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Leader-follower Consensus of Unicycle-type Vehicles via
Smooth Time-invariant Feedback

Esteban Restrepo Ioannis Sarras Antonio Lorı́a Julien Marzat

Abstract— For a system of multiple vehicles with non-
holonomic constraints and communicating under a directed
spanning-tree graph, we solve the problem of full consensus,
that is, convergence to a common unspecified value both in
position and orientation. Remarkably, our controller is smooth
time-invariant thanks to a polar-coordinates based model.
Furthermore, the proposed control is quite simple, as it uses
only relative information and achieves a more natural behaviour
of the vehicles, making it well suited for practical applications.
We establish (almost) global asymptotic convergence to the con-
sensus manifold using the Lyapunov framework and cascaded
systems theory.

I. INTRODUCTION

Multiagent mobile-robot systems have received much at-
tention due to their advantages over single-agent systems,
such as their reduced cost, higher efficiency, robustness,
and reconfigurability. For multiagent systems, the consensus
problem, that is, the convergence of the states of all agents
to a common unspecified value, constitutes the basis for the
most common applications such as rendezvous, formation
control, collaborative area coverage, flocking, etc. [1], [2].
In the literature of consensus of nonholonomic vehicles two
main problems are addressed, position consensus, in which
case all agents are to converge to the same position with
arbitrary or predetermined orientation, and full consensus,
in which case, agreement on the orientation is also achieved.

In the seminal paper [3], necessary conditions for asymp-
totic stabilisation of nonlinear systems via smooth time-
invariant feedback are laid and in [4], similar conditions for
set-point consensus of multiagent nonholonomic systems are
given. As a consequence, much attention has been paid to the
problem of designing time-varying or non-smooth controllers
for set-point stabilisation of nonholonomic systems. In [5]
a time-varying control is designed for feedback linearised
nonholonomic systems over a directed-tree graph. A δ-
persistency-of-excitation-based time-varying control is used
in [6], [7], [8] that achieves full-consensus-based formation
over undirected graphs whereas in [9] a time-varying con-
troller is proposed for the consensus of nonholonomic sys-
tems in chained form, over a directed-tree graph. On the other
hand, the authors in [10] propose a non-smooth feedback for
position consensus of a multi-agent over undirected graphs.
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Thus, time-varying controllers have been proved effective
to stabilise nonholonomic systems and also to achieve con-
sensus, but they add a degree of complexity to the control
design problem and to the stability analysis. Moreover,
persistency-of-excitation-based controllers may induce unde-
sirable oscillatory motions. These drawbacks may be over-
come via smooth time-invariant feedback. For nonholonomic
systems, such controllers may be designed without contra-
dicting [3], [4] provided the system is singular precisely at
the origin, as is the case of the model based on polar coordi-
nates [11], [12]. Based on the latter, a smooth time-invariant
controller is presented in [13] for consensus of nonholonomic
agents over a directed spanning tree, albeit for a linearised
system, hence, achieving only position consensus. In [14]
a continuous time-invariant feedback for position consensus
is proposed for multi-agent systems over undirected graphs.
However, time delays have to be considered in order to avoid
algebraic loops in the control. In [15] a smooth time-invariant
controller is designed to achieve consensus, albeit only in
position, for a system communicating over a directed graph
containing a directed spanning tree.

The objective of this paper is to propose a solution for
the problem of full consensus of a group of nonholonomic
vehicles communicating over a directed spanning tree graph.
If this problem has been previously studied from the time-
varying perspective, to the authors’ knowledge, it has not
been addressed in a smooth time-invariant way. This is
made possible using a polar coordinates representation. The
practical advantage of the latter is that relying only on
relative quantities such as distances and line-of-sight angles,
it is more suited to practical implementations since, usually,
only relative measurements are available on board. On the
other hand, a smooth time-invariant control also allows for a
more natural behaviour of the vehicles. Moreover, by using
polar coordinates the consensus problem is transformed into
the stabilisation of the origin, rendering it simpler to analyse
from a stability-theory perspective.

