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Introduction

This article focuses on the development of systems in critical areas such as railway or aeronautics. The implementation of such systems, in view of their complexity, requires several validation steps, more or less formal 4 , with regard to the current regulations. Our work is part of the FORMOSE project [START_REF]Formose ANR project[END_REF] which integrates industrial partners involved in the implementation of critical systems for which the regulation imposes formal validations. The contribution presented in this paper represents a straight continuation of our research work on the formal specification of systems whose requirements are captured with SysML/KAOS goal models. The Event-B method [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] has been choosen for the formal validation steps because it involves simple mathematical concepts and has a powerful refinement logic facilitating the separation of concerns. Furthermore, it is supported by many industrial tools. In [START_REF] Matoussi | A goal-based approach to guide the design of an abstract Event-B specification[END_REF], we have defined translation rules to produce an Event-B specification from SysML/KAOS goal models. Nevertheless, the generated Event-B specification does not contain the system state. This is why in [START_REF] Mammar | On the use of domain and system knowledge modeling in goal-based Event-B specifications[END_REF], we have presented the use of ontologies and UML class and object diagrams for domain properties representation and have also introduced a first attempt to complete the Event-B model with specifications obtained from the translation of these domain representations. Unfortunately, the proposed approach raised several concerns such as the use of several modeling formalisms for the representation of domain knowledge or the disregard of variable entities. In addition, the proposed translation rules did not take into account several elements of the domain model such as data sets or predicates. We have therefore proposed in [20] a formalism for domain knowledge representation through ontologies. This paper is specifically concerned with establishing correspondence links between this new formalism called SysML/KAOS Domain Modeling and Event-B. The proposed approach allows a high-level modeling of domain properties by encapsulating the difficulties inherent in the manipulation of formal specifications. This facilitates system constraining and enables the expression of more precise and complete properties. The approach also allows further reuse and separation of concerns.

The remainder of this paper is structured as follows: Section 2 briefly describes our abstraction of the Event-B specification language, the SysML/KAOS requirements engineering method, the formalization in Event-B of SysML/KAOS goal models and the SysML/KAOS domain modeling formalism. Follows a presentation, in Section 3, of the relevant state of the art on the formalization of domain knowledge representations. In Section 4, we describe and illustrate our matching rules between domain models and Event-B specifications. Finally, Section 5 reports our conclusions and discusses our future work.

2 Formalism Overviews

Event-B

Event-B is an industrial-strength formal method defined by J. R. Abrial in 2010 for system modeling [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. It is used to prove the preservation of safety invariants about a system. Event-B is mostly used for the modeling of closed systems: the modeling of the system is accompanied by that of its environment and of all interactions likely to occur between them. Figure 1 is an excerpt from our abstraction of the Event-B specification language restricted and adjusted to fulfill the expression of our formalization rules. We have represented in orange some categories that do not appear explicitly in Event-B specifications, but which will be useful to better describe our formalization rules. An Event-B model includes a static part called Context and a dynamic part called Machine. The context contains the definitions of abstract and enumerated sets, constants and properties. An enumerated set is constructed by specifying its items which are instances of SetItem. The system state is represented in the machine using variables constrained through invariants and initialised through initialisation actions. Moreover, a machine can see contexts. Properties and invariants can be categorised as instances of Logic-Formula. An instance of LogicFormula consists of a certain number of operators applied, according to their order of appearance, on the operands that may be variables, constants, sets or set items, following their associated order of appearance. An instance of InitialisationAction references the operator and the operands of the assignment. We describe here some operators and their actions :

• Inclusion_OP is used to assert that the first operand is a subset of the second operand :

(Inclusion OP, [op 1 , op 2 ]) ⇔ op 1 ⊂ op 2 . • Belonging_OP is used to assert that the first operand is an element of the second operand :

(Belonging OP, [op 1 , op 2 ]) ⇔ op 1 ∈ op 2 . • RelationSet_OP is used to construct the set of relations between two operands :

(RelationSet OP, [op 1 , op 2 , op 3 ]) ⇔ op 1 = op 2 ↔ op 3 . • FunctionSet_OP is used to construct the set of functional relations between two operands :

(F unctionSet OP, [op 1 , op 2 , op 3 ]) ⇔ op 1 = op 2 -→ op 3 . • Maplet_OP is used to construct a maplet having the operands as antecedent and image :

(M aplet OP, [op 1 , op 2 , op 3 ]) ⇔ op 1 = op 2 → op 3 . • RelationComposition_OP is used to assert that the first operand is the result of the composition of the second operand by the third operand : (RelationComposition OP, [op 1 , op 2 , op 3 ]) ⇔ op 1 = op 2 • op 3 . • Equal2SetOf_OP is used to define the elements constituting a set :

(Equal2SetOf OP, [op 1 , op 2 , ..., op n ]) ⇔ op 1 = {op 2 , ..., op n }. • Inversion_OP is used to assert that the first operand is the inverse of the second operand :

(Inversion OP, [op 1 , op 2 ]) ⇔ op 1 = op -1 2 .

• Equality_OP is used to assert that the first operand is equal to the second operand :

(Equality OP, [op 1 , op 2 ]) ⇔ op 1 = op 2 . • BecomeEqual2SetOf_OP is used to initialize a variable as a set of elements :

(BecomeEqual2SetOf OP, [va, op 2 , ..., op n ]) ⇔ va := {op 2 , ..., op n }. • BecomeEqual2EmptySet_OP is used to initialize a variable as an empty set :

(BecomeEqual2EmptySet OP, [va]) ⇔ va := ∅.

The system specification can be constructed using stepwise refinement. A machine can refine another one, adding new events, reducing nondeterminacy of existing events, introducing new state variables, or replacing abstract variables by more concrete variables. Furthermore, a context can extend another one in order to access the elements defined in it and to reuse them for new constructions.

Fig. 2. B System Components

In the rest of this paper, we will illustrate our formal models using B System, an Event-B variant proposed by ClearSy, an industrial partner in the FORMOSE project, in its integrated development environment Atelier B [START_REF] Clearsy | B System[END_REF]. A B System specification considers the notion of Component to specify machines and contexts, knowing that a component can be a system or a refinement (figure 2). Although it is advisable to always isolate the static and dynamic parts of the B System formal model, it is possible to define the two parts within the same component, for simplification purposes. In the following sections, our B System models will be presented using this facility.

SysML/KAOS Requirements Engineering Method

Requirements engineering focuses on defining and handling requirements. These and all related activities, in order to be carried out, require the choice of an adequate means for requirements representation. The KAOS method [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF][START_REF] Mammar | On the use of domain and system knowledge modeling in goal-based Event-B specifications[END_REF], proposes to represent the requirements in the form of goals, which can be functional or non-functional, through five sub-models of which the two main ones are : the object model which uses the UML class diagram for the representation of domain vocabulary and the goal model for the determination of requirements to be satisfied by the system and of expectations with regard to the environment through a goals hierarchy. KAOS proposes a structured approach to obtaining the requirements based on expectations formulated by stakeholders. Unfortunately, it offers no mechanism to maintain a strong traceability between those requirements and deliverables associated with system design and implementation, making it difficult to validate them against the needs formulated.

The SysML UML profile has been specially designed by the Object Management Group (OMG) for the analysis and specification of complex systems and allows for the capturing of requirements and the maintaining of traceability links between those requirements and design diagrams resulting from the system design phase. Unfortunately, OMG has not defined a formal semantics and an unambiguous syntax for requirements specification. SysML/KAOS [START_REF] Gnaho | Une extension SysML pour l'ingénierie des exigences dirigée par les buts[END_REF] therefore proposes to extend the SysML metamodel with a set of concepts allowing to represent requirements in SysML models as KAOS goals.

Figure 3 is an excerpt from the landing gear system [START_REF] Boniol | The landing gear system case study[END_REF] goal diagram focused on the purpose of landing gear expansion. We assume that each aircraft has one landing gear system which is equipped with three landing sets which can be each extended or retracted. We also assume that in the initial state, there is one landing gear named LG1 which is extended and is associated to one handle named HD1 which is down and to landing sets LS1, LS2 and LS3 which are all extended. To achieve the root goal, which is the extension of the landing gear (makeLGExtended), the handle must be put down (putHandleDown) and landing gear sets must be extended (makeLSExtended).

From SysML/KAOS Goal Model to Event-B

The matching between SysML/KAOS modeling and Event-B specifications is the focus of the work done by [START_REF] Matoussi | A goal-based approach to guide the design of an abstract Event-B specification[END_REF]. Each layer of abstraction of the goal diagram gives rise to an Event-B machine, each goal of the layer giving rise to an event. The refinement links are materialized within the Event-B specification through a set of proof obligations and refinement links between machines and between events. Figure 4 As we can see, the state of the system and the body of events must be manually completed. The state of a system is composed of variables, constrained by an invariant, and constants, constrained by properties. The objective of our study is to automatically derive this state in the Event-B model starting from SysML/KAOS domain models.

SysML/KAOS Domain Modeling

We present, through Figures 5 and6 the metamodel associated with the SysML/KAOS domain modeling approach [20] which is an ontology modeling formalism for the modeling of domain knowledge in the framework of the SysML/KAOS requirements engineering method.

Figure 7 represents the SysML/KAOS domain model associated to the root level of the landing gear system goal model of Figure 3, and Figure 8 represents the first refinement level. They are illustrated using the syntax proposed by OWLGred [22] and, for readability purposes, we have decided to remove optional characteristics representation. It should be noted that the individualOf association is illustrated by OWLGred within the figures as a stereotyped link with the tag «instanceOf». The domain model associated to the goal diagram root level is named lg system ref 0 and the one associated to the first refinement level is named lg system ref 1 .

Each domain model is associated with a level of refinement of the SysML/KAOS goal diagram and is likely to have as its parent, through the parent association, another domain model. This allows the child domain model to access and extend some elements defined in the parent domain model. For example, in lg system ref 1 (Fig. 8), elements defined in lg system ref 0 (Fig. 7) are imported and reused.

A concept (instance of metaclass Concept of Figure 5) represents a group of individuals sharing common characteristics. It can be declared variable (isVariable=true) when the set of its individuals is likely to be updated through addition or deletion of individuals. Otherwise, it is considered to be constant (isVariable=false). A concept may be associated with another, known as its parent concept, through the parentConcept association, from which it inherits properties. For example, in lg system ref 0 (Fig. 7), a landing gear is modeled as an instance of Concept named "LandingGear". Since it is impossible to dynamically add or remove a landing gear, the attribute isVariable of LandingGear is set to false. LG1 is modeled as an instance of Individual (Fig. 5) named "LG1" individual of LandingGear .

