Merad Boudia
email: om_meradboudia@mail.univ-tlemcen.dz

Omar Rafik

Senouci Sidi

Feham Mohammed

A Novel Secure Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography

Keywords: wireless sensor networks, secure data aggregation, homomorphic encryption, simple power analysis

Wireless sensor networks (WSNs) are nowadays considered as an important part of the Internet of Things (IoT). In these networks, data aggregation plays an essential role in energy preservation. However, WSNs are usually deployed in hostile and unattended environments (e.g. military applications) in which the confidentiality and integrity security services are widely desired. Recently, homomorphic encryptions have been applied to conceal sensitive information during aggregation such that algebraic operations are done directly on ciphertexts without decryption. The main benefit is that they offer the end-to-end data confidentiality and they do not require expensive computation at aggregator nodes since no encryption and decryption are performed. However, existing solutions either incur a considerable overhead or have limited applicability to certain types of aggregate queries. This paper presents a novel secure data aggregation protocol for WSNs. The scheme employs Stateful Public Key Encryption (StPKE) and some previous techniques in order to provide an efficient end-to-end security. Moreover, our solution does not impose any bound on the aggregation function's nature (Maximum, Minimum, Average, etc.). We present and implement our scheme on TelosB as well as MicaZ sensor network platforms and measure the execution time of our various cryptographic functions. Simulations are also conducted to show how our scheme can achieve a high security level (by providing the above security services) with a low overhead (in terms of computation and communication) in large-scale scenario.

INTRODUCTION

Wireless sensor networks have received much attention over the last few years, not only in academia, but also in industries for the study and development of a plethora of potential applications in various domains such as military, health, environmental, etc. Nowadays considered as one of the main elements in the Internet of Things (IoT) [START_REF] Gubbi | Internet of Things (IoT): A vision, architectural elements, and future directions[END_REF], WSNs are composed of many sensor nodes where the resource limitation represents the most important feature. In fact, the sensors are constrained in battery power, communication, and computation capability; therefore, every possible solution that aims to conserve these resources is extensively sought [START_REF] Yick | Wireless sensor network survey[END_REF]. Data aggregation is one of the techniques that is actually considered as an essential paradigm for WSNs since it tends to save both computation and communication resources. With such technique, data are captured by sensor nodes and fused as they flow in the network by intermediate nodes and then transmitted to the sink over the wireless link. In IoT context, the sink node can be considered as an Internet powered device that gathers readings (aggregated data) and sends them to the cloud. In a nutshell, the sink node manages all the interaction between the WSN and the outside world (known as Front-End solution, in which the WSN is completely independent from the Internet [START_REF] Alcaraz | Wireless sensor networks and the internet of things: Do we need a complete integration?[END_REF]). Data aggregation allows in-network processing which leads to lesser packet transmissions and reduces redundancy, and therefore, helps in increasing the WSN's overall lifetime [START_REF] Akkaya | The impact of data aggregation on the performance of wireless sensor networks[END_REF].

The major problem of data aggregation is when we aim to provide security. On one hand, it should be noted that aggregation and security have opposite goals. While the first attempts to reduce the number of packet transmitted, the second adds a non-negligible cost in order to ensure some security properties. On the other hand, WSNs have some special features that are different from other networks, (i) they are limited in terms of resources, which makes the choice of the adequate security algorithm somewhat difficult. Algorithms that are simple and efficient in terms of resources utilization are the most suitable, or sometimes by sacrificing some security in order to render possible the implementation on a wireless sensor,(ii) they are often deployed in hostile and unattended environments, which makes them subject to several kinds of attacks. In an aggregation process for example, due to the amount of data to be fused, the nodes that perform the aggregation function are the most attractive to an adversary, and (iii) they use a wireless link, which may allow an attacker to monitor the transmitted data and even participate in the communication. To summarize, data aggregation protocols must be designed in conjunction with security protocols in order to reach a good compromise between the overall protocol complexity and the provided security level [START_REF] Chen | Sensor network security: a survey[END_REF]. Guaranteeing security for data aggregation is therefore an intriguing challenge.

