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ABSTRACT
Nowadays, deep learning is more and more used for Music Genre
Classification: particularly Convolutional Neural Networks (CNN)
taking as entry a spectrogram considered as an image on which are
sought different types of structure.

But, facing the criticism relating to the difficulty in understand-
ing the underlying relationships that neural networks learn in
presence of a spectrogram, we propose to use, as entries of a CNN,
a small set of eight music features chosen along three main music
dimensions: dynamics, timbre and tonality. With CNNs trained
in such a way that filter dimensions are interpretable in time and
frequency, results show that only eight music features are more
efficient than 513 frequency bins of a spectrogram and that late
score fusion between systems based on both feature types reaches
91% accuracy on the GTZAN database.
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1 INTRODUCTION
Firstly introduced by Tzanetakis and Cook [21] in 2002 as a pattern
recognition task, Music Genre Classification (MGC) remains an
active research topic in the domain of Music Information Retrieval
(MIR), perhaps because it is one of the most common ways to
manage digital music databases.

Inmost systems,MGC consists of extracting a set of features from
the raw audio signal, optionally performing feature selection, and
making a classification based on machine learning methods. Several
works have been based on the extraction of discriminating audio
features categorized as frame-level, segment-level or song level
features. Frame-level features, such as Spectral Centroid, Spectral
Rolloff, Octave-based Spectral Contrast, Mel Frequency Cepstral
Coefficients, describe the local spectral characteristics of audio
signal and are extracted from short timewindows (or frames) during
which the signal is assumed to be stationary. Segment-level features
are obtained from statistical measures of a segment composed of
several frames. Such a segment is long enough to capture the sound
texture. Song-level features, such as tempo, rhythmic information,
melody, pitch(es) distribution(s), give meanings to music tracks in
human-recognizable terms.

The recent papers show that spectrograms obtained from audio
signal have been successfully applied to MGC [2], [22]. As texture
is the main visual content found in spectrograms, different types of
texture have been used such as Local Binary Patterns [3], Gabor
Filters [22], Weber Local Descriptor [15], etc. The classification
task generally relies on supervised learning approaches such as
K-Nearest Neighbor, Linear Discriminant Analysis, Adaboost, and
Support VectorMachine (SVM), which have beenwidely used. Some
works demonstrated the interest of combining acoustic and multi-
level visual features reflecting the spectrogram textures and their
temporal variations. This is the case for Nanni & al. [15] and for Wu
& al. [22], whose approach won the Music Information Retrieval
Evaluation eXchange (MIREX1) MGC contests from 2011 to 2013.

But beside these approaches, deep learning is more and more
used by the MIR community. This success can be explained by
two reasons: the first one is that it avoids the more or less difficult
extraction of carefully engineered audio features, the second one is

1http://music-ir.org/mirex/wiki/MIREX_HOME
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that the deep learning hierarchical topology is beneficial for musical
analysis because on one hand music is hierarchic in frequency and
time and on the other hand relationships between musical events in
the time domain which are important for human music perception
can be analyzed by Convolutional Neural Networks (CNN). The
most popular method is to use a spectrogram as an input to a CNN
and to apply convolving filter kernels that extract patterns in 2D.

However, as pointed out by J.Pons, T.Lidy and X.Serra [16], "a
common criticism of deep learning relates to the difficulty in un-
derstanding the underlying relationships that the neural networks
are learning, thus behaving like a black-box". It is why they experi-
mented and showed, by playing with filter shapes, that musically
motivated CNN may be beneficial. In the MIREX 2016 campaign,
one of these authors showed that combining a CNN capturing tem-
poral information and another one capturing timbral relations in
the frequency domain is a promising approach for MGC [12].

In a previous work [13], we saw the interest of using specific mu-
sic features such as timbre, rhythm, tonality and dynamics related
features. But in the same time, we were limited by the classification
methods, SVMs with Gaussian kernels given the best accuracy (82%)
on the GTZAN database [21].

