Pierre Lescanne

Extensive Infinite Games and Escalation, an exercice in Agda

Keywords: extensive game, infinite game, sequential game, escalation coinduction, Agda, proof assistant, formal proof

Escalation in games is when agents keep playing forever. Based on formal proofs we claim that if agents assume that resource are infinite, escalation is rational.

Introduction

Escalation in games is the phenomenon where agents keep playing (or betting if the game consists in bets) forever, leading to their ruin. Since Shubik [START_REF] Shubik | The dollar auction game: A paradox in noncooperative behavior and escalation[END_REF] people claim that such an attitude is not rational. Based on formal proofs we are able to refute such a claim and to say that if agents assume that resource are infinite, escalation is rational. Since our first work [START_REF] Lescanne | Mechanical) Reasoning on Infinite Extensive Games[END_REF] which took place before the 2008 financial crisis, evidence [START_REF] Bland | Developing a standardized definition of ecosystem collapse for risk assessment[END_REF] show that stating the rationality of escalation makes sense. The only solution for avoiding escalation is then to assume that resource are finite.

In previous works [START_REF] Lescanne | Bubbles are rational[END_REF][START_REF] Lescanne | Rationality and escalation in infinite extensive games[END_REF] we used an approach based on Coq [START_REF] Boutillier | Coq 8.4 Reference Manual[END_REF] and coinduction (a dual of induction aimed at reasoning on infinite data structures [START_REF] Jacobs | An introduction to (co)algebra and (co)induction[END_REF]). Especially in [START_REF] Lescanne | Dependent types for extensive games[END_REF] we used dependent types together with coinduction. In this paper, we use coinduction in Agda [START_REF] Norell | Dependently typed programming in Agda[END_REF], because it allows a terse style closed to this of mathematicians. Agda is a formal proof computer environment as well as a dependently typed programming language.

Notice other works using proof assistants for proving properties of agents. For instance, Stéphane Le Roux proved the existence of Nash equilibria using Coq and Isabelle [START_REF] Le | Acyclic preferences and existence of sequential Nash equilibria: A formal and constructive equivalence[END_REF][START_REF] Le Roux | Formalization of an existence theorem of Nash equilibrium in Coq and Isabelle[END_REF]. In a somewhat connected area, Tobias Nipkow proved Arrows theorem in HOL [START_REF] Nipkow | Social choice theory in HOL[END_REF]. Agda code of this development are available on GitHub1 .

Games and Strategy Profiles

Since we study game theory, lest us first define games. A game is either a leaf or a node. A leaf is a assignment to each agent of a Utility (sometime called a payoff). Note that the type of utility depends on the agent (dependent type). A node contains two entities, put in a record: an agent (the agent who has the trait) and a function next which tells the next positions to be played. The underlying game of a leaf (strategy profile) is the same utility assignment, i.e., a leaf (game). For nodes, games are attributed corecursively. Now let us look at another concept. Given two strategy profiles, one may wonder whether they have the same underlying game. This is given by the binary relation ≈ sg .

mutual data _≈ sg _ : StratProf → StratProf → Set where ≈ sg Leaf : u : (a : Agent) → Utility a → inj 1 u ≈ sg inj 1 u ≈ sg Node : n n' : NodeS → n •≈ sg n' → inj 2 n ≈ sg inj 2 n' record _•≈ sg _ (n n' : NodeS) : Set where coinductive field is•≈ sg : ag n ≡ ag n' → ((c : Choice) → next n c ≈ sg next n' c)
A leaf has the same game as itself, two nodes have the same game if all their "next" strategy profiles have the same games. Notice that we use the symbol • for concepts associated with NodeS, when the concept without • is associated with StratProf. Given a strategy profile, we may want to compute the utility of an agent. This assumes that the path that follows the choices of the agents leads to a leaf. A strategy profile s with such a property is said convergent, written ↓ s. This is defined as follows:

mutual data ↓ : StratProf → Set where ↓Leaf : u : (a : Agent) → Utility a → ↓ (inj 1 u) ↓Node : n : NodeS → •↓ n → ↓ (inj 2 n) record •↓ (n : NodeS) : Set where inductive field is•↓ : ↓ (next n (ch n))
Notice that not all the strategy profile are convergent, for instance the strategy profile AcBc of Section 4 is not convergent. We define the utility assignment '&%$!"# u of a convergent strategy profile. '&%$!"# u takes two parameters: a strategy profile s and a proof that s is convergent.