Instances of Relation are used to capture links between concepts, and instances of Attribute capture links between concepts and data sets, knowing that data sets (instances of DataSet) are used to group data values (instances of DataValue) having the same type. The most basic way to build an instance of DataSet is by listing its elements. This can be done through the DataSet specialization called EnumeratedDataSet. A relation or an attribute can be declared variable if the list of maplets related to it is likely to change over time. Otherwise, it is considered to be constant. Each instance of DomainCardinality (respectively RangeCardinality) makes it possible to define, for an instance of Relation re, the minimum and maximum limits of the number of instances of Individual, having the domain (respectively range) of re as type, that can be put in relation with one instance of Individual, having the range (respectively domain) of re as type. The following constraint is associated with these limits : (minCardinality ≥ 0) ∧ (maxCardinality = * ∨ maxCardinality ≥ minCardinality), knowing that if maxCardinality = * , then the maximum limit is infinity. Instances of RelationMaplet are used to define associations between instances of Individual through instances of Relation. In an identical manner, instances of AttributeMaplet are used to define associations between instances of Individual and instances of DataValue through instances of Attribute. Optional characteristics can be specified for a relation : transitive (isTransitive, default false), symmetrical (isSymmetric, default false), asymmetrical (isASymmetric, default false), reflexive (isReflexive, default false) or irreflexive (isIrreflexive, default false). Moreover, an attribute can be functional (isFunctional, default true). For example, in lg system ref 0 (Fig. 7), the possible states of a landing gear is modeled as an instance of Attribute named "landingGearState", having LandingGear as domain and as range an instance of EnumeratedDataSet containing two instances of DataValue of type STRING: "lg extended" for the extended state and "lg retracted" for the retracted state. Since it is possible to dynamically change a landing gear state, its isVariable attribute is set to true.

The notion of Predicate is used to represent constraints between different elements of the domain model in the form of Horn clauses: each predicate has a body which represents its antecedent and a head which represents its consequent, body and head designating conjunctions of atoms (Fig. 6). A typing atom is used to define the type of a term : ConceptAtom for individuals and DataSetAtom for data values. An association atom is used to define associations between terms : RelationshipAtom for the connection of two terms through a relation, AttributeAtom for the connection of two terms through an attribute and DataFunctionAtom for the connection of terms through a data function. A comparison atom is used to define comparison relationships between terms : EqualityAtom for equality and InequalityAtom for difference. Built in atoms are some specialized atoms, characterized by identifiers captured through the AtomType enumeration, and used for the GluingInvariant, specialization of Predicate, is used to represent links between variables and constants defined within a domain model and those appearing in more abstract domain models, transitively linked to it through the parent association. Gluing invariants are extremely important because they capture relationships between abstract and concrete data during refinement which are used to discharge proof obligations. The following gluing invariant is associated with our case study: if there is at least one landing set having the retracted state, then the state of LG1 is retracted (inv1) landingGearState(LG1, "lg retracted") ← LandingSet(? ls) ∧ landingSetState(? ls, "ls retracted") In [START_REF] Bjørner | Compositionality: Ontology and mereology of domains[END_REF], domain models consist of entities and operations which can be atomic or composite. Atomic entities correspond to states of the formal model. Composite entities correspond to sets, groups, lists or associations of entities. Furthermore, operations are translated into state-changing actions, composite operations corresponding to composition of actions. In [23], an approach is proposed for the automatic extraction of domain knowledge, as OWL ontologies, from Z/Object-Z (OZ) models [START_REF] Doberkat | The Object-Z specification language[END_REF] : OZ types and classes are transformed into OWL classes. Relations and functions are transformed into OWL properties, with the cardinality restricted to 1 for total functions and the maxCardinality restricted to 1 for partial functions. OZ constants are translated into OWL individuals. Rules are also proposed for subsets and state schemas. Unfortunately, the approach is only interested in static domain knowledge and it does not propose any rule regarding predicates. Furthermore, refinement links between models are not handled. A similar approach is proposed in [START_REF] Dong | Z approach to semantic web[END_REF], for the extraction of DAML ontologies [START_REF] Van Harmelen | Reference description of the DAML+ OIL ontology markup language[END_REF] from Z models.

An approach for generating an Event-B specification from an OWL ontology [START_REF] Sengupta | Web ontology language (OWL)[END_REF] is provided in [START_REF] Alkhammash | Derivation of Event-B Models from OWL Ontologies[END_REF]. The proposed mapping requires the generation of an ACE (Attempto Controlled English) version of the OWL ontology which serves as the basis for the development of the Event-B specification. This is done through a step called OWL verbalization. The verbalization method, proposed by [START_REF] Alkhammash | Derivation of Event-B Models from OWL Ontologies[END_REF], transforms OWL instances into capitalized proper names, classes into common names, and properties into active and passive verbs. Once the verbalization process has been completed, [START_REF] Alkhammash | Derivation of Event-B Models from OWL Ontologies[END_REF] proposes a set of rules for obtaining the Event-B specification: classes are translated as Event-B sets, properties are translated as relations, etc. In addition, [START_REF] Alkhammash | Derivation of Event-B Models from OWL Ontologies[END_REF] proposes rules for the Event-B representation of property characteristics and associations between classes or properties. Unfortunately, the proposal makes no distinction between constant and variable : It does not specify when it is necessary to use constants or variables, when it is necessary to express an ontology rule as an invariant or as an axiom. Moreover, the proposal imposes a two-step sequence for the transition from an OWL ontology to an Event-B model, the first step requiring the ontology to be constructed in English. Finally, the approach does not propose anything regarding the referencing from an ontology into another one.

In [START_REF] Poernomo | A mapping from normative requirements to Event-B to facilitate verified data-centric business process management[END_REF], domain is modeled by defining agents, business entities and relations between them. The paper proposes rules for mapping domain models so designed in Event-B specifications : agents are transformed into machines, business entities are transformed into sets, and relations are transformed into Event-B variable relations. These rules are certainly sufficient for domain models of interest for [START_REF] Poernomo | A mapping from normative requirements to Event-B to facilitate verified data-centric business process management[END_REF], but they are very far from covering the extent of SysML/KAOS domain modeling formalism.

In [START_REF] Alkhammash | Building traceable Event-B models from requirements[END_REF], domain properties are described through data-oriented requirements for concepts, attributes and associations and through constraint-oriented requirements for axioms. Possible states of a variable element are represented using UML state machines. Concepts, attributes and associations arising from data-oriented requirements are modeled as UML class diagrams and translated to Event-B using UML-B [19] : nouns and attributes are represented as UML classes and relationships between nouns are represented as UML associations. UML-B is also used for the translation of state machines to Event-B variables, invariants and events. Unfortunately, constraints arising from constraint-oriented requirements are modeled using a semiformal language called Structured English, following a method similar to the Verbalization approach described in [START_REF] Alkhammash | Derivation of Event-B Models from OWL Ontologies[END_REF] and manually translated to Event-B. Moreover, it is impossible to rely solely on the representation of an element of the class diagram to know if its state is likely to change dynamically. The consequence being that in an Event-B model, the same element can appear as a set, a constant or a variable and its properties are likely to appear both in the PROPERTIES and in the INVARIANT clauses. Some rules for passing from an OWL ontology representing a domain model to Event-B specifications are proposed through a case study in [START_REF] Mammar | On the use of domain and system knowledge modeling in goal-based Event-B specifications[END_REF]. This case study reveals that each ontology class, having no instance, is modeled as an Event-B abstract set. The others are modeled as an enumerated set. Finally, each object property between two classes is modeled as a constant defines as a relation. These rules allow the generation of a first version of an Event-B specification from a domain model ontology. Unfortunately, the case study does not address several concerns. For example, object properties are always modeled as constants, despite the fact that they may be variable. Moreover, the case study does not provide any rule for some domain model elements such as datasets or predicates. In the remainder of this paper, we propose to enrich this proposal for a complete mapping of SysML/KAOS domain models with Event-B specifications. In the following, we describe a set of rules that allow to obtain an Event-B specification from domain models associated with refinement levels of a SysML/KAOS goal model. They are illustrated using the B syntax :

SysML/KAOS Domain Model Formalization

-Regarding the representation of metamodels, we have followed the rules proposed by [19] -Each rule is represented as an event by following the correspondence links. LG1 ∈ LandingGear (0.2) ∧ LandingGear={LG1} (0.3) 

∧ T landingGearState = LandingGear -→ DataSet 1 VARIABLES landingGearState INVARIANT (0.4) landingGearState ∈ T landingGearState INITIALISATION (0.5) landingGearState := {LG1 → lg extended } EVENTS ••• END Fig. 13.
HD1 ∈ Handle (1.2) ∧ Handle={HD1} (1.3) ∧ LS1 ∈ LandingSet (1.4) ∧ LS2 ∈ LandingSet (1.5) ∧ LS3 ∈ LandingSet (1.6) ∧ LandingSet={LS1, LS2, LS3} (1.7) ∧ T LgOfHd = Handle ↔ LandingGear (1.8) ∧ LgOfHd ∈ T LgOfHd (1.9) ∧ ∀ xx.(xx ∈ Handle ⇒ card(LgOfHd[{xx}])=1) (1.10) ∧ ∀xx.(xx ∈ LandingGear ⇒ card(LgOfHd -1 [{xx}])=1) (1.11) ∧ LgOfHd = {HD1 → LG1 } (1.12) ∧ T LgOfLs = LandingSet ↔ LandingGear (1.13) ∧ LgOfLs ∈ T LgOfLs (1.14) ∧ ∀xx.(xx ∈ LandingSet ⇒ card(LgOfLs[{xx}])=1) (1.15) ∧ ∀xx.(xx ∈ LandingGear ⇒ card(LgOfLs -1 [{xx}])=3) (1.16) ∧ LgOfLs = {LS1 → LG1, LS2 → LG1, LS3 → LG1 } (1.17) ∧ T landingSetState = LandingSet -→ DataSet 2 (1.18) ∧ T handleState = Handle -→ DataSet 3 VARIABLES landingSetState, handleState INVARIANT (1.19) landingSetState ∈ T landingSetState (1.20) ∧ handleState ∈ T handleState (1.
INTEGER FLOAT BOOL STRING isTransitive isSymmetric AXIOMS axiom1: f inite(DataV alue Set) axiom2: { N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G} ⊆ DataSet Set axiom3: partition({ N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G}, { N AT U RAL}, { IN T EGER}, { F LOAT }, { BOOL}, { ST RIN G}) axiom4: partition(RelationCharacteristics Set, {isT ransitive}, {isSymmetric}) END CONTEXT EventB Metamodel Context SETS Component Set Variable Set Constant Set Set Set SetItem Set LogicFormula Set
the subset of logical formulas that can directly be expressed within the specification, without the need for an explicit constructor, will not be contained in this set. This is for example the case of equality between elements. 

Operator InitialisationAction Set

CONSTANTS

INVARIANTS inv1 1: V ariable ⊆ V ariable Set inv1 2: Constant ⊆ Constant Set inv1 3: Set ⊆ Set Set inv1 4: partition(Set, AbstractSet, EnumeratedSet) inv1 5: SetItem ⊆ SetItem Set inv1 6: V ariable def inedIn Component ∈ V ariable → Component inv1 7: Constant def inedIn Component ∈ Constant → Component inv1 8: Set def inedIn Component ∈ Set → Component inv1 9: SetItem itemOf EnumeratedSet ∈ SetItem → → EnumeratedSet Domain Model

end END

Any domain model that is not associated with another domain model (Fig. 9), through the parent association, gives rise to a system component. Example : in Figure 13, the root level domain model is translated into a system component named lg system ref 0 . end END Any concept that is not associated with another one known as its parent concept (Fig. 10), through the parentConcept association, gives rise to an Event-B abstract set. Example : in Figure 13, the abstract set LandingGear appears because of Concept instance LandingGear . Any concept associated with another one known as its parent concept (Fig. 9), through the parentConcept association, gives rise to a constant typed as a subset of the Event-B element corresponding to the parent concept.