So, motivated by the interest of CNNs in the MGC task, we de-
cided to use some musical features, chosen along dynamics, timbre
and tonality dimensions, as input of a CNN. To this end, we relied
on the topology of the CNNs used by Zhang & al. [23] and whose
results (87.4%), with spectrograms as entries, surpass those of the
state of the art on the GTZAN database. To make a fair comparison
with their results, we used the same network topology for which
we have adapted the convolutional filter sizes for our music fea-
tures. Results show that only eight music features outperform the
spectrogram and that a late fusion of the two networks gives better
results.

2 FEATURES
In this section, we describe the different features we used and their
analysis window. This window has to be small enough so that the
magnitude of the frequency spectrum is relatively stable and the
signal for that length of time can be considered stationary.

A window of 46.44 ms length (1024 points at 22050 Hz) seems to
be the most relevant in different music studies [1].

2.1 Short-Time Fourier Transform magnitude
spectrum features

For the baseline system (same one as described in [23]), we cal-
culated FFT on 46.44 ms analysis Hamming windows with a 50%
overlapping and we discarded phases. The output from each frame
is a 513 dimensional vector.

2.2 Music features
We chose eight music features along three main music dimensions:
dynamics, timbre and tonality. This set of features (previously used
in [13]) was found to give the best results for our experiments.

Except for the high level Key Clarity feature, for which we used
a 6 second window with a 50% overlapping, all the other features
are low frame level and were extracted with a window of 46.44 ms
length and a 50% overlapping. In order to temporally synchronize

all parameters, the value of the Key Clarity obtained over a period
of 6 seconds is duplicated for all the segments of 46.4 ms that make
up this period.

All these features were extracted with MirToolbox [10].

2.2.1 Dynamics feature. We used signal classical Short-term
energy which is an important feature for music genre classification.
Thus, Metal and Classical music are highly related with this feature.

2.2.2 Timbre features. The Zero-crossing rate (ZCR), widely
used in MIR, is the rate of sign changes of a signal. In music, a high
ZCR corresponds to a percussive or noisy track.

In order to estimate the amount of high frequency in a signal,
we can compute Brightness [11] by fixing the cut off frequency
(in our case 15 kHz) and we are looking for the amount of energy
above this frequency.

The spectral distribution can be described by statistical moments:
we used Spectral Flatness and Shannon Spectral Entropy. Spectral
Flatness [7] indicates if the spectrum is smooth or spiky: it is
the ratio between the geometric mean and the arithmetic mean
of the power spectrum of the signal. The Spectral Shannon En-
tropy [18] can be viewed as the amount of information contained
in the spectrum and if there are predominant peaks or not.

Spectral Roughness, or sensory dissonance, appears when two
frequencies are very close but not exactly the same. In our case, we
compute the peaks of the spectrum, and take the average of all the
dissonances between all possible pairs of peaks [17].

2.2.3 Tonality features. The Key Clarity can be useful to know
if a song is tonal or atonal [10]. The key clarity is the key strength
associated with the best key(s) (i.e. the peak ordinate(s)). The key
strength is a score computed using the chromagram. The chroma-
gram, also called Harmonic Pitch Class Profile, shows the distribu-
tion of energy along the pitches or pitch classes. For example, Hip
Hop has generally a low Key Clarity, whereas country and blues
tend to have high values.

The Harmonic Change Detection function is the flux of the
tonal centroid [8], which is calculated using chromagram, and rep-
resents the chords (groups of notes) played [10].

2.3 Aggregated features
Several authors have shown improvements by aggregating features
over time [21], [1]. As in [23], we aggregated the features over
3 seconds with an overlap of 1.5 second. That led to a 128 × 513
spectrogram and a 128 × 8 map of music features for each 3 second
clip.

3 NETWORKS
As shown in figure 1 the two networks we used are constructed on
the same scheme: a residual block [9] as feature extractor and a fully
connected classifier. The input of the baseline net_STFT is a Short
Time Fourier Transform spectrogram (128 × 513 features) while for
net_MUSIC, it is composed of the music feature map (128× 8music
features).

