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Corals are associated with dinitrogen (N2)-fixing bacteria that potentially represent an 
additional nitrogen (N) source for the coral holobiont in oligotrophic reef environments. 
Nevertheless, the few studies investigating the assimilation of diazotrophically derived 
nitrogen (DDN) by tropical corals are limited to a single scleractinian species (i.e., Stylophora 
pistillata). The present study quantified DDN assimilation rates in four scleractinian and 
three soft coral species from the shallow waters of the oligotrophic Northern Red Sea 
using the 15N2 tracer technique. All scleractinian species significantly stimulated N2 fixation 
in the coral-surrounding seawater (and mucus) and assimilated DDN into their tissue. 
Interestingly, N2 fixation was not detected in the tissue and surrounding seawater of soft 
corals, despite the fact that soft corals were able to take up DDN from a culture of free-
living diazotrophs. Soft coral mucus likely represents an unfavorable habitat for the 
colonization and activity of diazotrophs as it contains a low amount of particulate organic 
matter, with a relatively high N content, compared to the mucus of scleractinian corals. 
In addition, it is known to present antimicrobial properties. Overall, this study suggests 
that DDN assimilation into coral tissues depends on the presence of active diazotrophs 
in the coral’s mucus layer and/or surrounding seawater. Since N is often a limiting nutrient 
for primary productivity in oligotrophic reef waters, the divergent capacity of scleractinian 
and soft corals to promote N2 fixation may have implications for N availability and reef 
biogeochemistry in scleractinian versus soft coral-dominated reefs.
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INTRODUCTION

Coral reefs are highly productive ecosystems despite thriving in oligotrophic waters, which contain 
low levels of essential dissolved inorganic nutrients such as nitrogen (N) (de Goeij et  al., 2013). 
Corals, which are the main reef builders, can achieve high productivity thanks to their association 
with endosymbiotic dinoflagellates, which recycle the animal waste products and are efficient in 
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scavenging inorganic N dissolved in seawater (Wang and Douglas, 
1999; Grover et  al., 2003). Corals also profit from high rates 
of N recycling in the water column and sediments via microbial 
processes (Carpenter and Capone, 2008), and from biological 
dinitrogen (N2) fixation of diazotrophic symbionts (Bednarz 
et al., 2017), which are heterotrophic bacteria and cyanobacteria 
that convert atmospheric N2 into bioavailable N. In addition to 
being associated with benthic organisms (reviewed in Benavides 
et  al., 2017), diazotrophs can live pelagic, and colonize reef 
substrates (e.g., sediments, coral rubble). Many studies using 
the acetylene reduction assay (ARA) method have recorded high 
rates of N2 fixation either in reef waters or in the presence of 
corals (i.e., Bednarz et  al., 2015; Rädecker et  al., 2015; Cardini 
et  al., 2016). The ARA technique quantifies gross N2 fixation 
without providing insights into DDN (diazotrophically derived 
nitrogen) assimilation by the coral-dinoflagellate symbiosis. Instead, 
the use of labeled 15N2 gas measures DDN assimilation (net N2 
fixation) and distinguishes between the different compartments 
(i.e., seawater particles, tissue, dinoflagellate symbionts), but it 
is still poorly known to what extent and under which conditions 
corals profit from DDN.

Most of the research using the 15N2 method to assess DDN 
assimilation in adult tropical corals has been directed toward 
only one species, Stylophora pistillata, belonging to the 
Pocilloporidae family. These studies showed that S. pistillata 
can acquire DDN via grazing on a culture of diazotrophic 
cells (Benavides et al., 2016). However, under natural conditions, 
this coral species has variable capacities to stimulate diazotrophic 
activity in seawater as well as variable DDN assimilation rates 
into the coral holobiont (Grover et  al., 2014; Bednarz et  al., 
2017; Lesser et  al., 2018). As DDN can play a major role in 
supplying N to corals (Cardini et  al., 2016; Bednarz et  al., 
2017), the estimation of the capacity of different coral species 
to take advantage of this nutrient source can help in 
understanding how they cope with nutrient limitation. In 
addition, no study so far investigated DDN assimilation by 
soft corals, although they represent together with scleractinian 
corals the two most dominant benthic groups on many reefs 
worldwide. Soft corals can quickly colonize open space due 
to their fast growth rates, high fecundity, and asexual reproduction 
and these opportunistic life history features may be  facilitated 
by diazotrophs as additional N source (i.e., DDN). The aim 
of this study was to perform a multi-species comparison and 
to investigate the capacity of different scleractinian and soft 
coral species to either assimilate DDN/diazotrophic cells and/or 
transfer it to the surrounding seawater.

