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Abstract. In the Bayesian persuasion setting, the sender aims at per-
suading the decision maker, so called the decoder, to choose a certain ac-
tion among a set of possible actions. This paper considers two Bayesian
persuasion games: one that involves the observation of a private signal
by the decoder in addition to the signal transmitted by the encoder,
and another version where no private signal is accessible by the decoder.
Our goal is to examine the impact of this private signal on the encoder’s
optimal utility. In order to do so, we investigate an example involving
a binary state, a binary private signal and a binary receiver’s actions
set. We identify the optimal splitting of the decoder’s beliefs satisfy-
ing the information constraint imposed by the restricted communication
channel, and we compute the encoder’s optimal utility value, with and
without private signal. Varying the parameters such as the prior belief,
the precision of the private signal and the channel capacity, we aim at
determining which of the two settings is more favorable to the encoder.

Keywords: Bayesian Persuasion · Strategic Communication · Side In-
formation.

1 Introduction

In [5], Kamenica-Gentzkow investigate a persuasion game in which the sender
observes the realization of a state variable and commits to some signalling mech-
anism, then the receiver chooses the best-reply action corresponding to its pos-
terior belief. Communication in persuasion games may be constrained by a lim-
ited channel’s capacity and messages distorted by some source of noise, as in [9].
Moreover, the receiver may privately observe a signal correlated to the state, as
in the source coding problem of Slepian-Wolf and Wyner-Ziv, in [12] and [13].
In such settings, the persuasion problem is hard to solve even for simple mod-
els. Tools from information theory, involving entropy and mutual information,
provided a solution for certain scenarios of repeated persuasion problems. The
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optimal solution to the noisy persuasion problem relies on a specific concavifica-
tion involving an auxiliary utility function for the sender that accounts for the
private observation of the receiver as in [8], [9] and [10].
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Fig. 1: Bayesian persuasion game with noisy channel T (y|x), with or without
decoder’s side information Z. The utility functions of the encoder E and decoder
D are denoted by φe(u, v) and φd(u, v).

1.1 State of the Art

Channel coding and communication problems originally introduced in [11] have
been studied in several settings, particularly with the side information setting
as in [1] where a hierarchical communication game is considered to treat in-
formation disclosure problems originated in economics and involving different
objectives for the encoder and the decoder. In [2], Alonso-Cãmara provide nec-
essary and sufficient conditions under which a sender benefits from persuading
decoders with distinct prior beliefs. The computational aspects of the persuasion
game are considered in [4], where the impact of the channel’s capacity on the
optimal utility is investigated. Persuasion of a privately informed receiver was
also investigated in [6], in which the optimal persuasion mechanisms are char-
acterized. In [7], Laclau-Renou depicted the constraints imposed on the sender
when multiple receivers have multiple beliefs.

1.2 Contributions

In this paper, we consider a persuasion game with binary source/state and binary
decoder’s actions and we investigate the effect of the decoder’s side observation
on the encoder’s optimal utility. We compute numerically the two values of the
persuasion problems, with and without decoder’s side information, depending
on two keys parameters, 1) the channel capacity and 2) the precision of the
decoder’s side information. Depending on these two parameters, the decoder’s
side information may increase or decrease the encoder’s utility.

The paper is organized as follows. The notations are defined in Sec. 2. In Sec.
3, we formulate the two concavification problems. In Sec. 4, we introduce the
example of a binary source and state, and we formulate the optimal solutions
for the case with no private observation in 4.1, and for the case where private
observation is available at the decoder 4.2. In Sec. 5, we provide the results of
our numerical simulations.



