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We study the problem of finding the global optimum of a nonlinear real function over an

interval box by means of complete search techniques, namely interval branch-and-bound
algorithms. Such an algorithm typically generates a tree of boxes from the initial box

by alternating branching steps and contraction steps in order to remove non optimal

sub-boxes. In this paper, we introduce a new contraction method that is designed to
handle the boundary of the initial box where a minimizer may not be a stationary

point. This method exploits the first-order optimality conditions and we show that it

subsumes the classical monotonicity test based on interval arithmetic. A new branch-and-
bound algorithm has been implemented in the interval solver Realpaver. An extensive

experimental study based on a set of standard benchmarks is presented.

Keywords: Bound-constrained global optimization; Continuous optimization; Branch-
and-bound algorithm; Interval methods; Monotonicity test; Constraint propagation

1. Introduction

Bound-constrained global optimization is the problem of finding the global optimum

of a nonlinear real function over an interval box. This problem can be defined as

minimize f(x)

subject to l ≤ x ≤ u (1)

where x = (x1, . . . , xn) is a vector of real variables,

Ω = [l1, u1]× · · · × [ln, un] ⊆ Rn (2)

is an interval box and f : Ω → R is a nonlinear differentiable real function. Every

inequality li ≤ xi or xi ≤ ui is a bound constraint. A global minimizer is a point

x∗ ∈ Ω such that f(x∗) ≤ f(x) for all x ∈ Ω. The value f∗ = f(x∗) is the global

∗LS2N, Faculté des sciences et techniques, 2 chemin de la Houssinière, BP 92208, 44322 Nantes
Cedex 3, France
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minimum of f over Ω. Global optimization is a hard task in general since the

function may be non-convex with many local optima.

The bound-constrained global optimization problem can be rigorously solved by

interval branch-and-bound algorithms that are designed to calculate an enclosure

[L,U ] of the global optimum at a given tolerance. Such an algorithm recursively

splits and reduces the initial box Ω and every sub-box is processed by various

interval techniques. A common approach consists of solving the system of equations

∇f(x) = 0 that must be verified by every stationary point of f . The monotonicity

test implemented in the pioneering Moore-Skelboe algorithm [22, 32] tries to prove

that there is no stationary point in a given box. Moreover, it is possible to reduce a

box with respect to these equations by means of the interval Newton method [13],

constraint propagation [15] or a modified interval Newton method that solves a

convex relaxation using linear programming techniques [19]. It is also common to

refine the upper bound U of the global optimum by means of local optimization

techniques [14]. Moreover, it is useful to consider another constraint f(x) ≤ U

during the constraint propagation process [15]. Finally, efficient branching strategies

may accelerate the overall convergence of the algorithm [8]. These techniques are

reviewed in [23,27].

Boundary boxes cannot be handled like interior boxes since a minimizer located

on the boundary of Ω may not be stationary. It follows that the system of equations

∇f(x) = 0 does not hold in general, and specific techniques have been designed.

First of all, the monotonicity test can be used to fix the value of a variable if the

function is proved to be monotone in some coordinate direction. However, even

if it is monotone, this test may be weak due the inherent pessimism of interval

computations. As a consequence, it may be hard to remove the boundary of Ω for

large boxes during the early stages of the search process. More recently, Puranik

and Sahinidis [26] proposed to calculate an enclosure of the set of stationary points

in a given boundary box, i.e., to solve the system of equations ∇f(x) = 0, and

to check the initial bounds following a probing strategy. This efficient strategy has

been implemented in the famous global solver BARON [33].

In this paper, we propose a new interval contraction method for processing

boundary boxes in an interval branch-and-bound algorithm. As done in [26], the

first step consists of solving the system of equations ∇f(x) = 0. We propose here

to adapt the solving technique to the problem difficulty and we have implemented

different interval-based consistency techniques [4, 5, 18]. In the second step, an ac-

curate interval-based monotonicity test favorably replaces the probing strategy. An

implementation has been done in the interval solver Realpaver [12]. An experimental

study shows that several difficult problems become solvable in reasonable time. This

paper is an extension of work presented in [11]. In particular, we have implemented

and tested new solving strategies and the set of benchmarks has been extended,

including 4 times more problems and bigger problems with at most 104 variables.

As a consequence, the experimental study is much stronger. Last but not least, the

related work is more detailed.
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The rest of this paper is organized as follows. Section 2 introduces the interval

branch-and-bound framework. The main contribution is described in Section 3. The

experimental results are presented in Section 4, followed by a conclusion.

2. Interval branch-and-contract algorithms

2.1. Interval arithmetic

An interval X = [a, b] represents the set of real numbers {x : a ≤ x ≤ b}. An

interval [a, b] is empty if we have a > b. We define the following operations given a

non empty interval.

i. widX = (b− a) (width)

ii. radX = (b− a)/2 (radius)

iii. midX = (b+ a)/2 (midpoint)

Let I denote the set of intervals. An interval box X ∈ In is a Cartesian product of

intervals X1 × · · · ×Xn. A box X is empty if at least one Xi is empty. We define

the following operations given a non empty box.

i. widX = max {widXi : 1 ≤ i ≤ n} (width)

ii. midX = (midX1, . . . ,midXn) (midpoint)

Given a set of real numbers S ⊆ R, the interval hull of S is defined as the interval

hullS = [inf S, supS]. Given a set S ⊆ Rn, the interval hull of S is defined as the

interval box hullS = hullS1 × · · · × hullSn, each Si being the i-th projection of S.

The interval arithmetic operations are defined as follows. Let op : D ⊆ Rn → R
be an operation over the real numbers. Given an interval box X ∈ In, the corre-

sponding interval operation must return the interval

op(X) = hull {op(x) : x ∈ X ∩D}

which is the tightest enclosure of the image of X under the operation. The study of

monotonicity properties, limits and extrema of the operations leads to the following

computational definitions.