Although having different intervals of variation, the music fea-
tures are not standardized. Moreover, the order in which they are
concatenated to form a map is not important because of the 4 × n
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Figure 1: The networks topology: n corresponds to 513 frequency bins for net_STFT and to 8 music features for net_MUSIC.

size filters which cause the first layer to achieve a linear combina-
tion of all of these features. These first convolution filters with a
very small time dimension of 4 (0.1 s) and with the largest feature
dimension permit to model features relevant for the task, while the
second and third convolution filters setting the feature size to 1
permit to find temporal dependencies.

Except for the last layer where the softmax function is applied,
Rectified Linear Units (ReLUs) [14], [6] are used as the activation
function in all convolutional and dense layers. ReLUs permit a good
convergence even with sparse features in the hidden layers [6] and
overcome the problem of vanishing gradients [5]. A single shortcut
connexion (residual block) between the first and third layers permits
to avoid over fitting since the training data are limited. Global
temporal max- and average-pooling are used after the residual
block.

The last three layers are dense with 300, 150 and 10 hidden units
respectively and are used as a classifier: the outputs of the last one
correspond to the 10 genre probabilities.

Each network is trained over 40 epochs and is adapted in each
epoch with a mini-batch-size of 20 instances. The loss function is
categorical cross-entropy, the dropout rate is 0.2 and zero padding
is used before the element-wise adding operation. The hop of the
convolutional kernels is one. We implemented these networks in
Python with Theano [20] as a back-end. We used Theano’s GPU
capabilities on an NVIDIA Tesla K40.

4 EXPERIMENTS AND RESULTS
4.1 Dataset
For our experiments, we used the GTZAN dataset [21] which, al-
though it has some shortcomings [19], is a benchmark for Music
Genre Classification. The GTZAN dataset consists of ten genre
classes: Blues, Classical, Country, Disco, HipHop, Jazz, Metal, Pop,
Reggae, and Rock. Each class consists of 100 recordings of music
pieces of 30 s duration. These excerpts were taken from radio, com-
pact disks, and MP3 compressed audio files. Each item was stored
as a 22.050 kHz, 16-bit, mono audio file.

4.2 Experimental Setup
Evaluation on the GTZAN dataset was carried out in a cross valida-
tion manner. The number of songs for different genres in the train,
validate and test sets was balanced (80/10/10 for each genre).

4.3 Late fusion
Each entry of a network (net_STFT or net_MUSIC) corresponding
to a 3 second clip, the network returns a genre decision for each
clip. Then the overall genre classification of the piece of music of
30 s is done by a majority vote on the network outputs provided by
the 18 clips that compose it (overlap of 50%).

For the fusion of the results of the two networks, we experi-
mented two ways described in figure 2. In this figure, the partial
results of a piece of music from the two networks are described
in the form of two matrices: a matrix contains for each clip the
probability of each class.

For FUSION1, for each class, the 2 × 18 probabilities of the two
networks are averaged and the class with the largest average is
chosen.

For FUSION2, the probabilities of the two networks for each clip
and each class are averaged. Then the decision follows the same
scheme as in the case of a single network: decision for each clip
and majority vote.

Figure 2: The two fusion strategies FUSION1 and FUSION2.
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Table 1: Confusion Matrix (in %). Each 3-uple (a, b, c) corresponds to net_STFT (a) , net_MUSIC(b) and Fusion2 (c) results.