Thus, in this paper a multi-agent model is proposed based
on the polar transformation introduced in [11]. Then, dis-
tributed a smooth time-invariant controller is proposed based
on backstepping control. Finally, (almost) global asymptotic
convergence to the consensus manifold is showed using Lya-
punov theory and cascaded-systems arguments. In Section II
are presented the model and the problem statement. Our main
results are presented in Section III; these are illustrated via
numerical simulations in section IV. We close with some
concluding remarks in Section V.



II. MODEL AND PROBLEM STATEMENT

Notation. We denote by G = (V, E) a digraph defined by a
node set V := {1, 2, . . . , n}, corresponding to the labels of
the nodes’ states, and an edge set E ⊆ V2 of cardinality m
which characterises the network communication topology. A
directed edge ek, with k ≤ m, is an ordered pair (i, j) ∈ E
if and only if a connection exists from node i to node j. A
directed tree is a subgraph consisting in a root node, with
no parent, and a set of nodes reachable from the root. A
directed spanning tree GT ⊂ G is a directed tree containing
all the nodes in G.

Fig. 1: Leader-follower scheme and polar-coordinates variables

We consider the consensus problem for swarms of au-
tonomous unicycle-type vehicles communicating in a leader-
follower fashion —see Fig. 1. That is, each robot is leader
to one or several other vehicles called followers and each
of the latter has only one leader, except for one swarm
leader that moves freely. This interconnection topology may
be described using a directed spanning-tree topology, as
illustrated in Fig. 2.

Fig. 2: Directed spanning tree GT

Most commonly, unicycle vehicles are modelled using the
so-called nonholonomic integrator. For an arbitrary agent
labelled i ≤ n this is

ẋi = vi cos θi (1a)
ẏi = vi sin θi (1b)

θ̇i = ωi, (1c)

where qi = [xi, yi]
> ∈ R2 denotes the Cartesian position,

and θi ∈ (−π, π] denotes its orientation with respect to the
axis of the abscissae. The control inputs vi ∈ R and ωi ∈ R
denote, respectively, the linear speed and the angular velocity.

It is known from the seminal paper [3] that, for (1),
the origin is not stabilisable via time-invariant differentiable
controls. The dual of such result for the problem of con-
sensus, which is inherently a stabilisation one, appeared in

[4]. Yet, in spite of the geometric obstructions to stabilise
(1) that are described in [3], smooth time-invariant control
of a unicycle is not impossible. In [11], [12] a controller is
proposed for unicycles modelled by equations equivalent to
(1), but expressed in polar coordinates with respect to the
goal. Such model, being singular at the origin, is convenient
for control purposes since it does not belong to the class
of nonholonomic integrators characterised in [3] and, in
addition, it has the practical advantage of relying on local
relative measurements: distance and line of sight, which
makes it attractive from a robotics standpoint.

With such motivations, following the polar transformation
proposed in [11], we define a similar transformation for
a multiagent unicycle system. Furthermore, rather than ex-
pressing the dynamics of a vehicle itself our model, describes
the relative behaviour for any pair of vehicles.

For every pair of leader (labelled i) and follower (labelled
j) we define

ρk := |qi − qj | (2a)

βk := arctan

(
yi − yj
xi − xj

)
− θi, ∀ρk > 0 (2b)

αk := arctan

(
yi − yj
xi − xj

)
− θj , ∀ρk > 0 (2c)

where ρk represents the distance between agents i and j,
βk is the angle between the line of sight and the direction
of movement of the leader, agent i, and αk is the angle
between the line of sight and the direction of movement of
the follower, agent j. Note that the three-dimensional space
of (xi, yi, θi) is mapped into another space of dimension 3,
corresponding to the relative coordinates (ρk, αk, βk) —see
Figure 1 for an illustration.