Each individual (or data value) gives rise to a constant having its name (or with his lexicalForm typed as value) and each instance of CustomDataSet, not defined through an enumeration of its elements, unlike DataSet 1 of Figure 13, gives rise to a constant having its name. Example : in Figure 14, the constant named HD1 is the correspondent of the individual HD1 . Similarly to relations, each attribute gives rise to a constant representing the type of its associated Event-B element and, in the case when isVariable is set to false, to another constant having its name. However, when the isFunctional attribute is set to true, the constant representing the type is defined as the set of functions between the Event-B element corresponding to the attribute domain and the one corresponding to the attribute range. The Event-B element corresponding to the attribute is then typed as a function. Example : in Figure 13, landingGearState is typed as a function (assertions 0.3 and 0.4 ) since its type is the set of functions between LandingGear and DataSet 1 (DataSet 1 ={lg extended, lg retracted}). An instance of Relation, of Concept or of Attribute, having its isVariable property set to true gives rise to variable (Fig. 12). For a concept, the variable represents the set of Event-B elements having this concept as type. For a relation or an attribute, it represents the set of links between individuals (in case of relation) or between individuals and data values (in case of attribute) defined through it.Example : in Figure 14, variables named landingSetState and handleState appear because of Attribute instances landingSetState and handleState for which the isVariable property is set to true (Fig. 8).

Event-B Variables

Invariants and Properties

In this section, we are interested in the correspondences between the domain model and the Event-B model that are likely to give rise to invariants, properties or initialization clauses. Here, we are interested in handling modifications on Event-B specifications within SysML/KAOS domain models. We choose to support only the most repetitive operations that can be performed within the formal specification, the domain model remaining the one to be updated in case of any major changes. Currently supported operations include : addition of sets and of items in existing sets, addition of subsets of existing sets, addition of individuals and of data values, addition of relations and of attributes and finally addition of relation and of attribute maplets. 15) and generates the corresponding Event-B specifications (Fig. 16). It is build through Jetbrains Meta Programming System [12], a tool to design domain specific languages using language-oriented programming.

Addition of Non-Existing Sets

Conclusion and Future Works

This paper was focused on a presentation of mapping rules between SysML/KAOS domain models and Event-B specifications illustrated through a case study dealing with a landing gear system. The specifications thus obtained can also be seen as a formal semantics for SysML/KAOS domain models. They complement the formalization of the SysML/KAOS goal model by providing a description of the state of the system.

Work in progress is aimed at integrating our approach, implemented through the SysML/KAOS Domain Model Parser tool, within the open-source platform Openflexo [16].
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 14 Figures 13 and 14 represents respectively the B System specifications associated with the root level of the landing gear system domain model illustrated through Figure7and that associated with the first refinement level domain model illustrated through Figure8.
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 11 Fig. 11. Correspondence to Constants
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 12 Fig. 12. Correspondence to Variables SYSTEM lg system ref 0 SETS LandingGear; DataSet 1= {lg extended, lg retracted} CONSTANTS T landingGearState, LG1 PROPERTIES (0.1)LG1 ∈ LandingGear (0.2) ∧ LandingGear={LG1} (0.3) ∧ T landingGearState = LandingGear -→ DataSet 1 VARIABLES landingGearState INVARIANT (0.4) landingGearState ∈ T landingGearState INITIALISATION (0.5) landingGearState := {LG1 → lg extended } EVENTS ••• END

Fig. 14 .

 14 Fig. 14. Formalization of the First Refinement Level of the Landing Gear System Domain Model

inv1 10 : 17 : 18 :

 101718 Concept ⊆ Concept Set inv1 11: Individual ⊆ Individual Set inv1 12: DataV alue ⊆ DataV alue Set inv1 13: DataSet ⊆ DataSet Set inv1 14: partition(DataSet, Def aultDataSet, CustomDataSet) inv1 15: EnumeratedDataSet ⊆ CustomDataSet inv1 16: Concept isV ariable ∈ Concept → BOOL inv1 Concept def inedIn DomainM odel ∈ Concept → DomainM odel inv1 DataSet def inedIn DomainM odel ∈ DataSet → DomainM odel inv1 19: Concept parentConcept Concept ∈ Concept → Concept inv1 20: Individual individualOf Concept ∈ Individual → Concept inv1 21: DataV alue valueOf DataSet ∈ DataV alue → DataSet inv1 22: DataV alue elements EnumeratedDataSet ∈ DataV alue → → EnumeratedDataSet inv1 23: Concept corresp AbstractSet ∈ Concept AbstractSet inv1 24: EnumeratedDataSet corresp EnumeratedSet ∈ EnumeratedDataSet EnumeratedSet inv1 25: DataV alue corresp SetItem ∈ DataV alue SetItem inv1 26: ∀xx•(xx ∈ EnumeratedDataSet ∧ xx / ∈ dom(EnumeratedDataSet corresp EnumeratedSet) ⇒ DataV alue elements EnumeratedDataSet -1 [{xx}] ∩ dom(DataV alue corresp SetItem) = ∅) inv1 27: CustomDataSet corresp AbstractSet ∈ CustomDataSet AbstractSet inv1 28: { N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G} ∩ CustomDataSet = ∅ inv1 29: Def aultDataSet corresp AbstractSet ∈ Def aultDataSet AbstractSet inv1 30: {B N AT U RAL, B IN T EGER, B F LOAT, B BOOL, B ST RIN G} ∩ EnumeratedSet = ∅ inv1 31: Concept corresp Constant ∈ Concept Constant inv1 33: LogicF ormula ⊆ LogicF ormula Set inv1 34: P roperty ⊆ LogicF ormula inv1 35: Invariant ⊆ LogicF ormula inv1 36: LogicF ormula def inedIn Component ∈ LogicF ormula → Component inv1 37: Invariant involves V ariables ∈ Invariant → (N1 → V ariable)logic formula operands can be variables, constants, sets or set items, indexed by their appearance order number. The first operand is indexed by 1, no matter it's type. inv1 38: ran(union(ran(Invariant involves V ariables))) = V ariable inv1 39: Constant isInvolvedIn LogicF ormulas ∈ Constant → P1 (N1 × LogicF ormula)When appearance order does not matter, we may index all constants using the same number. inv1 40: ∀cons•(cons ∈ Constant ⇒ ran(Constant isInvolvedIn LogicF ormulas(cons)) ∩ P roperty = ∅) inv1 41: LogicF ormula involves Sets ∈ LogicF ormula → (N1 → Set) inv1 42: LogicF ormula uses Operators ∈ LogicF ormula → (N1 → Operator) inv1 44: Individual corresp Constant ∈ Individual Constant inv1 45: DataV alue corresp Constant ∈ DataV alue Constant inv1 46: Concept corresp V ariable ∈ Concept V ariable inv1 47: InitialisationAction ⊆ InitialisationAction Set inv1 49: InitialisationAction uses Operators ∈ InitialisationAction → (N1 → Operator) inv1 50: V ariable init InitialisationAction ∈ V ariable InitialisationAction for initialisation actions, the assigned operand is the involved variable. inv1 52: InitialisationAction involves Constants ∈ InitialisationAction → (N1 → Constant) ************relations/attributes********************************************************************** inv1 53: Relation ⊆ Relation Set inv1 56: RelationM aplet ⊆ Relation M aplet Set inv1 57: AttributeM aplet ⊆ Attribute M aplet Set inv1 58: Attribute ⊆ Attribute Set inv1 59: Relation isV ariable ∈ Relation → BOOL inv1 60: Relation isT ransitive ∈ Relation → BOOL inv1 61: Relation isSymmetric ∈ Relation → BOOL inv1 62: relation isASymmetric ∈ Relation → BOOL inv1 63: Relation isRef lexive ∈ Relation → BOOL inv1 64: Relation isIrref lexive ∈ Relation → BOOL inv1 65: Relation DomainCardinality minCardinality ∈ Relation → N inv1 66: Relation DomainCardinality maxCardinality ∈ Relation → (N ∪ {-1}) inv1 67: Relation RangeCardinality minCardinality ∈ Relation → N inv1 68: Relation RangeCardinality maxCardinality ∈ Relation → (N ∪ {-1}) inv1 69: Attribute isV ariable ∈ Attribute → BOOL inv1 70: Attribute isF unctional ∈ Attribute → BOOL inv1 71: Relation def inedIn DomainM odel ∈ Relation → DomainM odel inv1 72: Attribute def inedIn DomainM odel ∈ Attribute → DomainM odel inv1 73: Relation domain Concept ∈ Relation → Concept inv1 74: Relation range Concept ∈ Relation → Concept inv1 77: RelationM aplet mapletOf Relation ∈ RelationM aplet → Relation inv1 78: RelationM aplet antecedent Individual ∈ RelationM aplet → Individual inv1 79: RelationM aplet image Individual ∈ RelationM aplet → Individual inv1 80: Attribute domain Concept ∈ Attribute → Concept inv1 81: Attribute range DataSet ∈ Attribute → DataSet inv1 82: AttributeM aplet mapletOf Attribute ∈ AttributeM aplet → Attribute inv1 83: AttributeM aplet antecedent Individual ∈ AttributeM aplet → Individual inv1 84: AttributeM aplet image DataV alue ∈ AttributeM aplet → DataV alue inv1 85: ∀rm•(rm ∈ RelationM aplet⇒Individual individualOf Concept(RelationM aplet antecedent Individual(rm)) = Relation domain Concept(RelationM aplet mapletOf Relation(rm))) inv1 86: ∀rm•(rm ∈ RelationM aplet⇒Individual individualOf Concept(RelationM aplet image Individual(rm)) = Relation range Concept(RelationM aplet mapletOf Relation(rm))) inv1 87: ∀am•(am ∈ AttributeM aplet⇒Individual individualOf Concept(AttributeM aplet antecedent Individual(am)) = Attribute domain Concept(AttributeM aplet mapletOf Attribute(am))) inv1 88: ∀am•(am ∈ AttributeM aplet⇒DataV alue valueOf DataSet(AttributeM aplet image DataV alue(am)) = Attribute range DataSet(AttributeM aplet mapletOf Attribute(am))) inv1 89: Relation T ype ∈ Relation Constant inv1 90: Relation corresp Constant ∈ Relation Constant inv1 91: Relation corresp V ariable ∈ Relation V ariable inv1 92: ∀re•(re ∈ dom(Relation T ype)⇔(re ∈ dom(Relation corresp Constant)∨(re ∈ dom(Relation corresp V ariable)))) inv1 93: Attribute T ype ∈ Attribute Constant inv1 94: Attribute corresp Constant ∈ Attribute Constant inv1 95: Attribute corresp V ariable ∈ Attribute V ariable inv1 96: ∀re•(re ∈ dom(Attribute T ype)⇔(re ∈ dom(Attribute corresp Constant)∨(re ∈ dom(Attribute corresp V ariable)))) inv1 97: V ariable typing Invariant ∈ V ariable Invariant inv1 98: Constant typing P roperty ∈ Constant P roperty inv1 99: RelationCharacteristic corresp LogicF ormula ∈ (Relation → RelationCharacteristics Set) LogicF ormula inv1 100: RelationM aplet corresp Constant ∈ RelationM aplet Constant inv1 101: DataSet corresp Set ∈ DataSet Set inv1 102: AttributeM aplet corresp Constant ∈ AttributeM aplet Constant inv1 103: LogicF ormula involves SetItems ∈ LogicF ormula → (N1 → SetItem) inv1 104: EnumeratedDataSet corresp EnumeratedSet ⊆ DataSet corresp Set inv1 105: CustomDataSet corresp AbstractSet ⊆ DataSet corresp Set EVENTS Event initialize default datasets ordinary = any DM o DM where grd0: dom(DomainM odel corresp Component) \ dom(DomainM odel parent DomainM odel) = ∅ grd1: Def aultDataSet = ∅ grd2: DM ∈ dom(DomainM odel corresp Component) grd3: DM / ∈ dom(DomainM odel parent DomainM odel) grd4: AbstractSet ∩ {B N AT U RAL, B IN T EGER, B F LOAT, B BOOL, B ST RIN G} = ∅ grd5: o DM = DomainM odel corresp Component(DM ) then act1: Def aultDataSet := { N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G} act2: DataSet := DataSet ∪ { N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G} act3: DataSet def inedIn DomainM odel := DataSet def inedIn DomainM odel∪{(xx → yy)|xx ∈ { N AT U RAL, IN T EG yy = DM } act4: AbstractSet := AbstractSet ∪ {B N AT U RAL, B IN T EGER, B F LOAT, B BOOL, B ST RIN G} act5: Set := Set ∪ {B N AT U RAL, B IN T EGER, B F LOAT, B BOOL, B ST RIN G} act6: Def aultDataSet corresp AbstractSet := { N AT U RAL → B N AT U RAL, IN T EGER → B IN T EGER, F LOAT → B F LOAT, BOOL → B BOOL, ST RIN G → B ST RIN G} act7: Set def inedIn Component := Set def inedIn Component ∪ {(xx → yy)|xx ∈ {B N AT U RAL, B IN T EGER, B F LOAT, B BOOL, B ST RIN G} ∧ yy = o DM } act8: DataSet corresp Set := DataSet corresp Set ¡-{ N AT U RAL → B N AT U RAL, IN T EGER → B IN T EGER, F LOAT → B F LOAT, BOOL → B BOOL, ST RIN G → B ST RIN G} end ••• END 4.2 From Domain Models to Event-B Specifications Event-B Machines and Contexts Rule 1: Domain model without parent MACHINE event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 1 ordinary = correspondence of a domain model not associated to a parent domain model any DM o DM where grd0: DomainM odel\(dom(DomainM odel corresp Component)∪dom(DomainM odel parent DomainM odel)) = ∅ grd1: DM ∈ DomainM odel grd2: DM / ∈ dom(DomainM odel corresp Component) grd3: DM / ∈ dom(DomainM odel parent DomainM odel) grd4: Component Set \ Component = ∅ grd5: o DM ∈ Component Set \ Component then act1: System := System ∪ {o DM } act2: Component := Component ∪ {o DM } act3: DomainM odel corresp Component(DM ) := o DM

