Introduction

This document describes the proposed processing chain for the production of the vegetation status products for the Sentinel-2 Agriculture project.

The algorithm description and justification of choices have been documented in the Design Justification File 1 . The present document describes the processing chain and its subsystems.

Where possible, we use standard components available in the Orfeo Toolbox version 4.4 2 . When no equivalent component is available in the Orfeo Toolbox, the algorithm is described using either pseudo-code or the example implementations in Python and C++ available at http://tully.ups-tlse.fr/jordi/otb-bv (LAI retrieval and profile reprocessing) and http://tully.ups-tlse.fr/jordi/phenotb (NDVI temporal metrics).

2 System components 2.1 LAI retrieval

Overview of the subsystem

The LAI retrieval is performed by using machine learning to build a non-linear regression model. The regression model is estimated using simulated satellite reflectances. These reflectances are simulated using the ProSail model. This approach is based on the LAI procedure S2PAD 3 , the main difference being that the model is applied to every acquisition date, which allows removing the solar and sensor angles from the predictor variables. Figure 1 illustrates this procedure.

After that, 2 reprocessing options are available in order to improve the LAI retrieval by taking into account the multi-temporal information. The first option is an on-line algorithm which uses the n last acquisitions to estimate the LAI value for the last one. It uses the error estimation of the LAI retrieval to weight the LAI values. The second option can be applied at the end of the season and consists in fitting a phenological model (double logistic function) to the LAI retrieval time series. Figure 2 illustrates the multi-temporal retrieval approaches.

The LAI retrieval processing chain is implemented as a set of applications corresponding to the individual processing blocks. These applications are based on a C++ library which relies on the Orfeo Toolbox (see section 3.1). A Python module is also provided in order to better integrate the applications into a processing chain.

The applications

There are 6 applications used to implement the LAI retrieval processing chain.

1. BVInputVariableGeneration: generates a distribution of input variables for the ProSail model which have the correct statistics and correlations.

2. ProSailSimulator: simulates satellite reflectances using the ProSail variables, the acquisition configuration and the satellite spectral bands.

3. InverseModelLearning: uses the simulated reflectances for each input LAI in order to build a regression model. This application can also be used to build a regression model for the LAI retrieval error.

4.

BVInversion: application which applies the regression models to a set of input reflectances. It is mainly used for validation purposes.

5. BVImageInversion: like BVInversion but applied to full images.

6.

ProfileReprocessing: application which applies the multi-temporal algorithms to an LAI time series.

In the following sections we show how to use these applications from the command line.

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium). The statistical distribution of the variables is described in table 2. The values are drawn using the corresponding probability density defined by its mean and standard deviation (except for the uniform density which is defined by its minimum and maximum). For the Gaussian and lognormal densities, the values are kept only if they are within the range defined by the minimum and the maximum. Finally, in order to take into account the inherent correlation between LAI and the other variables, the following transformation is applied to each sample for each variable:

Input Variable Generation

V * = V mean + (V -V mean) * (LAI Conv -M LAI)/LAI Conv
This configuration is taken from 3 and slightly modified to match recent evolutions of the BV-NET software implemented by INRA (mainly in terms of switching from a Gaussian distribution to a lognormal one for the LAI).

The values of these parameters may evolve as a detailed analysis of their representativity over the Sentinel-2 Agriculture test sites is ongoing. The blue band (B2) will not be used due to residual atmospheric effects. B8 will not be used because of its overlap with B7 anb B8a. Therefore, B3, B4, B5, B6, B7, B8a, B11 and B12 will be used.

Note on the use of vegetation indices as predictors

The use of vegetation indices as predictors has to be allowed as indicated above, but will be desactivated by default in the system.

Inversion

There are 2 applications for the inversion. The first one operates on ASCII files as those used by the InverseModelLearning and is used for validation purposes. The second one operates on images and is used for the LAI retrieval.