Next, we differentiate on both sides of (2), and we use
(1), to obtain the dynamics equations

ρ̇k = vi cosβk − vj cosαk (3a)

β̇k =
1

ρk
[−vi sinβk + vj sinαk]− ωi (3b)

α̇k =
1

ρk
[−vi sinβk + vj sinαk]− ωj (3c)

with inputs vi, vj , ωi, ωj ∈ R.
Thus, Equations (3) represent the relative dynamics of an

arbitrary leader-follower pair. In terms of graph theory, they
represent the dynamics of the state ek := (i, j) for an edge-
based representation of the graph [16] —see Figures 2 and
3. The advantage of the edge-based approach for the analysis
of graphs is that consensus problems are naturally recast
as problem of stabilisation of an equilibrium, as opposed
to the stabilisation of an infinitely-dimensional manifold,
which is the case when one uses the more common node-
based representation. For the multiagent systems (3) in polar
coordinates the full consensus problem (that is both in
position and orientation) boils down to the stabilisation of
the origin. Indeed, ρk = 0 is equivalent to qi = qj and
(βk, αk) = (0, 0) if and only if θi = θj , for all k ≤ m.



III. MAIN RESULTS

A. Control Design

The control approach for (3) follows the same rationale
as in [17] for the stabilisation of a single unicycle vehicle
in polar coordinates and may be explained with reference to
Figure 1. In the stabilisation-of-one-vehicle scenario it is de-
sired to asymptotically stabilise the position and orientation
of agent j, so the “leader” is a static point (vi = ωi = 0)
and the goal is to steer qj → qi and θj → θi. Hence, the
control strategy consists in steering first the agent j so that
it is aligned in orientation with the agent i, i.e., on the line
of sight connecting both agents. In other words, we seek to
make αk → 0 and βk → 0, as this guarantees that θj → θi.
Then, once the agent j is aligned with its leader i, as ρk → 0
we have qj → qi.

To accomplish such tasks, we may exploit the natural
cascaded structure of the system. Indeed, note that for this
system, with vi = ωi = 0, the input ωj only directly
affects the state αk. Hence, following a backstepping-like
procedure we first design a virtual input α∗k : R × R → R;
(ρk, βk) 7→ α∗k(ρk, βk) such that α∗k(0, 0) = 0, and input
vj in order make ρk(t) → 0 and βk(t) → 0 asymptotically.
Then, ωj is designed so that αk → α∗k. In other words,
defining α̃k := αk − α∗k, it is desired to design ωj so that
α̃k(t)→ 0 as t → ∞. Then, since α∗k(0, 0) = 0, we have
αk(t)→ 0 as t→∞.

This approach is suitable whether the leader is static or
in motion. Moreover, it may be applied recursively for any
pair of moving agents, modelled by the equations (3). The
stabilisation problem is similar, only the system’s dimension
increases. Thus, inspired by the control design in [17] for
the stabilisation of one robot, we define the decentralised
leader-follower consensus control inputs

vi =− c1
∑
k≤m

aik
√

1 + (c3βk)2ρk (4a)

ωi =−
∑
k≤m

aik

c2α̃k + ψk
∑
j≤n

ajkvj

+

[
1 +

c3
1 + (c3βk)2

]
sin (α̃k + α∗k)

ρk

∑
j≤n

ajkvj


(4b)

where c1, c2, c3 > 0 are design constants, the coefficients
aik are given by

aik :=

{
−1 if edge ek is incident on node i
0 otherwise, (5)

ψk := −
(
ρk
α̃k

)
[cos (α̃k + α∗k)− cosα∗k]

+

(
βk
ρkα̃k

)
[sin (α̃k + α∗k)− sinα∗k] , (6)

and the virtual control α∗k is defined as

α∗k := arctan(−c3βk). (7)

Remark 1: Note that the control law (4b) is well
posed since limα̃k→0

cos(α̃k+α∗
k)−cosα∗

k

α̃k
= sin(−α∗k) and

limα̃k→0
sin(α̃k+α∗

k)−sinα∗
k

α̃k
= cos(α∗k)

In what follows, we show through a simple case study
of reduced dimension, how the controller above achieves
consensus for (3). In Section III-C we present our main
results, for swarms of arbitrary dimension.

