aksλ(x)−
2

µ
ak+1(x− µ).

(D.7)

Diffusion process with Inverse Gaussian marginal distribution

Let the diffusion process yt be defined by the stochastic differential equation:

dyt = m(yt)dt+
√

2µdWt,

where m(y) = −µ2

2
− λ

2
exp(y) + λµ2

2
exp(−y).

Let xt = exp(yt). Using Ito’s lemma, xt satisfies the stochastic differential equation:

dxt = (m(log(xt))xt + µ2xt)︸ ︷︷ ︸
µx(xt)

dt+
√

2µxt︸ ︷︷ ︸
σx(xt)

dWt. (D.8)

The marginal p.d.f. q(·) of xt satisfies the differential equation:
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q′(x)

q(x)
=

2µx(x)− (σ2
x)
′(x)

σ2
x(x)

=
−3µ2x− λx2 + λµ2

2µ2x2

=
−3

2x
− λ

2µ2

x2 − µ2

x2
,

(D.9)

which is the one of the Inverse Gaussian distribution with parameters λ and µ.
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Table 2: Size of the tests, ν = 5

λ, µ and ν known. λ, µ and ν est. λ, µ and ν est.
Theoretical Var. In-sample Var.

Non-robust moments

T 100 500 1000
m0,1 5.2 4.9 5.0
m 3

2
,1 5.4 5.0 5.0

T 100 500 1000
m0,1 0.0 0.0 0.0
m 3

2
,1 0.7 0.7 0.7

T 100 500 1000
m0,1 0.1 0.0 0.0
m 3

2
,1 0.8 0.7 0.7

Robust moments

T 100 500 1000
m?

0,1 4.5 5.5 4.9
m?

1/2,1 4.5 5.6 4.8

m?
5/2,1 4.9 4.9 4.6

m?
1/2,0 5.1 5.0 5.0

m?
1,0 4.9 5.1 5.0

m?
1,2 5.5 5.1 4.9

m?
j 5.1 4.9 4.8

KS 4.8 4.5 4.9

T 100 500 1000
m?

0,1 4.5 6.6 5.8
m?

1/2,1 4.6 6.3 5.6

m?
5/2,1 4.3 5.9 5.6

m?
1/2,0 6.9 5.6 5.2

m?
1,0 6.6 5.7 5.3

m?
1,2 7.4 5.8 5.4

m?
j 6.0 6.3 5.8

KS 0.7 0.7 1.0
SBai 7.0 12.1 10.8

T 100 500 1000
m?

0,1 6.4 7.1 5.8
m?

1/2,1 6.2 6.6 5.7

m?
5/2,1 5.4 6.1 5.5

m?
1/2,0 7.0 5.6 5.3

m?
1,0 7.0 5.7 5.4

m?
1,2 7.6 5.6 5.4

m?
j 6.6 6.8 5.8

H3 23.1 10.5 7.6
H4 36.6 20.6 15.6
H34 52.3 26.1 18.1

Note: for each sample size T (100, 500 and 1000), we report the rejection frequencies for a
5% significance level test of the Student distributional assumption in a constant location-
scale model. The data are i.i.d. from a T (5) distribution. KS is the Kolmorogov-Smirnov
test, SBai the test from Bai (2003) and Hi the Hermite polynomial test for normality
(implemented after having transformed the variable into a normal one).
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Table 3: Power of the Student tests

Asymmetric alternatives:

X ∼ χ2(5) X ∼ χ2(15) X ∼ χ2(30)
T 100 500 1000

m?
0,1 26.1 94.6 99.9

m?
1/2,1 28.9 96.0 100.0

m?
5/2,1 32.2 97.5 100.0

m?
1/2,0 95.0 100.0 100.0

m?
1,0 94.2 100.0 100.0

m?
1,2 97.5 100.0 100.0

m?
j 97.2 100.0 100.0

SBai 3.2 70.7 100.0

T 100 500 1000
m?

0,1 5.6 32.9 63.5
m?

1/2,1 6.1 34.4 65.3

m?
5/2,1 6.8 36.1 67.9

m?
1/2,0 59.4 99.9 100.0

m?
1,0 58.9 99.8 100.0

m?
1,2 62.2 100.0 100.0

m?
j 49.9 100.0 100.0

SBai 3.7 17.4 65.4

T 100 500 1000
m?

0,1 1.9 11.8 25.6
m?