It is worth noting that the same application is used for the LAI retrieval and for the error estimation, the only difference being the regression model provided to it.

otbcli_BVImageInversion -in $inputimage -model $modelname \ -out $laiimage -normalization $normname
© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium). It is worth noting that the current version of the otb-bv package does not have a version of this application which is able to operate on image time series and the input and output profiles are ASCII files containing the values for each date for individual pixels. Adapting the application to operate on images is trivial by using the itk::UnaryFunctorImageFilter and passing it the appropriate function defined in otbProfileReprocessing.h. See section 3.1.5 for details. In this case, the choice of radiuses implies that the last date is reprocessed (f wr = 0) using also the 2 previous dates (bwr = 2).

In general, one has to take into account the fact that the number of previous dates needed for the reprocessing may not be available. Therefore, the following conditions will be implemented:

• if only the current date is available (without no other backward image) then the current date value is used;

• if only the current date and only bwr -1 (one in the default case) backward dates are available, then only the current date is used and the backward ones are actually ignored; this means that bwr + 1 valid dates, including the current one are needed to perform the reprocessing;

• if the current date and N ≥ bwr previous dates are available, then the value is reprocessed using all of them; using all dates simplifies the code and given the weight used for all dates, it does not modify the result in a significative manner.

CSDM fitting

In the case of the fitting reprocessing, there are no specific parameters and the application is used as follows:

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

otbcli_ProfileReprocessing -ipf $inputprofile\ -opf $outputprofile\ -algo fit

The Python module

The Python module offers a wrapper around the applications to facilitate the implementation of a complete processing chain. This wrapper is not limited to the Python wrappers automatically generated for the applications. It also offers pre-and post-processing steps.

We start by defining a set of indices and names for the PROSPECT and Sail variables. The indices here have to be coherent with the order used in the bv file and the definition of the vars in otbBVTypes.h. bvindex = {"MLAI": 0, "ALA": 1, "CrownCover": 2, "HsD": 3, "N": 4, "Cab": 5, \ "Car": 6, "Cdm": 7, "CwRel": 4, "Cbp": 9, "Bs": 10, "FAPAR": 11, \ "FCOVER": 12} bv_val_names = {"MLAI": ['gai', 'lai-bvnet'], "FAPAR": ['fapar', 'fapar-bvnet'],\ "FCOVER": ['fcover', 'fcover-bvnet']} A simple wrapper for the BVInputVariableGeneration application is used to generate the draws of the PROSPECT and Sail variables (see section 2.1.2.1):

def generateInputBVDistribution(bvFile, nSamples): app = otb.Registry.CreateApplication("BVInputVariableGeneration") app.SetParameterInt("samples", nSamples) app.SetParameterString("out", bvFile) app.ExecuteAndWriteOutput()

The generation of the training data for the inversion uses a wrapper for the ProSailSimulator application and some post-processing of the generated files in order to add vegetation indices, viewing angles 4 , etc. as predictor variables. The code is also able to selec FCover or FAPAR as dependent variables, but this option is not relevant to the current version of the Sentinel-2 Agriculture processing chains.

def generateTrainingData(bvFile, simuPars, trainingFile, bvidx, add_angles=False, red_index=0, nir_index=0):

""" Generate a training file using the file of biophysical vars (bvFile) and the simulation parameters dictionary (simuPars).

Write the result to trainingFile. The first column will be the biovar to learn and the following columns will be the reflectances.

The add_angles parameter is used to store the viewing and solar angles as features. If red_index and nir_index are set, the ndvi and the rvi are also used as features. red_index=3 means that the red reflectance is the 3rd column (starting at 1) in the reflectances file. with open(bvFile, 'r') as bvf:

4 Although sensor and solar angles can be used as predictors, we have made the choice of using a different regression model per viewing configuration and therefore the angles are not used as predictors. This implies that the reflectance simulations have to be performed for every viewing configuration setting the angles correspondingly. Since Sentinel-2 products will contain angular grids, it is possible to implement different models within a single scene. However, no sensitivity analysis has been performed allowing to assess the usefulness of this approach. Since this does not introduce much complexity into the system, a tiling scheme within scenes taking into account a fixed angular step should be implemented. The learning the regression model uses the application wrapper: def learnBVModel(trainingFile, outputFile, regressionType, normalizationFile, bestof=1): app = otb.Registry.CreateApplication("InverseModelLearning") app.SetParameterString("training", trainingFile) app.SetParameterString("out", outputFile) app.SetParameterString("errest", outputFile+"_errest") app.SetParameterString("regression", regressionType) app.SetParameterString("normalization", normalizationFile) app.SetParameterInt("bestof", bestof) app.ExecuteAndWriteOutput()

The LAI retrieval from ASCII files for the validation can be performed with the following function: The use of the BVImageInversion application for images would be identical, but the removal of FAPAR and FCover and the addition of the vegetation indices should be implemented using the BandMath application which is standard in the ORFEO Toolbox distribution.