MATERIALS AND METHODS

Laboratory Experiment: Diazotrophically 
Derived Nitrogen Assimilation From 
External Diazotrophs
To assess whether scleractinian and soft corals have the same 
capacities to assimilate DDN from external active diazotrophs 
in the seawater, an experiment was performed at the Monaco 
Scientific Centre. We  used the scleractinian coral S. pistillata 

and the soft coral Sarcophyton sp., which have been maintained 
in aquaria for years, and are not associated with active diazotrophs 
(Bednarz, unpublished data; Kooperman et  al., 2007). All 
colonies were maintained under the same light (200 μmoles 
photons m−2  s−1) and temperature (25°C) conditions to ensure 
comparability between the species during the following 
experiment. For this purpose, a culture of diazotrophs 
(Crocosphaera watsonii) was prepared and diluted to obtain 
two cell concentrations of 100 and 1,000 cells ml−1, respectively, 
matching concentrations of 3- to 20-μm size class phycoerythrin-
containing unicellular cyanobacteria under non-bloom and 
bloom conditions (Campbell et  al., 1997). C. watsonii 
concentrations were determined using a hemocytometer 
(Z1 particles counter, Beckman Coulter, USA). Four nubbins 
of each coral species per C. watsonii concentration were then 
individually placed in 320-ml gas-tight bottles completely filled 
with 280  ml of 0.22  μm-filtered seawater amended with the 
adequate concentration of diazotrophs and 40  ml of 15N2 
enriched seawater. In addition, three nubbins of each species 
were incubated under the same above conditions but without 
C. watsonii cells. At the end of the 24  h incubation, corals 
were removed and stored frozen until subsequent analysis. They 
were then processed as described below.

Field Experiment: Diazotrophically Derived 
Nitrogen/Diazotrophic Cells Assimilation 
and Transfer to Seawater
Biological Material
The study was conducted during November 2017 at the 
Interuniversity Institute (IUI) of Marine Sciences, Eilat, Red 
Sea. Coral fragments were collected by SCUBA diving from 
different colonies of the reef adjacent to the IUI and were 
brought back to the Red Sea Simulator facility (see Bellworthy 
and Fine, 2018, for more details regarding the system) to 
recover for one day prior to starting the incubations. Scleractinian 
corals (Acropora eurystoma, n  =  6; Pocillopora damicornis, 
n  =  3; Goniastrea sp., n  =  3; and Cynarina sp., n  =  2) were 
sampled in shallow waters (8–10  m depth) and soft corals 
(n  =  5 for all species; Dendronephthya sp., Rhytisma fulvum 
fulvum and Litophyton sp.) in shallow waters and at upper 
mesophotic depths (40–45  m). Biological replicates for each 
species were derived from individual colonies and the different 
species were chosen in order to cover a broad range of families 
and morphological traits (Table 1). Three additional nubbins 
per species per depth were collected to measure natural 15N 
abundance of the corals. At the collection time, the site was 
characterized by stable temperature (24–25°C) and nutrient 
levels (< 0.5 μM dissolved N and < 0.2 μM dissolved phosphorus) 
along the depth gradient (data from the Israel National 
Monitoring program of the Gulf of Eilat, http://www.iui-eilat.
ac.il/Research/NMPMeteoData.aspx).