Traditional secure aggregation protocols use hop-by-hop encryption [START_REF] Du | A witness-based approach for data fusion assurance in wireless sensor networks[END_REF][START_REF] Hu | Secure aggregation for wireless networks[END_REF][START_REF] Przydatek | Secure information aggregation in sensor networks[END_REF], in which sensor nodes encrypt the captured data and send the ciphertext to the aggregator node; the aggregator node decrypts, performs the aggregation function, and then sends the encryption of the result to the upper aggregator node. Therefore, while these data aggregation protocols improve the bandwidth and energy utilization of the network, and especially allow a simpler implementation of aggregation functions (Maximum, Minimum, Average, etc.), they incur not only a high computation overhead but also delay (due to encryption/decryption effort). Besides, the aggregator nodes can access to the plaintext data, so the end-to-end confidentiality is not provided which is mandatory, especially for military applications. Therefore, the development of efficient schemes with stronger security becomes primordial.

Recently, several solutions [START_REF] Westhoff | Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation[END_REF][START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF][START_REF] Mykletun | Public key based cryptoschemes for data concealment in wireless sensor networks[END_REF][START_REF] Zhu | A secure and efficient data aggregation scheme for wireless sensor networks[END_REF][START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF][START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF] that provide data confidentiality without inducing delay have been proposed. Known as Concealed Data Aggregation (CDA), they are based on a particular cryptographic algorithm, namely Privacy Homomorphism, which enables direct calculations (addition and/or multiplication) on enciphered data. The main benefit of these schemes is that they offer the end-to-end data confidentiality and they do not require expensive computation at aggregator nodes since no encryption and decryption are performed. Conversely, actual privacy homomorphisms increase significantly the energy required for encryption and also have limited applicability to certain types of aggregate queries. In fact, only addition-based and multiplication-based aggregation operations are possible. Schemes based on symmetric encryption have been proposed, but most of them were cryptanalyzed [START_REF] Fontaine | A Survey of Homomorphic Encryption for Nonspecialists[END_REF]. In [START_REF] Mykletun | Public key based cryptoschemes for data concealment in wireless sensor networks[END_REF], the authors study and analyze a selected set of asymmetric algorithms for end-to-end privacy in WSNs. Their results show that the Elliptic Curve El Gamal (ECEG) is the most suitable algorithm for WSNs. In [START_REF] Merad Boudia | Fast and secure implementation of ECC-based concealed data aggregation in WSN[END_REF], we proposed an efficient implementation of ECEG on MicaZ motes. The encryption takes about 1.29s. However, for an application where the sink needs to continuously collect information about the target area e.g. every 20 seconds, such a scheme is impracticable and leads to energy depletion. Furthermore, ECEG is additive homomorphic and hence, supports only a limited number of aggregation functions related to addition operation [START_REF] Peter | A survey on the encryption of convergecast traffic with in-network processing[END_REF]. Another security service namely, the end-to-end data integrity is an interesting issue that becomes a challenge to the cryptographic community. The hop-by-hop verification does not ensure that the aggregator performs correctly the aggregation function. A compromised aggregator can produce a fake aggregate and authenticate it with its legitimate key. Therefore, the end-to-end integrity is another service that is widely desired. Due to the special characteristics of WSNs, it is very challenging to provide these two security services at the same time [START_REF] Peter | A survey on the encryption of convergecast traffic with in-network processing[END_REF].

Paper contributions. In this paper, we propose a Secure Aggregation scheme for WSNs using Stateful Public Key Cryptography (SASPKC). This novel protocol employs Stateful Public Key Encryption (StPKE) proposed by Bellare et al. [START_REF] Bellare | Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation[END_REF] and some previous techniques to overcome the above problems. The contributions of the present paper are three-fold:

 First, SASPKC adopts StPKE for efficiency in terms of computation and communication costs. Simulation and experimental results show the huge decrease of energy utilization of the network in comparison with related work,  Second, SASPKC aggregates not only ciphertexts but also signatures, the end-to-end data confidentiality and integrity security services are provided using symmetric homomorphic encryption and aggregate Message Authentication Code (MAC), respectively. In our proposal, the base station is able to extract individual data, verify the integrity of all messages, authenticate the senders and eventually identify the malicious node,  Finally, our implementation on TelosB and MicaZ motes uses a fast algorithm for elliptic curve scalar multiplication to reduce the execution time of SASPKC, the algorithm is also secure against side channel attacks, in particular Simple Power Analysis.

Paper organization. The remainder of the paper is organized as follow: Section 2 presents the relevant literature review on secure data aggregation in WSNs. Section 3 presents the background knowledge. Section 4 details our protocol for secure data aggregation and Section 5 provides its security and performance analysis. Finally, Section 6 concludes our work and gives some future directions.