No data handling

Pixels which are not flagged as "land" in the L2A products are handled as follows:

• Mono-date LAI: pixels are not processed and they are flagged as NO DATA in the output.

• Multi-date LAI based on "n" last acquisitions: only the valid pixels are used in the computation. If not enough valid dates are available in the estimation window, the mono-date LAI for the current date is used as output. If there was no valid mono-date LAI estimation for the current date, the pixel is marked as NO DATA.

• For the LAI re-processed at the end of the season: only valid pixels are used for the double logistic fitting, the other values being ignored. If there are less than 4 valid dates, the fitting is not performed and the pixels are marked as NO DATA.

Phenological NDVI metrics

Overview of the subsystem

NDVI profile computation

The first step consists in computing the NDVI for each pixel of each date of the L2A image time series. For simplicity, no validity mask is used here. The NDVI computation will use the B8 band (not the B8a). Algorithm © UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

1 describes de procedure. © UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

The logistic function has the form:

f (x) = 1 1 + e x 0 -x x 1
(1)

The double logistic is:

g(x) = A (f 1 (x) -f 2 (x)) + B = A 1 1 + e x 0 -x x 1 - 1 1 + e x 2 -x x 3 + B, (2)
where A + B is the maximum value and B is the minimum. Since df (x) dx = e

x 0 -x x 1

x 1 1 + e

x 0 -x x 1 2 (3)
we have

g (x) = dg(x) dx = A    e x 0 -x x 1 x 1 1 + e x 0 -x x 1 2 - e x 2 -x x 3 x 3 1 + e x 2 -x x 3 2    (4)
= g (x 0)x + (g(x 0) -g (x 0)x 0) (8)
and therefore,

t 0 = mx 0 -g(x 0) m = x 0 - g(x 0) g (x 0) (9)
2.2.4.3 Length of the plateau We define t 1 as the date for which the previous straight line reaches the maximum value.

t 1 = A + B -(g(x 0) -g (x 0)x 0) g (x 0) (10)
Similarly, we can use the straight line associated to the descending slope:

y = g (x 2)x + (g(x 2) -g (x 2)x 2) (11
)
and define

t 2 = A + B -(g(x 2) -g (x 2)x 2) g (x 2) (12)
And the length of the plateau is:

L = t 2 -t 1 (13)
2.2.4.4 Senescence date In a similar way than for t 0 , we obtain: For some NDVI time profiles with unexpected behaviours (absence of vegetation, very atypical shapes), the estimation of the metrics could yield unrealistic values.

t 3 = x 2 - g(x 2) g (x 2) (14)
A post-processing checking will be implemented in order to detect wrong estimations. This post-processing consists in checking that both the following conditions are true:

t0 < x0 < t1 < t2 < t3; t3 -t0 < 365.
The values of the pixels not fulfilling these conditions will be set to NO DATA.

Near-real-time emergence date estimation

After the literature review and the benchmarking phase, no satisfactory approach for the estimation of the emergence date in near-real-time was found. Furthermore, no suitable data for the validation of a new algorithm was available for the SPOT4 (Take5) data set. The SPOT5 (Take5) data sets may make in situ data available for the prototyping and validation of a simple thresholding approach.

The final algorithm will be described in an updated version of the ATBD. Since the literature indicates that thresholding approaches have to be crop dependent (see section 2.5.3 of the DJF about the vegetation status product), this approach will not be reliable enough to be included in the system. It will therefore be provided as an external module.

Quality flags

• For the mono-date LAI maps:

-The flag that gives the status (no data , cloud, snow, water, land, cloud shadow and saturation).

-The uncertainty, which is the output of the error estimation.