1/2,1 2.2 12.5 26.6

m?
5/2,1 2.7 13.1 27.7

m?
1/2,0 33.4 98.4 100.0

m?
1,0 33.0 98.2 100.0

m?
1,2 34.1 99.1 100.0

m?
j 20.8 98.1 100.0

SBai 2.9 10.1 27.0

Mixtures of Normals: V X = 5
3
.

p = 0.7 p = 0.8 p = 0.9
T 100 500 1000

m?
0,1 95.9 100.0 100.0

m?
1/2,1 94.9 100.0 100.0

m?
5/2,1 91.8 100.0 100.0

m?
1/2,0 37.0 37.7 38.7

m?
1,0 37.1 38.1 38.9

m?
1,2 34.2 34.9 35.0

m?
j 96.7 100.0 100.0

SBai 16.1 97.8 100.0

T 100 500 1000
m?

0,1 12.6 18.6 25.7
m?

1/2,1 11.2 13.1 15.6

m?
5/2,1 8.3 7.9 7.6

m?
1/2,0 12.2 11.8 12.1

m?
1,0 11.8 11.4 11.5

m?
1,2 14.8 14.4 14.9

m?
j 17.0 17.9 20.4

SBai 4.4 3.4 11.2

T 100 500 1000
m?

0,1 8.3 38.8 69.9
m?

1/2,1 9.0 39.6 70.3

m?
5/2,1 8.4 29.1 54.3

m?
1/2,0 5.6 4.4 4.4

m?
1,0 5.4 4.2 4.4

m?
1,2 6.9 5.8 5.2

m?
j 8.6 31.1 59.8

SBai 14.0 31.8 37.9

Mixtures of Normals: V X = 20
18

.

p = 0.7 p = 0.8 p = 0.9
T 100 500 1000

m?
0,1 1.6 2.2 3.2

m?
1/2,1 1.6 2.3 3.3

m?
5/2,1 1.9 2.9 3.8

m?
1/2,0 3.6 5.7 5.5

m?
1,0 3.6 5.7 5.5

m?
1,2 3.4 5.6 5.3

m?
j 2.1 3.8 3.9

SBai 3.5 8.9 7.7

T 100 500 1000
m?

0,1 1.4 2.8 3.0
m?

1/2,1 1.6 2.9 3.3

m?
5/2,1 2.0 3.4 3.8

m?
1/2,0 4.1 4.4 4.7

m?
1,0 4.2 4.4 4.8

m?
1,2 3.9 4.3 5.0

m?
j 2.0 3.1 4.0

SBai 3.6 10.3 10.1

T 100 500 1000
m?

0,1 1.3 3.3 5.2
m?

1/2,1 1.6 3.6 5.3

m?
5/2,1 1.9 4.0 5.1

m?
1/2,0 3.4 4.4 5.0

m?
1,0 3.4 4.3 5.0

m?
1,2 3.4 4.2 5.2

m?
j 1.9 3.7 5.3

SBai 3.6 12.5 13.9
Note: the data are i.i.d. and we test the Student distributional assumption in a constant
location-scale model. The true DGP is either some asymmetric distribution (χ2) or
a symmetric one (mixture of normals). We report the rejection frequencies for a 5%
significance level test. See Table 2 for notations.
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Table 4: Size and Power with GARCH(1,1) DGP

Size Power against asym. Power against mixture
distribution (χ2(30)) of normals (p = 0.7)

T 100 500 1000
m?

0,1 4.4 6.8 6.0
m?

1/2,1 4.7 6.7 5.9

m?
5/2,1 4.9 6.5 5.1

m?
1/2,0 6.0 5.7 5.1

m?
1,0 6.0 5.8 5.1

m?
1,2 6.7 6.4 5.5

m?
j 6.0 7.2 5.7

SBai 5.7 10.4 9.4

T 100 500 1000
m?

0,1 1.9 11.1 24.6
m?

1/2,1 2.1 11.6 25.8

m?
5/2,1 2.4 12.6 27.7

m?
1/2,0 28.8 98.1 100.0

m?
1,0 28.6 97.9 100.0

m?
1,2 29.8 98.7 100.0

m?
j 17.7 97.2 100.0

SBai 2.9 10.8 25.9

T 100 500 1000
m?

0,1 93.3 100.0 100.0
m?

1/2,1 91.4 100.0 100.0

m?
5/2,1 87.1 100.0 100.0

m?
1/2,0 34.1 38.4 37.3

m?
1,0 34.4 38.7 37.8

m?
1,2 31.8 35.1 34.3

m?
j 94.0 100.0 100.0

SBai 14.9 97.2 100.0
Note: the data are generated from a GARCH model with i.i.d. innovations. The true DGP
for the innovation is either a Student distribution (ν = 5), some asymmetric distribution
(χ2(30)) or some mixture of normals. We test the Student distributional assumption on
the fitted residuals. We report the rejection frequencies for a 5% significance level test.
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Table 5: Size and Power under serial correlation

ν = 5 ν = 20
ρ = 0.4 ρ = 0.9 ρ = 0.4 ρ = 0.9

Size properties

T 100 500 1000
m?