RELATED WORK

There is an extensive research on secure data aggregation in WSNs [START_REF] Du | A witness-based approach for data fusion assurance in wireless sensor networks[END_REF][START_REF] Hu | Secure aggregation for wireless networks[END_REF][START_REF] Przydatek | Secure information aggregation in sensor networks[END_REF][START_REF] Westhoff | Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation[END_REF][START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF][START_REF] Mykletun | Public key based cryptoschemes for data concealment in wireless sensor networks[END_REF][START_REF] Zhu | A secure and efficient data aggregation scheme for wireless sensor networks[END_REF][START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF][START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF]. Existing works are designed for different security requirements.

At the beginning, the researchers focused mostly on data integrity. Du et al. [START_REF] Du | A witness-based approach for data fusion assurance in wireless sensor networks[END_REF] propose a scheme in which some nodes called witnesses are involved in order to monitor the aggregate. Hu et al. [START_REF] Hu | Secure aggregation for wireless networks[END_REF] propose delayed aggregation and delayed authentication to protect against one compromised node. Przydatek et al. [START_REF] Przydatek | Secure information aggregation in sensor networks[END_REF] use an interactive proof session in which the base station interacts with aggregator node in order to verify the correctness of the aggregation result. These schemes focus on aggregation of plain data and the stealthy attack, an attack where the adversary aims to force the base station to accept a deceiving aggregation result.

Data confidentiality service becomes attractive when Westhoff et al. [START_REF] Westhoff | Concealed data aggregation for reverse multicast traffic in sensor networks: Encryption, key distribution, and routing adaptation[END_REF] introduce the concept of Concealed Data Aggregation. CDA uses homomorphic encryption that allows intermediate nodes to homomorphically aggregate their enciphered data, and thus providing an end-to-end data confidentiality. However, a common key is used by every node, which makes the system insecure in the case where a single node is compromised. This problem is fixed by Castelluccia et al. [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF] by using a different key for every node. The authors address both confidentiality and efficiency; they propose a symmetric homomorphic encryption in which the Xor operation of stream cipher is replaced with a simple modular addition. The ciphertext expansion is efficient and therefore improves computational and communication efficiency. However, problems related to sensors identities and malleability are the main drawbacks of the system. This is the only symmetric homomorphic scheme that has not been cracked [START_REF] Fontaine | A Survey of Homomorphic Encryption for Nonspecialists[END_REF].The authors of [START_REF] Mykletun | Public key based cryptoschemes for data concealment in wireless sensor networks[END_REF]study the suitability of a selected set of asymmetric encryption algorithms that have the homomorphic property and are especially based on Elliptic Curve Cryptography (ECC). In fact, compared to RSA algorithm, ECC provides the same security with a smaller key size and smaller ciphertext. A 160-bit ECC provides the same security as a 1024-bit RSA. The authors show that the best candidate for WSNs is ECEG where the main advantages compared to other asymmetric algorithms are the highest level of security it can reach against passive adversary and its smaller packet size. However, as all other asymmetric algorithms, the major drawback remains the computation overhead, which makes it only suitable for a limited number of applications [START_REF] Merad Boudia | Fast and secure implementation of ECC-based concealed data aggregation in WSN[END_REF].

Most of recent works focus on both security services [START_REF] Zhu | A secure and efficient data aggregation scheme for wireless sensor networks[END_REF][START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF][START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF]. In [START_REF] Zhu | A secure and efficient data aggregation scheme for wireless sensor networks[END_REF], Zhu et al. propose a secure data aggregation scheme using a scrambling method The protocol in [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF] provides both, end-to-end confidentiality and end-to-end integrity, by using ECEG and aggregate signatures based on bilinear maps, respectively. The feature of an aggregate signatures scheme is that the final verifier has to know not only individual data but also the public key used for the signature in order to verify the final aggregate [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF]. For this purpose, the authors employ an encoding function that allows the base station to extract individual data. The public keys are assumed to be known by the base station. Then, each packet includes an encryption and a signature on data. The scheme incurs an important computation and communication overhead due to the use of identity-based signature scheme. In [START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF], the authors propose a scheme that is similar to [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF] because they make use of ECEG for data confidentiality, but a different scheme for data integrity. The authors propose a modified version of the Elliptic Curve Digital Signature Algorithm (ECDSA) [START_REF] Johnson | Vanstone: The Elliptic Curve Digital Signature Algorithm (ECDSA)[END_REF] in order to allow aggregation over signatures. The hash of plaintext is replaced with the plaintext itself in the original ECDSA. This solution introduces not only a significant calculation time, but also the packet size is very important, since each packet contains ciphertext, signature and public key. The latter is required for verification at the base station. However, it is not practical to send such large packets due to the high bit error rates of wireless links such as in WSNs. In addition, this solution can only verify the final result of aggregation. In [START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF], IPHCDA provides integrity for concealed data aggregation. Based on a homomorphic encryption algorithm introduced in [START_REF] Boneh | Evaluating 2-DNF Formulas on Ciphertexts[END_REF], IPHCDA has the particularity to enable decryption with different public keys. The authors apply this algorithm to a hierarchical WSN, where a different public key is assigned to each region in order to allow the base station to classify aggregated data based on the corresponding public key. Hop-by-hop data integrity is ensured using MAC. The major drawbacks are the computation overhead and the packet size, which increase with the number of regions in the network.