Rule 2 :

 2 Domain model with parent MACHINE event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 2 ordinary = correspondence of a domain model associated to a parent domain model any DM PDM o DM where grd0: dom(DomainM odel parent DomainM odel) \ dom(DomainM odel corresp Component) = ∅ grd1: DM ∈ dom(DomainM odel parent DomainM odel) grd2: DM / ∈ dom(DomainM odel corresp Component) grd3: dom(DomainM odel corresp Component) = ∅ grd4: P DM ∈ dom(DomainM odel corresp Component) grd5: DomainM odel parent DomainM odel(DM ) = P DM grd6: Component Set \ Component = ∅ grd7: o DM ∈ Component Set \ Component then act1: Ref inement := Ref inement ∪ {o DM } act2: Component := Component ∪ {o DM } act3: Ref inement ref ines Component(o DM ) := DomainM odel corresp Component(P DM ) act4: DomainM odel corresp Component(DM ) := o DM end END A domain model associated with another one representing its parent (Fig. 9) gives rise to a refinement component. The refinement component must refine the component corresponding to the parent domain model. Example : in Figure 14, the first refinement level domain model is translated into a refinement component named lg system ref 1 refining lg system ref 0 . Event-B Sets Rule 3: Concept without parent MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 3 ordinary = correspondence of a concept not associated to a parent concept any CO o CO where grd0: Concept \ (dom(Concept parentConcept Concept) ∪ dom(Concept corresp AbstractSet)) = ∅ grd1: CO ∈ Concept grd2: CO / ∈ dom(Concept parentConcept Concept) grd3: CO / ∈ dom(Concept corresp AbstractSet) grd4: Concept def inedIn DomainM odel(CO) ∈ dom(DomainM odel corresp Component) grd5: Set Set \ Set = ∅ grd6: o CO ∈ Set Set \ Set then act1: AbstractSet := AbstractSet ∪ {o CO} act2: Set := Set ∪ {o CO} act3: Concept corresp AbstractSet(CO) := o CO act4: Set def inedIn Component(o CO) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO))

Rule 4 :

 4 Enumerated data set MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 4 ordinary = correspondence of an instance of EnumeratedDataSet any EnumeratedDataSet \ dom(DataSet corresp Set) = ∅ grd1: EDS ∈ EnumeratedDataSet grd2: EDS / ∈ dom(DataSet corresp Set) grd4: DataSet def inedIn DomainM odel(EDS) ∈ dom(DomainM odel corresp Component) grd5: Set Set \ Set = ∅ grd6: o EDS ∈ Set Set \ Set grd8: o EDS / ∈ {B N AT U RAL, B IN T EGER, B F LOAT, B BOOL, B ST RIN G} elements grd9: o elements ⊆ SetItem Set \ SetItem grd11: elements = DataV alue elements EnumeratedDataSet -1 [{EDS}] grd12: card(o elements) = card(elements) grd13: mapping elements o elements ∈ elements o elements then act1: EnumeratedSet := EnumeratedSet ∪ {o EDS} act2: Set := Set ∪ {o EDS} act3: EnumeratedDataSet corresp EnumeratedSet(EDS) := o EDS act4: Set def inedIn Component(o EDS) := DomainM odel corresp Component( DataSet def inedIn DomainM odel(EDS)) elements act5: SetItem := SetItem ∪ o elements act6: SetItem itemOf EnumeratedSet := SetItem itemOf EnumeratedSet ∪ (o elements × {o EDS}) act7: DataV alue corresp SetItem := DataV alue corresp SetItem ∪ mapping elements o elements act8: DataSet corresp Set := DataSet corresp Set ¡-{EDS → o EDS} end END Rule 5 : Custom data set not defined through an enumeration MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 5 ordinary = correspondence of an instance of CustomDataSet which is not an instance of EnumeratedDataSet any CS o CS where grd0: CustomDataSet \ (EnumeratedDataSet ∪ dom(DataSet corresp Set)) = ∅ grd1: CS ∈ CustomDataSet grd2: CS / ∈ EnumeratedDataSet grd3: CS / ∈ dom(DataSet corresp Set) grd4: DataSet def inedIn DomainM odel(CS) ∈ dom(DomainM odel corresp Component) grd5: Set Set \ Set = ∅ grd6: o CS ∈ Set Set \ Set then act1: AbstractSet := AbstractSet ∪ {o CS} act2: Set := Set ∪ {o CS} act3: CustomDataSet corresp AbstractSet(CS) := o CS act4: Set def inedIn Component(o CS) := DomainM odel corresp Component( DataSet def inedIn DomainM odel(CS)) act5: DataSet corresp Set := DataSet corresp Set ¡-{CS → o CS} end END Any instance of CustomDataSet, defined through an enumeration, gives rise to an Event-B enumerated set. Example : in Figure 13, the data set {"lg extended", "lg retracted"}, defined in domain model represented in Figure (Fig. 7), gives rise to the enumerated set DataSet 1={lg extended, lg retracted}. Any instance of DefaultDataSet is mapped directly to an Event-B default data set (NATURAL, INTEGER, FLOAT, STRING or BOOL) following the initialize default datasets event. Event-B Constants Rule 6 : Concept with parent MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 6 1 ordinary = correspondence of a concept associated to a parent concept (where the parent concept corresponds to an abstract set) dom(Concept parentConcept Concept) \ dom(Concept corresp Constant) = ∅ grd1: CO ∈ dom(Concept parentConcept Concept) \ dom(Concept corresp Constant) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: P CO ∈ dom(Concept corresp AbstractSet) grd4: Concept parentConcept Concept(CO) = P CO grd5: Concept def inedIn DomainM odel(CO) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o CO ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o P CO ∈ AbstractSet grd11: o P CO = Concept corresp AbstractSet(P CO) then act1: Constant := Constant ∪ {o CO} act2: Concept corresp Constant(CO) := o CO act3: Constant def inedIn Component(o CO) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Inclusion OP } act7: Constant isInvolvedIn LogicF ormulas(o CO) := {1 → o lg} act8: LogicF ormula involves Sets(o lg) := {2 → o P CO} act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act10: Constant typing P roperty(o CO) := o lg end Event rule 6 2 ordinary = correspondence of a concept associated to a parent concept (where the parent concept corresponds to a constant) dom(Concept parentConcept Concept) \ dom(Concept corresp Constant) = ∅ grd1: CO ∈ dom(Concept parentConcept Concept) \ dom(Concept corresp Constant) grd2: dom(Concept corresp Constant) = ∅ grd3: P CO ∈ dom(Concept corresp Constant) grd4: Concept parentConcept Concept(CO) = P CO grd5: Concept def inedIn DomainM odel(CO) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o CO ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o P CO ∈ Constant grd11: o P CO = Concept corresp Constant(P CO) then act1: Constant := Constant ∪ {o CO} act2: Concept corresp Constant(CO) := o CO act3: Constant def inedIn Component(o CO) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Inclusion OP } act7: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{(o CO → {1 → o lg}), o P CO → Constant isInvolvedIn LogicF ormulas(o P CO) ∪ {2 → o lg}} act8: LogicF ormula involves Sets(o lg) := ∅ act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act10: Constant typing P roperty(o CO) := o lg end END

Rule 7 :