B. Case study: 4 nonholonomic agents

Consider a multi-agent system composed of four vehicles
subject to nonholonomic constraints, with motions defined by
(3), and a communication topology represented by a directed
spanning tree labelled as in Fig. 3.

e1 := (1, 2)
e2 := (1, 3)
e3 := (3, 4)

Fig. 3: Directed spanning tree for 4 agents

For the purpose of analysis, we define a multivariable
model containing the three states of all the vehicles, by
labelling the levels of the tree based on the distance to the
root, as in Figure 2. To that end, we assign the state variable

ξ(p)> :=
[
ρ(p)> β(p)> α̃(p)> ] p ≤ h,

to each level in the tree. Thus, for the graph in Figure 3 let
ξ(1)> := [ρ(1)> β(1)> α̃(1)> ] collect the states correspond-
ing to the edges e1 and e2 and let ξ(2)> := [ ρ(2) β(2) α̃(2) ]
contain those relative to the edge e3. That is, ρ(1)> :=
[ ρ1 ρ2 ], β(1)> := [β1 β2 ], and α̃(1)> := [α̃1 α̃2 ], whereas
ρ(2) = ρ3, β(2) = β3, and α̃(2) = α̃3. Note, after (4) and (5),
that since the first node (i = 1) is the root, which does not
have incident edges, we have aik = 0 hence, v1 = ω1 = 0.
Furthermore, since every node in a tree has only one incident
edge, we have that each vi depends only on the state of edge
ek where, ek is incident on node i. The same applies for ωi.

With these notations the system (3) in closed loop with
(4), for the considered graph, can be written in the compact
cascaded-system form,

ξ̇(2) = f (2)(ξ(2)) + g(2)(ξ(1), ξ(2)) (8a)

ξ̇(1) = f (1)(ξ(1)), (8b)

in which the nominal systems, ξ̇(p) = f (p)(ξ(p)) with p ≤ 2,
take the form

ρ̇(p) =− c1ρ(p) − c1
[
Cos(α̃(p) + α∗(p))

−Cos(α∗(p))
]
D(β(p))ρ(p) (9a)

β̇(p) =− c1c3β(p) + c1diag

(
1

ρ
(p)
k

)[
Sin(α̃(p) + α∗(p))

−Sin(α∗(p))
]
D(β(p))ρ(p) (9b)

˙̃α(p) =− c2α̃(p) − c1Ψ(p)D(β(p))ρ(p) (9c)



where Cos(s) := diag(cos(sk)), Sin(s) := diag(sin(sk)),
Ψ(p) := diag(ψk), and D(β) := diag(

√
1 + c23β

2
k).

Remark 2: Note that to obtain (9) we used the identities

sin(arctan(s)) =
s√

1 + s2
, cos(arctan(s)) =

1√
1 + s2

.

Furthermore, the interconnection term g(2) takes the form

g(2)
(
ξ(1), ξ(2)

)
=

c1 cosβ3

√
1 + (c3β2)2ρ2

g̃β
(
ξ(1), ξ(2)

)
g̃α
(
ξ(1), ξ(2)

)
 ,

where

g̃β

(
ξ(1), ξ(2)

)
:= −c1

sinβ3

ρ3

√
1 + (c3β2)2ρ2

− c2α̃2 − c1ψ2

√
1 + (c3β2)2ρ2

− c1
(

1 +
c3

1 + (c3β2)2

)√
1 + (c3β2)2 sin(α̃2 + α∗2)

and

g̃α

(
ξ(1), ξ(2)

)
:= −c1

sinβ3

ρ3

√
1 + (c3β2)2ρ2

− c2c3
√

1 + (c3β2)2α̃2 − c1ψ2

√
1 + (c3β2)2ρ2

− c1
(

1 +
c3

1 + (c3β2)2

)√
1 + (c3β2)2 sin(α̃2 + α∗2).