In the aforementioned schemes, there are only a few schemes that consider the two security services in an end-to-end manner [START_REF] Zhu | A secure and efficient data aggregation scheme for wireless sensor networks[END_REF][START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF]. This is widely desirable, as usually no sensor node can be trusted to be honest. These schemes either incur a considerable overhead in terms of computation and communication (due to the cryptographic algorithms employed) or have limited applicability to certain types of aggregate queries (due to the nature of the homomorphic property). Our contribution is motivated by the above facts, which also justify the importance of this work.

BACKGROUND, SYSTEM MODEL AND OBJECTIVES

An exciting feature of SASPKC is the use of hybrid encryption, namely the combination of asymmetric and symmetric primitives. For that, SASPKC adopts StPKE [START_REF] Bellare | Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation[END_REF] and makes use of the Castelluccia et al.'s scheme [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF]. In this section, we first briefly introduce each of these concepts as well as other cryptographic tools, and then we present our system models and design goals.

Stateful Public Key Encryption (StPKE)

The computational cost of Public Key Encryption (PKE) is dominated by modular exponentiations (scalar point multiplications in ECC-based PKE), which affect dramatically the energy consumption. In [START_REF] Bellare | Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation[END_REF], the authors propose a stateful encryption, which can significantly improve the computational cost of traditional PKE. In StPKE, the sender keeps a state that is re-used across different encryptions. In the following, we describe the scheme. The state (C 1 , r) is maintained by the sender and the same state is re-used for future encryptions. The symmetric key K is derived from g xr (i.e. Y r) by hash function, and used in the symmetric encryption of M under a secure symmetric scheme(E, D).The use of state reduces significantly the computation cost because C 1 is calculated just once, which consequently saves energy. The security is based on the Diffie-Hellman assumption (Given g a , g b , it is computationally infeasible to compute g ab , for more detail see [START_REF] Bellare | Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation[END_REF]). In [START_REF] Baek | Realizing Stateful Public Key Encryption in Wireless Sensor Network[END_REF], the authors realize the StPKE on WSNs and show its applicability on 8 bits platform. However, the authors only consider a simple one-hop communication. In this work, the StPKE is utilized to efficiently secure the convergecast traffic toward the base station, in a way that the state is used to share a secret with the base station and the network nodes use this secret to ensure the end-to-end security for aggregated data. Meanwhile, ECC is adopted to provide efficiency.

Castelluccia et al.'s scheme

Castelluccia et al. [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF] propose one of the most studied algorithms, a symmetric homomorphic encryption that requires a small number of single precision additions (See Figure 2). The plaintext added to the current key (shared only with sink node) modulo the length of key space is performed for encryption, and for decryption, the sink node needs exactly the same keys used for encryption to obtain the plaintext. The ciphertext expansion is efficient and therefore improves computational and communication efficiency. The security proof is provided in the appendix of their article. However, the authors in [START_REF] Chan | On the privacy of concealed data aggregation[END_REF] state that to achieve the IND-CPA1 (INDistinguishability under a Chosen Plaintext Attack), the output of the Pseudo Random Function (PRF) must be directly used, which means that the main advantage of the algorithm will be lost. In the same article, the authors propose (Hashed CMT), an algorithm that employs a second function namely, a length-matching hash function. The role of this function is to reduce the size of the PRF output similar to the size of the maximum possible of an aggregate value. In [START_REF] Chan | A security framework for privacy-preserving dataaggregation in wireless sensor networks[END_REF], the same authors report that the size of the second function output should still be chosen large enough to ensure reasonably low probability of success for a random guess. Besides the problems of sensors identities2 and malleability, the scheme can only achieve additive or multiplicative aggregation.