'&%$!"# u : (s : StratProf) → (↓ s) → (a : Agent) → Utility a '&%$!"# u (inj 1 u) ↓Leaf = u '&%$!"# u (inj 2 n) (↓Node p) = • '&%$!"# u n p • '&%$!"# u : (n : NodeS) → (•↓ n) → (a : Agent) → Utility a • '&%$!"# u n p = '&%$!"# u (next n (ch n)) (is•↓ p)
Subgame perfect equilibria are very interesting strategy profiles. They are strategy profiles in which the choices of the agents are the best. A leaf is always a subgame perfect equilibrium. A node is a subgame perfect equilibrium if the next strategy profile for the choice of the agent is convergent and is a subgame perfect equilibrium, if for any other node which has the same game and whose next strategy profile is also convergent and is a subgame perfect equilibrium, the utility of the agent of the given node is not less than the utility of the agent of this other node. This is defined formally in Agda as follows, where we use ⇋ s to tell that s is a subgame perfect equilibrium.

data ⇋_ : StratProf → Set where ⇋Leaf : u : (a : Agent) → Utility a → ⇋ inj 1 u ⇋Node : n n' : NodeS → n •≈ sg n' → ⇋ (next n (ch n)) → ⇋ (next n' (ch n')) → (p : ↓ (next n (ch n))) → (p' : ↓ (next n' (ch n'))) → ('&%$!"# u (next n (ch n)) p (ag n)) ≮ ('&%$!"# u (next n' (ch n')) p' (ag n)) → ⇋ inj 2 n

Escalation

We are now interested in strategy profile leading to escalation.

Good strategy profile

A first property toward escalation is what we call goodness. A strategy profile is good if at each node, there is a subgame perfect equilibrium with the same game and the same choice.

(n' : NodeS) → ⇋ (inj 2 n') → n •≈ sg n' → ch n ≡ ch n' → (next n (ch n))
In other words, this strategy profile is not itself a subgame perfect equilibrium, in particular, it can be non convergent, but each of its choices is dictated by a subgame perfect equilibrium. Goodness can be considered as rationality in the choices of the agents. Reader may notice that goodness is of interest only in infinite games, because in a finite game, there is no difference between a good strategy and a subgame perfect equilibrium.

Divergent strategy profile

Another property of strategy profiles is divergence. In a divergent strategy profile, if one follows the choices of the agents, one never gets to a leaf, but, on the opposite, one runs forever. A divergent strategy profile is written ↑ s. The formal definition in Agda of divergence looks like this of convergence, but the test for divergence is based on a coinductive record and never hits a leaf, therefore there is no ↑Leaf case.

mutual data ↑_ : StratProf → Set where ↑Node : n : NodeS → •↑ n → ↑ (inj 2 n) record •↑ (n : NodeS) : Set where coinductive field is•↑ : ↑ (next n (ch n))
An escalation is a strategy profile which is both good and divergent.

Strategies with two agents and two choices

To build escalating strategy profiles, we consider the case of two agents Alice and Bob and two choices down and right. We take the natural numbers N as utility2 for both agents 3 and for the ≮ relation we take the relation defined as:

data _ _ : N → N → Set where z z : zero zero s z : n : N → suc n zero s s : n m : N → n m → suc n suc m
A utility assignment is for instance this which assigns 1 to Alice and 0 to Bob:

uA1B0 : AliceBob → N uA1B0 Alice = 1 uA1B0 Bob = 0
from which we can build a leaf strategy profile:

A1B0 : StratProf A1B0 = inj 1 uA1B0
which is convergent.

↓A1B0 : ↓ A1B0 ↓A1B0 = ↓Leaf
From the utility assignment which assigns 0 to Alice and 1 to Bob on can build the convergent strategy profile A0B1. Moreover, we build an infinite strategy AcBs, in which Alice continues always and Bob stops always: We notices that by mutual co-recursion, AcBs is defined together with an infinite strategy profile BsAc which starts with a node of which Bob is the agent.

A r 4 B d Ù Ù r 6 6 0, 1 1, 0 0, 1 1, 0 0, 1 1, 0 0, 1 1, 0 0, 1
We prove that •AcBs and Var•AcBs have the same game. Likewise we prove that AcBs is convergent i.e., ↓ AcBs. Those two facts are key steps in the proof that AcBs is subgame prefect equilibrium i.e., that ⇋ AcBs.