[a, b] + [c, d] = [a+ c, b+ d]

[a, b]− [c, d] = [a− d, b− c]
[a, b]× [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]
[c, d]

−1
=
[
d−1, c−1

]
if 0 6∈ [c, d]

The elementary functions are extended similarly. Now let f : D ⊆ Rn → R be a real

function. An interval function F : In → I is an interval extension of f if we have

(∀X ∈ In) (∀x ∈ X ∩D) f(x) ∈ F (X).

This property is known as the fundamental theorem of interval arithmetic. It follows

that the interval F (X) is an enclosure of the range of f over X. Three different

techniques are presented thereafter. In order to illustrate them, let f(x1, x2) =

x21 − x1x2 − x2 be a real function and let X = [−2, 0]× [−4, 2] be a box.
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The natural extension of f is derived by replacing every real operation in a given

expression of f by the corresponding interval operation. The range of f over X is

equal to [−2, 6]. The evaluation of the natural extension

F (X) = [−2, 0]
2 − [−2, 0] [−4, 2]− [−4, 2]

leads to a weak enclosure [−10, 12]. The pessimism here comes from the decorrela-

tion of the multiple occurrences of the variables, which is known as the dependency

problem of interval arithmetic.

The mean value extension of f over X derives from a Taylor approximation of f

around a point c ∈ X assuming that f is differentiable over X. Let G be an interval

extension of the gradient of f . Then we have

(∀x ∈ X) f(x) ∈ f(c) +G(X)T · (x− c).

In the previous example, given c = midX, a more precise enclosure [−8, 10] results

from the evaluation of the mean value extension

Fc(X) = 1 + ([−6, 4] , [−1, 1]) ·
(

[−1, 1]

[−3, 3]

)
.

Affine arithmetic leads to another kind of interval extension, as follows. The

affine form of a variable xi lying in Xi is defined as midXi + radXi × εi where

−1 ≤ εi ≤ 1 is an affine variable associated with xi. It follows the affine forms

x̂1 = −1 + ε1 and x̂2 = −1 + 3ε2.

Each variable εi catches the linear dependences between the multiple occurrences of

xi in f , hence counteracting the dependency problem of interval arithmetic. Every

nonlinear term is linearized such that a new affine variable is introduced to bound

the linearization error. The square of the affine form of x1 is equal to 1− 2ε1 + ε21
and the nonlinear term ε21 is replaced by 0.5 + 0.5ε3, which leads to

x̂21 = 1.5− 2ε1 + 0.5ε3.

The product of the affine forms of x1 and x2 is equal to 1 − ε1 − 3ε2 + 3ε1ε2 and

the nonlinear term 3ε1ε2 is replaced by 3ε4, which leads to

x̂1x2 = 1− ε1 − 3ε2 + 3ε4.

The affine form of f over X is eventually calculated as

f̂ = x̂21 − x̂1x2 − x̂2 = 1.5− ε1 + 0.5ε3 + 3ε4.

Replacing each εi in f̂ by its domain permits to calculate the new enclosure

Fa(X) = 1.5− [−1, 1] + 0.5 [−1, 1] + 3 [−1, 1] = [−3, 6] .

In general, many interval extensions can be combined in order to calculate more

precise enclosures. These techniques can be useful to derive lower bounds for the

global optimization problem.
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2.2. Interval contractors

The contractor programming framework [6] is an abstract formalism used to describe

here the interval contraction techniques. Let c(x) be a constraint over a vector of

variables x ∈ Rn. An operator Γ on boxes is an interval contractor for c if we have

(∀X ∈ In) {x ∈ X : c(x)} ⊆ Γ(X) ⊆ X. (3)

The purpose of Γ is to eliminate facets of X that contain no solution of c. Moreover,

if Γ(X) is empty then it is proved that c has no solution in X.

Several classical techniques are presented thereafter. An hc4 contractor for a

constraint c, also called HC4Revise [4], is a two-step algorithm traversing the tree-

representation of c. The first phase is an interval evaluation from the leaves to

the root. The second phase contracts the domains from the root to the leaves, as

illustrated by Fig. 1. This operator is cheap and potentially very useful.

≤

× −

2 x1[2, 6] x3[0, 10] sqr

x2[1, 3]

[1, 9]

[−9, 9][4, 12]

u1 u3

u2

≤

× −

2 x1[2, 4.5] x3[5, 10] sqr

x2[1,
√
6]

[1, 6]

[4, 9][4, 9]

u1 u3

u2

(a) (b)

Fig. 1. An hc4 contractor applied to the constraint 2x1 ≤ x3−x2
2 and the box [2, 6]×[1, 3]×[0, 10].

Fig. (a) illustrates the evaluation phase. Fig. (b) depicts the domains computed during the second

phase. For instance, we have u1 ≤ u3 with u1 ∈ [4, 12] and u3 ∈ [−9, 9] at the root node. Hence it

comes u1 ∈ [4, 9] since u1 cannot be greater than the maximum of u3. Then the process follows
in the left-hand sub-tree. We have 2x1 = u1 with x1 ∈ [2, 6] and u1 ∈ [4, 9]. By an inversion of

this equation, it comes x1 = u1/2 and a new domain x1 ∈ [2, 5] is easily derived. The right-hand

sub-tree is processed in the same way. The reduced box [2, 4.5]×
[
1,
√

6
]
× [5, 10] is obtained.

