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Design of Slotless Permanent Magnet Machines by a Semi-Infinite Global Optimization Method

Keywords: Slotless permanent magnet machines, semiinfinite programming, analytical model, deterministic global optimization

An efficient way to design slotless permanent magnet machines is to associate analytical models with deterministic global optimization algorithms. In this paper, we propose to extend these design approaches in order to take into account the torque ripples. This involves the study of a semi-infinite optimization problem. To solve it, a discretization method associated with an exact Branch and Bound global optimization solver is developed. This new approach is validated on some numerical tests showing that efficient global optimal solutions with torque ripples about 5 % (instead of 30 %) can be so-obtained.

I. INTRODUCTION

In this work, we address the problem to design a slotless permanent magnet machine (SPMM) when constraints on the torque ripples are taken into account. Starting from an analytical model provided in [START_REF] Nogarède | Optimal Design of Permanent Magnet Machines Using an Analytical Field Modeling[END_REF] and [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF], an extension is provided here to model the dynamic torque including the torque ripples of such a machine with a three-phase sine wave current supply. Thus, the torque will vary respect to an angle which determines the rotor position. Considering a schedule of conditions, this design problem is formulated as a semiinfinite optimization program. Indeed, the constraints about the torque ripple is said infinite; i.e., it will generate an infinity of constraints depending continuously on the rotor position.

In this work, we will discuss a way to solve this kind of semi-infinite problem by discretizing the angle of the rotor position and by using COUENNE a deterministic global optimization solver [START_REF] Belotti | Branching and bounds tightening techniques for non-convex MINLP[END_REF] via the AMPL modelling language [START_REF] Fourer | AMPL: A Modeling Language for Mathematical Programming[END_REF].

In Section II, the analytical model of a SPMM will be presented including its formulation into a semi-infinite program. In Section III, our optimization method is discussed and some numerical results are provided showing that such a method is efficient to design SPMM when constraints on the torque ripples have to be taken into account.

II. MODEL AND FORMULATION INTO A SEMI-INFINITE OPTIMIZATION PROBLEM

The model of a SPMM provided in [START_REF] Nogarède | Optimal Design of Permanent Magnet Machines Using an Analytical Field Modeling[END_REF] has already been designed by deterministic global algorithm [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF] and this was improved in [START_REF] Messine | Deterministic global optimization using interval constraint propagation techniques[END_REF]. This analytical model only uses the average torque. Herein, a new analytical model is developed to include the torque ripples. The main difference is that harmonics, and their interaction, of the spatio-temporal distributions of stator sine wave currents and rotor square wave magnetic flux density are considered. Some parameters which are now more realistic have been changed from [START_REF] Nogarède | Optimal Design of Permanent Magnet Machines Using an Analytical Field Modeling[END_REF], [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF] and [START_REF] Messine | Deterministic global optimization using interval constraint propagation techniques[END_REF]. This section aims to present the geometry and assumptions leading to an enhanced model taking the torque ripples into account.

A. Geometry and assumptions

The model developed herein concerns an inner-rotor surface-mounted permanent magnet machine without slot. Numerous publications deal with the modelling of such electromechanical converters and propose a simplified sizing approach by considering a few geometric parameters, a required magnetic induction amplitude in the air gap and a net torque to reach as proposed in [START_REF] Nogarède | Optimal Design of Permanent Magnet Machines Using an Analytical Field Modeling[END_REF], [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF] and [START_REF] Slemon | On the Design of High-Performance Surface-Mounted PM Motors[END_REF]. More complex models have been also carried out to predict, for instance, the winding inductances and the armature reaction field of slotless permanent magnet brushless machines [START_REF] Atallah | Armature Reaction Field and Winding Inductances of Slotless Permanent-Magnet Brushless Machines[END_REF]. Some authors, like in [START_REF] Zhu | Improved Analytical Model for Predicting the Magnetic Field Distribution in Brushless Permanent-Magnet Machines[END_REF], beside expend great effort in generalizing the calculation of the magnetic field distribution in slotless permanent magnet machines to take into account, for example, eddy currents in conductive regions whose effect is important for the design of very high speed slotless permanent-magnet machines [START_REF] Pfister | Slotless Permanent-Magnet Machines: General Analytical Magnetic Field Calculation[END_REF]. However, the model addressed herein does not propose to use such general approach but rather a simplified modelling in order to formulate a simple optimization problem. Fig. 2: Angular distribution on a pole pair determined at stator bore of the radial component of the magnetic flux density produced by rotor magnets flowing in them. This distribution is defined by the sum on the stator phases of products between the space-dependent conductor distribution and the time-dependent current waveform for each phase so much that:

