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Abstract

The uncertainties arising from the fabrication and operation of mechanisms,
specifically the four-bar linkage, significantly affect the expected performance
of the mechanism. To accommodate uncertainties during the dimensional syn-
thesis of the four-bar linkage, the desired coupler curve response is described by
any number of precision point elements and trajectory elements, where each el-
ement is specified with an allowable error. A design description which accounts
for bounded uncertainties is termed an appropriate design. An appropriate
synthesis method is developed to synthesize the entire set of appropriate de-
sign solutions corresponding to the desired response. This method is able to
completely explore the continuous design space and each synthesized appropri-
ate design guarantees that the resulting four-bar linkage has a corresponding
coupler point which lies inside each precision point response element, and a cor-
responding set of continuous coupler points which remain inside the trajectory
response elements from start to finish.
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1. Introduction to Linkage Synthesis

Exact synthesis in four-bar linkages involves obtaining geometric parameters
which exactly produce a coupler curve. Generally a curve is approximated by
a set of precision points. Analytical approaches are able to solve the problem
and return exact solutions for a four-bar linkage which can guide the coupler
point through no more than five crank-coordinated precision points, and no
more than nine precision points [1]. Wampler et al. [2] obtain for the first time
the complete solution for the nine precision point problem. Bai and Angeles [3]
develop a new formulation of the synthesis problem to exactly determine the
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geometric parameters corresponding to a given algebraic coupler curve equation.
In addition, it is well known due to Roberts [4] that every four-bar linkage has
two four-bar cognates, so three solutions are always expected.

In approximate synthesis, numerical methods are used to synthesize a linkage
to perform within an acceptable deviation from a desired curve. The curve is
generally approximated by a set of precision points. Global optimization meth-
ods such as genetic algorithms [5] and other stochastic or heuristic methods [6]
have been used to find solutions to the synthesis problem by minimizing a cost
function. These methods are unable to guarantee global optimality and often
suffer from premature convergence. Recently, Goulet et al. [7] presented a syn-
thesis method using a non-convex optimization routine which relies on a solver
which applies constraint propagation and interval arithmetic. A more thorough
exploration of the design parameter space may be achieved with this method.
The solver requires the use of precision points approximating the desired curve,
while a cost function minimizes the error between the actual and desired cou-
pler curves. Other techniques such as machine learning and neural network
approaches [8, 9] rely on a database of linkage solutions. Such techniques may
suffer from the coverage of mechanisms in the database and sampling techniques.

The performance of a linkage cannot be guaranteed using the synthesis tech-
niques currently available in the literature, as they are unable to account for
the uncertainties inherent in mechanisms. The issue of uncertainties plays a
significant role in the actual performance of a mechanism. In mechanism lit-
erature, their effects are generally studied using statistical and probabilistic
approaches [10-13] or interval analysis [14-17] approaches. In the four-bar link-
age, uncertainties make it no longer possible to obtain an exact solution for the
coupler point and thus exact synthesis is not applicable. Instead, the coupler
point can only be determined to lie within a region which is a function of the
uncertainties. The border of this region cannot usually be obtained in closed-
form or in parametric form so it has to be calculated numerically. It would
be beneficial to account for the uncertainties during synthesis, such that the
desired performance of a synthesized mechanism is guaranteed. Moreover, it
would be useful to provide a set of allowable designs which satisfy the desired
criteria. The end-user would then be free to select any of the designs which best
suit their needs.

In the literature, the idea of synthesizing the optimal designs of mechanisms
while accounting for uncertainties has been explored in several publications.
Kalnas and Kota [18] consider the five-precision-point problem for synthesizing
four-bar linkage motion generating mechanisms and present a method in which
intermediate points are described as distributions. Monte Carlo simulations are
utilized to identify valid design solutions which satisfy the considered distri-
butions. In [19], mechanism synthesis with random and interval variables is
considered in order to model the aleatory (due to inherent variation) and epis-
temic uncertainties (due to limited information) present in the physical system.
A double loop Monte Carlo simulation is proposed to handle the interval and
random variables and allows to identify more robust design solutions than a
standard deterministic mechanism synthesis. Luo et al. [20] extend the previ-



ous work to use truncated distributions, as opposed to normal distributions, for
the random variables. While these previously mentioned works provide more
robust design solutions, a major drawback of these statistical and probabilistic
approaches is the assumed nature of the uncertainty distribution and their re-
liance on sampling. There is no guarantee that the worst-case performance of
the mechanism can be adequately described with such approaches. Furthermore,
such approaches can only sample the design space and are therefore unable to
provide the desired set of allowable designs.

Alternatively, interval analysis has become an attractive approach for man-
aging uncertainties. Hao and Merlet [21] synthesized a set of optimal designs
for the INRIA active wrist based on compulsory requirements for the workspace
and accuracy of the mechanism. Routines based on interval analysis were de-
veloped to ensure that a set of design parameters satisfy the workspace and
accuracy requirements. A feasible solution is found when either requirement
is satisfied, while a valid solution is found when both requirements are satis-
fied. In [15], Merlet and Daney consider the error synthesis problem applied to
a Gough platform. The authors give a prescribed workspace and use interval
analysis techniques to synthesize the set of design parameters such that any pose
in the workspace has a positioning error below some desired limit. The term
appropriate design was introduced by Merlet and Daney [22] for the synthesis of
parallel manipulators with uncertainties. The appropriate design methodology
involves computing the allowable regions (the set of valid solutions) which take
into account any uncertainties of the nominal values for the design parameters
present in the mechanism (e.g., manufacturing, assembly, sensors) and satisfy
some desired characteristics of the mechanism. This guarantees that any phys-
ical instance of the mechanism built on these nominal values will satisfy the
desired characteristics of the mechanism. The end-user is then presented with
the allowable regions for the design parameters and is free to select any valid
design to achieve the desired performance. This allows to choose the best com-
promise regarding any performance criteria that may have not be previously
prescribed.

In this work, an appropriate design describes a mechanism whose description
contains bounded uncertainties. This description allows any uncertainties due
to the manufacturing, assembly, sensors, control, and also numerical round-off
errors to be accounted for. The analysis or synthesis of an appropriate design
are then fittingly termed appropriate analysis and appropriate synthesis, re-
spectively. Appropriate analysis has been explored in the previous work [23].
As well, earlier works on appropriate synthesis have been explored in [24, 25].
The goal of this work is to provide a comprehensive overview of the appropri-
ate synthesis method for obtaining the complete set of appropriate designs of
a four-bar linkage which correspond to some desired coupler response (namely
coupler positions given as a set of points or as whole continuous trajectories
or segments of a continuous trajectory). This work builds on the existing lit-
erature by thoroughly exploring the formulation of the appropriate synthesis
routine, the associated coupler curve response element verification tests, and
linkage assembly and classification simplification routines. As well, the use of



conventional optimization techniques are combined with appropriate synthesis
in order to identify regions of interest to quickly find appropriate design solu-
tions for high-dimensional problems.