A bc3 contractor, also called BC3Revise [5], combines a bisection algorithm with

the univariate interval Newton operator. Given a univariate equation f(x) = 0 and

an interval domain X, a new interval [a, b] ⊆ X is derived such that a is the leftmost

zero of f in X and b is the rightmost zero of f in X. The bisection algorithm

divides the initial interval in order to separate the zeros and the Newton operator

is able under conditions to converge with a quadratic convergence rate towards a

zero. For example, let f(x) = x3 − 4x2 + x + 3 = 0 and let X = [−1, 4]. Fig. 2

shows the subdivision of X in 5 intervals and the application of two Newton steps
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applied to X1 and X5 that find the outermost zeros. A Newton step consists of

enclosing the curve of f by a cone given by its mean value extension. This cone is

intersected with the current domain in order to derive a new domain. The interval

returned by the bc3 contractor is approximatively equal to [−0.69963, 3.4606] while

an hc4 contractor applied to this problem returns the interval [−1, 3.9579]. The

advantage of bc3 is to eliminate the dependency effect of interval arithmetic due to

the multiple occurrences of x in f . However this operator is based on an iterative

method embedded in a search process, hence being more expensive.

X1 X2

X3 X4 X5

Fig. 2. Some steps of a bc3 contractor applied to the equation x3 − 4x2 + x + 3 = 0 and the
interval X = [−1, 4]

Given an equation f(x1, . . . , xn) = 0 and a box X, a bc3 contractor can be applied

for each variable xi to the univariate equation obtained from f by assigning each

variable xj but xi to its domain Xj . Inequality constraints can also be processed

by this technique.

A bc4 contractor [4] combines an hc4 contractor with bc3 contractors, as follows.

Given a constraint and a box, the hc4 contractor is first applied to derive a new

box. Then a bc3 contractor is applied for every variable occurring more than once

in the constraint. The idea exploited here is that hc4 and bc3 contractors have the

same contraction power for variables occurring only once in the constraint and hc4

is much cheaper than bc3. For constraints with only single occurrences of variables,

bc4 is equivalent to hc4.

A constraint propagation algorithm aims at pruning a box with respect to a set

of constraints. The main idea is to propagate the modifications of domains through

the constraints until reaching a fixed-point. Algorithm 1 takes as input a set of

contractors S and a box X. It returns a new box X such that Γ(X) = X for every

contractor Γ ∈ S. The main idea is to maintain a set of active contractors Q. Every

contractor is inserted in Q at the beginning (line 2). Every active contractor is

removed from Q before its application (lines 6 and 7). Then a non-active contractor

is inserted in Q if it is associated with a constraint that depends on a variable

xi whose domain has been modified (line 11). This algorithm follows an AC3-like

propagation strategy [20] and it can be improved to avoid slow convergences.
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Algorithm 1: Constraint propagation algorithm

Input :

– set of contractors S
– box X = X1 × · · · ×Xn

Output: a new box included in X

1 let Si = {Γ ∈ S | Γ depends on xi} (i = 1, . . . , n)

2 Q ← S // set of active contractors

3 while Q is not empty and X is not empty do

4 Y ← X // save a copy of X

5 do

6 remove an element Γ from Q
7 X ← Γ(X) // apply an active contractor to X

8 while Q is not empty and X is not empty

9 for i← 1 to n do

10 if Xi 6= Yi then

11 insert every element of Si in Q // propagation step with respect to xi

12 end

13 end

14 end

15 return X

From a theoretical point of view, constraint propagation can be explained in

terms of chaotic iterations [1]. In particular, Algorithm 1 terminates in finite time

if we consider intervals bounded by floating-point numbers since there are a finite

number of boxes and every step is contracting. Finally, it is worth noticing that a

propagation algorithm verifies the properties of an interval contractor.

Algorithm 1 is called hc4 or bc4 if it uses only hc4 or bc4 contractors. The hc4

algorithm can be extended to process constraint systems represented by directed

acyclic graphs (DAG) also called computational graphs [31]. The contraction power

is improved by intersecting the domain modifications at the shared operation nodes.

For example, the system of equations x2 + y2 = 2 ∧ y = x2 has two solutions

(−1, 1) and (1, 1) in the box [−10, 10]
2
. The hc4 algorithm leads to the new box

[−1.19, 1.19]× [0.765, 1.42]. This box is a weak enclosure of the solution set, which

is due to the locality effect of propagation algorithms also identified as the poor

man’s LP strategy. In fact, constraints are considered one by one and not globally.

Now, let z = x2 represent the only shared operation node of this problem. Fig. 3

illustrates the first steps of the propagation process into the DAG. The final box

[−1, 1] × {1} corresponds to the hull of the solution set, so it verifies the global

consistency property. This technique reduces in general the locality effect, and this

effect simply vanishes in this well-chosen example.
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+

sqr

sqr

y

x

=

=

2

z

→ [−10, 10]

[−
√
2,
√
2]←

→ [0, 100]

[0, 2]←

→ [−10, 10]

[−
√
2,
√
2]←

→ [0, 100]

[0, 2]←

→ [0, 200]

[2, 2]←

→ [2, 2]

Fig. 3. First steps of the propagation process into the directed acyclic graph of the constraint

system x2 + y2 = 2∧ y = x2 given the box [−10, 10]2. A right arrow → labels a domain calculated
in the forward phase of hc4; a left arrow ← labels a domain obtained in the backward phase.

2.3. Branch-and-contract algorithm

A branch-and-contract algorithm is a branch-and-bound algorithm taking as input

a global minimization problem given by f(x) and Ω and two tolerances εf > 0 and

εx > 0. It returns an enclosure [L,U ] of the global minimum f∗ such that we have

U ≤ L+ εf and an enclosure of a global minimizer x∗ ∈ Ω or the best feasible point

found.

The general principle is to explore Ω in a deterministic way and to maintain a

list of sub-boxes. Every box X ⊆ Ω is processed by several techniques described

thereafter at an abstract level. Let F be an interval extension of f .