Cryptographic tools

Homomorphic Encryption (HE):

This property allows calculations on ciphertexts, which have the same effect as performing these calculations on the underlying plaintext data [START_REF] Fontaine | A Survey of Homomorphic Encryption for Nonspecialists[END_REF]. An encryption algorithm is accepted to be homomorphic if and only if the following equation holds:

D (E(x) ∆ E(y)) = D (E (x∆ y))

The operation ∆ can support either addition or multiplication or both, it depends on the features of the encryption scheme. The HE that supports any function on ciphertexts is known as Fully Homomorphic Encryption (FHE).Introduced by Gentry [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF], it is the most significant advance in cryptography in the last few years. It is promising, but the time complexity of its algorithms is still too high for practical use. The other class of HE is Partially Homomorphic Encryption (PHE), which includes encryption schemes that have homomorphic property with respect to one operation. In [START_REF] Fontaine | A Survey of Homomorphic Encryption for Nonspecialists[END_REF], several PHE have been presented. However, the most efficient scheme in terms of computation and communication overhead is [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF], previously described.

Aggregate MAC: It is clear that MAC cannot verify the additive property:

MAC () ≠ MAC () + MAC ()

Therefore, MAC cannot ensure the addition over authenticated data. In [START_REF] Katz | Aggregate Message Authentication Codes[END_REF], the authors suggest an idea where they proved that the MACs can be aggregated using Xor operation and that the result allows integrity and authenticity verification with the condition to have all individual data to enable verification.

MAC agg = MAC 1 ⊕ MAC 2 ⊕…⊕MAC n

Hash-based Message Authentication Code (HMAC):

The HMAC is a mechanism used to verify data integrity and source authentication, involving cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function (e.g.MD5, SHA-1, etc.) in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function [START_REF] Krawczyk | HMAC: Keyed-Hashingfor Message Authentication[END_REF].We use HMAC (K,m) to denote message digest of m using a key K, assuming that the underlying hash function is SHA-1, which produces 20 bytes digest [START_REF] Krawczyk | HMAC: Keyed-Hashingfor Message Authentication[END_REF].

Pseudo Random Function (PRF): A PRF is an efficient deterministic function (i.e. computable in polynomial time) and takes two inputs K and m, where K is a hidden secret key and m is a variable. Its output is computationally indistinguishable from truly random output. HMAC is extensively considered as PRF [START_REF] Kim | On the Security ofHMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 andSHA-1[END_REF]. In our work, we implement PRF as HMAC.

Key Derivation Function (KDF):

A KDF is a function that takes a key and other data as input and generates other keys required for cryptographic algorithms. In our work, we consider the secure KDF that uses PRF (HMAC) recommended by NIST, namely NIST SP800-108 HKDF (HMAC-based KDF) [START_REF] Chen | Recommendation for key derivation using pseudorandom functions[END_REF].

Network model

We consider a WSN with a large number of sensor nodes and one base station. Sensor nodes are resource-limited devices (e.g. TelosB motes [START_REF]Crossbow technology[END_REF]) firstly deployed in a geographical area to perform some special monitoring function. They are organized in several static clusters (See Figure 3). Some sensor nodes are dynamically elected as Cluster-Heads (CHs) to aggregate data from their members. The dynamic election can be performed using algorithms such as [START_REF] Heinzelman | Energy-efficient communication protocol for wireless micro sensor networks[END_REF][START_REF] Younis | HEED: A hybrid, energyefficient,distributed clustering approach for ad-hoc sensornetworks[END_REF]. The base station is assumed to be a powerful device and widely trusted. After aggregation done, CHs forward the results to the next hop. All notations used in this paper with their definition are summarized in Table 1. The key shared between Sij and BS Nij A sequence number for data freshness HKDF(K,N) A KDF using HMAC as PRF HMAC(K, m) Message digest of m using SHA with key K Table 1.Notations and their definitions.

Attack model

We categorize the attacker's abilities as follows:

Category.1. The attacker can eavesdrop and monitor the transmitted data in the WSN. Category.2. The attacker can produce an illegal data, modify the transmitted packets and replay packets already transmitted.

Category.3. The attacker can stealthy compromise sensor nodes using power analysis.