The contributions of this work are as follows. A description for precision
points and trajectories, suitable for the appropriate synthesis problem, are in-
troduced, and these are used to build desired coupler responses. Verification
tests for the precision point and trajectory response elements are proposed.
The coupler point of an appropriate design must be able to pass though each
desired precision point, and must move from the start to finish of each desired
trajectory. Linkage classification and linkage assembly simplification routines
are proposed which aid the appropriate synthesis in ensuring that a synthesized
design maintains a unique assembly throughout a desired coupler response. As
well, only appropriate designs with a single classification (e.g., crank-rocker) are
considered as solutions. Finally, an appropriate synthesis routine is proposed
which is able to obtain the complete set of appropriate designs (allowable re-
gions) of a four-bar linkage which correspond to some desired coupler response.
Several examples are presented to demonstrate the proposed appropriate syn-
thesis method.

The outline of the paper is as follows. First, in Section 2, a brief overview
of the relevant interval analysis concepts are presented. The description of the
four-bar linkage and accompanying kinematic equations are provided in Sec-
tion 3, and linkage classification and linkage assembly simplification routines
are presented. The precision point and trajectory elements of a desired re-
sponse are introduced in Section 4. The associated verification tests are also
presented. In Section 5, an appropriate synthesis routine is presented for syn-
thesizing the appropriate designs of a linkage which satisfy some desired coupler
curve response. Several case studies are presented in Section 6 to illustrate the
capabilities of the proposed methods. Methods for quickly identifying several
appropriate design solutions are presented. Finally, the work is concluded in
Section 7.

2. Overview of Interval Analysis

Interval arithmetic and interval analysis provide a means of performing re-
liable computations on computers. Allow an interval to be described by

2] = [, 7] (1)

where z and T are the lower and upper bounds of the interval. Thanks to the
work on the formalization of the mathematical foundations of finite interval
analysis, many programming languages now support interval data types. Out-
wardly rounded interval arithmetic provides rigorous enclosures for the ranges
of operations and functions. For a desired value, z and T are chosen such that
outward rounding ensures that the value is contained inside the interval and x
and T are the nearest representable floating-point values. Outward rounding is
available on all computers supporting IEEE 754 floating-point standard [26].



The width of an interval is given by
width([z]) =T — (2)

The midpoint of an interval is given by
mid([z]) = z + width([z])/2 (3)

Let [x] denote an interval vector. The interval evaluation of a function f([x])
yields the inclusion function [f], such that f([x]) is contained inside of [f]. That

is,

F() ={f(x) [ x e [x]} < [f]. (4)
The bounds of [f] are inflated due to two well known properties of interval
analysis: the wrapping effect, and the dependency problem (see [27]).

A general solving routine may be designed using interval analysis. Typically,
solutions to problems may be found by incorporating three phases evaluated in
a loop. These phases include: simplification (various simplification methods in-
clude 2B and 3B filtering [28], HC4 [29], ACID [30], and Newton [31]), existence
(various existence methods include Interval Newton [32], Krawcyzk [31], and
Newton-Kantorovitch [33]), and bisection (various bisection methods include
Largest-first and Smear function [34]). For these phases, [k] denotes the known
variables and [u] denotes the unknown variables. The system being solved is
described by the set of equations f([u], [k]) = 0.

Existence methods are guaranteed to converge to the unique solution [u*].
For the bisection phase, an arbitrary tolerance of § is used to limit the bisected
width of the unknowns, such that 3 serves as the stopping criteria for the bi-
section. The bisection phase splits the unknowns [u] along a selected dimension
into two sub-intervals [u;] and [ug]. Since the union [u;] U [uz] = [u], bisection
allows the entire unknown search space to be reliably explored and therefore
a general solving routine is guaranteed to be able to find all solutions to the
considered problem. A detailed overview of the three phases is provided in [23].

3. Four-bar Linkage Description

The four-bar linkage and its associated design parameters are provided in
Figure 1. Link O4 A will always be assumed to be the input link with an input
angle 0 and length r. Link Op B is the output link, which has an output angle
and length s. The coupler point is denoted C' = (C;, Cy), where the coupler link
is triangle ABC with edge lengths a, b, and c¢. Let g be the distance between
points O4 and Og. The parameters e and h are used to describe the location
of C relative to segment AB. The signs of e and h are important to describe
a unique configuration of the linkage. The equations describing the kinematics
of the four-bar linkage, formulated using a coordinate representation, are given
in Eq. (5) (see [23] for the formulation). This formulation is preferable for use
with interval analysis methods due to the minimal occurrence of variables in the
equations, which reduces the effects of the interval dependency problem.



L, Op =(u+p,v+aq)

x

Figure 1: Linkage description

frim OAAIP = (1= 4.° + (v = 4,)° =7

f2=105B|]> = ((p + u) — Ba)* + (g +v) = By)* =

fa = |AB|* = (As = Bo)* + (4, — By)* = ¢

fui= [JACIP = (Ay — Cu)? + (A, — Cy)? = B2

f5 = |BC|I> = (By = C1)* + (By = Cy)* = a®

fo:= Az = u+rcos(d)

fr:=A, =v+rsin(f)

fs = By = (p+ ) + 5 cos(®) (5)
fo =By =(q¢+v)+ ssin(y))

—_

firi=a=+/(c—e)2+h?
fi2:=9=Vp*+ ¢

fi3:=Cr = Ay +1/c((Br — Az)e + (Ay — By)h)
fia=Cy=Ay+1/c((By — Ay)e + (Az — Bz)h)

3.1. The Design Parameters

The design parameters of the four-bar linkage given by system (5) are de-
scribed by the interval vector [d]. The interval domains of the parameters
account for uncertainties and therefore can be represented as an interval vector:

[d] = ([ul, [v] [p], [q]. [7], [s]. [e], [e], [M])" (6)

The manufacturing uncertainties for the design parameters are described by the
vector Ad as

Ad = (Au, Av, Ap, Aq, Ar, As, Ac, Ae, Ah)T (7)



If an exact design d is considered, the appropriate design which accounts for
manufacturing uncertainties is given as

[d] = d+ Ad 8)

8.2. Classifications and Assemblies

Four-bar linkages can be sorted into two categories, Grashof-type and non-
Grashof-type linkages, where each category of linkage has four associated clas-
sifications. Applying the description for circuits and branches adopted from
Chase and Mirth [35], each linkage classification has a specific number of cir-
cuits and branches associated with the coupler curve of the linkage. The eight
linkage classifications and associated circuits and branches (detailed in [23]) are
described as follows:

1. crank-rocker — 2 circuits, each with 1 branch;
rocker-crank — 2 circuits, each with 2 branches;
double-crank — 2 circuits, each with 1 branch;
double-rocker — 2 circuits, each with 2 branches;
00-double-rocker — 1 circuit with 2 branches;
Om-double-rocker — 1 circuit with 2 branches;
w0-double-rocker — 1 circuit with 2 branches;
wr-double-rocker — 1 circuit with 2 branches.