• A propagation algorithm Γ : In → In is associated with a set of constraints

that must be verified by the global minimizers. Then X can be contracted

as Γ(X), hence removing non optimal parts of X or the whole box. Several

categories of constraints can be used:

– the upper bound constraint f(x) ≤ U since U must be an upper bound

of the global minimum;

– the gradient constraints

∂f(x)

∂x1
= 0, . . . ,

∂f(x)

∂xn
= 0

for any X not on the boundary of Ω;

– the convexity constraints

∂f2(x)

∂x21
≥ 0, . . . ,

∂f2(x)

∂x2n
≥ 0

for any X not on the boundary of Ω assuming that the function f is

twice differentiable.

• The enclosure [L,U ] of the global optimum can be initialized by evaluating

the interval extension F over Ω, since any global optimizer x∗ must belong
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to Ω and f(x∗) ∈ F (Ω) by property of an interval extension.

• The upper bound U can be refined as min(U,maxF (x)) given any x ∈ X.

It would be even better to apply a local optimization solver in order to

derive good values of U during the early stages of the search process. It

follows that the upper bound constraint is strengthened.

• A lower bound ` of f over X must be calculated. This can be done by

evaluating an interval extension of f or by solving a convex relaxation of

the optimization problem. Given the lower bound `, the cut-off test leads

to eliminate X if we have ` > U since the upper bound constraint f(x) ≤ U
is violated for every x ∈ X.

• The selected box X at each step of the algorithm is such that the lower

bound ` of f over X is the lowest one among the boxes to be processed

(best-first strategy). Other strategies may use advantageously the upper

bound U to diversify the search [24].

• A branch-and-contract algorithm follows a divide-and-conqueer strategy.

Hence, X can be split into several sub-boxes if at least one of its components

is an interval whose width is strictly greater than εx. There are several

branching heuristics, for instance:

– the simplest strategy just bisects the largest component of X;

– a more efficient strategy in general consists of choosing the variable

xi with the maximum smear value widXi × |Gi(X)| where Gi is an

interval extension of the partial derivative of f with respect to xi [8].

We see that many strategies can be derived from the general scheme depending

on the choice of the different components. From a theoretical point of view, the

convergence properties of interval branch-and-bound algorithms are discussed in [7].

As an example, we consider the so-called Shubert function defined by

f(x1, x2) =

(
5∑

i=1

i cos((i+ 1)x1 + i)

)(
5∑

i=1

i cos((i+ 1)x2 + i)

)
and the input domain is assigned to −10 ≤ x1, x2 ≤ 10. This function is depicted

in Fig. 4. It is quite challenging for an interval-based algorithm for at least three

reasons. There are many local and global minima, which can make difficult the

proof of global optimality. The expression of f has many multiple occurrences of

the variables. The expression of the gradient is as complex as the expression of

f . It follows that the contraction techniques may be weak due to the dependency

problem of interval arithmetic. Despite these drawbacks, it is possible to calculate

an enclosure of the global minimum

f∗ ∈ [−186.73091,−186.73090]

and an enclosure of one global minimizer

x∗ ∈ [−7.0835065,−7.0835064]× [−7.7083138,−7.7083137]
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given the tolerances εf = 10−4 and εx = 10−8 after processing around 103 boxes in

less than one second on a common laptop.

Fig. 4. Color map of the Shubert function.

3. Interval techniques based on optimality conditions

In the following, let g = (g1, . . . , gn)T be the gradient of f . Let Γ0 be a contractor

associated with the upper bound constraint f(x) ≤ U . Let Γi be a contractor

associated with the equation gi(x) = 0 for every i.

We say that a box X is an interior box if it is included in the interior of the

initial box Ω. Otherwise, X is declared as a boundary box.

3.1. Monotonicity test

A continuous monotone function takes its extremal values over a domain at the

domain bounds. Now, let X be a box and let i be a coordinate direction. The

minimum of f over X is obtained at the left bound xi = minXi if it is increasing

or it is obtained at the right bound xi = maxXi if it is decreasing. In both cases,

the value of xi can be fixed.

The monotonicity property of f can be proved by means of interval arithmetic

as follows. Let Gi be an interval extension of the partial derivative gi(x). Then,

assuming that X and the domain of gi overlap, f is increasing if we have

minGi(X) ≥ 0 (4)

or it is decreasing if we have

maxGi(X) ≤ 0. (5)
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The monotonicity test is particularly useful during the preprocessing step in

order to reduce the problem dimension. For example, the qrtquad problem [9] has 120

variables. Let us consider the variable x12, the derivative g12(x) = 8x12 +x120−120

and the initial bounds 0 ≤ x12, x120 ≤ 10. Since the maximum of the interval

G12([0, 10] , [0, 10]) = 8 [0, 10] + [0, 10]− 120 = [−120,−30] (6)

is negative then the minimum of f is obtained at x12 = 10. In fact, 109 variables are

fixed in this way. As a consequence, the search algorithm is applied to a simplified

problem with only 11 variables.

3.2. Local optimality conditions

A global minimizer of the bound-constrained optimization problem must be a sta-

tionary point of the Lagrange function

L(x, λ, µ) = f(x) +

n∑
i=1

λi(li − xi) +

n∑
i=1

µi(xi − ui) (7)

where λ and µ are vectors of multipliers associated with the bound constraints. The

Karush-Kuhn-Tucker conditions are defined as follows.

