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h i g h l i g h t s
� Mg17Al12 corrodes in a 3.5 wt% aqueous solution of NaCl with a corrosion current density of 5.3 mA/cm2.

� Mg17Al12 can act as cathode in Mg Al alloy with an OCP of 1.2 V/SCE.

� Electrochemical impedance spectroscopy can explain the effect of ball milling additives.

� Ball milling with MgCl2 increases the corrosion current density by 22 times.
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a b s t r a c t

The corrosion behavior of pure Mg17Al12 and the effect of ball milling in presence of ad

ditives (i.e. graphite (G) and magnesium chloride (MgCl2)) are evaluated in 3.5 wt% NaCl

aqueous solution using electrochemical polarization and impedance measurements. Pure

Mg17Al12 and milled Mg17Al12 without additives and with MgCl2 present an open current

potential (OCP) of 1.2 V/SCE while Mg17Al12 þ G shows a slightly higher OCP (þ10%

maximum). Mg17Al12 corrodes with low kinetics and an increase of corrosion rate for the

milled Mg17Al12 is observed. The corrosion current densities (Jcorr) derived from the Tafel

plots, exhibit their corrosion reactivity as follow: Mg17Al12 < Mg17Al12 5h < Mg17Al12 þ G

5h <Mg17Al12 þMgCl2 5h. Electrochemical impedance spectroscopy (EIS) results are in good

agreement with the measured Jcorr. Randles circuit models are established for all samples

to explain their surface behavior in the aqueous NaCl solution. The variation of the fitted

parameters is attributed either to the effect of ball milling or to the effect of the additive.

Our results are helpful in elucidating the effect of ball milling and the additives.
nrs.fr (J. L. Bobet).



Introduction

Magnesium alloys have become an important light weighting

structural materials in various fields, such as electronic,

automotive and aircraft industries, due to their high strength/

weight ratios, low density, good conductivity and easy appli

cation recycling [1e5]. In spite of these superior properties,

magnesium alloys are easily corroded in a corrosive environ

ment, because of the high reactivity of Mg [6e10] and the

instability of the protective film formed on the alloy surfaces

[11]. Poor corrosion resistance of magnesium alloys has been

one of the major obstacles to their extensive applications as

structural materials. Among the magnesium alloys, AZ series

magnesium alloys (i.e. MgeAleZn alloys) are the most suc

cessfully used commercial alloys in the manufacturing in

dustry. Nevertheless, their application is still limited due to

their lower corrosion resistance compared to that of

aluminum alloys.

According to ASTM coding [12], these alloysmainly contain

e apart from MgeAl and Zn where Al can form with Mg the

intermetallic Mg17Al12 (commonly named ß phase). The

corrosion properties of the MgeAleZn alloys have been pre

viously studied by changing the stoichiometry of the alloying

elements [13e15] to get better corrosion resistance. Never

theless, for most of these alloys, other phases precipitate and

can play an important role in the corrosion procedure of Mg

substrate in various manner. Therefore, understanding the

mechanism of the corrosion induced by theses other phases is

of great importance. The hydrolysis of magnesium based

materials is an electrochemical reaction where Mg is

oxidized to Mg2þ and water is reduced to produce H2 gas [16].

Consequently, bad corrosion resistance lead to high produc

tion of hydrogen and using MgeAl based wastes materials to

produce H2 by the hydrolysis reaction can offer a second life to

these wastes.

The corrosion behavior of Mg alloys is mainly related to

their microstructure. For MgeAleZn alloys, two binary inter

metallic compounds MgZn and Mg17Al12, have been reported

for their influence on the corrosion behavior. The b interme

tallic (Mg17Al12), which precipitates at grain boundaries, is

formed inMg alloys containingmore than 2% Al [17,18] and its

morphology depends upon the volume fraction of Al

[14,19,20], the solidification rate of themelt [21] and the minor

alloying additions [22e26]. Several studies have focused on

the corrosion of AZ series to better understand their corrosion

mechanisms [14,17,19,27e31]. However, the controversial

views on the role of Al in the corrosion of these alloys still exist

depending on the amount of the b phase and so of the surface

contact between the two phases. On one hand, the corrosion

resistance of the magnesium alloy improves when aluminum

content reaches 8%e9% due to protective barrier effect of

Mg17Al12 promoted by Al content [27,32]. On the other hand,

the intermetallic phase accelerates the overall corrosion of the

alloy when aluminum content is about 2%e3% due to amicro

galvanic cell system established between Mg and Mg17Al12
[14,17,30,31]. Cheng et al. [17] showed that the galvanic couples

formed by the second phase particles and the matrix are the

main source of the localized corrosion of magnesium alloys.