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) Blues 87, 100, 98 0, 0, 0 0, 0, 0 3, 0, 0 2, 0, 0 1, 0, 2 0, 0, 0 0, 0, 0 0, 0, 0 7, 0, 0
(1) Classical 0, 0, 0 98, 98, 100 0, 0, 0 0, 0, 0 0, 0, 0 0, 2, 0 0, 0, 0 0, 0, 0 0, 0, 0 2, 0, 0
(2) Country 0, 0, 2 0, 0, 0 91, 88, 92 2, 5, 2 0, 0, 0 0, 3, 2 0, 0, 0 2, 2, 0 2, 2, 2 3, 0, 0
(3) Disco 0, 0, 0 0, 0, 0 2, 0, 0 86, 88, 92 5, 4, 6 0, 0, 0 0, 1, 0 3, 3, 2 0, 4, 0 4, 0, 0
(4) Hip Hop 2, 0, 0 0, 0, 0 0, 0, 0 2, 0, 0 83, 93, 92 0, 0, 0 0, 0, 0 5, 3, 4 6, 4, 4 2, 0, 0
(5) Jazz 0, 0, 0 1, 4, 4 3, 0, 0 0, 0, 0 0, 0, 0 94, 94, 94 0, 0, 0 2, 2, 2 0, 0, 0 0, 0, 0
(6) Metal 2, 0, 2 0, 0, 0 2, 0, 2 0, 2, 0 2, 0, 2 0, 0, 0 91, 98, 92 0, 0, 0 0, 0, 0 3, 0, 2
(7) Pop 0, 0, 0 0, 0, 0 2, 4, 4 1, 0, 2 4, 5, 4 0, 2, 0 0, 0, 0 82, 84, 86 3, 1, 0 8, 4, 4
(8) Reggae 0, 0, 0 0, 0, 0 0, 3, 0 1, 0, 0 5, 3, 2 0, 0, 0 0, 0, 0 4, 6, 6 85, 88, 88 5, 0, 4
(9) Rock 1, 8, 4 0, 0, 0 4, 9, 2 4, 6, 6 2, 0, 2 0, 1, 0 3, 0, 2 5, 9, 4 1, 5, 4 80, 62, 76

4.4 Results
The mean genre classification accuracies, for cross-validation with
95% confidence intervals computed with bootstrap sampling [4], of
the four different systems are reported in table 2.

Table 2: Overall Genre Classification Accuracy (in %).

net_STFT net_MUSIC FUSION1 FUSION2

87.8 ± 1.8 89.6 ± 2.4 90.5 ± 0.7 91 ± 1.2

The network net_STFT serves as a baseline and reproduces the
results obtained by [23]: it displays an average classification accu-
racy of 87.8% ± 1.8. We can see that results obtained with the eight
music features are globally superior (89.6% ± 2.4) to those obtained
with the spectrogram: this validates the relevance of our features.
Finally, the two late fusion systems FUSION1 and FUSION2 have
the best rates (91% ± 1.2 for the best one).

The confusion matrices for net_STFT, net_MUSIC and FUSION2
are displayed in table 1. We can notice some complementarity be-
tween the first two networks given that the classification errors are
not necessarily the same: it can explain why the fusion is efficient.
Rock is a problem for both networks, but especially for net_MUSIC:
8% of the rock songs are confused with blues, 9% with country
music, 9% with pop music. By fusion, blues and classical are per-
fectly recognized and Country, Disco, Hip Hop and Metal obtain
an accuracy of 92% at least.

5 CONCLUSIONS
Motivated by the interest of deep learning in the Music Genre
Classification task, we decided to use amap of eightmusical features
as inputs of a CNN. These features were chosen along dynamics,
timbre and tonality dimensions, among a larger set studied in an
early work. We relied on CNNs trained in such a way that filter
dimensions (adapted for our purpose) are interpretable in time and
frequency. Results show the relevance of our eight music features:
global accuracy of 89.6% against 87.8% for 513 frequency bins of a
spectrogram. The late score fusion between systems based on both
feature types reaches 91% accuracy on the GTZAN database.

As future work, it is planned to make an early fusion of the two
networks in order to have a global classifier. We also have to test
our method with other databases with distinct characteristics such
as "The Latin American Music database" or ethnic music, on which
we have already worked during the DIADEMS project2 .
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