KKT:


g(x)− λ+ µ = 0 (stationarity)

λ(l − x) = 0 (complementary slackness)

µ(x− u) = 0 (complementary slackness)

l ≤ x ≤ u (primal feasibility)

λ, µ ≥ 0 (dual feasibility)

(8)

The stationarity condition states for each i = 1, . . . , n that

gi(x)− λi + µi = 0. (9)

We distinguish three cases. First, when the bound constraints associated with xi
are inactive, the complementary slackness conditions imply that the multipliers λi
and µi are equal to 0. Then it comes from Equation 9 that

gi(x) = 0 if li < xi < ui. (10)

Second, when the bound constraint xi = li is active, it comes that µi = 0 by com-

plementary slackness since xi 6= ui (assuming that ui > li) and the dual feasibility

condition states that λi ≥ 0. Then it follows from Equation 9 that

gi(x) ≥ 0 if xi = li. (11)

Third, by a similar argument, when the bound constraint xi = ui is active, it comes

that

gi(x) ≤ 0 if xi = ui. (12)

The optimality conditions 10–12 provide constraints that can be exploited by inter-

val contraction techniques.
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3.3. Contraction techniques for boundary boxes

The optimality condition (10) implies that any box X can be contracted as Γi(X)

if Xi is strictly included in Ωi. It is thus possible to remove initial bounds for the

other variables. Otherwise, the intervals Xi and Ωi share at least one bound and

the condition (10) is not valid anymore. We have the following results.

Lemma 3.1. Let X be a box and let Y be the box Γi(X) for some i. We have

gi(x) 6= 0 for all x ∈ X \ Y .

Proof. By property of Γi we have {x ∈ X : gi(x) = 0} ⊆ Γi(X). The result follows

since we have x 6∈ Γi(X) by assumption.

Lemma 3.2. Let X be a box such that minXi = li for some i, let Y be the box

Γi(X) and let Xi− be the left facet {x ∈ X : xi = li}. If minYi 6= li then we have

gi(x) 6= 0 for all x ∈ Xi−.

Proof. This result directly follows from Lemma 3.1 since Xi− does not intersect

Γi(X).

Lemma 3.2 deals with the left bound of Xi. It proves that f is monotone over the

facet Xi− under some conditions. A similar result can be stated for the right facet

Xi+ defined as {x ∈ X : xi = ui} when maxXi = ui and maxYi 6= ui.

Lemma 3.3. Let X be a box such that minXi = li for some i and let Y be the box

Γi(X). If minYi 6= li and gi(x) < 0 for all x ∈ Xi− then no local minimizer belongs

to the slice {x ∈ X : li ≤ xi < minYi}.

Proof. It follows from Lemma 3.2 that f must be monotone over the facet Xi−. As-

suming that f is strictly decreasing implies that the local optimality condition (11) is

violated. This proves that there is no minimizer on Xi−. Moreover we have gi(x) 6= 0

for all x ∈ X such that li < xi < minYi by property of Γi. It follows that the slice

{x ∈ X : li < xi < minYi} contains no minimizer since the local optimality condi-

tion (10) is violated. The proof is done.

Lemma 3.3 deals with the left bound of Xi. It proves that this bound can be strictly

contracted under some conditions. A similar result can be stated for the right bound

when maxXi = ui, maxYi 6= ui and f is strictly increasing over Xi+ by application

of the optimality condition (12).

Enforcing Lemma 3.3 requires to determine the sign of the derivative gi(x) over

Xi−. Since we know that gi does not vanish over the facet then it suffices to consider

any point x̂ ∈ Xi−. If we have

maxGi(x̂) < 0 (13)

then f is proved to be strictly decreasing. This test is very accurate since the

evaluation of Gi at a point x̂ is not subject to the dependency problem of interval

arithmetic. However, the result is in general a small interval due to the rounding
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errors. In some singular cases when the slope of f is almost equal to 0, it may

arise that the resulting interval contains 0. In such a case it could be interesting to

consider different points of the facet in order to make a proof.

Theorem 3.1. Let X be a box, let i be a coordinate direction, and let Y be the

box Γi(X). Let bl ⇐⇒ (minXi = li) and br ⇐⇒ (maxXi = ui) be two booleans.

Let dl ⇐⇒ bl ∧ (∀x ∈ Xi−) gi(x) < 0 and dr ⇐⇒ br ∧ (∀x ∈ Xi+) gi(x) > 0

be two booleans. The region in each of the following cases contains all the local

minimizers of f within X.

i. Y if (¬bl) ∧ (¬br)

ii. Y if bl ∧ (¬br) ∧ dl
iii. Y ∪Xi− if bl ∧ (¬br) ∧ (¬dl)
iv. Y if (¬bl) ∧ br ∧ dr
v. Y ∪Xi+ if (¬bl) ∧ br ∧ (¬dr)

vi. Y if bl ∧ br ∧ dl ∧ dr
vii. Y ∪Xi− if bl ∧ br ∧ (¬dl) ∧ dr
viii. Y ∪Xi+ if bl ∧ br ∧ dl ∧ (¬dr)

ix. Y ∪Xi− ∪Xi+ if bl ∧ br ∧ (¬dl) ∧ (¬dr)

Proof. Y contains all the stationary points of f within X. The optimality condi-

tion (10) implies that Y must be part of the result, which is true for all cases.

Moreover the facet Xi− must be part of the result if Lemma 3.3 is verified and

it can be removed otherwise, which is true for all cases. The facet Xi+ is handled

similarly, which completes the proof.

Theorem 3.1 can be exploited in order to handle a boundary box in the branch-

and-contract algorithm. Several variants can be defined depending on the following

heuristics. First every contractor Γi can be implemented by different techniques.

Second it is possible to split a union of boxes (cases iii, v, vii–ix) or to return their

hull with the aim of limiting the number of boxes. Third, the facet Xi− (cases iii,

vii, ix) may be contracted by considering one or both constraints f(x) ≤ U and

gi(x) ≥ 0, or it may not be contracted (similar arguments for the facet Xi+).