• For the multi-date LAI based on "n" last acquisitions:

-The number of dates (i.e. L2A products) which are associated with the "land" status during the search window; knowing that the multi-date LAI will not be computed if this number is lower than 2). There is a flag for each date in the time profile. Therefore, this value will be between 3 and n if several dates are used. It will be equal to 1 if less than 3 valid dates were availble and the LAI © UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

mono-date existed for the current date, and 0 otherwise. In this last case, the LAI value will be set to NO DATA.

• For the LAI re-processed at the end of the season and for the NDVI metrics:

-The number of dates (i.e. L2A products) which are associated with the "land" status during the season; knowing that the re-processed LAI and the NDVI metrics will not be computed if this number is lower than 4).

• For the NDVI metrics:

-The number of dates (i.e. L2A products) which are associated with the "land" status during the interval.

3 Appendix

The OTB-BV library

This section describes the C++ library which implements the low level details of the LAI retrieval. This library makes extensive use of the ORFEO Toolbox.

Type definitions

A definition of a set of types is given in otbBVTypes.h:

Utilities

A utility function for counting columns in an ASCII file is given in otbBVUtil.h. It is used to automatically get the number of predictor variables in the non-linear regression procedures.

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

Figure 2 :

 2 Figure 2: Block diagram for the 2 multi-date LAI retrieval procedures.

1

 Sentinel-2 for Agriculture Design Justification File (v1.1, 2015/04/15) 2 This version corresponds to the changeset http://hg.orfeo-toolbox.org/OTB/file/baf740ee2113. 3 S2PAD-VEGA-ATBD-0003-2 1L2BATBD . S2PAD -Sentinel-2 MSI -Level 2B Products Algorithm Theoretical Basis Document. Issue 2.1. 2010/10/13.

 2.1.2.5.1 On-line reprocessing In the case of the on-line reprocessing, the application is used as follows: otbcli_ProfileReprocessing -ipf $inputprofile\ -opf $outputprofile\ -algo local\ -algo.local.bwr 2\ -algo.local.fwr 0

 .Registry.CreateApplication("ProSailSimulator") app.SetParameterString("bvfile", bvFile) app.SetParameterString("soilfile", simuPars['soilFile']) app.SetParameterString("rsrfile", simuPars['rsrFile']) app.SetParameterString("out", simuPars['outputFile']) app.SetParameterFloat("solarzenith", simuPars['solarZenithAngle']) app.SetParameterFloat("sensorzenith", simuPars['sensorZenithAngle']) app.SetParameterFloat("azimuth", simuPars['solarSensorAzimuth']) app.SetParameterFloat("noisevar", simuPars['noisevar']) app.ExecuteAndWriteOutput() #combine the bv samples, the angles and the simulated reflectances for #variable inversion and produce the training file with open(trainingFile, 'w') as tf:

 bvf.readline() #header line with open(simuPars['outputFile'], 'r') as rf: #the output line follows the format: #outputvar inputvar1 inputvar2 ... inputvarN for (refline, bvline) in zip(rf.readlines(), bvf.readlines()): outline = "" if bvidx == bvindex["FCOVER"] : outline = string.split(refline)[-1] elif bvidx == bvindex["FAPAR"] : outline = string.split(refline)[-2] else: outline = string.split(bvline)[bvidx] outline = outline+" "+\ string.join(string.split(refline[:-1])[:-2], ' ') outline.rstrip() if add_angles: angles = `simuPars['solarZenithAngle']`+" "+\ `simuPars['sensorZenithAngle']`+" "+\ `simuPars['solarSensorAzimuth']4 outline += " "+angles outline += "\n" tf.write(outline) if red_index!=0 and nir_index!=0: # we need to add 1 to the indices since the file already contains the #variable in the first column addVI(trainingFile, red_index+1, nir_index+1) The utility function to add the NDVI and the RVI to a reflectance ASCII file is like this: def addVI(reflectances_file, red_index, nir_index): rff = open(reflectances_file) allfields = rff.readlines() rff.close() with open(reflectances_file, 'w') as rf: for l in allfields: rfls = string.split(l) if len(rfls)>red_index: outline = string.join(string.split(l)) red = float(rfls[red_index-1]) pir = float(rfls[nir_index-1]) epsilon = 0.001 ndvi = (pir-red)/(pir+red+epsilon) rvi = pir/(red+epsilon) outline += " "+str(ndvi)+" "+str(rvi)+"\n" rf.write(outline)