 7 Individual MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 7 1 ordinary = correspondence of an instance of Individual (where the concept corresponds to an abstract set) dom(Individual individualOf Concept) \ dom(Individual corresp Constant) = ∅ grd1: ind ∈ dom(Individual individualOf Concept) \ dom(Individual corresp Constant) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO ∈ dom(Concept corresp AbstractSet) grd4: Individual individualOf Concept(ind) = CO grd5: Concept def inedIn DomainM odel(CO) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o ind ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o CO ∈ AbstractSet grd11: o CO = Concept corresp AbstractSet(CO) then act1: Constant := Constant ∪ {o ind} act2: Individual corresp Constant(ind) := o ind act3: Constant def inedIn Component(o ind) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Belonging OP } act7: Constant isInvolvedIn LogicF ormulas(o ind) := {1 → o lg} act8: LogicF ormula involves Sets(o lg) := {2 → o CO} act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act10: Constant typing P roperty(o ind) := o lg end Event rule 7 2 ordinary = correspondence of an instance of Individual (where the concept corresponds to a constant) dom(Individual individualOf Concept) \ dom(Individual corresp Constant) = ∅ grd1: ind ∈ dom(Individual individualOf Concept) \ dom(Individual corresp Constant) grd2: dom(Concept corresp Constant) = ∅ grd3: CO ∈ dom(Concept corresp Constant) grd4: Individual individualOf Concept(ind) = CO grd5: Concept def inedIn DomainM odel(CO) odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o ind ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o CO ∈ Constant grd11: o CO = Concept corresp Constant(CO) then act1: Constant := Constant ∪ {o ind} act2: Individual corresp Constant(ind) := o ind act3: Constant def inedIn Component(o ind) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Belonging OP } act7: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{(o ind → {1 → o lg}), o CO → Constant isInvolvedIn LogicF ormulas(o CO) ∪ {2 → o lg}} act8: LogicF ormula involves Sets(o lg) := ∅ act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act10: Constant typing P roperty(o ind) := o lg end END Rule 8 : Data value MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 8 ordinary = correspondence of an instance of DataValue (When the data set is an instance of CustomDataSet not instance of EnumeratedDataSet (for this last case, the rule for instances of EnumeratedDataSet also handles data values) ) dom(DataV alue valueOf DataSet) \ dom(DataV alue corresp Constant) = ∅ grd1: dva ∈ dom(DataV alue valueOf DataSet) \ dom(DataV alue corresp Constant) grd2: dom(CustomDataSet corresp AbstractSet) = ∅ grd3: DS ∈ dom(CustomDataSet corresp AbstractSet) grd4: DataV alue valueOf DataSet(dva) = DS grd5: DataSet def inedIn DomainM odel(DS) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o dva ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o DS ∈ AbstractSet grd11: o DS = CustomDataSet corresp AbstractSet(DS) then act1: Constant := Constant ∪ {o dva} act2: DataV alue corresp Constant(dva) := o dva act3: Constant def inedIn Component(o dva) := DomainM odel corresp Component( DataSet def inedIn DomainM odel(DS)) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Belonging OP } act7: Constant isInvolvedIn LogicF ormulas(o dva) := {1 → o lg} act8: LogicF ormula involves Sets(o lg) := {2 → o DS} act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( DataSet def inedIn DomainM odel(DS)) act10: Constant typing P roperty(o dva) := o lg end END Rule 10 : Constant relation MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 10 1 ordinary = correspondence of an instance of Relation having its isVariable property set to false (case where domain and range correspond to abstract sets) Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) = ∅ grd1: RE ∈ Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO2 = Relation range Concept(RE) grd5: {CO1, CO2} ⊆ dom(Concept corresp AbstractSet) grd6: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: {T RE, o RE} ⊆ Constant Set \ Constant grd9: LogicF ormula Set \ LogicF ormula = ∅ grd10: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd11: o CO1 = Concept corresp AbstractSet(CO1) grd12: o CO2 = Concept corresp AbstractSet(CO2) grd13: DM = Relation def inedIn DomainM odel(RE) grd14: T RE = o RE grd15: o lg1 = o lg2 then act1: Constant := Constant ∪ {T RE, o RE} act2: Relation T ype(RE) := T RE act3: Relation corresp Constant(RE) := o RE act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o RE → DomainM odel corresp Component(DM ), RE → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ∪ {T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → {2 → o CO1, 3 → o CO2}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end Event rule 10 2 ordinary = correspondence of an instance of Relation having its isVariable property set to false (case where domain corresponds to an abstract set and range corresponds to a constant) Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) = ∅ grd1: RE ∈ Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO1 ∈ dom(Concept corresp AbstractSet) grd5: dom(Concept corresp Constant) = ∅ grd6: CO2 = Relation range Concept(RE) grd7: CO2 ∈ dom(Concept corresp Constant) grd8: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T RE, o RE} ⊆ Constant Set \ Constant grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO1 = Concept corresp AbstractSet(CO1) grd14: o CO2 = Concept corresp Constant(CO2) grd15: DM = Relation def inedIn DomainM odel(RE) grd16: T RE = o RE grd17: o lg1 = o lg2 then act1: Constant := Constant ∪ {T RE, o RE} act2: Relation T ype(RE) := T RE act3: Relation corresp Constant(RE) := o RE act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o RE → DomainM odel corresp Component(DM ), T RE → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicF := Constant isInvolvedIn LogicF ormulas ¡-{T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}, o CO2 → {3 → o lg1}∪Constant isInvolvedIn LogicF ormulas(o CO2)} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {2 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → {2 → o CO1}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end Event rule 10 3 ordinary = correspondence of an instance of Relation having its isVariable property set to false (case where range corresponds to an abstract set and domain corresponds to a constant) Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) = ∅ grd1: RE ∈ Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) grd2: dom(Concept corresp Constant) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO1 ∈ dom(Concept corresp Constant) grd5: dom(Concept corresp AbstractSet) = ∅ grd6: CO2 = Relation range Concept(RE) grd7: CO2 ∈ dom(Concept corresp AbstractSet) grd8: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T RE, o RE} ⊆ Constant Set \ Constant grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO2 = Concept corresp AbstractSet(CO2) grd14: o CO1 = Concept corresp Constant(CO1) grd15: DM = Relation def inedIn DomainM odel(RE) grd16: T RE = o RE grd17: o lg1 = o lg2 then act1: Constant := Constant ∪ {T RE, o RE} act2: Relation T ype(RE) := T RE act3: Relation corresp Constant(RE) := o RE act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o RE → DomainM odel corresp Component(DM ), T RE → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: typing P roperty := Constant typing P roperty ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}, o → o lg1}∪Constant isInvolvedIn LogicF ormulas(o CO1)} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → {3 → o CO2}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end Event rule 10 4 ordinary = correspondence of an instance of Relation having its isVariable property set to false (case where domain and range correspond to constants) Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) = ∅ grd1: RE ∈ Relation isV ariable -1 [{F ALSE}] \ dom(Relation T ype) grd2: dom(Concept corresp Constant) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO2 = Relation range Concept(RE) grd5: {CO1, CO2} ⊆ dom(Concept corresp Constant) grd6: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: {T RE, o RE} ⊆ Constant Set \ Constant grd9: LogicF ormula Set \ LogicF ormula = ∅ grd10: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd11: o CO1 = Concept corresp Constant(CO1) grd12: o CO2 = Concept corresp Constant(CO2) grd13: DM = Relation def inedIn DomainM odel(RE) grd14: T RE = o RE grd15: o lg1 = o lg2 grd16: o CO1 = o CO2 then act1: Constant := Constant ∪ {T RE, o RE} act2: Relation T ype(RE) := T RE act3: Relation corresp Constant(RE) := o RE act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o RE → DomainM odel corresp Component(DM ), T RE → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}, o CO1 → {2 → o lg1}∪Constant isInvolvedIn LogicF ormulas(o CO1), o CO2 → {3 → o lg1} ∪ Constant isInvolvedIn LogicF ormulas(o CO2)} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → ∅, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end END Rule 11 : relation and attribute maplet MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 11 1 ordinary = correspondence of an instance of RelationMaplet any RelationM aplet \ dom(RelationM aplet corresp Constant) = ∅ grd1: remap ∈ RelationM aplet \ dom(RelationM aplet corresp Constant) grd2: dom(Relation corresp Constant) ∪ dom(Relation corresp V ariable) = ∅ grd3: RelationM aplet mapletOf Relation(remap) = RE grd4: RE ∈ dom(Relation corresp Constant) ∪ dom(Relation corresp V ariable) grd5: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o remap ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: antecedent = RelationM aplet antecedent Individual(remap) grd11: image = RelationM aplet image Individual(remap) grd12: {antecedent, image} ⊆ dom(Individual corresp Constant) grd13: o antecedent = Individual corresp Constant(antecedent) grd14: o image = Individual corresp Constant(image) grd15: o antecedent = o image then, for each relation already treated for which all the maplets have been processed, if it is variable, we generate the initialization, otherwise, we generate the closure property, knowing that the maplets give rise to variables in case of variable relation and constants in case of constant relationship then act1: Constant := Constant ∪ {o remap} act2: RelationM aplet corresp Constant(remap) := o remap act3: Constant def inedIn Component(o remap) := DomainM odel corresp Component( Relation def inedIn DomainM odel(RE)) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → M aplet OP } act7: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas¡-{o remap → {1 → o lg}, o antecedent → {2 → o lg}∪Constant isInvolvedIn LogicF ormulas(o antecedent), o image → {3 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(o image)} act8: LogicF ormula involves Sets(o lg) := ∅ act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Relation def inedIn DomainM act10: Constant typing P roperty(o remap) := o lg end Event rule 11 2 1 ordinary = correspondence of an instance of AttributeMaplet (case where the image (of type DataValue) corresponds to a constant (it can also corresponds to a set item) AttributeM aplet \ dom(AttributeM aplet corresp Constant) = ∅ grd1: atmap ∈ AttributeM aplet \ dom(AttributeM aplet corresp Constant) grd2: dom(Attribute corresp Constant) ∪ dom(Attribute corresp V ariable) = ∅ grd3: AttributeM aplet mapletOf Attribute(atmap) = AT grd4: AT ∈ dom(Attribute corresp Constant) ∪ dom(Attribute corresp V ariable) grd5: Attribute def inedIn DomainM odel(AT ) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o atmap ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: antecedent = AttributeM aplet antecedent Individual(atmap) grd11: image = AttributeM aplet image DataV alue(atmap) grd12: antecedent ∈ dom(Individual corresp Constant) grd13: image ∈ dom(DataV alue corresp Constant) grd14: o antecedent = Individual corresp Constant(antecedent) grd15: o image = DataV alue corresp Constant(image) grd16: o antecedent = o image then act1: Constant := Constant ∪ {o atmap} act2: AttributeM aplet corresp Constant(atmap) := o atmap act3: Constant def inedIn Component(o atmap) := DomainM odel corresp Component( Attribute def inedIn DomainM odel(AT )) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → M aplet OP } act7: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas¡-{o atmap → {1 → o lg}, o antecedent → {2 → o lg}∪Constant isInvolvedIn LogicF ormulas(o antecedent), o image → {3 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(o image)} act8: LogicF ormula involves Sets(o lg) := ∅ act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Attribute def inedIn DomainM odel(AT )) act10: Constant typing P roperty(o atmap) := o lg end Event rule 11 2 2 ordinary = correspondence of an instance of AttributeMaplet (case where the image (of type DataValue) corresponds to a set item AttributeM aplet \ dom(AttributeM aplet corresp Constant) = ∅ grd1: atmap ∈ AttributeM aplet \ dom(AttributeM aplet corresp Constant) grd2: dom(Attribute corresp Constant) ∪ dom(Attribute corresp V ariable) = ∅ grd3: AttributeM aplet mapletOf Attribute(atmap) = AT grd4: AT ∈ dom(Attribute corresp Constant) ∪ dom(Attribute corresp V ariable) grd5: Attribute def inedIn DomainM odel(AT ) ∈ dom(DomainM odel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o atmap ∈ Constant Set \ Constant grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: antecedent = AttributeM aplet antecedent Individual(atmap) grd11: image = AttributeM aplet image DataV alue(atmap) grd12: antecedent ∈ dom(Individual corresp Constant) grd13: image ∈ dom(DataV alue corresp SetItem) grd14: o antecedent = Individual corresp Constant(antecedent) grd15: o image = DataV alue corresp SetItem(image) then act1: Constant := Constant ∪ {o atmap} act2: AttributeM aplet corresp Constant(atmap) := o atmap act3: Constant def inedIn Component(o atmap) := DomainM odel corresp Component( Attribute def inedIn DomainM odel(AT )) act4: P roperty := P roperty ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → M aplet OP } act7: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas¡-{o atmap → {1 → o lg}, o antecedent → {2 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(o antecedent)} act8: LogicF ormula involves Sets(o lg) := ∅ act9: LogicF ormula involves SetItems(o lg) := {3 → o image} act10: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Attribute def inedIn DomainM odel(AT )) act11: Constant typing P roperty(o atmap) := o lg end ENDEach relation gives rise to a constant representing the type of its associated Event-B element and defined as the set of relations between the Event-B element corresponding to the relation domain and the one corresponding to the relation range. Moreover, if the relation has its isVariable attribute set to false, it is translated through a second constant. Example : in Figure14, LgOfHd , for which isVariable is set to false, is translated into a constant named LgOfHd and having as type T LgOfHd defined as the set of relations between Handle and LandingGear (assertions 1.7 and 1.8 ).