The cascade structure of the system (8) captures well the
fact that the dynamics of the edges in the first level of the
tree, e1 and e2 are autonomous while the dynamics of e3

is driven by the former. Moreover, there is a considerable
amount of literature on cascaded systems to rely on. For
instance, according to [18], asymptotic stability of the origin
of a nonlinear time-varying cascaded system of the form (8)
follows if (the respective origins for) the nominal systems
ξ̇(1) = f (1)(ξ(1)) and ξ̇(2) = f (2)(ξ(2)) are asymptotically
stable and the solutions of (8) are bounded.

The first condition may be asserted, for each p ≤ 2, using
the Lyapunov function candidate

Vp(ξ
(p)) =

1

2

∣∣ξ(p)
∣∣2, (10)

whose total derivative along the trajectories of (9) —see also
(6), satisfies

V̇p(ξ
(p)) =− c1|ρ(p)|2 − c1c3|β(p)|2 − c2|α̃(p))|2

≤ −c′|ξ(p)|2 < 0
(11)

where c′ := min{c1, c1c3, c2}. Global exponential stability
of the origin for the nominal subsystems (9) follows.

Now we establish boundedness of the solutions of
(8). To that end, we stress that the interconnection term
g(2)

(
ξ(1), ξ(2)

)
may be upper-bounded as

g(2)
(
ξ(1), ξ(2)

)
≤


γρ(|ξ(1)|)

max
{

1, 1
ρ3

}
γβ(|ξ(1)|)

max
{

1, 1
ρ3

}
γα(|ξ(1)|)

 (12)

where γρ(s), γβ(s), γα(s) ∈ K∞. Therefore, in view of
(11) and (12), the total derivative of the quadratic Lyapunov

function in (10), with p = 2, along the trajectories of (8a)
satisfies

V̇2(ξ(2)) ≤ −c1|ρ3|2 − c1c3|β3|2 − c2|α̃3|2 + |ρ3|γρ(|ξ(1)|)

+ max

{
1,

1

ρ3

}(
|β3|γβ(|ξ(1)|) + |α̃3|γα(|ξ(1)|)

)
.

(13)

Because of the max function in (13) we consider two
scenarii. First, let ρ3 � 1 so that max{1, 1/ρ3} = 1
and define λ1, λ2, λ3 > 0 sufficiently large so that c′1 :=
c1− 1

2λ1
> 0, c′2 := c1c3− 1

2λ2
> 0, and c′3 := c2− 1

2λ3
> 0.

Applying Young’s inequality, (13) we obtain

V̇2(ξ(2)) ≤− c′1|ρ3|2 − c′2|β3|2 − c′3|α̃3|2 +
λ1

2
γρ(|ξ(1)|)2

+
λ2

2
γβ(|ξ(1)|)2 +

λ3

2
γα(|ξ(1)|)2

≤− c′|ξ(2)|2 + γ(|ξ(1)|)
(14)

where c′ := min {c′1, c′2, c′3} and γ(|ξ(1)|) := λ1

2 γρ(|ξ
(1)|)2+

λ2

2 γβ(|ξ(1)|)2 + λ3

2 γα(|ξ(1)|)2.
Now consider the case where max{1, 1/ρ3} = 1/ρ3 and

note that for any δ > 0 and for any ρ3 ≥ δ, max{1, 1/ρ3} ≤
1/δ. Also, define λ4, λ5, λ6 > 0 such that c′′1 := c1− 1

2λ4δ
>

0, c′′2 := c1c3 − 1
2λ5δ

> 0, and c′′3 := c2 − 1
2λ6δ

> 0. Then,
applying Young’s inequality in (13), we obtain

V̇2(ξ(2)) ≤− c′′|ξ(2)|2 +
1

δ
γ(|ξ(1)|) (15)

where, c′′ := min{c′′1 , c′′2 , c′′3}.
From (14) and (15), we have that subsystem (8a) is input-

to-state stable with respect to ξ(1) for any δ > 0 and for
any ρ3 ≥ δ. Moreover, from (11), ξ(1) converges to 0
exponentially and is bounded. Hence, the solutions of (8)
are bounded and converge to zero.