0,1 5.3 6.9 6.1
m?

3/2,1 5.1 5.7 5.5

m?
5/2,1 5.0 5.6 5.3

m?
1/2,0 6.1 6.1 6.4

m?
1,0 6.0 6.2 6.2

m?
1,2 6.2 6.0 6.2

m?
j 5.2 6.9 6.5

T 100 500 1000
m?

0,1 5.8 6.8 6.4
m?

3/2,1 5.7 6.4 6.1

m?
5/2,1 5.6 6.1 5.9

m?
1/2,0 16.5 12.3 10.5

m?
1,0 16.2 12.1 10.3

m?
1,2 17.4 13.2 11.4

m?
j 12.2 11.4 10.3

T 100 500 1000
m?

0,1 3.9 4.7 6.2
m?

3/2,1 3.9 4.6 5.8

m?
5/2,1 4.0 4.6 5.8

m?
1/2,0 4.5 5.1 5.1

m?
1,0 4.5 5.1 5.2

m?
1,2 4.5 5.3 5.0

m?
j 4.0 4.4 4.8

T 100 500 1000
m?

0,1 4.6 4.0 5.0
m?

3/2,1 4.8 4.2 5.3

m?
5/2,1 4.8 4.3 5.3

m?
1/2,0 6.1 6.9 6.6

m?
1,0 6.2 7.0 6.6

m?
1,2 5.9 6.7 6.4

m?
j 2.8 4.9 5.5

Power against mixture of normals p = 0.7.

T 100 500 1000
m?

0,1 43.0 99.4 100.0
m?

3/2,1 43.2 97.8 99.9

m?
5/2,1 41.2 94.1 99.0

m?
1/2,0 79.8 99.4 100.0

m?
1,0 76.9 98.7 99.9

m?
1,2 90.1 100.0 100.0

m?
j 94.4 100.0 100.0

T 100 500 1000
m?

0,1 42.6 99.3 100.0
m?

3/2,1 42.0 97.9 99.9

m?
5/2,1 40.1 94.2 99.0

m?
1/2,0 80.3 99.4 100.0

m?
1,0 77.3 98.8 99.9

m?
1,2 89.6 100.0 100.0

m?
j 94.4 100.0 100.0

T 100 500 1000
m?

0,1 74.3 99.9 99.9
m?

3/2,1 74.3 99.9 99.9

m?
5/2,1 74.1 99.9 99.9

m?
1/2,0 24.6 92.4 99.8

m?
1,0 24.7 92.2 99.8

m?
1,2 24.2 93.0 99.8

m?
j 89.2 99.8 100.0

T 100 500 1000
m?

0,1 75.3 99.8 99.9
m?

3/2,1 75.4 99.8 100.0

m?
5/2,1 75.5 99.8 100.0

m?
1/2,0 24.0 92.1 99.9

m?
1,0 24.0 92.0 99.9

m?
1,2 23.4 92.6 99.9

m?
j 89.5 99.8 100.0

Note: the data are generated from an AR(1) model. For the size properties, the data are marginally
Student distributed. For the power properties, the innovation of the AR(1) process is a mixture of
two normals which fits the first moments of a T(5) distribution. We test the Student distributional
assumption. The variance matrix of the moment used is estimated with a HAC procedure à la
Andrews. We report the rejection frequencies for a 5% significance level test.
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Table 6: Size and Power - IG (i.i.d. case)