k S (θ, t) = m ν = 1 c Sν (θ)i Sν (t) (2) 
where c Sν (θ) is the conductor distribution of the phase ν whose a representation on a pole pair is pictured in Fig. 3 for all the phases of a three-phase multipolar machine. In this figure, a full pitch single layer winding and conductors of a same phase uniformly distributed on a winding angular opening θ c are assumed (C S is the amplitude expressed in conductor/m). Furthermore, i Sν (t) is the electric current of the phase ν supposed to be sine wave, for the sake of simplicity, so much that:

∀ ν ∈ {1, . . . , m} , i Sν (t) = ÎS cos α S (t) -(ν -1) 2π m (3) 
with ÎS the current amplitude, α S (t) = ω S t + β S where ω S and β S are the electric angular frequency and phase angle, respectively.
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Fig. 3: Conductor distributions on a pole pair for each phase of a three-phase multipolar synchronous machine Consequently, by applying the Lorentz force on stator conductors and owing to the Newton's third law, the torque exerted on the rotor is defined by the following angular integral such as:

Γ em (t) = -p D 2 2λ (D + E) θp 0 k S (θ, t)B a (θ, t)dθ (4) 
From the definition (2), the waveforms (3) and Fourier series of both distributions drawn in Fig. 2 and Fig. 3, it is possible to compute the previous integral. Hence, under both further conditions of synchronism (ω S = pΩ) and maximal torque (β S = π/2), the dynamic torque ( 4) is rewritten as follows:

Γ max (t) = Γ max 1 + r Γ (t) (5) 
where the maximal net torque is:

Γ max = πD 2 2λ (D + E) 2k r EE ch sinc β c π 2m • • • × β a B e (1 -k f ) sinc β a π 2 ,
where sinc is the unnormalized sine function defined for x = 0 by sinc(x) = sin(x)/x and k f is a semi-empiric magnetic leakage coefficient. The latter can be expressed only for slotless machines with rectangular waveform surfacemounted permanent magnets by the following formula (see [START_REF] Nogarède | Étude de moteurs sans encoches à aimants permanents de forte puissance à basse vitesse[END_REF], Chap. I, § I.2.2.2, p. 17):

k f = 3 2 pβ a e + E D (6) 
The normalized ripples r Γ (t) are also defined as follows:

r Γ (t) = +∞ q = 1 (-1) mq sinc β c π 2m sinc β a π 2 cos(2mqpΩt) • • • × sinc (2mq + 1) β c π 2m sinc (2mq + 1) β a π 2 • • • + sinc (2mq -1) β c π 2m sinc (2mq -1) β a π 2 .

C. Definition of the semi-infinite optimization problem

The eleven variables as well as their variation boundaries of the semi-infinite optimization problem are those gathered in Tab. I. Let denote ∆ = (D, λ, . . . , p) the vector of variables and S ∆ = [0.01 , 0.5] × [1 , 2.5] × . . . × {1, . . . , 10} the search domain. The idea of this model is to include within a sizing optimization problem based on the minimization of the magnet volume, a continuous, i.e. infinite, constraint which considers a limitation on the torque ripples yielding a semi-infinite program. Here, for simplification purposes, the electric angle α e = pΩt will be used amounting to define the torque ripples through the new function r Γ (α e , ∆) = r Γ ( αe pΩ , ∆). Thus, the semi-infinite optimization problem (P) is:

(P)                                                    min ∆∈S∆ V m = πβ a D λ l a (D -2e -l a ) × 10 6 u.c. Γ max (∆) = Γ r E ch = k r EJ 2 Cu B e = 2J a l a D ln D + 2E D -2(l a + e) k f = 3 2 pβ a e + E D C = β a πD 4p B e B Fe r s + C + l a + e ≤ D/2 |r Γ (α e , ∆)| ≤ l r , ∀ α e ∈ [0 , 2π[
where l r ∈ [0 , 1] is a percentage to limit the torque ripples and V m is the magnet volume expressed in cm 3 . This problem also contains an equality constraint on the thickness C of both stator yoke and rotor core. It can be expressed from the iron magnetic induction B Fe by using Gauss's law for magnetism between the rotor core and a magnet. Note that p is an integer variables and thus, problem (P) is a semi-infinite Mixed-Integer Non-Linear Program (MINLP).