®© N oG WD

For appropriate synthesis, a four-bar linkage requires that an appropriate
design solution has a unique linkage classification and that the desired response
is accomplished by a single circuit and branch, although multiple branches may
be desirable in certain cases. It is also possible to restrict the appropriate syn-
thesis routine to find solutions corresponding to one or more specified linkage
classifications. In order to assist the appropriate synthesis routine in finding
valid solutions, filtering routines are proposed for linkage classifications and as-
semblies. This allows appropriate designs which do not satisfy the classification
and assembly conditions to be quickly removed from the design search space.

3.2.1. Classification Filtering

A given appropriate design [d] may have multiple classifications. Let the
list Leqass contain the possible classifications associated with the design [d].
In certain situations, it may be desirable to consider a particular classifica-
tion of a linkage during synthesis. The list L1100 ciass contains all allowable
classifications. A routine which considers the allowed and possible classifica-
tions is used as an additional simplification routine to remove a design [d]
which results in only non-allowable classifications. It is also used to iden-
tify if a design [d] results in a single allowable classification. The function
CLASSIFICATION([d], Leiasss Lattow_ciass) updates the possible classifications
and returns:



—1 : the allowable classifications are not contained in Lgjqss;
1 : there is a unique allowable classification in L¢qss;
0 : there is more than one classification in L.jqss-

3.2.2. Assembly Filtering

A given appropriate design [d] and a set of associated coupler points may
yield multiple assemblies (circuits and branches). It is necessary that certain
restrictions be applied to the assemblies. A desired coupler curve response can
only be achieved with a single circuit. In some cases, a change of branch may
or may not be allowed. An assembly filtering routine is proposed and is used
as an additional simplification method in order to remove a design [d] which
cannot satisfy the assembly conditions. Let the list Ly,qnen denote the list of
associated branches and the list L.;,cuir denote the list of associated circuits for
a given design [d] and coupler point. A branch flag identifies whether a desired
coupler curve may be generated by one or two branches, whereas a single circuit
is always enforced.

The function ASSEMBLY ({[u]}, [k], {Lclass }> { Lbranch }, { Lcircuit }) consid-
ers two or more coupler points and the assemblies associated with these points!’.
It utilizes CLASSIFICATION and finds the intersection of the classifications,
branches, and circuits, and updates each list by the intersection. The following
is returned:

—1 : the intersection of all assemblies is empty and the set of coupler
points cannot be satisfied with the design [d];
1 : there is a unique assembly which satisfies every coupler point for
the design [d];
0 : there is more than one possible assembly for the design [d].

8.8. Solving the Kinematics

To solve the kinematics of the four-bar linkage for the appropriate synthesis
problem, a problem termed the interior problem is considered.

e Interior problem: Determine a solution for angles [0] and [¢)] and cou-
pler point ([C4], [Cy]) from the interior of the box ([x],[y]). For this prob-
lem, a box ([z], [y]) is given and [f] and [¢)] are given as allowable ranges.
The goal is to compute a solution for [6], [¢)] and ([C,],[Cy]) such that

(IC:], [Cy]) < (1 [y))-

The interior problem is useful for determining if an appropriate design sat-
isfies certain coupler curve characteristics, as is required for synthesis. To solve
the interior problem, an existence test can be formulated from Equations fo—fs,

!The notation {*} denotes a set, such that each [u] has corresponding Lciass, Loranch,
and Leireust lists.



which gives a square system in unknowns B, By, C, and Cy. The existence
test for the interior problem is the same as the existence test for the forward
problem (see [23]). To create various solving routines, a bisection phase may
safely bisect the input and/or output angles [6] and [].

4. Desired Coupler Curve Response: Description and Verification

The goal is to be able to synthesize the design parameters of four-bar linkages
given the description of a desired coupler curve. The desired coupler curve will
be described by a set of precision points and/or a set of trajectories. Each
element, whether a precision point or a trajectory, is described with an allowable
error. The descriptions of precision points and trajectories and the routines for
verifying the satisfaction of the precision point and trajectory elements for a
given appropriate design are presented in this section.

4.1. Precision Points

In classical linkage synthesis, precision points are described exactly and the
synthesized linkage must pass through/near each point. In this work, due to the
uncertainties in the design parameters, the coupler point will belong to some
bounded region in space. To accommodate this, a precision point is described
here as a set of intervals, such that each element may have an allowable error.
A precision point will be denoted by P as

P = ([Cal, [Cy], 10, [4]) (9)

In order for a linkage to satisfy a precision point, there must exist a solution
P* for the linkage, such that the inclusion constraints [C] C [C.], [Cy] C [C,],
[0*] C [0] and [¢*] C [¢] are guaranteed to be satisfied. That is, P* C P.
Multiple precision points may be considered.

4.2. Trajectories

A desired trajectory, having an allowable error, may also be considered. The
desired trajectory, denoted f(Cy([t]), Cy([t])), can be described by parametric
equations as

F(C([t]), Cy([]) = {(Ca, Cy) | Co = fa(t), Cy = [y (1), te[t,t]}  (10)

An allowable error on the trajectory can be described by an where i = (g, 7ty)
is the unit normal along f(C5([t]), Cy([t])) and « € [a, @] is the allowable error.
The allowable trajectory can then be defined as

F(C([t]), Cy([t]) = {(Ca, Cy) | Co = falt) + afia, Cy = [y (t) + anty,

teltt], ac€laal} (11)

Since it is difficult to account for the limits of the trajectory, the domain of
[t] can be inflated by some small amount 6 to create start and finish end-points



for the trajectory. These end-points will have a width § and are defined as
[tstart] = [t — 0,t] and [t finisn] = [t,t+ 0]. The task element T corresponding to
a trajectory is represented by the desired trajectory f(Cy([t]), Cy([t])), input and
output angles [0] and [¢], allowable error [a], the parametric equation parameter
[t], and end-point width ¢ as

T = {1 (Ca (1), Cy([t])), [6]; [¥], [a], [¢], 0} (12)