Variance matrix computed theoretically

X ∼ IG(0.5, 0.5)
T 100 500 1000

m⊥
−1 3.6 4.6 4.8

m⊥
1 3.1 4.1 4.3

m⊥
2 2.6 3.4 3.6

m⊥
3 1.4 2.6 3.1

m⊥
j,2 4.1 4.5 4.9

m⊥
j,3 3.3 4.5 4.9

m⊥
j,4 3.2 3.9 4.0

X ∼ lognormal
T 100 500 1000

m⊥
−1 44.2 94.5 99.8

m⊥
1 4.1 14.6 21.2

m⊥
2 3.2 11.4 17.9

m⊥
3 1.7 9.2 15.7

m⊥
j,2 40.9 94.7 99.8

m⊥
j,3 37.2 93.0 99.7

m⊥
j,4 34.4 91.1 99.6

Variance matrix computed in the sample

X ∼ IG(0.5, 0.5)
T 100 500 1000

m⊥
−1 6.1 6.9 6.6

m⊥
1 4.8 7.4 7.2

m⊥
2 2.0 11.8 12.5

m⊥
3 0.1 18.4 22.1

m⊥
j,2 5.3 9.7 9.7

m⊥
j,3 3.7 8.6 15.2

m⊥
j,4 11.0 7.7 15.2

X ∼ lognormal
T 100 500 1000

m⊥
−1 7.2 55.2 84.4

m⊥
1 8.3 20.6 19.8

m⊥
2 0.2 13.4 12.8

m⊥
3 0.1 0.3 10.4

m⊥
j,2 4.8 43.7 75.4

m⊥
j,3 9.8 35.8 72.6

m⊥
j,4 28.9 35.2 81.4

Note: we test the Inverse Gaussian distributional assumption. We report the
rejection frequencies for a 5% significance level test. m⊥

−1, m⊥
1 , etc. denote a

single moment, m⊥
j,g the joint moment which takes the first g single moments.

The IG (0.5,0.5) is used for assessing the size performances, the standard
lognormal is used for the power study.
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Table 7: Size and Power - IG (serial correlation case)

Size Power

T 100 500 1000

m⊥
−1 2.9 5.6 6.0

m⊥
1 2.3 5.0 5.7

m⊥
2 0.6 4.0 6.5

m⊥
3 0.2 1.2 6.9

m⊥
j,2 1.2 4.9 6.7

m⊥
j,3 1.6 3.4 5.1

m⊥
j,4 6.1 3.6 4.8

ρ = 0.4
T 100 500 1000

m⊥
−1 6.2 50.2 82.2

m⊥
1 4.7 17.2 18.0

m⊥
2 0.2 7.3 9.5

m⊥
3 0.1 0.1 2.5

m⊥
j,2 2.8 36.4 71.4

m⊥
j,3 7.2 29.5 67.6

m⊥
j,4 24.9 27.7 73.6

ρ = 0.9
T 100 500 1000

m⊥
−1 3.3 11.1 25.7

m⊥
1 1.1 2.4 5.8

m⊥
2 0.4 0.3 0.4

m⊥
3 0.1 0.0 0.1

m⊥
j,2 0.9 5.6 16.6

m⊥
j,3 2.3 9.2 17.8

m⊥
j,4 3.6 20.3 21.6

Note: we test the Inverse Gaussian distributional assumption. We
report the rejection frequencies at a 5% significance level test. See
Table 6 for details. The variance estimator is a HAC estimator à
la Andrews.

Table 8: Testing the Student distributional assumption of fitted residuals for a GARCH(1,1)
model

UK-US$ FF-US$ SF-US$ Yen-US$
ν̂ 9.61 9.56 6.64 5.54
m?

0,1 0.101 (0.75) 1.474 (0.22) 0.002 (0.97) 0.003 (0.95)
m?

1/2,1 0.128 (0.72) 1.308 (0.25) 0.014 (0.91) 0.013 (0.91)

m?
5/2,1 0.225 (0.64) 0.829 (0.36) 0.319 (0.57) 0.186 (0.67)

m?
1/2,0 2.925 (0.09) 0.795 (0.37) 6.050 (0.01) 0.233 (0.63)

m?
1,0 2.871 (0.09) 0.935 (0.33) 5.687 (0.02) 0.192 (0.66)

m?
1,2 2.970 (0.08) 0.246 (0.62) 7.747 (0.01) 0.423 (0.52)

m?
j 3.097 (0.21) 1.554 (0.46) 7.761 (0.02) 0.437 (0.80)

SBai 2.732 (≥ 0.05) 1.776 (≥ 0.05) 1.476 (≥ 0.05) 3.834 (≤ 0.05)
Note: we test the standardized Student distributional assumption for
the innovation term of a GARCH(1,1) model estimated by the Gaussian
QML method. The test statistics and their corresponding p-values (in
brackets) are reported. The notations are defined in Table 2.
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Table 9: Testing the Inverse Gaussian distributional assumption of realized variance

DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30

(µ̂, λ̂) (0.55,0.95) (0.44,0.46) (0.55,0.96) (0.44,0.46) (0.55,0.94) (0.44,0.46)
m⊥
−1 0.27 (0.60) 3.24 (0.07) 0.87 (0.35) 2.63 (0.10) 0.57 (0.45) 2.94 (0.09)

m⊥
1 13.12 (0.00) 7.31 (0.01) 4.57 (0.03) 4.80 (0.03) 4.51 (0.03) 3.97 (0.05)

m⊥
2 10.41 (0.00) 5.52 (0.02) 2.47 (0.12) 3.71 (0.05) 2.99 (0.08) 3.55 (0.06)

m⊥
3 7.11 (0.01) 3.93 (0.05) 1.57 (0.21) 2.77 (0.10) 2.31 (0.13) 2.59 (0.11)

m⊥
j,2 16.60 (0.00) 16.18 (0.00) 4.64 (0.10) 14.02 (0.00) 6.43 (0.04) 8.93 (0.01)

m⊥
j,3 22.65 (0.00) 24.44 (0.00) 15.48 (0.00) 20.50 (0.00) 19.12 (0.00) 10.58 (0.01)

m⊥
j,4 23.68 (0.00) 24.94 (0.00) 21.25 (0.00) 24.03 (0.00) 19.72 (0.00) 11.73 (0.02)

Note: we test the Inverse Gaussian assumption for the realized variance of exchange
rates. The test statistics and their corresponding p-values (in brackets) are reported.
The notations are defined in Table 6.

Table 10: Testing the Inverse Gaussian distributional assumption of realized
variance, S&P 500, 1997-2002

Realized Realized bipower
variance variation

m⊥
−1 11.30 (0.00) 6.91 (0.01)

m⊥
1 9.35 (0.00) 6.22 (0.01)

m⊥
2 6.61 (0.01) 4.49 (0.03)

m⊥
3 4.90 (0.03) 3.47 (0.06)

m⊥
j,2 12.51 (0.00) 7.79 (0.02)

m⊥
j,2 14.39 (0.00) 10.98 (0.01)

m⊥
j,2 19.41 (0.00) 11.33 (0.02)

Note: we test the Inverse Gaussian
assumption for the realized variance
of the S&P index. The test statistics
and their corresponding p-values
(in brackets) are reported. The
notations are defined in Table 6.

41



References

Aı̈t-Sahalia, Y. (1996), “Testing Continuous-Time Models of the Spot Interest Rate,”
Review of Financial Studies, 9, 385-426.

Aı̈t-Sahalia, Y, L. P. Hansen and J. Scheinkman (2010), ”Operator Methods for Continuous-
Time Markov Processes”, in: Y. Aı̈t-Sahalia and L. P. Hansen (Eds),Handbook of
Financial Econometrics, 1-66.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2001), “The Distribution of
Exchange Rate Volatility,” Journal of the American Statistical Association, 96, 42-55.

Andersen, T.G., T. Bollerslev, F.X. Diebold and P. Labys (2003), “Modeling and Forecasting
Realized Volatility,” Econometrica, 71, 579-625.

Andrews, D.W.K. (1991), “Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation”, Econometrica, 60, 953-966.

Bai, J. (2003), “Testing Parametric Conditional Distributions of Dynamic Models,”
Review of Economics and Statistics, 85, 531-549.

Bai, J. and S. Ng (2005), “Tests for Skewness, Kurtosis, and Normality for Time Series
Data,” Journal of Business, Economics and Statistics, 23, 49-60.

Barndorff-Nielsen, O.E. and N. Shephard (2001), “Non-Gaussian OU based Models and
some of their uses in Financial Economics,” with discussion, Journal of the Royal
Statistical Society, B, 63, 167-241.

Bera, A. and Y. Bilias (2002), “The MM, ME, ML, EL, EF and GMM Approaches to
Estimation: A Synthesis,” Journal of Econometrics, 107, 51-86.

Boldin, M.V. (1982), ”Estimation of the distribution of noise in an autoregressive scheme”,
Theory Probab. Appl., 27, 866-871.

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal
of Econometrics, 31, 307-327.

Bollerslev, T. (1987), “ A Conditional Heteroskedastic Time Series Model For Speculative
Prices and Rates of Returns,” Review of Economics and Statistics, 69, 542-547.

Bollerslev, T., R. Engle and D.B. Nelson (1994), “ARCH Models,” in: R.F. Engle
and D.L. McFadden, Handbook of Econometrics, Vol IV, 2959-3038, Elsevier, North-
Holland, Amsterdam.

Bollerslev, T. and J.F. Wooldridge (1992), “Quasi Maximum Likelihood Estimation and
Inference in Dynamic Models with Time Varying Covariances”, Econometric Reviews,
11, 143-172.

Bontemps, C. (2009), ”Moment Based Tests for Discrete Distributions”, working paper,
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