III. NUMERICAL RESULTS OF DESIGN

In this approach, to tackle the semi-infinite problem (P), the angle α e is discretized into n values. This provides 2n inequality constraints, which means that α

[j] e = 2π(j-1) n with j ∈ {1, . . . , n}. It is a simple efficient way to convert the semi-infinite problem (P) into a MINLP one. Of course, this MINLP is not equivalent to problem (P), it will just numerically approximate it depending on n (the number of discretization steps). Let denote by ( P n ) this discretization problem deriving from the semi-infinite problem (P)In problem ( P n ), the semi-infinite constraint |r Γ (α e , ∆)|≤ l r , ∀ α e ∈ [0 , 2π[ is replaced by the 2n inequality constraints -l r ≤ r Γ (α

[j]
e , ∆) ≤ l r , ∀ j ∈ {1, . . . , n}. Remark that increasing n will generate thinner approximations of problem (P). Meanwhile, it will also provide a huge number of inequality constraints which could be difficult to manage by optimization softwares.

In this paper, COUENNE, which is a branch-and-bound based deterministic global optimization MINLP software, is used [START_REF] Belotti | Branching and bounds tightening techniques for non-convex MINLP[END_REF]. COUENNE is carried out via the AMPL environment [START_REF] Fourer | AMPL: A Modeling Language for Mathematical Programming[END_REF] to describe the discretized problem ( P n ). In the following, the listings are provided and they present the entire AMPL code; note that these codes are really easy to read and to develop. Indeed, these AMPL codes are quite directly derived from problem ( P n ); the most difficult parts are the definitions of the constraints about the torque ripples. They are detailed at the end of Listing 1 in the constraints denoted by C_O1 and C_O2 which depends on the set v= {1, • • • , n}. # c o n s t r a i n t s on t h e t o r q u e r i p p l e s param N h = 5 ; s e t s = 1 . . N h ; param n = 1 0 ; param l r = 0 . 0 5 ; s e t v = 1 . . n ; s u b j e c t t o C O1{ j i n v} : sum{q i n s } ( 1 ) ˆ( 3 * q ) * ( s i n ( ( 6 * q + 1 ) * b e t a a * p i / 2 ) * s i n ( ( 6 * q + 1 ) * b e t a c * p i / 6 ) / ( ( 6 * q + 1 ) ˆ2 * s i n ( b e t a a * p i / 2 ) * s i n ( b e t a c * p i / 6 ) ) + s i n ( ( 6 * q 1 ) * b e t a a * p i / 2 ) * s i n ( ( 6 * q 1 ) * b e t a c * p i / 6 ) / ( ( 6 * q 1 ) ˆ2 * s i n ( b e t a a * p i / 2 ) * s i n ( b e t a c * p i / 6 ) ) ) * c o s ( 6 * q * ( 2 * p i * ( j 1 ) / n ) ) <= l r ; s u b j e c t t o C O2{ j i n v} : sum{q i n s } ( 1 ) ˆ( 3 * q ) * ( s i n ( ( 6 * q + 1 ) * b e t a * p i / 2 ) . . . >= l r ;

Listing 2: AMPL script for solving problem ( P n ).

r e s e t ; In Tab. III, some results solving problem (P) by approximating it by problem ( P n ) are presented. In the first row of Tab. III, "w/" or "w/o" denote the fact that torque ripples ("TR") contraints are taken into account or not. For this study, l r is fixed to 5 % and the infinite sum to compute r Γ is limited to the first five harmonics or the first ten harmonics as mentioned by the value N h in the second row of Tab. III. The remaining rows in this table are respectively the minimal magnet volume in cm 3 , the maximal absolute value of the ripples computed using n = 360 discretization steps (1 step by degree) and N h = 100 harmonics (i.e., 100 terms of the sum), the variables corresponding to the optimal solution and the CPU-time in seconds. Moreover, all the computations are carried out on a MacBook Pro LapTop with a 2.8 GHz Intel Core i7 processor and 16 GB of memory. First, in Tab. III, it can be noticed that if the magnet volume is minimized without taking care about the torque ripples, the optimal design yields a very low magnet volume but with about 33 % of torque ripples. Still according to this table, the branch-and-bound based discretization method addressed herein can find the global optimal design taking into account a limitation on the torque ripples (note that the magnet volume significantly increases ). Let remark that when n increases up to 100 (yielding 200 inequality constraints), the CPU-time increases as expected so much. Thus, the difficulty to solve the problem ( P n ) by COUENNE appears to be not so linked to n and it seems to be possible for a branchand-bound code like COUENNE to manage a great number of constraints (n sufficiently big). Nevertheless, increasing n does not diminish the accuracy on the torque ripples which are about 5.7 % for n = 10, 50 and 100. Furthermore, note that when n is a multiple of 2m = 6 here (stemming from the cosinus in the expression of r Γ ), i.e. = 18 in Tab. III, errors are made on the torque ripples (about 7 %)as proposed in Fig. 5.