 def invertBV(reflectanceFile, modelFile, normalizationFile, outputFile, \ removeFaparFcover=False, red_index=0, nir_index=0): if removeFaparFcover: #the reflectance file contains also the simulations of fapar and fcover rff = open(reflectanceFile) allfields = rff.readlines() rff.close() with open(reflectanceFile, 'w') as rf: for l in allfields: outline = string.join(string.split(l)[:-2])+"\n" rf.write(outline)© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

 if red_index!=0 and nir_index!=0: addVI(reflectanceFile, red_index, nir_index) app = otb.Registry.CreateApplication("BVInversion") app.SetParameterString("reflectances", reflectanceFile) app.SetParameterString("model", modelFile) app.SetParameterString("normalization", normalizationFile) app.SetParameterString("out", outputFile) app.ExecuteAndWriteOutput()

Figure 3 Figure 3 :

 33 Figure3illustrates the processing chain for the production of the temporal NDVI metrics.Pre-processing

Algorithm 1 :

 1 NDVI time series computation Data: tocr Result: ndvi ts begin ndvi ts ← ∅; for image ∈ tocr do ndvi image ← ∅; for pixel ∈ image do ndvi image[positon(pixel)] ← pixel[N IR]-pixel[R] pixel[N IR]+pixel[R] ; end ndvi ts ← ndvi ts + ndvi image; end end 2.2.3 Double logistic fitting The second step consists in fitting a double logistic function (CSDM) to each pixel of the NDVI time series. The validity mask series (clouds, shadows, staurations, etc.) is used to discard the invalid NDVI values. Algorithm 2 describes de procedure. Algorithm 2: Double logistic fitting Data: tocr, mask Result: csdm ts begin csdm ts ← ∅; for pixel ∈ tocr, mask pixel ∈ mask do v pixel ← remove invalid dates(pixel, mask pixel); out pixel ← csdm f it(v pixel); csdm ts[positon(pixel)] ← out pixel; end end This is done using the SigmoFitting application for which the DoExecute() method is implemented as follows: void DoExecute() { // prepare the vector of dates auto dates = pheno::parse_date_file(this->GetParameterString("dates")); // pipeline FloatVectorImageType::Pointer inputImage = this->GetParameterImage("in"); FloatVectorImageType::Pointer maskImage; bool use_mask = true; if(IsParameterEnabled("mask")) maskImage = this->GetParameterImage("mask"); else { maskImage = inputImage; use_mask = false; otbAppLogINFO("No mask will be used.\n"); } inputImage->UpdateOutputInformation(); maskImage->UpdateOutputInformation(); bool fit_mode = true; unsigned int nb_out_bands = inputImage->GetNumberOfComponentsPerPixel(); if(IsParameterEnabled("mode") && GetParameterString("mode") == "params") { fit_mode = false; nb_out_bands = 12;

Figure 4 :

 4 Figure 4: Double logistic function and associated parameters

 y

2. 2 Algorithm 3 :

 23 .4.5 Metrics estimation implementation Using the definitions above, algorithm 3 describes the metric estimation loop. NDVI time metrics computation Data: csdm ts Result: metrics image begin metrics image ← ∅; for pixel ∈ csdm ts do out pixel ← pheno metrics(pixel); metrics image[positon(pixel)] ← out pixel; end end This alorithm is implemented in terms of several functions. The derivative of the double logistic is: template <typename T> inline T diff_sigmoid(T t, T x0, T x1) { auto b = exp((x0-t)/x1); return 1.0/(x1*(1+1/b)*(1+b)); } template <typename T, ContainerC V> inline T diff_double_sigmoid(T t, const V& x) { return diff_sigmoid(t, x[0], x[1])-diff_sigmoid(t, x[2], x[3]); } © UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium). And, finally the metrics estimation is just a straighforward FORmula TRANslation, but in C++: template <typename T, ContainerC V> inline std::tuple<T, T, T, T, T, T> pheno_metrics(const V& x, T maxvalue=1.0, T minvalue=0.0) { auto A = maxvalue-minvalue; auto B = minvalue; auto gx0 = A*double_sigmoid(x[0], x)+B; auto dgx0 = A*diff_double_sigmoid(x[0], x); auto gx2 = A*double_sigmoid(x[2], x)+B; auto dgx2 = A*diff_double_sigmoid(x[2], x); auto t0 = x[0] -gx0/dgx0; auto t1 = (A+B-(gx0-dgx0*x[0]))/dgx0; auto t2 = (A+B-(gx2-dgx2*x[2]))/dgx2; auto t3 = x[2] -gx2/dgx2; return std::make_tuple(dgx0, t0, t1, t2, t3, dgx2); } 2.2.4.6 No data handling and metric checking The double logistic fitting is applied on all the pixels for which the number of valid dates is equal or greater than 4. The invalid dates are ignored and ony the valid dates are used for the fitting.