N2 Fixation Measurements
The 15N2 seawater addition method was used to assess N2 
fixation rates. For this purpose, 15N2-enriched seawater was 
produced prior to the incubation experiment by injection of 
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10 ml of 15N2 gas (98% Eurisotop) into gas-tight 250-ml bottles 
completely filled with degassed, 0.2 μm-filtered seawater, followed 
by vigorous shaking for 12 h to ensure 100% 15N2 equilibration 
(Mohr et  al., 2010). In order to test which coral species can 
assimilate DDN or can enrich the seawater in DDN, collected 
nubbins from each coral species were individually placed in 
gas-tight bottles of volume 600  ml. Bottles were completely 
filled with 120  μm-filtered seawater, directly pumped from the 
reef, with 10% replaced by 15N2-enriched seawater (resulting 
in theoretical enrichment of ~9.8 atom%). A first set of three 
control bottles was prepared as described above but without 
corals to measure the baseline of N2 fixation by planktonic 
diazotrophs. To evaluate the natural 15N abundance of the 
corals, a second set of controls consisted in incubating three 
coral nubbins from each species (only two for Cynarina sp.) 
in 120  μm-filtered seawater incubations without 15N2 addition. 
All bottles were incubated for 24  h in several outdoor aquaria. 
The seawater temperature was kept constant at in situ temperature 
(~ 24°C) by using continuous supply of seawater in the aquaria. 
Corals were exposed to the natural diel light cycle and shaded 
to the corresponding irradiance of their collection site by 
applying layers of black mesh above the aquaria and considering 
an attenuation coefficient equal to 0.072–0.1  m−1 (Akkaynak 
et  al., 2017; Tamir et  al., 2019). At the end of the incubations, 
corals were removed from seawater and stored frozen until 
subsequent analysis. Incubation water of all bottles was filtered 
onto pre-combusted (450°C for 5  h) GF/F filters which were 
dried at 60°C for 48  h. Corals and filters were processed as 
described in the sample analysis section.

Sample Analysis
For scleractinian corals, the tissue was removed from the 
skeleton using an air brush and homogenized with a potter 
tissue grinder. The host tissue and zooxanthellae were separated 
through a series of centrifugations according to Grover et  al. 
(2003) and each fraction was freeze-dried. Soft corals were 
treated as described in Pupier et  al. (2018). Briefly, they 
were freeze-dried, the resulting powder homogenized in 
distilled water, and then separated in several centrifugation 
steps into the host tissue and zooxanthellae fractions as 
described above. Each fraction was subsequently freeze-dried 
again. The 15N enrichment as well as particulate organic 
carbon (POC) and particulate N content (PN) of each sample 
and filter were determined using a mass spectrometer (Delta 
Plus; Thermo Fisher Scientific, Germany) coupled to a  
C/N analyzer (Flash EA; Thermo Fisher Scientific, Germany). 

To calculate N2 fixation in particles of the incubation water 
or DDN assimilation by corals (host and/or zooxanthellae), 
the equation of Montoya et  al. (1996) was used:

N fixation or DDN assimilation
atom PNexcess sample

2

15

9 8
=

´
´

%

.

N

t

where t is the incubation time, 9.8 the initial 15N enrichment 
of the incubation water, and PNsample the particulate N content 
of the samples. For each sample, the atom% 15Nexcess enrichment 
was calculated by subtracting the natural 15N enrichment of 
control samples without 15N2 exposure (atom% 15Ncontrol) from 
the 15N enrichment of samples after exposure to 15N2-enriched 
seawater (atom% 15Nsample). The atom% 15Nsample was considered 
significant when it was at least three fold higher than the 
standard deviation of the atom% 15Ncontrol. N2 fixation and DDN 
assimilation values were normalized to the volume of water 
filtered or to the total dry weight of the sample. For comparison 
with previous studies, scleractinian corals data were also 
normalized to the skeletal surface area determined using the 
wax technique (Veal et  al., 2010).

Statistical Analyses
Analyses were performed using R software (R Foundation for 
Statistical Computing). All data were expressed as 
mean  ±  standard error. Prior to analyses, outlier values were 
identified using Grubb’s test and were excluded when p’s were 
significant (p  <  0.05). Assumptions of normality and 
homoscedasticity of variance were evaluated through Shapiro’s 
and Bartlett’s tests. A non-parametric Kruskal-Wallis test was 
used to test for differences between groups (hard vs. soft corals) 
and depths (shallow vs. deep soft corals) on POC and POC:PN. 
Analyses of variance (ANOVAs) were performed to respectively 
test the effect of species and morphologies on DDN transfer 
and assimilation. Tukey tests were performed as a posteriori testing.