In order for a linkage to satisfy a trajectory, a solution must exist for each
end-point, and the coupler curve must be continuous between the end-points
and must remain within the boundaries of the trajectory. The steps to satisfy
a trajectory are summarized as:

1. Ensure the start end-point is satisfied: There must exist a solution 7*,
such that

[Cltare] © F(C([1]), Cy([1])), 1O5tare] < 10) [Witare] © [¥];

[astart] - [a]7 [t:tart] C [tStﬂﬂ"t]

2. Ensure the finish end-point is satisfied: There must exist a solution 7*,
such that

[C;'ansh] C f(CI([tD7CQL/([t]))7 [e}znzsh] - [9]7 [’@[J;znzsh] - [1/1]7

[a;inish] c [a]v [t?inish] c [tfiniSh]

3. Ensure the coupler curve is continuous between the start and finish end-

points and remains within the boundaries of the trajectory: There must

exist a solution 7 for each [0] € ([05;,,¢]0[0%;,,,54)), where [J denotes the
interval hull, such that

[C*] € F(Ca([t]), Cy([t])), [07] = 10], [+] C [¢], [e'] C [,
[t*] C (Itstart) Ot pinisn])
Due to the periodicity of the angle 0, the interval hull ([03;,,,]0[0%,,,:51))

has two associated domains. These domains correspond to clock-wise and
counter-clock-wise rotations from [07,,,,] to [07;,.,]-

(13)

(14)

(15)

Multiple trajectories may be considered.
4.2.1. Example Trajectory
Consider the parametric curve for C, = C2, C, € [-1,1].
Cy=t (16)
C, =1

The normal n is n = [2C,, —1]7 = [2¢,—1]T and the unit normal f is n/||n||
with ||n|| = v/4¢? + 1. Thus the allowable parametric curve is

Cp=t+an, =t+a(2t/\/4t2 +1)

C, =t +an, = 1> — a(1/\/412 + 1) (17)
te[-1,1]

10



The allowable coupler curve is plotted in Figure 2 for ¢ € [—0.9900,0.9900]
and a € [—0.1000,0.1000]. The allowable end-points of the curve are given
as tsiare € [—1.0100,—0.9900] and ¢ yinisp, € [0.9900,1.0100], respectively. The
trajectory must start and finish by satisfying the end-points. These end-points
differ from precision points because they are not axis-aligned. Thus, the end-
points better approximate the desired curve.

Start Finish

0.9

0.3

-0.3

Figure 2: The desired trajectory corresponding to Cy = c2.

4.3. Verification Test for Precision Points

Let a desired response R contain m precision points P;.
R=(Pi,...,Pm) (18)

The goal is to determine if a linkage appropriate design [d] is able to achieve each
response element in R. A routine is proposed in order to verify the existence of
a coupler point solution inside each of the precision points.

The known and unknown parameters will vary for the different phases:
simplification, existence, and bisection. This ensures that the equations
in the existence phase are as simple as possible, and that the coordinates
are not bisected. The design parameters [d] will always be considered as
knowns. In the simplification phase, the unknowns are selected as [u] =
([Az], [Ay], [Bz), [Byl, [Ca], [Cyl, 0], []). In the existence phase, the unknowns
are selected as [u] = ([By],[By],[Cs],[Cy]), such that the interior problem
may be used. In the bisection phase, the unknown parameters are selected
as [u] = ([0],[¢]). Bisecting the angles, rather than the coordinates, ensures
that the coordinates always contain the true joint positions. All remaining
parameters may be considered as knowns.

11



A routine for verifying m precision points is presented in Algorithm 1. Since
there are m precision points to be verified, all m associated unknown vectors will
be considered simultaneously. If any precision point is able to quickly return no
solution, then the routine exits and resources are not wasted on the other preci-
sion points. To accomplish this, the set of m unknown vectors, {[u;], ..., [un]},
are added to the list £,. Each phase then accepts as input the set {[u]} and
applies the corresponding operation to each element [u;] from the set. The
simplification phase simplifies all m unknowns and returns: 1 if one or more un-
knowns is simplified, —1 if any unknown becomes empty, 0 if the m unknowns
cannot be simplified. The assembly routine verifies the assembly conditions pre-
viously described. The existence phase checks for the existence of a solution for
all m unknowns and returns: 1 if all m precision points are verified, —1 if any
unknown has no solution, 0 if a solution cannot be found for all m unknowns.
The bisection phase bisects the unknowns which return 0 from the existence
phase.

Algorithm 1: Verify m precision/trajectory points

function VERIFY_POINTS (R, [d], 8);
Input : desired response R, design space [d], and desired bisection resolution 3
Output: verification - the desired response is: satisfied(1), unsatisfied(-1), partially satisfied(0)

Ly +— {[u],...,[un]}; /* Add set of unknowns to list */
Leclass + Lallow_class ; /* Add allowed classifications to list */
Lyranch < {1,2}; /* Add possible branches to list */
Leireuit + {1,2}; /* Add possible circuits to list */

while £,, is not empty do
Pop set {[u]} from L,;
stmp = SIMPLIFICATION({[u]}, [K]) ; /* Apply simplification techniques */
if simp! = —1 then
assembly = ASSEMBLY({[“]}v [k]7 {['Class}v {‘Cbranch}v {['circuit}) i /* Verify
assembly conditions */
if assembly == 1 then
exist = EXISTENCE({[u]}, [K]) ; /* Apply existence methods */
if exist == 1 then
| return 1
else if exist == 0 then
|  Lu « BISECTION({[u]}, B) ; /* Apply bisection method */
else
| return 0;

return —1;

4.3.1. Verification Test for Trajectories
Let a set of responses R contain n trajectories 7;.

R=(Ti,....Tn) (19)

The goal is to determine if a linkage appropriate design [d] is able to achieve each
response element in R. A routine is proposed in order to verify the existence of
a coupler point solution along the entire trajectory.

Like the precision point problem, the known and unknown parameters will
vary for the different phases. The design parameters [d] will always be con-
sidered as knowns. In the simplification phase, the unknowns are selected as

12



[u] = ([Az], [Ay], [Bz), [Byl, [Cal, [Cyl, [0], [¢¥], [t], [@]). In the existence phase, the
unknowns are selected as [u] = ([B,], [By], [Cz], [Cy], [t], [a]). Similar to the in-
terior problem, a square system is created using equations f, through f; and
the parametric equations of the trajectory curve. In the bisection phase, the
unknown parameters are selected as [u] = ([f], [¢]). All remaining parameters
may be considered as knowns.