Remark 3: The previous rationale is valid on the domain
of definition of the closed-loop system, (8), which corre-
sponds to ∪k≤m{ρk > 0} ∩ {(αk, βk) ∈ R2}. The latter
also corresponds to the domain of attraction.

For clarity of exposition, so far we considered the simple
graph in Figure 3. However, the previous arguments hold for
any value of p, hence for a tree of any dimension. This is
the rationale of our main statement, which we present next.

C. Multiagent systems of any dimension

Consider a swarm of n unicycles evolving on the plane.
Consider further that the communication topology is repre-
sented by a directed spanning tree with h levels as in Figure
2. From (4) we have that each edge’ state in level p depends
only on its own and on the state of its parent edge in level
p − 1, p ≤ h. Therefore, extending the arguments used in
the previous section, for an arbitrary directed spanning tree
with h levels, the system (3) in closed loop with (4) can be



expressed as a nested cascaded system of the form

ξ̇(h) = f (h)(ξ(h)) + g(h)(ξ(h−1), ξ(h)),
...

ξ̇(p) = f (p)(ξ(p)) + g(p)(ξ(p−1), ξ(p))
...

ξ̇(2) = f (2)(ξ(2)) + g(2)(ξ(1), ξ(2))

ξ̇(1) = f (1)(ξ(1))

(16)

where the nominal systems ξ̇(p) = f (p)(ξ(p)) are as in (9)
and, as for g(2), the interconnection terms g(p)(ξ(p−1), ξ(p))
can be bounded by

g(p)
(
ξ(p−1), ξ(p)

)
≤


γρ(|ξ(p−1)|)

max
{

1, 1
ρ̄(p)

}
γβ(|ξ(p−1)|)

max
{

1, 1
ρ̄(p)

}
γα(|ξ(p−1)|)

 , (17)

with ρ̄(p) := min{ρ(p)}, for any 2 ≤ p ≤ h. Then, we have
the following.

Proposition 1 (Main result): Consider n agents with non-
holonomic constraints (1) and communicating over a directed
spanning tree GT (V, E). The smooth time-invariant controller
(4) achieves full consensus, i.e., qi → qj and θi → θj , for
all (i, j) ∈ E and for all inital conditions in the set

D :=
⋃
k≤m

{ρk > 0} ∩ {(αk, βk) ∈ R2}

Sketch of Proof. The proof follows similar arguments as
for the previous case-study.

First, for the nominal systems ξ̇(p) = f (p)(ξ(p)) with
p ≤ h, we use the candidate Lyapunov function Vp(ξ

(p))
defined in (10). Evaluating its total time derivative along the
trajectories of the closed-loop system (9), we obtain, using
also (6),

V̇p(ξ
(p)) =− c1|ρ(p)|2 − c1c3|β(p)|2 − c2|α̃(p))|2

≤ −c′|ξ(p)|2 < 0,
(18)

which implies exponential stability of the origin for all initial
conditions in D.

Now, consider the last two equations in (16). Using (11)
and (17), we obtain

V̇2(ξ(2)) ≤ −c1|ρ(2)|2 − c1c3|β(2)|2 − c2|α̃(2)|2

+|ρ(2)|γρ(|ξ(1)|) + max

{
1,

1

ρ̄(2)

}(
|β(2)|γβ(|ξ(1)|)

+|α̃(2)|γα(|ξ(1)|)
)
.