Rule 14 :

 14 Constant attribute MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 14 1 ordinary = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to false (case where the domain corresponds to an abstract set, knowing that the range always corresponds to a set ) Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) = ∅ grd1: AT ∈ Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO = Attribute domain Concept(AT ) grd4: CO ∈ dom(Concept corresp AbstractSet) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT ) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute def inedIn DomainM odel(AT ) ∈ dom(DomainM odel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT } ⊆ Constant Set \ Constant grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO = Concept corresp AbstractSet(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute def inedIn DomainM odel(AT ) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isF unctional -1 [{F ALSE}] then act1: Constant := Constant ∪ {T AT, o AT } act2: Attribute T ype(AT ) := T AT act3: Attribute corresp Constant(AT ) := o AT act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o AT → DomainM odel corresp Component(DM ), T AT → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ∪ {T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets∪{o lg1 → {2 → o CO, 3 → o DS}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end Event rule 14 2 ordinary =correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to false (case where the domain corresponds to a constant, knowing that the range always corresponds to a set )Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) = ∅ grd1: AT ∈ Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) grd2: dom(Concept corresp Constant) = ∅ grd3: CO = Attribute domain Concept(AT ) grd4: CO ∈ dom(Concept corresp Constant) corresp Set) = ∅ grd6: DS = Attributerange DataSet(AT ) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute def inedIn DomainM odel(AT ) ∈ dom(DomainM odel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT } ⊆ Constant Set \ Constant grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO = Concept corresp Constant(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute def inedIn DomainM odel(AT ) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isF unctional -1 [{F ALSE}] then act1: Constant := Constant ∪ {T AT, o AT } act2: Attribute T ype(AT ) := T AT act3: Attribute corresp Constant(AT ) := o AT act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o AT → DomainM odel corresp Component(DM ), T AT → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}, o CO → {2 → o lg1}∪Constant isInvolvedIn LogicF ormulas(o CO)} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → {3 → o DS}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end Event rule 14 3 ordinary = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to true (case where the domain corresponds to an abstract set, knowing that the range always corresponds to a set ) Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) = ∅ grd1: AT ∈ Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO = Attribute domain Concept(AT ) grd4: CO ∈ dom(Concept corresp AbstractSet) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT ) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute def inedIn DomainM odel(AT ) ∈ dom(DomainM odel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT } ⊆ Constant Set \ Constant grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO = Concept corresp AbstractSet(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute def inedIn DomainM odel(AT ) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isF unctional -1 [{T RU E}] then act1: Constant := Constant ∪ {T AT, o AT } act2: Attribute T ype(AT ) := T AT act3: Attribute corresp Constant(AT ) := o AT act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o AT → DomainM odel corresp Component(DM ), T AT → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ∪ {T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → F unctionSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets∪{o lg1 → {2 → o CO, 3 → o DS}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end Event rule 14 4 ordinary = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to true (case where the domain corresponds to a constant, knowing that the range always corresponds to a set ) Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) = ∅ grd1: AT ∈ Attribute isV ariable -1 [{F ALSE}] \ dom(Attribute T ype) grd2: dom(Concept corresp Constant) = ∅ grd3: CO = Attribute domain Concept(AT ) grd4: CO ∈ dom(Concept corresp Constant) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT ) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute def inedIn odel(AT ) ∈ dom(DomainM odel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT } ⊆ Constant Set \ Constant grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO = Concept corresp Constant(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute def inedIn DomainM odel(AT ) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isF unctional -1 [{T RU E}] then act1: Constant := Constant ∪ {T AT, o AT } act2: Attribute T ype(AT ) := T AT act3: Attribute corresp Constant(AT ) := o AT act4: Constant def inedIn Component := Constant def inedIn Component ∪ {o AT → DomainM odel corresp Component(DM ), T AT → DomainM odel corresp Component(DM )} act5: P roperty := P roperty ∪ {o lg1, o lg2} act6: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act7: Constant typing P roperty := Constant typing P roperty ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}, o CO → {2 → o lg1}∪Constant isInvolvedIn LogicF ormulas(o CO)} act9: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → F unctionSet OP }, o lg2 → {1 → Belonging OP }} act10: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → {3 → o DS}, o lg2 → ∅} act11: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} end END

Rule 9 :

 9 Variable concept MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 9 1 ordinary = handling the variability of a concept and initializing the associated variable (when the concept corresponds to an abstract set) dom(Concept corresp AbstractSet)∩Concept isV ariable -1 [{T RU E}])\dom(Concept corresp V ariable) = ∅ grd1: CO ∈ (dom(Concept corresp AbstractSet)∩Concept isV ariable -1 [{T RU E}])\dom(Concept corresp V ariable) grd2: Concept def inedIn DomainM odel(CO) ∈ dom(DomainM odel corresp Component) grd3:Individual individualOf Concept -1 [{CO}] ⊆ dom(Individual corresp Constant) grd4: V ariable Set \ V ariable = ∅ grd5: x CO ∈ V ariable Set \ V ariable grd6: LogicF ormula Set \ LogicF ormula = ∅ grd7: o lg ∈ LogicF ormula Set \ LogicF ormula grd8: o CO ∈ AbstractSet grd9: o CO = Concept corresp AbstractSet(CO) grd10: InitialisationAction Set \ InitialisationAction = ∅ grd11: o ia ∈ InitialisationAction Set \ InitialisationAction grd12: o inds = Individual corresp Constant[Individual individualOf Concept -1 [{CO}]] grd13: f inite(o inds) grd14: bij o inds ∈ 1 . . card(o inds) o indsthen act1: V ariable := V ariable ∪ {x CO} act2: Concept corresp V ariable(CO) := x CO act3: V ariable def inedIn Component(x CO) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act4: Invariant := Invariant ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Inclusion OP } act7: Invariant involves V ariables(o lg) := {1 → x CO} act8: LogicF ormula involves Sets(o lg) := {2 → o CO} act9: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act10: InitialisationAction := InitialisationAction ∪ {o ia} act11: InitialisationAction uses Operators(o ia) := {1 → BecomeEqual2SetOf OP } act12: V ariable init InitialisationAction(x CO) := o ia act13: InitialisationAction involves Constants(o ia) := bij o inds act14: V ariable typing Invariant(x CO) := o lg end Event rule 9 2 ordinary = handling the variability of a concept and initializing the associated variable (when the concept corresponds to a constant) where grd0: (dom(Concept corresp Constant)∩Concept isV ariable -1 [{T RU E}])\dom(Concept corresp V ariable) = ∅ grd1: CO ∈ (dom(Concept corresp Constant)∩Concept isV -1 [{T RU E}])\dom(Concept corresp V ariable) grd2: Concept def inedIn DomainM odel(CO) ∈ dom(DomainM odel corresp Component) grd3: Individual individualOf Concept -1 [{CO}] ⊆ dom(Individual corresp Constant) grd4: V ariable Set \ V ariable = ∅ grd5: x CO ∈ V ariable Set \ V ariable grd6: LogicF ormula Set \ LogicF ormula = ∅ grd7: o lg ∈ LogicF ormula Set \ LogicF ormula grd8: o CO ∈ Constant grd9: o CO = Concept corresp Constant(CO) grd10: InitialisationAction Set \ InitialisationAction = ∅ grd11: o ia ∈ InitialisationAction Set \ InitialisationAction grd12: o inds = Individual corresp Constant[Individual individualOf Concept -1 [{CO}]] grd13: f inite(o inds) grd14: bij o inds ∈ 1 . . card(o inds) o inds then act1: V ariable := V ariable ∪ {x CO} act2: Concept corresp V ariable(CO) := x CO act3: V ariable def inedIn Component(x CO) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act4: Invariant := Invariant ∪ {o lg} act5: LogicF ormula := LogicF ormula ∪ {o lg} act6: LogicF ormula uses Operators(o lg) := {1 → Inclusion OP } act7: Invariant involves V ariables(o lg) := {1 → x CO} act8: Constant isInvolvedIn LogicF ormulas(o CO) := Constant isInvolvedIn LogicF ormulas(o CO)∪ {2 → o lg} act9: LogicF ormula involves Sets(o lg) := ∅ act10: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Concept def inedIn DomainM odel(CO)) act11: InitialisationAction := InitialisationAction ∪ {o ia} act12: InitialisationAction uses Operators(o ia) := {1 → BecomeEqual2SetOf OP } act13: V ariable init InitialisationAction(x CO) := o ia act14: InitialisationAction involves Constants(o ia) := bij o inds act15: V ariable typing Invariant(x CO) := o lg end END Rule 13 : variable relation MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 13 1 ordinary = correspondence of an instance of Relation having its isVariable property set to true (case where domain and range correspond to abstract sets. The others cases will not explicitely included here, since they can easily be obtained based on rules 10 2, 10 3 and 10 4) LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → {2 → o CO1, 3 → o CO2}, o lg2 → ∅} act16: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp DomainM odel corresp Component(DM )} act17: InitialisationAction := InitialisationAction ∪ {o ia} act18: InitialisationAction uses Operators(o ia) := {1 → BecomeEqual2EmptySet OP } act19: V ariable init InitialisationAction(o RE) := o ia act20: InitialisationAction involves Constants(o ia) := ∅ end END