Algorithm 2 implements a new contractor for boundary boxes. This contractor,

denoted by ∂Γi, is parameterized by a contractor Γi associated with the equation

gi(x) = 0. With respect to the variants discussed above, we consider the hulls of

unions of boxes (lines 15 and 18) in order to limit the number of boxes and the

facets Xi− and Xi+ are not contracted (lines 6, 8, 15 and 18). The correctness of

Algorithm 2 is stated by the following theorem.

Theorem 3.2. Let X ⊆ Ω be a box and let ∂Γi(X) be the box returned by

Algorithm 2 given X as input. Then there is no point x ∈ X \ ∂Γi(X) such that

f(x) = f∗.

Proof. If Γi(X) returns an empty box then f is proved to be monotone by property of

Γi (line 4). In this case, the result derives from reliable interval-based monotonicity
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tests based on the local optimality conditions. Otherwise, Y is assigned to the

resulting box (line 13) and the facets Xi− and Xi+ are added or not according to

Theorem 3.1 (lines 15 and 18). This completes the proof.

Algorithm 2: Contractor ∂Γi for boundary boxes

Input :

– objective function f : Rn → R
– initial box Ω = [l1, u1]× · · · × [ln, un] ⊆ In
– boundary box X ⊆ Ω

– contractor Γi associated with gi(x) = 0

Output: a box Z ⊆ X that contains all the global minimizers x∗ ∈ X

1 bl ← (minXi = li)

2 br ← (maxXi = ui)

3 Y ← Γi(X) // contraction (stationarity constraint)

4 if Y = ∅ then // f monotone over X

5 if bl and f increases on X then

6 Z ← Xi− // optimality condition (11)

7 else if br and f decreases on X then

8 Z ← Xi+ // optimality condition (12)

9 else

10 Z ← ∅ // optimality condition (10)

11 end

12 else

13 Z ← Y // all cases of Theorem 3.1

14 if bl and minYi 6= li and f increases on Xi− then

15 Z ← hull(Z ∪Xi−) // cases iii, vii, ix of Theorem 3.1

16 end

17 if br and maxYi 6= ui and f decreases on Xi− then

18 Z ← hull(Z ∪Xi+) // cases v, viii, ix of Theorem 3.1

19 end

20 end

The contraction algorithm for boundary boxes can be implemented as a propaga-

tion algorithm managing the set of contractors {Γ0, ∂Γ1, . . . , ∂Γn}. The correctness

of this algorithm follows from the correctness of every contractor with respect the

global optimization problem.

We will consider three minimization problems in order to illustrate the capabil-
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ities of the new algorithm using hc4 contractors. Let

f(x1, x2, x3) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 − x2x1 − x3x2

be the 3-dimensional trid function and let Ω = [−9, 9]
3
. Let U = 3 be an upper

bound of f∗ obtained from an evaluation of f at the midpoint of Ω. First, Γ0 has no

effect. Second, ∂Γ1 is able to contract the domain of x1. It comes the new domain

[−3.5, 5.5]. Moreover, the bound x1 = −9 is discarded since a monotonicity test

proves that f decreases with respect to x1. The right bound is also eliminated in

the same way. Then the domain of x2 is contracted by ∂Γ2. It comes the new domain

[−5.250, 8.250]. Once again, the initial bounds are removed. Similarly, the domain

of x3 is reduced by ∂Γ3 to the interval [−1.625, 5.125] and the bounds vanish. Now

the box is an interior box and the propagation algorithm iterates, deriving a precise

enclosure of the global minimizer x∗ = (3, 4, 3).

The second problem [26] corresponds to the function

f(x1, x2) = x21 exp(x2)− x32

and the box Ω = [−∞,+∞]× [−5, 5]. In particular, the domain of x1 is unbounded

and the gradient is nonlinear. An evaluation of f at the midpoint of Ω derives the

first upper bound U = 0. Then the following domain contractions are calculated

by Algorithm 2. First, Γ0 returns the new domains [−136.3, 136.3] for x1 and [0, 5]

for x2. Then the domain of x1 is reduced to 0 by ∂Γ1. Next, the domain of x2 is

reduced to 0 by ∂Γ2 but the right bound x2 = 5 remains since f decreases. The box

is then bisected and the global minimizer x∗ = (0, 5) is easily found.

The third problem represents a concave function defined as the opposite of the

trid function with 3 variables. Let U = −3 be the first upper bound. First, Γ0 has no

effect. Then ∂Γ1 reduces the domain of x1 to the interval [−3.5, 5.5] but the initial

bounds x1 = −9 and x1 = 9 are not discarded. For similar reasons, the domains

of x2 and x3 are not modified. Then the domain of x1 is bisected. The next box

[−9, 0]× [−9, 9]× [−9, 9] is not contracted. Then the domain of x2 is bisected. The

next box [−9, 0] × [0, 9] × [−9, 9] is reduced as an empty box by ∂Γ1. Since the

function is increasing at the left bound with respect to x1 then we fix x1 = −9. The

domains of the other variables are not modified. After one more bisection, the next

box −9× [0, 9]× [−9, 0] is reduced to the global minimizer x∗ = (−9, 9,−9).

3.4. Contraction techniques for interior boxes

The local optimality condition (10) implies that the gradient must vanish in an

interior box. It follows that the contraction algorithm can be implemented by a

constraint propagation algorithm applying the contractors Γ0,Γ1, . . . ,Γn. In the

following, we will consider the hc4 algorithm and the bc4 algorithm. Moreover,

every hc4 contractor must act on the DAG representation of the constraint system,

which reduces the localiy effect as previously said.
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For example, the bard problem [9] has an objective function defined by a sum

of 15 square terms of the form(
ai −

1

bix2 + cix3
− x1

)2

given an initial box
[
−103, 103

]
×
[
0, 103

]
×
[
0, 103

]
. This problem is not solvable in

reasonable time with hc4 contractors. Using bc4 contractors leads to the enclosure

[0.0082143, 0.0082149] of f∗, which takes less than one second and about 103 boxes

generated in the branch-and-contract algorithm.