In order to verify a trajectory, each ¢ € [¢] must have a solution which stays
within the allowable error of the trajectory. Each solution must also satisfy
the assembly conditions and the coupler curve must be continuous along [¢].
The first consideration is the verification of the end-points of a trajectory. This
is done in the same manner as the precision points verification, albeit with
the addition of the parameters [t] and [a] in the simplification and existence
phases. If the end-points of each trajectory are verified, then the remainder
of the trajectory can be considered. Conveniently, the verification test for an
end-point is identical to the verification test for the remainder of the trajectory
(internal-points). Therefore, a single routine can be used for the verification
of trajectory end-points and internal-points. In addition, the structure of the
trajectory point verification routine is identical to the precision point verification
routine but with different simplification and existence tests, thus Algorithm 1
also describes the trajectory point verification procedure. The end-points or
internal-points for all trajectories are considered simultaneously. For the end-
point verification of n trajectories, let m = 2n. If any point returns no solution,
the entire routine exits.

A second routine is required in order to organize the testing of the end-
points and internal-points. This routine is presented in Algorithm 2. It makes
repeated calls to Algorithm 1 in order to verify the end-points and the internal-
points. The end-points are first verified. If the verification succeeds on all
end-points then the interior points of each trajectory are considered in turn,
starting from the lower bound of the input angle domain associated with the
trajectory (([05qre]0[07:nisn])) and incrementing by A until the upper bound
of the input angle domain is reached. If any interior point is unable to yield
a solution, then the routine is unable to verify all of the trajectories and must
exit.

A complication arises in the proposed trajectory verification algorithm re-
sulting from the coupler curve of a linkage passing through the end-points of
a trajectory more than once. The end-point verification in Algorithm 1 suc-
ceeds when a solution is found for each end-point which satisfies the assem-
bly conditions; however, the input angle domain associated with the trajec-
tory (([0sare]O0Finisn])) cannot be assumed to have minimal width. As an
example, consider applying the trajectory verification to a crank-rocker linkage
which yields input angles for the end-points as [0%,,.] = [-7/2] £ 0.0100 and
[0F:nisn) = [7/3]£0.0100. The input angle domain associated with the trajectory
may be either ([03;,,,]0[0%,,:,]) = [=7/2 + 0.0100, 7/3 — 0.0100] for minimal
width or ([05,4,4]0[0%,:61]) = [7/3 +0.0100, 37/2 — 0.0100]. Without sampling
interior points, it is unknown which input angle domain actually connects the
end-points. An input angle rejection list is proposed to ensure that the correct
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Algorithm 2: Verify n trajectories

function VERIFY_TRAJECTORIES (R, [d], 8, A);
Input : desired response R, design space [d], desired bisection resolution 8, and angle resolution
A6
Output: verification - the desired response is: satisfied(1), unsatisfied(-1), partially satisfied(0)
R E = Generate end-point description from R;
verified = VERIFY_.POINTS(REg, [d], B) ; /* Verify the trajectory end-points */
if verified == 1 then
forall 7; € R do
[0:)'= (0200 )00 1000]) + [0, A6
while [6,] < (1020,,,J00;,,,.,]) do
R = Generate interior-point description from T;;
verified = VERIFY_.POINTS(Ry, [d], B) ; /* Verify the trajectory
interior-points */
if verified! = 1 then
L return verified ; /* An interior-point cannot be verified */

[0:] = [6:] + AG;

return 1 ; /* All interior-points have been verified */

else
| return verified

end-points are selected and the correct input angle domain is then tested. This
creates a list Ly which contains domains of the input angle which are known to
dissatisfy the trajectory. Each time the interior-point verification test in Algo-
rithm 2 fails, the input angle associated with the interior-point leading to failure
is added to the rejection list Ly. The trajectory verification routine then returns
back to the end-point verification test and now uses the list £y as an additional
filtering method. Only end-point solutions which yield an input angle domain
that does not contain the input angles in the rejection list are subjected to the
interior-point verification test. The trajectory can only be satisfied when both
the end-point and interior-point verification tests are satisfied.

Several other improvements may be made to the proposed trajectory verifi-
cation algorithm. The velocity v of the coupler point, with respect to 6, may
be used to improve the trajectory verification. If j is a vector tangent to the
trajectory (i.e., j = [y, —Ng), the dot product of j and v should always be
positive. This would ensure that the coupler point moves only in the desired
direction of the trajectory. It may also be beneficial to sample a point inside
the interior region of the trajectory to better predict the input angle domain.
As well, the stopping criteria of the interior-point test may be changed so that
the test is successful as soon as a solution is found inside the final end-point. It
may not be necessary to test the entire input angle domain ([67,4,,]0[607;,,:51])-

5. Appropriate Synthesis

A desired response, given by R, contains a set of precision points and/or
trajectories. Appropriate synthesis concerns finding all subsets of the initial
design parameter space which generate a four-bar linkage that satisfies the de-
sired response. This subset of designs is known as the allowable region. The
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allowable region ensures that each desired response element is satisfied, via Al-
gorithms 1 and 2, and that the design solutions satisfy classification restrictions
and assembly conditions.

In order to compute the allowable region, a list of appropriate design solu-
tions, denoted by L4, , must be computed.

La, ={[da],.., [de]} (20)

Since Ad is the manufacturing uncertainties on the design parameters, each
appropriate design solution [d] must satisfy

width([d]) > 2Ad (21)

That is, the width of each design parameter in [d] must be greater than twice
the corresponding manufacturing uncertainty. This is considered as a stopping
criteria in the synthesis routine. An allowable design solution [d*] is determined
by deflating the bounds of [d] by Ad

[d*] = [[d] + Ad, [d] — Ad] (22)

This ensures that if an appropriate design solution is found, then [d*] defines
a reduced box whose any interior point may be chosen as a nominal design so-
lution, while ensuring that the desired precision points and trajectories can be
performed by the real mechanism. To compute the full allowable region, adja-
cent appropriate design solutions in £4, may be combined, where the boundaries
of the region are deflated by Ad.

In the previous sections, routines for the verification of precision points and
trajectories have been presented. These routines may be combined into a single
verification routine, described in Algorithm 3, which takes some description of
R and determines if an appropriate design [d] is verified.