Also, the microscopic corrosion morphology of the alloys had
strong relationship with the property and the distribution of

the second phase particles. The corrosion resistance of AZ91

was reported to be lower than that of AZ31 due to the differ

ence in aluminum content between the two alloys (inducing

consequently a different of Mg17Al12 amount) where Mg17Al12
can form micro galvanic cell with the Mg matrix. Feng et al.

[33] showed that ß phase precipitates both along the grain

boundaries and also in the Mg matrix. This last phase is

playing the role of a cathodic phase, and then improves the

corrosion dissolution of Mg substrate. Therefore, the corro

sion close to the Mg matrix is strongly influence by the shape

of this phase. In fact, the larger surface energy caused by the

shape of the second phase, the higher corrosion reactivity and

corrosion rate of the nearby Mg substrate. Zhao et al. [34]

stated that Mg17Al12 can act as a corrosion barrier and hinder

the corrosion propagation in the Mg matrix. So, the b phase

has two roles: (i) a barrier when its fraction is relatively high

and (ii) a galvanic cathode when it precipitates in the Mg

matrix with a small volume fraction.

Our prior work [35] showed that pure as cast Mg17Al12
barely reacts with 3.5 wt% NaCl aqueous solution. We have

shown that, after 1h of reaction, it generates only 6% of its

theoretical H2 generation capacity. Moreover, a minimum of

5 h duration ball milling duration is needed to decrease suf

ficiently its crystallites and particles size enhancing its hy

drolysis performance. Ball milling with relatively cheap

additives (i.e. graphite (G), sodium chloride (NaCl), magnesium

chloride (MgCl2) and aluminum chloride (AlCl3)) was found to

be beneficial on the hydrolysis of Mg17Al12. Although, the

simultaneous addition of graphite andAlCl3 demonstrated the

highest hydrolysis performances (i.e. 16% of the theoretical H2

generation after 1h).

In this work, corrosion behavior of pure Mg17Al12, Mg17Al12
ball milled for 5h andMg17Al12 ball milled for 5h in presence of

graphite (G) or magnesium chloride (MgCl2) were studied by

electrochemical measurements for improving hydrogen gen

eration (i.e. corrosion reaction) of Mg based wastes materials.

Our results clarify the barrier effect of Mg17Al12 during the

corrosion AZ alloys and show that ball milling enhances the

corrosion of Mg17Al12. Randles circuit for pure Mg17Al12 was

established in order to highlight the role of ball milling and/or

of additives (i.e. according to the variation of the calculated

parameters).
Experimental procedure

The preparation details of all the pure materials and mixtures

are detailed in Ref. [35]. Mg17Al12 þ X 5h (X milling additive,

i.e. G and MgCl2) refers to Mg17Al12 ball milled with 5 wt% of

additive X for 5h at 250 rpm. In addition, as always, instead of

using real seawater, we used 3.5 wt% NaCl solution, which

was prepared from analytical grade reagent and deionized

water.

Open circuit potential (OCP), potentiodynamic polarization

curve, and electrochemical impedance spectrum (EIS) were

determined, using an electrochemical workstation (Ametek

VersaSTAT 3F type) at room temperature in 3.5 wt% NaCl so

lution with a classical three electrode cell setup [described in

Ref. [36]]. The counter electrode was a platinum foil and the



reference electrode was a saturated calomel electrode (SCE).

The working electrode was a pellet made by cold pressing of

300mg of our prepared powder in a 10mmdiameter stainless

steel cylindrical die. A load of 5500 kg/cm2 was applied during

3 min leading to a nearly fully dense pellet. The capsule was

sealed by epoxy with an exposed area of approximately

0.80 cm2 ± 0.20 cm2 (measured using ImageJ software) andwas

wet ground with ethanol to a 4000 grit finish. OCP and

potentiodynamic polarization tests were performed following

the procedure reported in Ref. [36]. The EIS measurements

were carried out over a frequency ranging from 100 kHz to

1 Hz with a 10 mV amplitude sinusoidal voltage at OCP. The

EIS results were fitted using the commercial ZView 3.5f soft

ware. The fitting errors of the parameters are less than 5%. For

better reproducibility, all above electrochemical measure

ments were repeated at least twice.