The square system of equations g1(x) = · · · = gn(x) = 0 can be handled by a

multidimensional interval Newton operator [21] in order to contract a given box.

The classical one generates a sequence of non-convex linear relaxations by means

of the mean value extension of the gradient taken the midpoint of the box as ex-

pansion point. Every relaxation is solved by an interval linear method such as the

preconditionned interval Gauss-Seidel method. This operator is able to converge

quadratically around a solution but it runs in O(n3) due to matrix inversions. The

X-Newton one [2] produces a sequence of convex relaxations from two mean value

extensions of the gradient taken opposite corners of the box as expansion points.

Every relaxation is processed by 2n Simplex algorithms, one per bound of the box.

For example the Neumaier3 problem [9]

min

10∑
i=1

(xi − 1)2 −
9∑

i=1

xixi+1, −100 ≤ xi ≤ 10 (i = 1, . . . , 10)

can be solved without branching using the classical Newton operator applied to the

box returned by Algorithm 1. This strategy leads to a very precise enclosure of the

global minimum f∗ = −210 in a few milliseconds.

3.5. Holes and bounds

Our contractor for boundary boxes implements a specific strategy. Many other

strategies could be devised. Puranik and Sahinidis [26] exploit the optimality condi-

tions as done in Algorithm 2 and they use a probing strategy to prune the boundary

of the initial box. Given a box X, their algorithm derives a new box Z in three steps

with respect to gi(x) = 0 as follows.

(1) Z ← Γi(X);

(2) If minXi = li and minZi 6= li then Z ← Z ∪ Γ0(Xi−);

(3) If maxXi = ui and maxZi 6= ui then Z ← Z ∪ Γ0(Xi+).

A bound of the initial box that is removed by Γi is handled by applying the contrac-

tor Γ0 associated with the upper bound constraint to the corresponding facet [29].

With respect to Algorithm 2, there are several differences. When f is decreasing

on Xi− (or increasing on Xi+) the monotonicity test must succeed and the facet is

eliminated while Γ0 does not necessarily discard it, especially when the upper bound
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constraint has a complex expression. When f is increasing on Xi− (or decreasing

on Xi+), the facet is left unchanged by Algorithm 2 while it may be contracted by

Γ0. Finally, their algorithm uses only a form of hc4 contractors while Algorithm 2

is parameterized by contractors.

Batnini and Rueher [3] proposed to store the holes in domains generated during

the propagation process and to exploit them in further branching steps. Algorithm 2

is able to derive a union of boxes of the form Xi−∪Γi(X)∪Xi+, which means that

the domain of xi may be a union {li}∪Yi ∪{ui} such that Yi is the i-th component

of Γi(X). It is then possible to generate three nodes in the search tree, one per

component of the union. Our tests show that this strategy does not improve much

the solving process in general.

Schichl et al. [30] introduced an arithmetic of unions of intervals. Such domains

can be propagated through the constraints, which leads to more precise domains.

There is an additional cost but they suggest to bound the number of intervals in

a union by filling some holes. In our context, this technique could be useful to

propagate domains of the form {li} ∪ Yi ∪ {ui}. Testing this approach requires the

development of a new solver, which is postponed for future work.

Kearfott [17] proposed to handle the boundary of the initial box following a

peeling strategy. For instance, an initial domain [li, ui] can be divided in three

parts [li, li + ε], [li + ε, ui − ε] and [ui − ε, ui] given some tolerance ε > 0. It is then

possible to generate three new nodes in the search tree. The domain in one node

[li + ε, ui − ε] is no more on the boundary, the goal being to early derive interior

boxes in order to apply the multidimensional interval Newton operator. The other

two domains [li, li + ε] and [ui − ε, ui] are expected to be small enough in order to

eliminate the dependency problem stemming from the multiple occurrences of xi in

the constraint system. However, this implies a combinatorial explosion of the number

of boxes in general. Our algorithm based on contractors is more constructive.

4. Experimental results

4.1. Implementation and benchmarks

The new contractor for boundary boxes ∂Γi has been integrated into the inter-

val branch-and-contract algorithm of Realpaver [12]. In this software, a bound-

constrained optimization problem is represented by a computational graph including

the objective function, its gradient and the associated constraints. The second-order

derivatives are computed by numerical differentiation [28]. Every box is contracted

by Algorithm 1 with hc4 or bc4 contractors (Γi and ∂Γi contractors) followed by

the interval Newton operator applied to the gradient constraint g(x) = 0. Several

interval extensions are used to calculate bounds of the objective function. The in-

terval arithmetic layer uses the elementary functions with correct rounding from

the MPFR library [10]. It follows that the interval computations in Realpaver are

rigorous. An enclosure of the global optimum is always derived but it may be hard

to prove global optimality.
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All experiments were conducted on a 2.90GHz Intel Core i7 with 32 GB of

RAM running Ubuntu 18.04. In order to measure the impact of ∂Γi, more than 100

problems with at most 104 variables have been extracted from [9,16,26]. During the

search, a variable domain can be split only if its width is greater than εx = 10−8.

An execution is stopped after a time-out (TO) of 500 seconds if the width of the

enclosure of the global minimum remains greater than εf = 10−4.

4.2. Results

The preprocessing phase uses the monotonicity test in order to reduce the problem

dimension. For instance, the pentdi problem has 104 variables. Half of the variables

are fixed in this phase. The preprocessing phase including the parsing of the 64 kB

input file takes about 0.85 seconds, which represents 43% of the computational time.

In the following, we will compare five strategies that use different contractors

and different techniques for boundary boxes.