Algorithm 3: Verify an appropriate design for a desired response

function VERIFY_APPROPRIATE_DESIGN (R, [d], 3, Af);
Input : desired response R, design space [d], desired bisection resolution 3, and angle resolution

Al
Output: verification - the desired response is: satisfied(1), unsatisfied(-1), partially satisfied(0)
verified =VERIFY_POINTS(R, [d], B) ; /* Verify precision points */

if verified! = 1 then

L return verified;
verified =VERIFY_TRAJECTORIES(R, [d], B, Af) ; /* Verify trajectories */
if verified! = 1 then

L return verified;

return 1;

For appropriate synthesis, each design parameter has an initial domain, such
that the design parameters are able to be bisected, until a desired bisection reso-
lution of 3, in order to search for design solutions. An initial bisection resolution
may be safely selected as 8 = 2Ad, where each design parameter may have a
different bisection resolution. The boundaries of the set of appropriate design so-
lutions L4, are unable to be classified as solutions, but can also not be classified
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as non-solutions; thus, there will always be a boundary layer between solutions
and non-solutions. This provides three possible design parameter classifications:

1. Solution: every d € [d] contains a solution for each element in R;

2. Non-solution: some d € [d] does not contain a solution for one or more
elements in R;

3. Unknown (boundary): it is unknown if every d € [d] contains a solution
for each element in R, given the current resolution.

It should be noted that unknown classifications may occur if Ad is relatively
large, as the uncertainties in the system and the wrapping effect of interval
analysis may prevent the detection of a solution or non-solution. The volume of
the set of unknown boxes may be reduced with an incremental algorithm. If V; is
the volume of the set of solution boxes and V,, the volume of the set of unknown
boxes then the real allowable region volume V' is bounded by V, <V <V, +V,,,
which allows to control the level of error in the solution. To refine the solution,
only the unknown boxes from the previous run must be reconsidered. Such a
process may be pursued until (Vi + V,,)/V; is arbitrarily low.

An appropriate synthesis routine is proposed in Algorithm 4, which returns
three lists, the solutions L4, , the boundaries Lg;, and the non-solutions L4, for
the appropriate designs. A design list £; contains the set of design parameters
being considered. The verification routines are applied to each [d] in the list
Lg. If the routine returns 0, then bisection is applied to [d]; bisection is only
applied if width([d]) > 2Ad; otherwise, the design is saved to the boundary list.
If the routine returns 1, then the design is verified and is saved to the solution
list. If the routine returns —1, the design is not a solution and is discarded (or
saved to the non-solution list). The boundary list may be incrementally refined
by decreasing the bisection resolution S and considering only the boundary list
(L4yp) obtained previously.

Algorithm 4: Appropriate synthesis routine

function APPROPRIATE_SYNTHESIS (R, [d], Ad, 8, A);
Input : desired response R, design space [d], design uncertainties Ad, desired bisection
resolution 3, and angle resolution A6

Output: list of solutions L4, non-solutions Lg,,, and boundaries L,

Lq <+ [d]; /* Add initial design domains to list */

while L, is not empty do

Pop [d] from Lg;

appropriate = VERIFY_APPROPRIATE_DESIGN(R, [d], B, Af) ; /* Apply the
verification routines */

if appropriate == 1 then

‘ Lag, < [d]; /* Save design to solution list */
else if appropriate == —1 then

L Lag, «[d]; /* Save design to non-solution list */
else

L (L4, Lay) < BISECTION([d], 2Ad) ; /* Apply bisection */

The appropriate synthesis routine is an ideal candidate for distributed com-
puting since the treatment of a given box is not dependent on the treatment of
another box. Hence the calculation may be distributed over several computers.
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Furthermore, the communication overhead is low because a only a very limited
number of floating points pairs have to be transmitted. Experimentally, if n
computers are used with n > 4, then the computation time is reduced by more
than n — 1.

6. Case Studies

In this section, the appropriate synthesis routine is applied to solve for the
design solutions (allowable regions) of four-bar linkages for different task re-
quirements. For visualization purposes, mostly 2D solutions are presented.

6.1. Obtaining Allowable Regions

Consider the desired coupler curve described in (23) with three precision
points and two trajectories. The response elements are chosen, such that they
correspond to the coupler curve obtained from the design parameters given
in (24). The desired response elements are plotted in Figure 3.

{
{

[0.1400, 0.1600], [0.3337, 0.3537], [, 7], [~7, 7]}

[0.1900, 0.2100], [0.3737, 0.3937], [, 7], [, 7]}

= {[0.2400,0.2600], [0.3237,0.3437], [, 7], [-7, 7|}

F(C([t]), Cy([t]) = {(Ca, Cy) | Co = t, Cy = = 0.0650, t € [t,1]}

T = {f(C.([t]), Cy(11])), [=7, 7], [=, 7], [~0.0100, 0.0100], [0.1300, 0.1700], 0.0050 }
To = {£(Cx([t]), Cy([t])), [-7, 7], [-m, 7], [-0.0100, 0.0100], [0.1900, 0.2300], 0.0050}

P1
P
Ps

(23)
To demonstrate appropriate synthesis of the four-bar linkage, the design
parameters are initialized as in (24). An uncertainty of [p] = [—0.0001, 0.0001]

is added to each design parameter. The coupler curve in Figure 3 corresponds
to [p] = [0.4000] and [g] = [0.0000]. The design parameter uncertainties are
selected as Ad; = 0.0005 and the bisection resolution is selected as 5 = 0.0005.

[d] = ([u], [0], [p), [a]. [r], [s], [¢], [e], [P])T
[d] = ([0.0000], [0.0000], [~1.0000, 1.0000], [—1.0000, 1.0000], [0.2400], [0.2400],

[0.2517], [0.1258], [0.1553])" + [p]”

(24)

The allowable region considering the precision point task elements from (23)

is shown in Figure 4. The design solutions do not consider restrictions on the
branch configuration and any design which achieves the desired precision points,
regardless of branch configuration is accepted as a solution (a single branch con-
figuration may optionally be enforced). This generates several disconnected re-
gions. Each allowable region is surrounded by unknown (boundary) design inter-
vals. The design solutions all have a classification of Om-double-rocker. Figure 5a
zooms in on one of the regions. An appropriate design solution may be chosen
from inside of the allowable regions while considering the manufacturing uncer-
tainties. Selecting the values of [p] = [0.5699, 0.5701] and [¢] = [0.4299, 0.4301]

17



04 T T ™
I circuit 1, branch 1
circuit 1, branch 2
03 L boundary ]
0.2 - 4
CyO.1 - 1
0 4
0.1 F 1
-0.2 - .
1 1 1 1 1 1 1 1 1
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

C,

Figure 3: A plot of the desired response elements in (23).

from the allowable region of Figure 5a, the corresponding coupler curve and de-
sired precision points are plotted in Figure 5b. Indeed, the coupler curve passes
through each of the precision points.