RESULTS

In the laboratory experiment, no N2 fixation (neither in seawater 
nor in coral tissue) was measured when corals were incubated 
without the addition of C. watsonii cells to the seawater. Both  
S. pistillata and Sarcophyton sp. however demonstrated abilities to 
assimilate DDN in the presence of active diazotrophs (i.e.,  
C. watsonii) in seawater (Figure 1). Overall, Sarcophyton sp. 
assimilated 65% more DDN in its tissue than S. pistillata. While 
there was no difference between the DDN assimilations of S. 
pistillata exposed at the two cell concentrations (Tukey HSD: 
p = 0.389), Sarcophyton sp. significantly increased its DDN assimilation 
under higher cell concentration (Tukey HSD: p  =  0.020).

In the field experiment, a very low level of N2 fixation was 
measured in seawater with natural populations of diazotrophs, 
in the absence of corals (Figure 2A). All coral species enriched 
the seawater in mucus-containing particles during the 24-h 
incubation (Figure 2A). POC, which is a proxy for living and 
detrital particles present in the water and being released by 
the corals, was two- to seven-fold higher in chambers containing 
scleractinian corals compared to those containing soft corals 

TABLE 1 | Scleractinian and soft coral species investigated in the study.

Coral group Species Family Morphology

Scleractinian

Acropora eurystoma Acroporidae Branching
Cynarina sp. Lobophyliidae Mounding
Goniastrea sp. Merulinidae Mounding
Pocillopora damicornis Pocilloporidae Branching

Soft
Dendronephthya sp. Nephtheidae Arborescent
Litophyton sp. Nephtheidae Arborescent
Rhytisma fulvum fulvum Alcyoniidae Mat-forming
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(Kruskal-Wallis: p  <  0.001). There was no difference in POC 
release between shallow and mesophotic soft corals (Kruskal-
Wallis: p  =  0.138). Particles released by scleractinian corals 
presented a higher POC:PN ratio (between 11.9 and 16.6) compared 

to those of soft corals (between 4.9 and 7.5) (Figure 2B, Kruskal-
Wallis: p < 0.001). While there was no N2 fixation in the incubation 
water containing all soft coral species sampled in shallow or 
mesophotic environments, a significant fixation was observed  
in the incubation water of all four scleractinian species  
(Figures 3A,B). Fixation rates ranged from 34 to 211  ng  N  L−1 
over the 24-h incubation, or between 6 and 135 10−3  ng  N  mg 
DW−1  h−1 when expressed per coral biomass. For both 
normalizations, rates were significantly different between species 
(ANOVA: p = 0.003 and p = 0.002, respectively) and morphologies 
(branching vs. mounding, ANOVA: p < 0.001) with higher rates 
obtained for A. eurystoma and P. damicornis. Significant 
assimilation of DDN was observed in the host tissue and 
zooxanthellae of scleractinian corals, but not for the soft coral 
species from either shallow or mesophotic environments (Figure 
3C). The DDN assimilation in host tissue was equal or higher 
than the assimilation in the zooxanthellae fraction. Moreover, 
an inverse trend was observed between N2 fixation occurring 
in incubation water and DDN assimilated by the whole symbiotic 
association (Figure 3D).