  Rule 12 : closure property or action raised by relation maplets MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 12 1 ordinary = closure property for constant relations any dom(Relation corresp Constant) = ∅ grd1: RE ∈ dom(Relation corresp Constant) grd2: o RE = Relation corresp Constant(RE) grd3: LogicF ormula uses Operators -1 [{{1 → Equal2SetOf OP }}] ∩ ran(Constant isInvolvedIn LogicF ormulas(o RE)) = ∅ grd4: RelationM aplet mapletOf Relation -1 [{RE}] = maplets grd5: maplets ⊆ dom(RelationM aplet corresp Constant) grd6: o maplets = RelationM aplet corresp Constant[maplets] grd7: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o RE / ∈ o maplets then act1: P roperty := P roperty ∪ {o lg} act2: LogicF ormula := LogicF ormula ∪ {o lg} act3: LogicF ormula uses Operators(o lg) := {1 → Equal2SetOf OP } act4: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-({o RE → {1 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(o RE)} ∪ {co → lgs|co ∈ o maplets ∧ lgs = {2 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(co)}) appearence order does not matter act5: LogicF ormula involves Sets(o lg) := ∅ act6: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Relation def inedIn DomainM odel(RE))end Event rule 12 2 ordinary = closure action for variable relations any where grd0: dom(Relation corresp V ariable) = ∅ grd1: RE ∈ dom(Relation corresp V ariable) grd2: o RE = Relation corresp V ariable(RE) grd3: V ariable init InitialisationAction(o RE) / ∈ InitialisationAction uses Operators -1 [ {{1 → BecomeEqual2SetOf OP }}] grd4: RelationM aplet Relation -1 [{RE}] = maplets grd5: maplets ⊆ dom(RelationM aplet corresp Constant) grd6: o maplets = RelationM aplet corresp Constant[maplets] grd7: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd8:InitialisationAction Set \ InitialisationAction = ∅ grd9: o ia ∈ InitialisationAction \ InitialisationAction grd10: ex o ia = V ariable init InitialisationAction(o RE) grd11: V ariable init InitialisationAction -1 [{ex o ia}] = {o RE} grd12: f inite(o maplets) grd13: bij o maplets ∈ 1 . . card(o maplets) o mapletsthen act1: InitialisationAction := (InitialisationAction \ {ex o ia}) ∪ {o ia} act2: InitialisationAction uses Operators := (InitialisationAction uses Operators \ { ex o ia → InitialisationAction uses Operators(ex o ia)})¡-{o ia → {1 → BecomeEqual2SetOf OP }} act3: V ariable init InitialisationAction(o RE) := o ia act4: InitialisationAction involves Constants := (InitialisationAction involves Constants\{ex o ia → InitialisationAction involves Constants(ex o ia)}) ¡-{o ia → bij o maplets} end END Rule 15 : closure property or action raised by relation maplets MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 15 1 ordinary = closure property for constant attribute any dom(Attribute corresp Constant) = ∅ grd1: AT ∈ dom(Attribute corresp Constant) grd2: o AT = Attribute corresp Constant(AT ) grd3: LogicF ormula uses Operators -1 [{{1 → Equal2SetOf OP }}] ∩ ran(Constant isInvolvedIn LogicF ormulas(o AT )) = ∅ grd4: AttributeM aplet mapletOf Attribute -1 [{AT }] = maplets grd5: maplets ⊆ dom(AttributeM aplet corresp Constant) grd6: o maplets = AttributeM aplet corresp Constant[maplets] grd7: Attribute def inedIn DomainM odel(AT ) ∈ dom(DomainM odel corresp Component) grd8: LogicF ormula Set \ LogicF ormula = ∅ grd9: o lg ∈ LogicF ormula Set \ LogicF ormula grd10: o AT / ∈ o maplets then act1: P roperty := P roperty ∪ {o lg} act2: LogicF ormula := LogicF ∪ {o lg} act3: LogicF ormula uses Operators(o lg) := {1 → Equal2SetOf OP } act4: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-({o AT → ({1 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(o AT ))} ∪ {co → lgs|co ∈ o maplets ∧ lgs = {2 → o lg} ∪ Constant isInvolvedIn LogicF ormulas(co)}) appearence order does not matter act5: LogicF ormula involves Sets(o lg) := ∅ act6: LogicF ormula def inedIn Component(o lg) := DomainM odel corresp Component( Attribute def inedIn DomainM odel(AT )) end END Rule 16 : optional characteristics of relations MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 16 1 ordinary = handling the transitivity of a constant relation any dom(Relation corresp Constant) ∩ Relation isT ransitive -1 [{T RU E}]) = ∅ grd1: RE ∈ (dom(Relation corresp Constant) ∩ Relation isT ransitive -1 [{T RU E}]) grd2: ({RE → isT ransitive}) / ∈ dom(RelationCharacteristic corresp LogicF ormula) grd3: o RE = Relation corresp Constant(RE) grd4: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd5: LogicF ormula Set \ LogicF ormula = ∅ grd6: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd7: partition({o lg1, o lg2}, {o lg1}, {o lg2}) grd8: Constant Set \ Constant = ∅ grd9: composition ∈ Constant Set \ Constant then act0: Constant := Constant ∪ {composition} act1: P roperty := P roperty ∪ {o lg1, o lg2} act2: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act3: Constant typing P roperty(composition) := o lg1 act4: RelationCharacteristic corresp LogicF ormula({RE → isT ransitive}) := o lg2 act5: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas¡-{composition → {1 → o lg1, 1 → o lg2}, o RE → {2 → o lg1, 3 → o lg1, 2 → o lg2}∪Constant isInvolvedIn LogicF ormulas(o RE)} act6: LogicF ormula uses Operators := LogicF ormula uses Operators ∪ {o lg1 → {1 → RelationComposition OP }, o lg2 → {1 → Inclusion OP }} act7: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → ∅, o lg2 → ∅} act8: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp C o lg2 → DomainM odel corresp Component(Relation def inedIn DomainM odel(RE))} act9: Constant def inedIn Component(composition) := DomainM odel corresp Component( Relation def inedIn DomainM odel(RE)) end Event rule 16 2 ordinary = handling the symmetrie of a constant relation any dom(Relation corresp Constant) ∩ Relation isSymmetric -1 [{T RU E}]) = ∅ grd1: RE ∈ (dom(Relation corresp Constant) ∩ Relation isSymmetric -1 [{T E}]) grd2: ({RE → isSymmetric}) / ∈ dom(RelationCharacteristic corresp LogicF ormula) grd3: o RE = Relation corresp Constant(RE) grd4: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd5: LogicF ormula Set \ LogicF ormula = ∅ grd6: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd7: partition({o lg1, o lg2}, {o lg1}, {o lg2}) grd8: Constant Set \ Constant = ∅ grd9: inverse ∈ Constant Set \ Constant then act0: Constant := Constant ∪ {inverse} act1: P roperty := P roperty ∪ {o lg1, o lg2} act2: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act3: Constant typing P roperty(inverse) := o lg1 act4: RelationCharacteristic corresp LogicF ormula({RE → isSymmetric}) := o lg2 act5: Constant isInvolvedIn LogicF ormulas := Constant isInvolvedIn LogicF ormulas ¡-{inverse → {1 → o lg1, 1 → o lg2}, o RE → {2 → o lg1, 2 → o lg2}∪Constant isInvolvedIn LogicF ormulas(o RE)} act6: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → Inversion OP }, o lg2 → {1 → Equality OP }} act7: LogicF ormula involves Sets := LogicF ormula involves Sets ∪ {o lg1 → ∅, o lg2 → ∅} act8: LogicF ormula def inedIn Component := LogicF ormula def inedIn Component∪{o lg1 → DomainM odel corresp C o lg2 → DomainM odel corresp Component(Relation def inedIn DomainM odel(RE))} act9: Constant def inedIn Component(inverse) := DomainM odel corresp Component( Relation def inedIn DomainM odel(RE)) end END 4.3 Handling Updates on Event-B Specifications within SysML/KAOS Domain Models