# ############ Load t h e model ############### model F u l l M o d e l . mod ; # ############ C h o i c e o f t
An idea to improve the accuracy of such a method is to increase the number of harmonics (N h = 10) taken in sum (see last column in Tab. III). Thus, the maximal torque ripple is now about 5.3 % instead of 5.8 % but this needs a strong computational effort. Moreover, the solution is globally the same; note that the MINLP problem is much more difficult to solve for COUENNE involving the sum of sinus and cosinus and therefore the CPU-time is 7.5 time greater. The differences between the torque ripples are plotted in Fig. 7 and Fig. 8 and it can be seen that the maximum value of the torque ripples is not obtained with 5 harmonics. It is almost reached with 10 harmonics and that makes the differences obtained on the global optimal solutions (see the two last columns of Tab. III). Note finally that using 5 harmonics and n = 10 appears to be sufficient to obtain a quite good solutionowing to a point of discretization closely matching a minimal torque value despite an unsatisfactory approximation of torque ripples. Therefore, it appears in Fig. 4 up to Fig. 8 that it is interesting to solve problem ( P n ) with n sufficiently big (n = 100 for example) because, even for n = 50, it remains some significant errors (see Fig. 6). 

IV. CONCLUSION & DISCUSSIONS

In this paper, a new optimization method is proposed to design SPMM taking into account limitations on the torque ripples. The design method addressed herein is based on the combination of a semi-infinite formulation which uses a SPMM analytical model and a deterministic global optimization MINLP code. The numerical results showed that significant torque ripples can occur in global optimal design solutions (about 33 %) when the torque ripples contraints are not taken into account. Thus, by considering constraints on the torque ripples, this yields global optimal solutions where the torque ripples are strongly reduced (less than 6 %) by using In Listing 2, the COUENNE solver is chosen, it could be replaced by another one as IPOPT or SNOPT which are local solvers. However, these two local solvers cannot take into account the fact that p is an integer variable and they will consider it as a continuous code. In Listing 2, by replacing couenne by ipopt similar results were obtained mainly with p = 1, and by replacing couenne by snopt no solution is found. Of course these two solvers mainly depends on the starting points provided by the user; see Listing 1. In this study, the optimization routine fmincon of MatLab was also tested using a multistart based algorithm (with 1000 starting points randomly generated). It appears that only the optimization algorithm based on the interiorpoint method provides similar results than those presented in Tab. III. Note that the other algorithms sqp, active-set, reflective-trust-region have difficulties to converge. This is mainly due to the fact that using the discretization step to take into account semi-infinite constraints generates a great number of non-linear and non-convex inequality constraints which are difficult to be be considered by sqp or active-set based optimization algorithms (that is also why SNOPT did not work using AMPL). It can be noted that the local optimization algorithms based on an interior-point method present some effectiveness in solving those kind of semi-infinite problems using a discretization step. In MatLab, it exists a routine fseminf which can solve semi-infinite problems such as problem (P). fseminf routine works by interpolating (in the iterations of a local optimization solver) the semi-infinite constraints without needing to entirely discretize it. That is an interesting way to solve efficiently semi-infinite NLP by satisfying precisely the semi-infinite constraints (note that in Tab. III, the semi-infinite constraint is always a little bit violated). However, fseminf routine is based on a sqp based algorithm which appears to never converge to solve problem ( P n ) and thus, unfortunately fseminf routine never converges to a solution.