On the same paradigm we built a strategy profile AsBc in which A stops and B continues and which is proved to be convergent and to be a subgame perfect equilibrium.

We also build a strategy profile in which A and B both continue.

Conclusion

Since AcBc is good and divergent, AcBc is an escalation. Hence we proved formally the claim of the introduction, namely if agents assume that resource are infinite, escalation is rational.

In the current implementation, the type of choices is the same for all the agents. However, one may imagine that this type may depend on the agents. Making the type of choices depending on the agents is object of the current investigation.

 mutual data _ : (s : StratProf) → Set where Node : n : NodeS → • n → (inj 2 n) record • _ (n : NodeS) : Set where coinductive field is• :

 ag •AcBs = Alice ch •AcBs = right next •AcBs down = A0B1 next •AcBs right = BsAc BsAc : StratProf BsAc = inj 2 •BsAc •BsAc : NodeS ag •BsAc = Bob ch •BsAc = down next •BsAc down = A1B0 next •BsAc right = AcBs

 ag •AcBc = Alice ch •AcBc = right next •AcBc down = A0B1 next •AcBc right = BcAc BcAc : StratProf BcAc = inj 2 •BcAc •BcAc : NodeS ag •BcAc = Bob ch •BcAc = right next •BcAc down = A1B0 next •BcAc right = AcBcAcBs, AcBc and AsBc have the same game. Unlike AcBs and AsBc, the strategy profile AcBc is divergent, i.e., ↑ AcBc. Moreover AcBc is good which means AcBc.

 Notice the key word coinductive which shows that we deal with infinite games. The main concept in game theory is this of strategy profiles. Strategy profiles are like games with at each node a choice, which is the choice of the agent who continues the game. In Agda the sum comes with to unctions inj 1 and inj 2 . In our case, if u is a utility assignment of type ((a : Agent) → Utility a) then inj 1 u is a Game and n is a NodeG then inj 2 n is a Game. Strategy profiles are abbreviated StratProf.

	mutual
	Game = ((a : Agent) → Utility a) ⊎ NodeG
	record NodeG : Set where
	coinductive
	field
	ag : Agent
	next : Choice → Game
	mutual
	StratProf = ((a : Agent) → Utility a) ⊎ NodeS
	record NodeS : Set where
	coinductive
	field
	ag : Agent
	next : Choice → StratProf
	ch : Choice
	We can define the underlying game of a strategy profile
	game : (s : StratProf) → Game
	game (inj 1 u) = inj 1 u
	game (inj 2 n) = inj 2 (gameN n) where
	gameN : NodeS → NodeG
	NodeG.ag (gameN n) = ag n
	NodeG.next (gameN n) c = game (next n c)

 Those strategies are like infinite combs.With down one reaches always a leaf and with right one goes always to a new strategy profile, which is a node. There is a variant of the node •AcBs, in which the first choice of Alice is down instead of right.

	?>=< 89:; A	r	8 F ?>=< 89:; B	r	B B ?>=< 89:; A	r	8 F ?>=< 89:; B	r	B B ?>=< 89:; A	r	8 F ?>=< 89:; B	r	B B ?>=< 89:; A	r	8 F ?>=< 89:; B	r	B B ?>=< 89:; A	r	4 B	r	6 6
	d		d		d		d		d		d		d		d		d				
	Ù Ù		Õ		Ù Ù		Õ		Ù Ù		Õ		Ù Ù		Õ		Ù Ù				
	0, 1		1, 0		0, 1		1, 0		0, 1		1, 0		0, 1		1, 0		0, 1				
	Var•AcBs : NodeS																	
	ag Var•AcBs = Alice																
	ch Var•AcBs = down																
	next Var•AcBs down = A0B1															
	next Var•AcBs right = BsAc														
	?>=< 89:; A						?>=< 89:; B	r	B B ?>=< 89:; A	r	8 F ?>=< 89:; B	r	B B ?>=< 89:; A	r	8 F ?>=< 89:; B						
					d		d		d		d		d								
					Ù Ù		Õ		Ù Ù		Õ		Ù Ù								

r B B d Õ ?>=< 89:; B r B B d Õ ?>=< 89:; A r 8 F r B B d Õ ?>=< 89:;

https://github.com/PierreLescanne/DependentTypesForExtensiveGames-in-Agda

We could have taken a utility with only two values, but we feel that the reader is more acquainted with natural numbers for utilities.

In this case, the type of utility does not depend on the agent.