Note that in the case of Mg17Al12 ball milled 5h with AlCl3,

NaCl and G þ AlCl3, the anodic polarization tests could not be

established because of the continuous chemical modification

of both the materials surface and the electrolyte near the

surface. This avoids the attenuation of a stable OCP required

for both the anodic polarization tests and electrochemical

impedance measurements.
Results and discussion

Open current potential

The Open Circuit Potential (OCP) variations as a function of

time were recorded for pure Mg17Al12, Mg17Al12 5h, Mg17Al12-
þ G 5h and Mg17Al12 þ MgCl2 5h materials (Fig. 1).

The corrosion potentials were calculated from OCP mea

surements by averaging OCP values from 35 min to 60 min of

immersion where the potential was the most stable. From

these experimental results, it is found that pure Mg17Al12
shows slower stabilization kinetics as compared to the milled

materials (e.g. the variation of the potential is negligible after

10 min of immersion) and the value of Ecorr is of the order of
Fig. 1 e OCP measurement with immerssion time, as a

function of time for Mg17Al12, Mg17Al12 5h, Mg17Al12 þ G 5h

and Mg17Al12 þ MgCl2 5h in 3.5 wt% NaCl aqueous

solution.
1.20 ± 0.05 V/SCE (Table 1). Our results confirm the galvanic

coupling between Mg and Mg17Al12 since Mg17Al12 is more

noble than Mg and the difference of corrosion potential is

0.45 V (OCP (Mg) 1.65 V/SCE [36]), which exceeds the 0.25 V

required for galvanic coupling [36]. Thus, this potential dif

ference accelerates the corrosion of Mg in MgeAl alloys,

where Mg17Al12 acts as cathode and Mg as anode [37].

Lunder et al. [27] reported that pure Mg17Al12 has an OCP of

1.20 V/SCE in 5 wt% NaCl. According to Pourbaix diagram of

the magnesium water system [38], a hydroxide layer is

formed on the surface of the alloys which prevents the anodic

dissolution of themetal. It should be noted that the compound

Mg(OH)2 is, thermodynamically, the most stable formed

compound during the immersion in water (or “model”

seawater) even at the nanometric size [39]. With free poten

tial, the anodic and cathodic reactions decrease as a function

of the immersion time leading to the formation of a protective

film on the metal surface. For pure Mg17Al12, the potential

drifted from an initial value of 1.65 V/SCE up to about 1.2 V/

SCE, suggests gradual passivation of the surface. Thus, the

stabilization kinetics of the free potential may be indicative of

the corrosion rate e.g. the passive layer is formed faster due to

an increase in the corrosion kinetics. Note that in the case of

Mg17Al12 þ G 5h, the value of the OCP slightly increases

( 1.08 V/SCE) due to galvanic coupling between Mg17Al12 and

graphite.

Corrosion rate

Anodic polarisation is a useful tool to characterise the disso

lution of Mg materials as a function of the applied potential

[40]. The corrosion current density (Jcorr) of each material was

determined from the anodic polarization curves (Fig. 2) and

the Tafel plot [40]. The anodic polarisation curve of pure

Mg17Al12 demonstrates the formation of a passive film that

inhibits the corrosion from 20mV/OCP up to 200mV/OCP. The

same behaviour (i.e. passivation layer formation) was

observed previously for AZ alloys and Mg [41]. Our prior work

[42] proved experimentally the formation of a MgO/Mg(OH)2
layer on Mg17Al12 surface at 20 mV/OCP and the breakdown of

this layer promoting the appearance of freshMg as the applied

potentiel increases. Thus, the “barrier” effect of Mg17Al12
during the corrosion of MgeAl alloys can be explained by the

large difference in the corrosion kinetics between Mg and

Mg17Al12 (558 mA/cm2 [36] vs 5.3 mA/cm2 respectively).