(19)

Let δ > 0 be such that ρ̄(2) ≥ δ. Furthermore, define
λ1, λ2, λ3, λ4, λ5, λ6 > 0 such that c′1 := c1 − 1

2λ1
> 0,

c′2 := c1c3− 1
2λ2

> 0, c′3 := c2− 1
2λ3

> 0, c′′1 := c1− 1
2λ4δ

>

0, c′′2 := c1c3 − 1
2λ5δ

> 0, and c′′3 := c2 − 1
2λ6δ

> 0. Then,
for any δ > 0 such that ρ̄(2) ≥ δ, we have

V̇2(ξ(2)) ≤− c̄|ξ(2)|2 + max{1, 1

δ
}γ(|ξ(1)|) (20)

where c̄ := min{c′1, c′2, c′3, c′′1 , c′′2 , c′′3}. From (20), we con-
clude that system ξ̇(2) is input to state stable with respect to

|ξ(1)|, for any δ > 0 such that ρ̄(2) ≥ δ. Therefore, since from
(18), ξ(1) → 0 exponentially, it follows that the solutions
(ξ(1)(t), ξ(2)(t)) are bounded, which implies that the origin
(ξ(1), ξ(2)) = (0,0) is attractive for al initial conditions on
D —see Remark 3.

Proceeding recursively up to the first equation in (16)
boundedness of ξ(p)(t) follows, for each δ > 0 such that
ρ̄(p) ≥ δ, and for all 3 ≤ p ≤ h. Hence we conclude that the
origin of the system (16) is attractive for al initial conditions
in D, which implies that full consensus is achieved.

IV. SIMULATION RESULTS

To illustrate our theoretical statements, we performed
some numerical simulations using six robots interconnected
in a directed spanning tree, as depicted in Figure 4.
The controller parameters are fixed to the values

Fig. 4: Communication topology

c1 = 1, c2 = 2 and c3 = 0.5. Furthermore, the
initial conditions were set to [x1(0), y1(0), θ1(0)] =
[−4, 0, π/2], [x2(0), y2(0), θ2(0)] = [3.5, 0, π/6],
[x3(0), y3(0), θ3(0)] = [−11, 5, π/4], [x4(0), y4(0), θ4(0)] =
[−11,−5, π/4], [x5(0), y5(0), θ5(0)] = [11, 5, π/2], and
[x6(0), y6(0), θ6(0)] = [11,−5,−π/2].
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(a) Proposed controller
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(b) Time-varying controller [6]

Fig. 5: Leader-follower consensus simulation
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Fig. 6: Simulation results – x coordinates
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Fig. 7: Simulation results – y coordinates
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Fig. 8: Simulation results – orientation

The simulation results are presented in Figures 5a and 6-8.
From figures 6-8 it is clear that asymptotic convergence to
the agreement manifold is achieved both in position and in
orientation, hence full consensus is achieved. For compar-
ison, Figure 5b shows the simulation results for a smooth
time-varying feedback taken from [6] based on the concept
of δ-persistency of excitation. Although full consensus is also
achieved in this case, the performance is somewhat degraded
by the oscillations induced by the controller, whereas, for our
controller, smooth motion is achieved.

V. CONCLUSIONS

We presented a solution to the full consensus problem
for swarms of unicycles under a directed-spanning-tree com-
munication topology using a distributed and smooth time-
invariant feedback control law. The control methodology is
based on a polar-coordinates-based model. Furthermore, it

relies on the edge-based-graphs approach, which allows to
express the consensus problem as a stabilisation problem,
so it may be analysed through classical Lyapunov theory.
Moreover, our controller is simple and provides a smooth
motion of the agents, relative to persistency-of-excitation
designs, and only uses relative information. Thus, it is well
suited to practical applications.

Current work focuses on more general digraph topolo-
gies, higher-order systems, obstacle avoidance, and 3D au-
tonomous vehicles.
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