Listing 1 :

 1 AMPL model of problem ( P n ): Full Model.mod # D e f i n i t i o n s o f t h e m a c h i n e p a r a m e t e r s param k r : = 0 . 5 ; param B Fe : = 1 . 5 ; param E ch : = 1 e11 ; param C em : = 1 0 ; param J a : = 0 . 9 ; param p i : = 3 . 1 4 1 5 9 2 6 ; param b e t a c : = 0 . 9 ; param r s m i n : = 0 . 0 1 ; # V a r i a b l e s : b o u n d s and a s t a r t i n g p o i n t ( f o r l o c a l m e t h o d s ) var D >=0.01 <=0.5 : = 0 . 0 1 ; var lambda >=1 <=2.5 : = 1 ; var l a >=0.003 <=0.05 : = 0 . 0 0 3 ; var E >=0.001 <=0.05 : = 0 . 0 0 1 ; var C >=0.001 <=0.05 : = 0 . 0 0 1 ; var b e t a a >=0.1 <=1 : = 0 . 8 ; var B e >=0.1 <=1 : = 0 . 1 ; var J Cu >=1e5 <=1e7 : = 1 e5 ; var k f >=0.01 <=0.3 : = 0 . 0 1 ; var e >=0.001 <=0.005 : = 0 . 0 0 1 ; var p >= 1 <=10 : = 5 i n t e g e r ; # f u n c t i o n t o m i n i m i z e minimize Va : p i * b e t a a * l a * (D / lambda ) * ( D 2 * e l a ) * 1 0 ˆ6 ; # c o n s t r a i n t s s u b j e c t t o C1 : C em = ( 6 * s q r t ( 2 ) / ( p i * lambda * b e t a c ) ) * Dˆ2 * B e * ( 1 k f ) * (D+E ) * s q r t ( k r * E * E ch ) * s i n ( b e t a a * p i / 2 ) * s i n ( b e t a c * p i / 6 ) ; s u b j e c t t o C2 : B e = 2 * l a * J a / ( D * l o g ( ( D+2 * E ) / ( D 2 * l a 2 * e ) ) ) ; s u b j e c t t o C3 : C = b e t a a * B e * p i * D/ ( 4 * B Fe * p ) ; s u b j e c t t o C5 : C + l a + e + r s m i n <= (D / 2 ) ; s u b j e c t t o C6 : k f = ( 3 / 2 ) * p * b e t a a * ( e+E ) / D ; s u b j e c t t o C7 : E ch = k r * E * J Cu ˆ2 ;

  h e s o l v e r ######## o p t i o n s o l v e r c o u e n n e ; s o l v e ; # s o l v e t h e p r o b l e m

Fig. 4 : 5 Fig. 5 :

 455 Fig. 4: Torque ripples with n = 10 and N h = 5

Fig. 6 : 5 Fig. 7 :

 657 Fig. 6: Torque ripples with n = 50 and N h = 5

Fig. 8 :

 8 Fig. 8: Torque ripples with n = 100 and N h = 10

TABLE III :

 III Results from the sizing of a slotless permanent magnet machine based on the minimization of magnet volume including a limitation of torque ripples

	TR	w/o	w/	w/	w/	w/	w/
	(n, N h )	×	(10, 5)	(18, 5)	(50, 5)	(100, 5)	(100, 10)
	Vm	30.996	51.434	51.649	49.086	49.200	49.460
	[cm 3 ]						
	|rΓ|max	0.3314	0.0574	0.0729	0.0574	0.0576	0.0528
	D [mm]	290.38	196.35	201.69	191.90	191.58	190.87
	E [mm]	4.2048	4.8584	3.2508	4.5678	4.5673	4.5661
	e [mm]	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	la [mm]	3.0000	3.0007	3.0000	3.0000	3.0000	3.0000
	C [mm]	1.2514	2.2839	1.5027	11.521	11.569	11.676
	λ [-]	2.5000	2.4999	2.5000	2.5000	2.5000	2.5000
	βa [%]	10.000	36.303	34.534	36.303	36.510	36.980
	Be [T]	0.3292	0.3060	0.3708	0.3159	0.3159	0.3159
	JCu	6.8967	6.4160	7.8437	6.6170	6.6173	6.6182
	[A/mm 2 ]						
	k f [%]	1.0754	8.1238	9.8255	1.5800	1.5914	1.6176
	p [-]	4	5	9	1	1	1
	Time [s]	366	1232	184	164	358	2663