The reactivity, in term of corrosion kinetics, varies in the

order: Mg17Al12 þ MgCl2 5h > Mg17Al12 þ G 5h > Mg17Al12
5h > Mg17Al12 (Table 1 and Fig. 2). These results are in total

agreement with those reported in our previous work [35].

Referring to Fig. 2, the passivity plateau increases in the order

Mg17Al12 þ MgCl2 5h < Mg17Al12 5h < Mg17Al12 where in the

case of Mg17Al12 þ G 5h passivation phenomenon is less sig

nificant. This may be attributed to the formation of a fine

graphite layer which prevents the adhesion of the formed

MgO/Mg(OH)2 on the surface [43,44].

Ball milling of Mg17Al12 allow increasing the number of

microstructural defects and decreasing the particles size (i.e.

the grain boundaries density is then increasing a lot) [35]. This

play a concomitant role to enhance the pitting corrosion by

the localized enrichment in chloride [45,46]. This is also





Fig. 3 e Nyquist (left) and Bode (right) plots for: (a) Mg17Al12, (b) Mg17Al12 5h, (c) Mg17Al12 þ G 5h and (d) Mg17Al12 þ MgCl2 5h.





3637.2 U/cm2 and from 2.3 s to 8.4 s respectively, Cf Table 2),

this indicates the thickening of the surface passivation layer.

For both Mg17Al12 þ G 5h and Mg17Al12 þ MgCl2 5h, we

observe a decrease of Rw and Tw which indicates for both a

decrease of the thickness of the passivation layer. Neverthe

less, the origin of the decrease is different. For Mg17Al12 þ G 5h

it is attributed to the formation of a graphite layer preventing

the adhesion of Mg(OH)2 [42,43] and thus inhibiting the

thickening of the passivation layer on the surface. For Mg17-
Al12 þ MgCl2 5h, it is attributed to the dissolution of the

passivation layer formed due to the exothermic dissolution of

MgCl2.
Conclusion

This work assessed the electrochemical behavior of interme

tallic Mg17Al12 in 3.5 wt% NaCl aqueous solution. The OCP of

Mg17Al12 intermetallic ismore than 450mVhigher than that of

pure magnesium, which verifies the galvanic coupling be

tween Mg and Mg17Al12 in MgeAl alloys. Moreover, the “bar

rier” effect, reported in the literature, can be clearly explained

by the difference in corrosion rate between the various com

ponents of the alloys (e.g. Mg and Mg17Al12). Ball milling im

proves the corrosion of Mg17Al12 (anodic reaction) and

simultaneously the hydrogen production (cathodic reaction).

MgCl2 addition provides the highest corrosion rate due to the

exothermic dissolution of MgCl2 in the medium that favor the

destruction of the passivation layer.

The electrochemical properties of the materials during

immersion in NaCl solution was investigated by electro

chemical impedance spectroscopy. The proposed equivalent

circuit, based on EIS measurements and fitting, explains the

corrosionmechanism of the intermetallic in the aqueous NaCl

solution and the role of additives. Corrosion of pure Mg17Al12
is limited by a charge transfermechanism (i.e. electrochemical

reaction) indicating that the corrosion of the intermetallic is

relatively low. From the general equivalent circuit and based

on the fitted parameters, a sub model was established, by

neglecting the contribution of R and the CPE, in order to

qualify the effect of additives. For the intermetallic milled

with and without additives (i.e. graphite and MgCl2), the

corrosion rate increases and the corrosion mechanism is

diffusive. When corrosion rate increases, the charge transfer

resistance decreases and become negligible which justify the

transition from a charge transfer limited mechanism to a

diffusive mechanism. The values of the Warburg parameters

(i.e. Rw and Tw), from the sub model 1, allow the clarification

of the role of each additive:

(i) the formation of a graphite layer during ball milling of

Mg17Al12 (this phenomenon is identified owing to the

diffusion through a porous film on the surface) and

(ii) the dissolution of the passivation layer formed

following the exothermic dissolution of MgCl2 (this

phenomenon is identified owing to the thinning of the

passivation layer).

We have shown that electrochemical impedance spec

troscopy is an effective tool for studying the corrosion of
milled materials. Moreover, it shows the advantage of

explaining the effect of ball milling additives, especially those

based on Mg when compared to anodic polarization technic.
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