DISCUSSION

Divergent Capacity of Coral Mucus to 
Enrich Seawater With Diazotrophically 
Derived Nitrogen
This study first highlights contrasting capacities of scleractinian 
and soft corals to promote N2 fixation in seawater. Freshly fixed 
N2 was traced in the incubation water containing scleractinian 
coral species, while no fixation in the seawater occurred in 
presence of soft corals. A previous study, which has used the 
ARA method, has also recorded much lower rates of gross N2 
fixation in the presence of soft compared to scleractinian corals 
(Bednarz et al., 2015). A difference in the quality and/or quantity 
of mucus (particulate and dissolved organic carbon, POC and 
DOC) released by the two coral groups as observed here together 
with a different amount of mucus-associated bacteria most likely 
explain differences in seawater diazotroph abundance or activity. 
While the sugar composition of the mucus can be similar between 
soft and scleractinian corals (Meikle et  al., 1988; Hadaidi et  al., 
2019), both the amount and POC:PN ratio of mucus are often 
species-dependent (Naumann et  al., 2010; Hadaidi et  al., 2019). 
Pogoreutz et  al. (2017) highlighted that DOC enrichment, in 
the form of sugars, can significantly stimulate diazotrophic N2 
fixation. In our study, scleractinian corals released between 1.9 
and 8.9  mg POC m−2  h−1, which is in the range of what has 
been reported for Red Sea scleractinian corals (between 0.3 and 
6.5  mg POC m−2  h−1) by Naumann et  al. (2010). Soft corals 
however released POC at two- to ten-fold lower rates. This is 
in agreement with previous measurements performed on another 
Red Sea soft coral belonging to the Xeniidae family, for which 
no POC release was observed (Bednarz et  al., 2012). As POC 
is a proxy for detrital and living particles, the lower particle 
content in the soft coral surrounding seawater can be  explained 
by the well-known antimicrobial properties of soft coral mucus 
(Kelman et al., 2006; Nakajima et al., 2018). These authors indeed 
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demonstrated that little antimicrobial activity was measured for 
scleractinian coral mucus whereas soft corals, including those 
studied in this work, significantly inhibited the growth of 
co-occurring seawater bacteria through the production of antibiotic 
compounds. Hence, scleractinian corals release mucus with a 
large number of bacteria into the surrounding seawater that can 
influence the activity and diversity of planktonic diazotroph 
populations. This feature may be  greatly reduced in soft corals, 
as their high antimicrobial activity constitutes a defense strategy 
against invading pathogens and fouling organisms for the holobiont, 
thus possibly assisting in competition over space and nutrition 
(Kelman et  al., 2009). Finally, the organic matter (OM) released 
by soft corals presented a particularly low POC:PN ratio (of 
5–7, i.e., particles enriched in N) compared to the OM released 
by scleractinian corals (from 12–17 in this study, range in agreement 
with Naumann et  al., 2010). This is also in agreement with the 
findings of two previous studies (Meikle et  al., 1988; Nakajima 
et al., 2018), which observed a higher protein and lower carbohydrate 
composition of soft coral mucus compared to scleractinian coral 
mucus. Since N2 fixation is rather promoted by N deprivation 
(Knapp, 2012), a low POC:PN ratio is not in favor of N2 fixation. 
Put together, our results suggest that the lack of N2 fixation in 
seawater surrounding soft corals is potentially due to the 
antimicrobial properties of soft coral mucus and the N repletion 
of the released particles. On the contrary to soft corals, seawater 
N2 fixation was recorded in presence of scleractinian corals. 
Measured rates (0.01–0.13  ng  N  mg−1 DW h−1 or 
0.03  nmol  N  cm−2  h−1 or 2 to 15  nmol  N  L−1 d−1) are however 
significantly lower than those recorded for other benthic substrates 
such as sediment, sands, or microbial mats (reviewed in Benavides 
et  al., 2017). Nevertheless, they are in the same range as those 
previously measured with seawater diazotrophs of the Great Barrier 
Reef (from 5 to 70  nmol  N  L−1 d−1, Messer et  al., 2017).