Considering only the trajectory elements from (23), Figure 6 shows a subset
of the allowable region considering the first trajectory. This image shows that
there exists a division in the design solutions. Some designs in this region
correspond to a folding linkage, and such a linkage, while theoretically possible,
is impossible to manufacture as it can only be achieved using flexible links or
introducing uncertainties into the joints. For this reason, folding linkages are not
considered as design solutions in this work. Next, Figure 7 shows the allowable
region considering both trajectories. Several disconnected regions are found.
Selecting the values of [p] = [0.2999,0.3001] and [¢] = [0.0199,0.0201] from
the allowed region, the corresponding coupler curve and desired trajectories
are plotted in Figure 8a. Selecting the values of [p] = [0.2499,0.2501] and
[¢] = [—0.4401,—0.4399] from the allowed region, the corresponding coupler
curve and desired trajectories are plotted in Figure 8b. These two coupler curves
are quite different, yet are able to achieve the same objective. A linkage designer
may consider additional criteria to further refine the solution list without having
to again worry about the desired response, as the performance of all solutions
have already been certified.

Using all task elements from (23), Figure 9 shows the complete set of appro-
priate design solutions to the problem. This is equal to the intersection of the
allowed regions from the precision point solutions and trajectory solutions. This
is an important point. If a set of requirements are selected for an appropriate
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synthesis routine, and all of the requirements are simultaneously considered,
then it may be possible that no appropriate design solutions are obtained be-
cause one (or several) of the requirements are too stringent. By considering all
of the requirements simultaneously the user does not know which requirement
needs to be relaxed. Another approach is to consider each requirement indepen-
dently, then to find the intersection of the appropriate design solutions resulting
from each requirement. This may also be approached in a consecutive manner,
such that the appropriate design solutions from the first requirement are used
as the starting point for the second requirement, as so on.

These examples help to demonstrate the potential of the appropriate de-
sign methodology. Additional constraints and response elements may always be
added to further refine the allowed region. As well, the bisection resolutions
may be reduced to improve the classification of unknown design intervals.

6.2. Finding Appropriate Design Solutions

In the previous examples only the 2D problem was considered, but the ap-
propriate synthesis routine is capable of solving the full 9-dimensional problem
to determine every possible linkage design that satisfies the desired response;
however, the full problem is generally very time consuming (on the order of days

0-7-double-rocker

0.4 - boundary |
0.3 r J

q
0.2 - J
0.1 J
0r ]
0.1 0.2 0.3 0.4 0.5 0.6

p

Figure 4: Appropriate design solutions for parameters p and ¢ for precision points response
elements in (23).
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Figure 5: a) Zoomed-in view of one of the disconnected allowed regions from Figure 4; b) the
coupler curve corresponding to a solution from the allowed region.

0-055 T T T T T T T T T T
[ 0-7m-double-rocker
[ 7-0-double-rocker
[ ]boundary

0.05

0.045 |-

0.04 -

q

0.035 -

0.03

0.025 -

0.02 -

0.225 0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27
p

Figure 6: A subset of the design solutions for parameters p and g for the first trajectory
response element in (23).

without parallel computing) and in most cases it is unnecessary to solve for ev-
ery possible linkage design. The end-user may not require an infinite number
of solutions. It may be desirable to determine several solutions to the problem,
rather than obtaining the complete allowable region.

Two techniques are presented to assist in more quickly identifying appropri-
ate design solutions. One technique considers reordering the design list in such
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Figure 7: Design solutions for parameters p and ¢ for all trajectory response elements in (23).
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Figure 8: a-b) Coupler curves corresponding to a design from the allowed region.

a way that boxes more likely to contain a solution are tested first. In addition,
it is possible to define a minimal distance between design solutions so that the
neighbourhood of design solutions are not explored. Another technique consid-
ers applying conventional global optimization to find regions of interest, then
inflating these regions and applying appropriate synthesis to determine appro-
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Figure 9: Design solutions for parameters p and g for all response elements in (23).

priate design solutions. Both of these techniques require a value which describes
the offset of the coupler curve from the desired response, termed the constraint
violation.

6.2.1. Constraint Violation

The total constraint violation of a design for a given task is equal to the
sum of the constraint violations for each task element. The constraint violation
associated with a precision point task element may be described by the gener-
alized volume of the interval hull of P,ctuq; of the linkage and Pgegireq Of the
precision point. These domains will always intersect since a non-intersection
results in a non-solution and is removed from the search. The constraint value
is normalized by the generalized volume of the precision point, such that a value
of 1.0 implies that a solution is found for the precision point. The constraint
violation for a precision point i (V},,) is therefore described as:

volume(Pactual IPdesired)
Vo= 25
Pi volume(Pesired) =

and the constraint violation V), associated with all m precision points is:

m

Vo= Wy, (26)

i=1

For trajectories, the associated constraint violation may be described by the
generalized volume of the interval hull of Tgcuq; of the linkage and the desired
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Taesireq Of the each trajectory end-point. Again, these domains will always
intersect since a non-intersection results in a non-solution and is removed from
the search. The constraint value is normalized by the generalized volume of the
trajectory end-points. The constraint violation for an end-point j of trajectory
i (Vi;;) is therefore described as:

VOlume(Ectual D%esired)

Vi = 27
t VO]ume(,]:iesi'r'ed) ( )
and the constraint violation V; associated with all n trajectories is:
n
Vi=> Via + Vi (28)

i=1

The total constraint violation V' for a given design is equal to the sum of V}, and
V; as

V=V,+V (29)
0.2.2. Reordering the Design List

The design list may be ordered by ascending values of constraint violation,
such that the next design to be tested is the most likely to contain a solution.
As well, global optimization routines may be used to minimize the constraint
violation in order to find appropriate design solutions.

To reorder the design list, the constraint violation is divided by a factor which
is proportional to the size of the design parameter box. This ensures that the
search remains exploratory unless a very promising box is discovered. Here, this
factor is set as the sum of the design parameter widths, such that a larger width
decreases the value of constraint violation. Following the bisection, the design
list is ordered by ascending values of constraint violation. This modification is
tested on the three precision point elements in Eq. (23) using the same design
parameter domains in Eq. (24) with the inflated parameters v = p = ¢ =
[—1, 1]. The solutions are restricted to have the same branch and circuit through
each precision point. Table 1 presents the first 5 appropriate design solutions
obtained for v, p and ¢. Considering the first solution, the values of of x, y, ¥
and 0 associated with each precision point are given in Table 2.

Table 1: Appropriate solutions for parameters v, p and ¢ given three precision points.

[v]

[p]

]

T W N~

[0.3184,0.3193]
[0.3174,0.3183]
0.3184,0.3193]
0.3164,0.3173]
[0.3174,0.3183]

[0.1875,0.1884]
[0.1875,0.1884]
[0.1895,0.1904]
[0.1895,0.1904]
[0.1875,0.1884]

[0.1573,0.1582]
[0.1563,0.1572]
0.1563,0.1572]
[0.1563,0.1572]
0.1573,0.1582]
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Table 2: The corresponding values of x, y, ¥ and 6 for solution 1 of Table 1.