  Rules 101-102 : addition of a new abstract set MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 101 ordinary = handling the addition of a new abstract set (correspondence to a concept) any CO o CO where grd0: AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) = ∅ grd1: o CO ∈ AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) grd2: Set def inedIn Component(o CO) ∈ ran(DomainM odel corresp Component) grd3: Concept Set \ Concept = ∅ grd4: CO ∈ Concept Set \ Concept then act1: Concept := Concept ∪ {CO} act2: Concept corresp AbstractSet(CO) := o CO act3: Concept def inedIn DomainM odel(CO) := DomainM odel corresp Component -1 ( Set def inedIn Component(o CO)) act4: Concept isV ariable(CO) := F ALSE end Event rule 102 ordinary = handling the addition of a set (correspondence to a custom data set) any DS o DS where grd0: AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) = ∅ grd1: o DS ∈ AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) grd2: Set def inedIn Component(o DS) ∈ ran(DomainM odel corresp Component) grd3: DataSet Set \ DataSet = ∅ grd4: DS ∈ DataSet Set \ DataSet grd5: DS / ∈ { N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G} then act1: CustomDataSet := CustomDataSet ∪ {DS} act2: DataSet := DataSet ∪ {DS} act3: CustomDataSet corresp AbstractSet(DS) := o DS act4: DataSet def inedIn DomainM odel(DS) := DomainM odel corresp Component -1 ( Set def inedIn Component(o DS)) act5: DataSet corresp Set(DS) := o DS end END Rule 103 : addition of an enumerated set MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 103 ordinary = handling the addition of an enumerated set any EDS o EDS elements o elements mapping elements o elements where grd0: EnumeratedSet \ ran(DataSet corresp Set) = ∅ grd1: o EDS ∈ EnumeratedSet \ ran(DataSet corresp Set) grd2: Set def inedIn Component(o EDS) ∈ ran(DomainM odel corresp Component) grd3: DataSet Set \ DataSet = ∅ grd4: EDS ∈ DataSet Set \ DataSet grd5: DataV alue Set \ DataV alue = ∅ grd6: elements ⊆ DataV alue Set \ DataV alue grd7: o elements = SetItem itemOf EnumeratedSet -1 [{o EDS}] grd8: card(o elements) = card(elements) grd9: mapping elements o elements ∈ elements o elements grd10: ran(DataV alue corresp SetItem) ∩ o elements = ∅ grd11: EDS / ∈ { N AT U RAL, IN T EGER, F LOAT, BOOL, ST RIN G} then act1: EnumeratedDataSet := EnumeratedDataSet ∪ {EDS} act2: DataSet := DataSet ∪ {EDS} act3: EnumeratedDataSet corresp EnumeratedSet(EDS) := o EDS act4: DataSet def inedIn DomainM odel(EDS) := DomainM odel corresp Component -1 ( Set def inedIn Component(o EDS)) act5: DataV alue := DataV alue ∪ elements act6: DataV alue elements EnumeratedDataSet := DataV alue elements EnumeratedDataSet∪{(xx → yy)|xx ∈ elements ∧ yy = EDS} act7: DataV alue corresp SetItem := DataV alue corresp SetItem ∪ mapping elements o elements act8: DataSet corresp Set := DataSet corresp Set ¡-{EDS → o EDS} act9: DataV alue valueOf DataSet := DataV alue valueOf DataSet ∪ {(xx → yy)|xx ∈ elements ∧ yy = EDS} act10: CustomDataSet := CustomDataSet ∪ {EDS} end END Addition of Non-Existing Set Items or Constants Rule 104 : addition of a set item MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 104 ordinary = handling the addition of a new element in an existing enumerated set any EDS o EDS element o element where grd0: dom(SetItem itemOf EnumeratedSet) \ ran(DataV alue corresp SetItem) = ∅ grd1: o element ∈ dom(SetItem itemOf EnumeratedSet) \ ran(DataV alue corresp SetItem) grd2: o EDS = SetItem itemOf EnumeratedSet(o element) grd3: o EDS ∈ ran(EnumeratedDataSet corresp EnumeratedSet) grd4: EDS = EnumeratedDataSet corresp EnumeratedSet -1 (o EDS) grd5: DataV alue Set \ DataV alue = ∅ grd6: element ∈ DataV alue Set \ DataV alue then act1: DataV alue := DataV alue ∪ {element} act2: DataV alue elements EnumeratedDataSet(element) := EDS act3: DataV alue corresp SetItem(element) := o element act4: DataV alue valueOf DataSet(element) := EDS end END Rule 105 : addition of a constant, sub set of an instance of Concept MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 105 1 ordinary = handling the addition of a constant, sub set of an instance of Concept (case where the concept corresponds to an abstract set) dom(Constant typing P roperty) \ ran(Concept corresp Constant) = ∅ grd1: o CO ∈ dom(Constant typing P roperty) \ ran(Concept corresp Constant) grd2: o lg = Constant typing P roperty(o CO) grd3: LogicF ormula uses Operators(o lg) = {1 → Inclusion OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: (2 → o P CO) ∈ LogicF ormula involves Sets(o lg) grd6: o P CO ∈ ran(Concept corresp AbstractSet) grd7: P CO = Concept corresp AbstractSet -1 (o P CO) grd8: Concept Set \ Concept = ∅ grd9: CO ∈ Concept Set \ Concept grd10: Constant def inedIn Component(o CO) ∈ ran(DomainM odel corresp Component) then act1: Concept := Concept ∪ {CO} act2: Concept corresp Constant(CO) := o CO act3: Concept def inedIn DomainM odel(CO) := DomainM odel corresp Component -1 ( Constant def inedIn Component(o CO)) act4: Concept parentConcept Concept(CO) := P CO act5: Concept isV ariable(CO) := F ALSE end Event rule 105 2 ordinary = handling the addition of a constant, sub set of an instance of Concept (case where the concept corresponds to a constant) dom(Constant typing P roperty) \ ran(Concept corresp Constant) = ∅ grd1: o CO ∈ dom(Constant typing P roperty) \ ran(Concept corresp Constant) grd2: o lg = Constant typing P roperty(o CO) grd3: LogicF ormula uses Operators(o lg) = {1 → Inclusion OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: o P CO ∈ dom(Constant isInvolvedIn LogicF ormulas) grd6: (2 → o lg) ∈ Constant isInvolvedIn LogicF ormulas(o P CO) grd7: o P CO ∈ ran(Concept corresp Constant) grd8: P CO = Concept corresp Constant -1 (o P CO) grd9: Concept Set \ Concept = ∅ grd10: CO ∈ Concept Set \ Concept grd11: Constant def inedIn Component(o CO) ∈ ran(DomainM odel corresp Component) then act1: Concept := Concept ∪ {CO} act2: Concept corresp Constant(CO) := o CO act3: Concept def inedIn DomainM odel(CO) := DomainM odel corresp Component -1 ( Constant def inedIn Component(o CO)) act4: Concept parentConcept Concept(CO) := P CO act5: Concept isV ariable(CO) := F ALSE end END Rule 106 : addition of an individual MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 106 1 ordinary = handling the addition of an individual (case where the concept corresponds to an abstract set) dom(Constant typing P roperty) \ ran(Individual corresp Constant) = ∅ grd1: o ind ∈ dom(Constant typing P roperty) \ ran(Individual corresp Constant) grd2: o lg = Constant typing P roperty(o ind) grd3: LogicF ormula uses Operators(o lg) = {1 → Belonging OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: (2 → o CO) ∈ LogicF ormula involves Sets(o lg) grd6: o CO ∈ ran(Concept corresp AbstractSet) grd7: CO = Concept corresp AbstractSet -1 (o CO) grd8: Individual Set \ Individual = ∅ grd9: ind ∈ Individual Set \ Individual then act1: Individual := Individual ∪ {ind} act2: Individual individualOf Concept(ind) := CO act3: Individual corresp Constant(ind) := o ind end Event rule 106 2 ordinary = handling the addition of an individual (case where the concept corresponds to a constant) dom(Constant typing P roperty) \ ran(Individual corresp Constant) = ∅ grd1: o ind ∈ dom(Constant typing P roperty) \ ran(Individual corresp Constant) grd2: o lg = Constant typing P roperty(o ind) grd3: LogicF ormula uses Operators(o lg) = {1 → Belonging OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: o CO ∈ dom(Constant isInvolvedIn LogicF ormulas) grd6: (2 → o lg) ∈ Constant isInvolvedIn LogicF ormulas(o CO) grd7: o CO ∈ ran(Concept corresp Constant) grd8: CO = Concept corresp Constant -1 (o CO) grd9: Individual Set \ Individual = ∅ grd10: ind ∈ Individual Set \ Individual then act1: Individual := Individual ∪ {ind} act2: Individual individualOf Concept(ind) := CO act3: Individual corresp Constant(ind) := o ind end END Rule 107 : addition of a data value MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 107 ordinary = handling the addition of a data value any dom(Constant typing P roperty) \ ran(DataV alue corresp Constant) = ∅ grd1: o dva ∈ dom(Constant typing P roperty) \ ran(DataV alue corresp Constant) grd2: o lg = Constant typing P roperty(o dva) grd3: LogicF ormula uses Operators(o lg) = {1 → Belonging OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: (2 → o DS) ∈ LogicF ormula involves Sets(o lg) grd6: o DS ∈ ran(DataSet corresp Set) grd7: DS = DataSet corresp Set -1 (o DS) grd8: DataV alue Set \ DataV alue = ∅ grd9: dva ∈ DataV alue Set \ DataV alue then act1: DataV alue := DataV alue ∪ {dva} act2: DataV alue valueOf DataSet(dva) := DS act3: DataV alue corresp Constant(dva) := o dva end END Addition of Non-Existing Variables Rule 108 : addition of a variable, sub set of an instance of Concept MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context Event rule 108 1 ordinary = handling the addition of a variable, sub set of an instance of Concept (case where the concept corresponds to an abstract set) dom(V ariable typing Invariant) \ ran(Concept corresp V ariable) = ∅ grd1: x CO ∈ dom(V ariable typing Invariant) \ ran(Concept corresp V ariable) grd2: o lg = V ariable typing Invariant(x CO) grd3: LogicF ormula uses Operators(o lg) = {1 → Inclusion OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: (2 → o CO) ∈ LogicF ormula involves Sets(o lg) grd6: o CO ∈ ran(Concept corresp AbstractSet) grd7: CO = Concept corresp AbstractSet -1 (o CO) then act1: Concept isV ariable(CO) := T RU E act2: Concept corresp V ariable(CO) := x CO end Event rule 108 2 ordinary = handling the addition of a variable, sub set of an instance of Concept (case where the concept corresponds to a constant) dom(V ariable typing Invariant) \ ran(Concept corresp V ariable) = ∅ grd1: x CO ∈ dom(V ariable typing Invariant) \ ran(Concept corresp V ariable) grd2: o lg = V ariable typing Invariant(x CO) grd3: LogicF ormula uses Operators(o lg) = {1 → Inclusion OP } grd4: LogicF ormula involves Sets(o lg) = ∅ grd5: o CO ∈ dom(Constant isInvolvedIn LogicF ormulas) grd6: (2 → o lg) ∈ Constant isInvolvedIn LogicF ormulas(o CO) grd7: o CO ∈ ran(Concept corresp Constant) grd8: CO = Concept corresp Constant -1 (o CO) then act1: Concept isV ariable(CO) := T RU E act2: Concept corresp V ariable(CO) := x CO end END 4.4 The SysML/KAOS Domain Model Parser Tool The correspondence rules outlined here have been implemented within an open source tool called SysML/KAOS Domain Model Parser [21]. It allows the construction of domain models (Fig.
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where grd0: Relation isV ariable -1 [{T RU E}] \ dom(Relation T ype) = ∅ grd1: RE ∈ Relation isV ariable -1 [{T RU E}] \ dom(Relation T ype) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO2 = Relation range Concept(RE) grd5: {CO1, CO2} ⊆ dom(Concept corresp AbstractSet) grd6: Relation def inedIn DomainM odel(RE) ∈ dom(DomainM odel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: T RE ∈ Constant Set \ Constant grd9: V ariable Set \ V ariable = ∅ grd10: o RE ∈ V ariable Set \ V ariable grd11: LogicF ormula Set \ LogicF ormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicF ormula Set \ LogicF ormula grd13: o CO1 = Concept corresp AbstractSet(CO1) grd14: o CO2 = Concept corresp AbstractSet(CO2) grd15: DM = Relation def inedIn DomainM odel(RE) grd16: o lg1 = o lg2 grd17: InitialisationAction Set \ InitialisationAction = ∅ grd18: o ia ∈ InitialisationAction Set \ InitialisationAction then act1: Constant := Constant ∪ {T RE} act2: V ariable := V ariable ∪ {o RE} act3: Relation T ype(RE) := T RE act4: Relation corresp V ariable(RE) := o RE act5: Constant def inedIn Component(T RE) := DomainM odel corresp Component(DM ) act6: V ariable def inedIn Component(o RE) := DomainM odel corresp Component(DM ) act7: P roperty := P roperty ∪ {o lg1} act8: Invariant := Invariant ∪ {o lg2} act9: LogicF ormula := LogicF ormula ∪ {o lg1, o lg2} act10: Constant typing P roperty(T RE) := o lg1 act11: V ariable typing Invariant(o RE) := o lg2 act12: Constant isInvolvedIn LogicF ormulas(T RE) := {1 → o lg1, 2 → o lg2} act13: Invariant involves V ariables(o lg2) := {1 → o RE} act14: LogicF ormula uses Operators := LogicF ormula uses Operators∪{o lg1 → {1 → RelationSet OP }, o lg2 → {1 → Belonging OP }}