2 Notations

This paper considers a communication model that is illustrated in Fig. 1. Let
E denote the encoder and D denote the decoder. Notations U , Z , X, Y, and
V denote the random variables of information source u ∈ U , side information
z ∈ Z, channel inputs x ∈ X , channel outputs y ∈ Y, and decoder’s actions
v ∈ V respectively. Calligraphic fonts U , Z, X , Y, and V, denote the alphabets
and lowercase letters u, z, x, y, and v denote the signal realizations. Notation PU
stands for the probability distribution of the state U of the game. The private
observation Z of the receiver is correlated to U according to the conditional prob-
ability distribution PZ|U . We will denote the beliefs of the decoder by p ∈ ∆(U)
whereas p(u) belongs to [0, 1] for each u ∈ U . The i.i.d. memoryless channel dis-
tribution will be denoted by TY |X . We denote by ∆(X ) the probability simplex,
i.e. the set of probability distributions over X . We denote by QX the probability
distribution over X , i.e. the posterior beliefs of the decoder. The joint probabil-
ity distribution QXV ∈ ∆(X × V) decomposes as follows, QXV = QX ×QV |X .
The channel’s capacity will be denoted by C. Notations H(U), H(U |Z) and
I(X;Y ) refer to Shannon’s entropy, conditional entropy and mutual information
respectively [3, pp. 12], and are given below.

H(U) =
∑
u∈U

p(u) log2

1

p(u)
, H(U |Z) =

∑
z∈Z

∑
u∈U

p(z, u) log2

1

p(u)
, (1)

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y).
, C = max

P(x)
I(X;Y ). (2)

3 Concavification Problems

Given a capacity value C ≥ 0, we consider the two concavification problems
below, stated in [10, Def. III.1] and [9, Def. 2.4].

Γ0 = sup
(λw,pw)w∈W

{ ∑
w∈W

λw · Φe(pw) s.t.
∑
w∈W

λw · pw = PU ,

∑
w

λw ·H(pw) ≥ H(U)− C, |W| = min(|U|+ 1, |V|)

}
, (3)

Γ = sup
(λw,pw)w∈W

{ ∑
w∈W

λw · Ψe(pw) s.t.
∑
w∈W

λw · pw = PU ,

∑
w

λw · h(pw) ≥ H(U |Z)− C, |W| = min(|U|+ 1, |V||Z|)

}
, (4)



where

Φe(p) =Ep
[
φe(U, v

?(p))
]
, H(p) = H(U), (5)

v?(p) = arg min
v∈argmaxEp

[
φd(U,v)

]Ep[φe(U, v)
]
, (6)

and

∀z ∈ Z, qz ∈ ∆(U), qz(u) =
p(u) · P(z|u)∑
u′ p(u′) · P(z|u′)

, ∀u ∈ U , (7)

Ψe(p) =
∑
u,z

p(u) · P(z|u) · Φe
(
qz
)
, (8)

h(p) =
∑
u,z

p(u) · P(z|u) · log2

∑
u′ p(u′) · P(z|u′)
p(u) · P(z|u)

. (9)

The notation v?(p) ∈ V stands for the decoder’s best reply action with re-
spect to its posterior belief p ∈ ∆(U). If several actions maximize the utility
of the decoder, we assume that it chooses the one that minimizes the encoder’s
utility. Thus, the encoder’s expected utility Φe(p) is evaluated with respect to
the decoder’s belief p ∈ ∆(U). In the presence of side information z ∈ Z, the
decoder’s belief is denoted by qz ∈ ∆(U). As a consequence, the encoder’s ex-
pected utility Ψe(p) is a convex combination between the utilities Φe

(
qz
)

eval-
uated at different possible beliefs (qz)z∈Z . The supremum in (4) and (3) are
taken over the set of splittings (λw, pw)w∈W of the prior probability distribution
PU ∈ ∆(U), that satisfy the cardinality bound, either |W| = min(|U|+ 1, |V|) or
|W| = min(|U|+ 1, |V||Z|).

Formulas (3) and (4) are solutions to the persuasion game with noisy chan-
nel. The value Γ corresponds to the persuasion problem in which the decoder
has a private observation Z correlated with the state U according to the con-
ditional probability distribution PZ|U , whereas the value Γ0 corresponds to the
persuasion problem in which the decoder has no access to a side information, or
equivalently, has a private observation Z that is independent from the state U .
When removing the entropy-based constraints in Γ0, the concavification problem
boils down to the optimal solution provided by Kamenica-Gentzkow in [5].