Divergent Capacity of Corals to Assimilate 
Diazotrophically Derived Nitrogen
Our results demonstrate that all investigated scleractinian species 
assimilated DDN, since 15N enrichment was observed in both 
host tissue and zooxanthellae. In contrast, no 15N enrichment 
of soft coral tissue was detected either in corals collected from 
shallow or mesophotic reefs. The fact that even mesophotic 
soft coral colonies did not assimilate DDN stands in contrast 
to the scleractinian species S. pistillata, which shows higher 
assimilation rates in deep compared to shallow waters (Bednarz 
et  al., 2017). Here, DDN assimilation rates of scleractinian 
corals (ca. 0.3– ng cm−2  h−1 or 0.6–1.7  nmol  cm−2 d−1) are in 
agreement with those measured for the species S. pistillata 
sampled in shallow waters of the Red Sea or the Great Barrier 
Reef (Bednarz et  al., 2017; Lesser et  al., 2018). However, they 
were 6–10 times lower than those measured for corals depending 
more on heterotrophy, such as bleached corals or those living 
in mesophotic and temperate environments (Bednarz et  al., 
2017, 2019). These observations suggest that the contribution 
of DDN to the N requirements of corals increases during 
nutrient deprivation, or when the uptake of other inorganic 
N forms by dinoflagellate symbionts is reduced (Bednarz et al., 
2019). The inverse trend observed in this study between seawater 
N2 fixation and DDN assimilation rates in corals suggests that 
a substantial part of the DDN assimilated by corals is obtained 
from heterotrophic feeding on fixed N compounds and/or from 
diazotrophic cells growing in the mucus layer (Bednarz et  al., 
2017). Therefore, the lack of N2 fixation in the surrounding 
seawater of soft corals (highlighting the absence of active 
diazotrophs in their mucus) may also explain why we  did not 
detect any DDN assimilation by shallow and mesophotic soft 
corals. Furthermore, coral polyps with a mounding morphology 
show generally higher heterotrophic feedings rates as compared 
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to those with a branching morphology (Palardy et  al., 2005). 
This corresponds to the higher DDN assimilation rates observed 
for Cynarina sp. and Goniastrea sp. (mounding morphology) 
as compared to A. cervicornis and P. damicornis (branching 
morphology). Corals can receive DDN not only from mucus-
associated but also from pelagic diazotrophs (Camps et  al., 
2016). In our experiment on C. watsonii cells, both corals 
assimilated DDN (i.e., in the form of N2-fixing C. watsonii 
cells or DDN compounds released by C. watsonii cells) from 
the surrounding seawater with rates similar to those observed 
for our corals from the Red Sea. Moreover, Sarcophyton sp. 
assimilated more DDN in the high versus the low C. watsonii 
concentration suggesting that the assimilation capacity of this 
species was not saturated even under simulated bloom conditions. 
This indeed indicates that soft corals also have the capacity 
to assimilate diazotrophs/DDN from the seawater. Thus, the 
lack in DDN assimilation by Red Sea soft corals sampled in 
the field, including the Symbiodiniaceae-free and heterotrophic 
genus Dendronephthya sp., is likely not due to a lower 
heterotrophy as compared to scleractinian corals, but rather 
linked to the absence of active diazotrophs in the soft coral 
mucus. For example, strains of putative diazotrophs (Vibrio 
campbellii and Vibrio parahaemolyticus; Chimetto et  al., 2008) 
have been isolated from Dendronephthya sp. (Harder et  al., 
2003). We  therefore hypothesize that even if diazotrophs can 
be  present, the mucus of soft corals does not represent a 
favorable habitat for diazotrophic activity. Moreover, 
non-negligible DDN assimilation rates have been detected in 
the skeleton of scleractinian corals due to the activity of 
endolithic diazotrophs (Sangsawang et al., 2017; Bednarz et al., 
2019). Such contribution to the total N budget of the holobiont 
cannot be  observed in soft corals as they lack a calcium 
carbonate skeleton. In situ experiments remain to be investigated 
to assess whether soft corals benefit from any other external 
source of N on reefs that could enhance their opportunistic 
life history features.

CONCLUSION

It is widely accepted that N is one of the most limiting 
nutrients for reef primary productivity (Eyre et  al., 2008), 
and that benthic N2 fixation plays an important role in 
supplying bioavailable N within benthic and pelagic reef 
habitats (Cardini et al., 2016; Messer et al., 2017). The surface 
structure of benthic organisms and substrates provides an 

important habitat for the colonization by diazotrophs, but 
the abundance, composition, and activity of the diazotrophic 
community may depend on the type of organism/substrate. 
Here, we  suggest that soft coral mucus represents likely a 
less favorable habitat for microbes as compared to scleractinian 
coral mucus due to its relatively low C but high N content 
along with antimicrobial properties. The resulting different 
capacity of scleractinian and soft corals to promote active 
diazotroph populations and N2 fixation in reef waters may 
have several implications for N availability and reef 
biogeochemistry in the future. Particularly, coral reefs that 
have experienced phase shifts from hard to soft coral dominance 
(Stobart et  al., 2005; Norström et  al., 2009; Pratchett, 2010; 
Inoue et  al., 2013) may suffer from a significant decrease in 
N2 fixation and subsequent N limitation. This may ultimately 
affect primary production, carbon sequestration, and the 
functioning of coral reef ecosystems and could be an interesting 
topic for future studies.
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