P1 Po Ps
] | [0.1527,0.1576] [0.1051, 0.1988] [0.2462, 0.2596]
vl | [0.3373,0.34028] [0.3877,0.3906] [0.3333,0.3434]
[ | [~0.8153, ~0.8070] | [~0.5358, —0.5204] | [~2.0689, —2.0677]
[0] | [-0.8521, —0.8435] | [~0.5734, —0.5669] | [0.9094,0.9104]

6.2.5. Identifying Regions of Interest using Global Optimization

Global optimization routines can be applied to minimize the constraint
violation in order to find appropriate design solutions. Here Differential
Evolution [36] is applied to minimize the constraint violation. The variant
DE/rand/1/bin is selected with a population size of 50. The full search space
of the design parameters is considered and is initialized asu =v=p=qg=e =
h =[-1,1] and r = s = ¢ = [0.0100, 1]. Uncertainties on the design parameters
are neglected during the optimization in order to more quickly detect solutions.
When a solution is found, the design parameters, which are exact, are saved.
Since appropriate design solutions are of interest, the exact design parameters
are inflated. This generates the regions of interest. These regions of interest
can then be used as the starting domains of the appropriate synthesis routine.
This initialization procedure quickly narrows in on a region which is known to
contain a solution and likely has an appropriate design solution near. Table 3
presents several different solutions returned by the optimization routine. Each
solution has the same branch and circuit at each precision point.

Table 3: Design solutions for all nine design parameters given three precision points.

1 2 3
—0.9289 | 0.2212 —0.2683
—0.0932 | 0.9204 0.6631
0.2910 0.3546 0.6677
0.3199 | —0.9982 | —0.6887
0.0951 0.0706 0.0963
0.9363 0.2527 0.8318
0.4516 0.8053 0.7945
—0.8571 0.4755 0.3859
0.9240 | —0.2638 | —0.3640

00 »n I e

Selecting the second design solution from Table 3, then inflating the design
parameters and running the appropriate synthesis routine yields several solu-
tions. Table 4 gives three adjacent appropriate design solutions. Figure 10
shows the coupler curve and desired response elements corresponding to the
first appropriate design solution from Table 4.
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Table 4: Appropriate design solutions for all nine design parameters given three precision
points.

1 2 3

[u] | [0.2211,0.2212] 0.2211, 0.2212] [0.2211,0.2212]
[v] | [0.9204,0.9205] [0.9204, 0.9205] [0.9204, 0.9205]
[p] | [0.3513,0.3519] [0.3507,0.3512] 0.3507,0.3512]
[q] | [~1.0002,—1.0000] | [—1.0002,—1.0000] | [—0.9999, —0.9996]
[r] | [0.0705,0.0707] [0.0705,0.0707] [0.0705,0.0707]
[s] | [0.2527,0.2528] [0.2527,0.2528)] 0.2527,0.2528]
[d | [0.8053,0.8054] [0.8053, 0.8054] [0.8053,0.8054]
le] | [0.4754,0.4755] [0.4754, 0.4755] [0.4754, 0.4755]

[

h] | [-0.2638,—0.2637] | [—0.2638, —0.2637] | [—0.2638, —0.2637]

T T T OA T T T T

I circuit 1, branch 1

circuit 1, branch 2
0.8 r boundary ]
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Figure 10: The coupler curve and desired response elements corresponding to the first appro-
priate design solution from Table 4.

7. Conclusion

The concept of appropriate design has been presented in this work and meth-
ods for the appropriate synthesis of the four-bar linkage have been developed.
The proposed appropriate synthesis technique provides a new and robust way
of accounting for uncertainties present in the geometric parameters of linkages
during dimensional synthesis. These techniques rely on interval analysis and are
able to provide reliable results, such that a physical instance of a design solution
is guaranteed to achieve the desired performance. Furthermore, the approach
developed is able to find every design solution to the synthesis problem, making
it a useful design tool.
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Exact descriptions of the coupler point are not possible with uncertainties on
the design parameters, so routines are proposed for generating a new description
of the coupler curve which properly represents the effects of the uncertainties
in the coupler point. A desired task may be described by any combination
of precision points and trajectories, each having a specified allowable error.
Routines are proposed for the verification of precision points and trajectories
for a given linkage design. These routines are utilized inside of an appropriate
synthesis loop, such that all appropriate design solutions can be determined
for a given task. Many examples are presented in the case studies section to
demonstrate the capabilities of the proposed methods.

The appropriate synthesis routine performs well on low-dimensional design
parameter spaces (2D-3D); however, on higher-dimensional problems, the time
to find solutions increases exponentially. In order to make finding appropriate
design solutions feasible for higher-dimensional problems, methods were intro-
duced which rely on the constraint violation of a design for a given task. Conven-
tional global optimization techniques are combined with appropriate synthesis
in order to more quickly identify regions of interest and find appropriate design
solutions within these regions. The performance of the proposed appropriate
analysis and appropriate synthesis routines may be further improved by in-
troducing more efficient heuristics. Distributed computing may also assist in
significantly reducing computational time, as the presented methods are ideal
for parallel computing.
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Nomenclature

04 = (u,v) Coordinates of fixed end-point of input link

0 = (p,q) Coordinates of fixed end-point of output link (relative to 04)
A= (A;,A,) Coordinates of moving end-point of input link
B = (B,, B,) Coordinates of moving end-point of output link
C = (C4,Cy) Coordinates of coupler point

0,1  Input and output angles

a,b,c¢ Edge lengths of triangle ABC

r, s, ¢, g Lengths of input, output, coupler, and fixed links

e, h Relative location of C for unique configuration

Ax Uncertainty of z

O Interval hull operation

d,[d] Vectors of exact and appropriate design parameters

[u], [k] Vectors of unknown and known appropriate parameters

B Bisection resolution
Ly List of vectors of unknown parameters
La,La,,La,,Lq, List of design parameters, solutions, non-solutions, and

boundaries
Leass List of associated linkage classifications
Lallow_class List of allowable linkage classifications
Lyranch List of associated coupler curve branches
Leirewit List of associated coupler curve circuits

R,P,T Desired response, precision point response element, and trajectory
response element

F(C([t]), Cy([t])) Trajectory parametric curve
a,d  Trajectory allowable error and end-point width
P*,T* Precision point and trajectory response element solutions

Vp, Vi, V' Constraint violations (precision points, trajectories, combined)
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