4 Example with Binary Source and State

In this section, we will illustrate a particular scenario of a strategic communi-
cation involving binary source and state and decoder’s action. Let U = {u0, u1}
the state space, V = {v0, v1} the action space, and p0 = P(U = u1) ∈ [0, 1]
the decoder’s prior belief. We consider a binary symmetric noisy channel where
X = {x0, x1} denotes the set of channel inputs, Y = {y0, y1} denotes the set
of channel outputs. The channel’s capacity for noise level ε ∈ [0, 12 ] is given by
C = 1−Hb(ε) where Hb(p) denotes the binary entropy. Utility functions of both
encoder and decoder are given in Tables 1 and 2.



Table 1: Encoder’s utility
v0 v1

u0 0 1

u1 0 1

Table 2: Decoder’s utility
v0 v1

u0 9 0

u1 4 10

As shown in the decoder’s expected utility graph Fig. 2a, the red lines rep-
resent the decoder’s best reply action. Therefore, the action of the decoder will
only change from v0 to v1 depending on the utility threshold γ.
In this example, we consider the prior p0 = 0.4 and the utility threshold γ = 0.6.

4.1 Persuasion without Side Information (Equation for Γ0)

The optimal number of posterior beliefs when no side information is available at
the decoder is two [9, lemma 6.1]. These posterior beliefs of the decoder need to
satisfy the splitting condition and information constraint

λq1 + (1− λ)q2 = p0 ⇐⇒ λ =
p0 − q2
q1 − q2

⇐⇒ 1− λ =
q1 − p0
q1 − q2

, (10)

λHb(q1) + (1− λ)Hb(q2) ≥ Hb(p0)− C. (11)

Assuming the information constraint is binding at the optimal, we get

λHb(q1) + (1− λ)Hb(q2) = Hb(p0)− C (12)

⇐⇒Hb(q1) =
p0Hb(q2)− q2(Hb(p0)− C)

(p0 − q2)
+ q1

(−Hb(q2) +Hb(p0)− C)

(p0 − q2)
(13)

The encoder’s expected utility function Φe depicted in Fig. 2b is defined over
[0, 1] by Φe(q) = 1q∈[γ,1]. For each q2 ∈ [p0, 1], we denote by q1(q2) the unique
solution of (13) for a given pair (p0, C) . We assume that the decoder’s threshold
γ > p0, hence at the optimum q2 = γ, thus

Γ0 = sup
q2∈[0,1]

(
λΦe(q1(q2)) + (1− λ)Φe(q2)

)
=
q1(γ)− p0
q1(γ)− γ

. (14)

Fig. 2b shows an unrestricted communication without decoder’s side information.
The green dotted line is the concavification of the encoder’s expected utility
function represented in the red lines. The optimal utility value corresponds to
the evaluation of this concavification at the prior belief p0.

4.2 Persuasion with Side Information (Equation for Γ )

When side information Z = {z0, z1} is observed by the decoder, then [9, Lemma
6.3] ensures that the optimal number of posterior beliefs is three. The posterior
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Fig. 2: Encoder and Decoder’s Expected Utilities

distributions (q1, q2, q3) from observing the message delivered by the encoder,
must satisfy the information constraint given by

λ1 · h(q1) + λ2 · h(q2) + λ3 · h(q3) ≥ H(U |Z)−max
P(x)

I(X;Y ) (15)

Thus (λ1, λ2, λ3) can be computed from the above information constraint, the
splitting lemma λ1q1 + λ2q2 + λ3q3 = p0 and the fact that λ1 + λ2 + λ3 = 1. We
assume that the information constraint is binding. From [10, Eq. (57)-(59)], we
have

λ1 =
IC · (q2 − q3) + h(q2) · (q3 − p0) + h(q3) · (p0 − q2)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
, (16)

λ2 =
IC · (q3 − q1) + h(q3) · (q1 − p0) + h(q1) · (p0 − q3)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
, (17)

λ3 =
IC · (q1 − q2) + h(q1) · (q2 − p0) + h(q2) · (p0 − q1)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
. (18)

Given a interim belief parameter q ∈ [0, 1], the decoder’s side information might
be z0 or z1, thus inducing the two following posterior beliefs

p1(q) =
q.δ

(1− q).(1− δ) + q.δ
, p2(q) =

q.(1− δ)
(1− q).δ + q.(1− δ)

. (19)

The decoder’s threshold γ induces the two corresponding threshold ν1 and
ν2 for the interim belief parameter q ∈ [0, 1]

ν1 =
γ.(1− δ)

δ.(1− γ) + γ(1− δ)
, ν2 =

γ.δ

γ.δ + (1− δ).(1− γ)
. (20)
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Fig. 3: Splitting over 2 posteriors (q1 = 0; q2 = 0.4468) with C = 0.25, p0 =
0.4, δ = 0.35, γ = 0.6.