 {MLAI, ALA, CrownCover, HsD, N, Cab, Car, Cdm, CwRel, Cbp, Bs, IVNamesEnd}; enum AcquisitionParameters {TTS, TTO, PSI, TTS_FAPAR, AcquisitionParametersEnd}; using AcquisitionParsType = std::map< AcquisitionParameters, double >; using PrecisionType = double; using BVType = std::map< IVNames, PrecisionType >; using NormalizationVectorType = std::vector<std::pair<PrecisionType, PrecisionType>>; } Solar irradiance values for the FAPAR computation in the simulations (not needed for LAI) are given in \ otbSolarIrradianceFAPAR.h :

 Table 1 lists the variables used by the BVInputVariableGeneration application. The application is used as follows:

1 otbcli_BVInputVariableGeneration -samples $samples -out $outfile

Table 1 :

 1 Variables for the input variable generation

	Input variable	role	default value
	samples	Number of samples to be generated	40000
	Output variable role	
	outfile	Name of the ASCII file to store the samples -

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

Table 2 :

 2 Ranges and parameters for the statistical distribution of the input variables

		Variable		Minimum Maximum Mean	Std	Law	LAI Conv
	Canopy MLAI		0.0	5.0	0.5	1.0	lognormal -
		ALA (°)		5	80	40	20	Gaussian	10
		Crown Cover	1.0	1.0	-	-	uni	10
		HsD		0.1	0.5	0.2	0.5	Gaussian	1000
	Leaf	N		1.20	1.80	1.50	0.30	Gaussian	10
		Cab (µ g.m -2) 20	90	45	30	Gaussian	10
		Cdm (g.m-2)	0.0030	0.0110	0.0050 0.0050 Gaussian	10
		Cw Rel		0.60	0.85	-	-	uni	10
		Cbp		0.00	2.00	0.00	0.30	Gaussian	10
	Soil	Bs		0.50	3.50	1.20	2.00	Gaussian	10
				Table 3: Variables for the ProSail simulation	
	Input variable	role					default value
	bvfile		File containing the ProSail variables		-
	rsrfile		File containing the satellite spectral responses	-
	solarzenith	Solar zenithal angle				-
	sensorzenith	Sensor zenithal angle				-
	azimuth		Relative azimuth between sensor and Sun		-
	noisevar		Noise variance to be added to the reflectances	0.01
	Output variable role					
	out		Name of the ASCII file to store the simulated reflectances -
	2.1.2.2 ProSail Simulator Table 3 lists the variables used by the ProSailSimulator application. The
	application is used as follows:					
	otbcli_ProSailSimulator -bvfile $bvFile -rsrfile $rsrFile -out $outputFile\		
		-solarzenith $solarZenithAngle\				
		-sensorzenith $sensorZenithAngle\			
		-azimuth $solarSensorAzimuth\				
		-noisevar $noisevar				
	2.1.2.3 Inverse Model Learning Table 4 lists the variables used by the InverseModelLearning appli-
	cation. The first column of the training file corresponds to the dependent variable and the following columns
	are the predictors. Added to the reflectances, the NDVI and the RVI (clamped to 30) are used as predictors.
	The normalization file contains 2 columns corresponding to the minimun and maximum values to be used for
	the normalization of each variable. Each row corresponds to a variable in the same order of the columns of the
	training file.							
	The application is used as follows:				

Table 4 :

 4

	otbcli_InverseModelLearning -training $trainingFile -out $modelfile\
	-errest ${modelfile}_errest\
	-regression svr\
	-normalization $normalizationFile\
	-bestof 1

Variables for the inverse model learning Input variable role default value training File containing the input/output pairs regression Regression algorithm: svr, nn, mlr nn normalization File containig the min and max for each variable -Output variable role out Name of the file containing the regression model for the variable errest Name of the file containing the regression model for the error estimation -2.1.2.3.1 Note on spectral bands for Sentinel-2 Only bands at 10 m and 20 m resolution will be used as predictors.