• S1 applies a pure monotonicity test to boundary boxes such that a variable is

fixed if the function is proved to be monotone. Interior boxes are handled by

constraint propagation with hc4 contractors and the interval Newton operator.

• S2 corresponds to S1 such that boundary boxes are handled by a constraint

propagation algorithm using contractors based on the BARON test [26].

• S3 corresponds to S1 such that boundary boxes are contracted by Algorithm 2.

• S4 corresponds to S3 without the interval Newton operator.

• S5 corresponds to S4 with bc4 contractors instead of hc4 contractors.

A performance profile is depicted in Fig. 5. All the timings include the prepro-

cessing phase, the solving phase and the postprocessing phase. Comparing S3 with

S1 and S2 shows that our new algorithm is the best one for boundary boxes. S4 is

better than S3 since the interval Newton operator is too expensive for some large

scale problems. S5 is the best strategy, which comes from the use of bc4 contractors

that are stronger than hc4 contractors. Table 1 shows for each strategy the number

of solved problems before the time-out and the number of problems for which the

strategy is the best one. For instance, S1 is the best strategy for 32 problems, mainly

because these problems are easy to solve, the other strategies doing more work.

Table 1. Comparison of the five strategies.

S1 S2 S3 S4 S5

solved 95 98 103 105 109

best 32 12 17 24 25

Table 2 reports the results obtained from our strategy S5 and the BARON solver.

Each row corresponds to one problem with n variables and occ occurrences of vari-

ables in the objective function. The number of nodes in the branch-and-contract

algorithm and the computation time are reported for both solvers, the results for
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Fig. 5. Performance profile for the five strategies showing the percentage of problems solved as

a function of time.

BARON being extracted from [26]. If we compare the numbers of nodes, Real-

paver seems very efficient for several problems such as hosaki, ex 4 1 5, hartmann3

and himmelp1. BARONb exhibits high performances for the least squares problems

model16, kowalik and s266. We may conclude that Realpaver competes well with

BARON but there is clearly a room for improvement.

Table 3 reports the results obtained from the strategies S3, S4 and S5 for large

scale problems. It is clear that Newton is prohibitive for white holst, pentdi, nondia

and chung reynolds, since S3 leads to a time-out and S4 not. However, the Newton

operator allows S3 to easily solve the trid problem, which is a convex function

having only one stationary point. Using bc4 contractors is expensive for white holst

since S4 is much better than S5. S5 is clearly the best strategy since the number of

nodes is much smaller in general. In particular, the problems ext tet, engval1 and

dixmaana are solved only with bc4 contractors.

Problems that are not solved by Realpaver typically have a huge number of

occurrences of variables, in particular least squares problems such as weibull3 or

tranter. Interval computations are very weak due the dependency problem of interval

arithmetic. It could be useful to try other contraction techniques such as strong

consistency techniques, for instance a form of strong box consistency [25] or the

constructive interval disjunction method [34].



April 1, 2020 11:22 WSPC/INSTRUCTION FILE lg˙ijait2019˙revised

20 Laurent Granvilliers

Table 2. Comparison of Realpaver and BARON (results obtained
from different machines).

Problem n occ RealpaverS5 BARONb
nodes time nodes time

ex 8 1 4 2 6 7 0.01 11 0.05

paviani 10 30 5 0.08 1 0.03

hs110 10 30 5 0.08 1 0.11

expquad 120 576 98 0.30 5 2.56

qrtquad 120 575 142 0.16 139 26.95

hosaki 2 6 130 0.03 915 0.94

ex 4 1 5 2 6 7 0.01 3 541 943 500

hartmann3 3 12 13 0.02 179 0.42

himmelp1 2 23 528 0.17 5 357 6.55

s204 2 24 63 0.01 37 0.13

gold 2 16 704 0.04 451 0.89

model33 3 89 21 0.83 17 0.61

model16 4 44 7858 4.28 307 9.18

kowalik 4 44 3484 1.86 265 9.24

stattools 2 20 254 1.03 858 2.72

s266 5 350 23 691 37.20 1 689 5.44

Table 3. Solving large scale problems with Realpaver using the strategies S3, S4

and S5 all based on Algorithm 2.

Problem n S3 S4 S5
nodes time nodes time nodes time

white holst 500 176 TO 751 26.81 497 161.90
trid 20 1 0.01 19 830 12.09 19 830 2.80

pentdi 1000 39 TO 39 2.27 39 2.21
nondquar 10 67 178 25.12 67 178 24.6 9 979 6.197
nondia 999 12 TO 1 006 50.20 1 007 41.42
ext tet 500 4 573 TO 4 591 TO 1 5.69

expquad 120 149 0.31 149 0.30 98 0.30
explin 120 2 485 2.92 2 485 2.95 289 0.90
engval1 500 5 409 TO 5 270 TO 13 1.58

dixmaana 3000 1318 TO 1 352 TO 1 22.83

diagonal1 500 1 2.96 1 0.21 1 0.21
chung reynolds 500 1110 TO 6 810 292.10 4 4.27

5. Conclusion

In this paper, we have introduced a new interval contraction method for solving

bound-constrained global optimization problems. This method exploits the first-

order optimality conditions in order to efficiently prune boundary boxes, in two

steps. First, an interval contractor is used to enclose the set of stationary points.

This contractor can be chosen according to the problem difficulty and we have

implemented and tested various forms of consistency techniques, namely hc4 and bc4

contractors. Second, accurate interval-based monotonicity tests are used to reject

the initial bounds. The experimental study shows that this new method permits to

solve several difficult problems with a lot of variables. Moreover, it competes well
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with the probing strategy [26] implemented in the global solver BARON. This study

also shows that there is a room for improvement since our solver may suffer from

pessimistic interval computations.
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