Thus the encoder’s utility function Ψe(q) represented by the red lines in Fig. 3
and the conditional entropy h(q) reformulate as

Ψe(q) =0 · 1{q∈]0,ν2]} + ((1− q) · δ + q · (1− δ)) · 1{q∈]ν2,ν1] + 1 · 1{q∈]ν1,1]},
(21)

h(q) =((1− q) · (1− δ) + q · δ) ·Hb(p1(q)) + ((1− q) · δ + q · (1− δ))Hb(p2(q).
(22)

The encoder’s optimal utility value is given by

Γ = sup
q1∈[0,ν2],q2∈[ν2,ν1],

q3∈[ν1,1]

(
λ1 · Ψe(q1) + λ2 · Ψe(q2) + λ3 · Ψe(q3)

)
(23)

= sup
q1∈[0,ν2],q2∈[ν2,ν1],

q3∈[ν1,1]

(
(h(p0)− C)

(
(q3 − q1) ·

(
q2 · (1− 2δ) + δ

)
+ (q1 − q2)

)
h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)

+

(
h(q3) · (q1 − p0) + h(q1) · (p0 − q3)

)
·
(
q2 · (1− 2δ) + δ

)
h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)

+
h(q1) · (q2 − p0) + h(q2) · (p0 − q1)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)

)
(24)

In some cases, the optimal splitting has only two posterior instead of three.
Fig. 3 and Fig. 4 represent the optimal utility of the encoder depending on belief
parameter q over a constrained communication channel with capacity C = 0.25
and with decoder’s private observation δ = 0.35. Splitting over three posteriors
instead of two, improves the encoder’s optimal payoff.
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Fig. 4: Optimal Splittings over 3 posteriors (q1 = 0.012; q2 = 0.4468; q3 = 0.7358)
with C = 0.25, p0 = 0.4, δ = 0.35, γ = 0.6.

5 Numerical Simulations

In this section we investigate the impact of the private observation on the en-
coder’s optimal utility. Numerical simulations over (C,δ) regions are performed
for both concavification problems Γ0 and Γ , revealing the encoder’s optimal
payoff values with and without decoder’s private observation.

5.1 Encoder’s optimal payoff values

The optimal splitting of the prior over 3 posterior beliefs results in the encoder’s
optimal payoff values shown in Fig.5 with respect to the (C, δ) regions. As the

Fig. 5: Encoder’s optimal payoff evaluated with three posteriors w.r.t. δ and C
for p0 = 0.4 and γ = 0.6.

channel’s capacity increases, the encoder’s utility is improved without decoder’s



side information. This is due to the fact that more capacity allows the trans-
mission of more information and hence information can be optimally disclosed.
However; with low capacity, the decoder’s side observation can enhance the util-
ity of the encoder until the encoder has no capacity at all, it becomes optimal
to have private information up to some threshold δ? evaluated in Proposition 1
below.

5.2 Impact of the decoder’s private signal

Proposition 1. Let C = 0.

• If p0 < γ and δ ∈ [0, p0·(γ−1)
p0·(−1+2γ)−γ ] ∪ [ γ·(1−p0)

p0·(1−2γ)+γ , 1], then Γ > Γ0.

• If p0 ≥ γ then Γ0 ≥ Γ.

Fig. 6: (δ, C) regions for encoder’s optimal utility with (blue) and without (green)
decoder’s private observation for p0 = 0.4 and γ = 0.6.

5.3 Impact of the number of posteriors

The encoder could potentially achieve a greater payoff by splitting the prior over
three posterior beliefs instead of splitting over two posteriors only.

Fig. 7: Difference between optimal utility values obtained by splitting with three
posteriors and two posteriors.
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