Table 5 :

 5 Variables for the variable inversion on ASCII files Input variablerole Inversion from ASCII files Table5lists the variables used by the BVInversion application. The application is used as follows:

	otbcli_BVInversion -reflectances $reflectanceFile -model $modelFile\
	-normalization $normalizationFile\
	-out $outputFile

reflectances File containing reflectances model Regression model file normalization File containig the min and max for each variable Output variable role out Name of the file containing the variable retrieval 2.1.2.4.1 2.1.2.4.2 Image Inversion Table 5 lists the variables used by the BVImageInversion application. The application is used as follows:

Table 6 :

 6 Variables for the variable inversion using images Input variable role Profile Reprocessing Table7lists the variables used by the ProfileReprocessing application.

	Output variable role	
	out	Name of the image file containing the variable retrieval
		Table 7: Variables for the profile reprocessing	
	Input variable	role	default value
	ipf	Input time profile	-
	algo	Reprocessing algorithm: local or fit	local
	algo.local.bwr Backward radius of the window for the local algorithm 3
	algo.local.fwr Forward radius of the window for the local algorithm	0
	Output variable	role	
	opf	Output profile	-
	2.1.2.5		

in Input image model Regression model file normalization File containig the min and max for each variable

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

The interface of the pheno::TwoCycleSigmoFittingFunctor is defined as follows:

};

The core of the processing is the operator() of the functor: // The metrics have to fulfill some constraints in order to be // considered as valid: t0<x0<t1<t2<t3 and (t3 -t0) < 365

The approximation is done in the normalized sigmoid::TwoCycleApproximation(profile, t) call: © UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium). And in our case, the function to be optimized is

{ auto tsize(t.size()); V y(tsize); for(auto i=0; i<tsize; ++i)

Metric estimations

The following phenological parameters were selected as meaningful to describe the vegetation status: emergence date, date of the maximum growth, length of the maturity plateau and senescence date.

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium). And the Sail parameters are set as follows:

© UCL-Geomatics 2017. This document is the property of the Sen2-Agri partnership, no part of it shall be reproduced or transmitted without the express prior written authorisation of UCL-Geomatics (Belgium).

Regression

The non-linear regression is implemented using Neural Networks or Support Vector Machines. In both cases, the OpenCV implementation available through the ORFEO Toolbox is used. However, the ORFEO Toolbox wrapper for the NeuralNetworkMachineLearningModel does not allow to perform regression (only classification is provided), and therefore, a NeuralNetworkRegressionMachineLearningModel has been implemented. It boils down to inheriting and overloading the Predict method in order to do regression: Reprocessing functions working on time profiles are defined in\ otbProfileReprocessing.h.

On-line reprocessing

The on-line reprocessing uses a local window defined by its backward radius bwd radius and its forward radius fwd radius. For example, if (bwd radius, f wd radius) = (1, 1) the window contains 3 dates and is centered on the middle one.

The smooth time series local window with error takes as input a date vector dts, the vector with the measurement values (i.e. LAI) ts, and the vector of the estimated errors ets. For each reprocessed date, the new value is computed using a weighted linear combination of the values inside the window. ---------------------------------- return (one/(one+delta)+one/(one+err)); } 3.1.5.2 Fit CSDM The double logistic fitting is performed using functions provided by the phenotb library which is described in section 2.2. These functions are used by the fit csdm function below, which takes as input a date vector dts, the vector with the measurement values (i.e. LAI) ts. A third parameter ets corresponding to the vector of the estimated errors is not used in the current version of the function.

The function returns a std::pair of vectors containing the fitted profile and a vector of flags for each date inidicating whether or not each date has been processed.