The first two categories are described in the security analysis of CDA schemes in [START_REF] Peter | A survey on the encryption of convergecast traffic with in-network processing[END_REF] and the last has been practically demonstrated in [START_REF] De Meulenaer | Stealthy Compromise of Wireless Sensor Nodes with Power Analysis Attacks[END_REF]. The first category concerns the passive attacker where its aim is to deduce the secret key. The most basic attack is the Ciphertext Analysis (CA), in which the attacker tries to obtain information only by interpreting ciphertexts. The attacker can launch the Known Plaintext Attack (KPA). In such an attack, the adversary tries to determine secret information with a known plaintext and corresponding ciphertext. In the same category, the attacker can also choose arbitrary plaintexts to be encrypted and study the resulting ciphertexts, known as the Chosen Plaintext Attack (CPA). In the context of WSN, CPA is considered to be less practical than CA and KPA but is still a very dangerous attack. In the second category, the attacker can actively interfere the communication. Active attacks include Malleability, packet forgery and replay. Malleability allows the attacker to modify packets without necessarily knowing the content; particularly homomorphic encryptions are inherently malleable. The attacker can forge packets or even replay valid packets already "used" in the WSN, in order to deceive the base station. For more details about these attacks, refer to Peter et al.'s analysis [START_REF] Peter | A survey on the encryption of convergecast traffic with in-network processing[END_REF]. In the third category, the attacker can perform a stealthy compromise or also known as side channel attack. This attack allows the adversary to use the information leaks during cryptographic operation to obtain all or part of the secret key [START_REF] De Meulenaer | Stealthy Compromise of Wireless Sensor Nodes with Power Analysis Attacks[END_REF]. In this category, we consider an attacker that takes power traces from the node without removing it from the network or disturbing it's functioning. In other words, the attacker is able to perform a Simple Power Analysis (SPA). More details are presented in Section 5.2.1.

Design goal

Under the aforementioned system models, our design goal is to develop an efficient and versatile CDA scheme for WSNs. More specifically, the following three objectives should be achieved.

Security: in the area of secure data aggregation, the two following security services are widely desired.

End-to-end confidentiality: prevents the intermediate nodes to access to the plaintext data.

End-to-end integrity: prevents the attacks that target the integrity of packets.

Efficiency: a secure data aggregation must be efficient in the two following aspects:

Computation overhead: the cryptographic operations must be efficient and do not require heavy computations, especially when the base station needs to continuously collect data from each sensor node about the target area.

Communication overhead: a secure aggregation scheme must highlight the advantage of using data aggregation in WSNs, and the security protocol does not affect this advantage.

Versatility: a secure data aggregation scheme must be versatile i.e. allows the base station to calculate any aggregation function on sensors data. This property is very important since it is needed to serve a wide range of sensor network applications.

PROPOSED SASPKC SCHEME

SASPKC is composed of two main phases namely, the forwarding phase and the aggregation phase. In the former, all sensors send their states, which will be used in the aggregation phase. In this latter phase, sensor nodes encrypt and authenticate their captured data using the state shared with BS. After that, the CH combines all ciphertexts and signatures into one ciphertext and one signature using the homomorphic operation and the Xor operation, respectively. Finally, the BS verifies the aggregated data by first, decrypting the aggregate and retrieving the plaintexts and then, by invoking the verification process. Details of the above two procedures, with the setup phase are showed in the following.

Setup phase

Bellare et al. [START_REF] Bellare | Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation[END_REF] recommends ECC for StPKE for an efficient security. We suppose that before deployment, the BS generates its pair of keys (x,Y) where Y=xG, and keeps the private key x secret. Each sensor S ij is loaded with a secret key shared only with BS and the elliptic curve domain parameters that are the set (Y, E, p, G, n), where Y is the public key and E the elliptic curve over prime field p with the base point G of order n. The sensors are also loaded with a large number M, a PRFbased KDF (NIST SP800-108 HKDF) and a secure MAC (HMAC).

Forwarding phase

In this phase, sensor nodes send the state St ij , which will be used to generate the sub-keys needed during aggregation phase. The authentication key is obtained using HKDF. In fact, the output K ij of the PRF 3 (HMAC in our case) is computed with a nonce as the iteration variable, and then used as keying material for authentication. Each sensor S ij executes Algorithm 1 and then sends the outputs .i.e. St ij and MAC ij to the next hop. In order to extract all keys by BS, all packets must be transmitted. Therefore, in this phase, the CH acts as a data forwarder and not as a data aggregator, as shown in Figure 4(a). Each sensor keeps (r ij , St ij) as state and uses this state for future encryptions. Once received, the CH forwards all data (including its own state) to the base station or the nearest CH. The BS then verifies the integrity and authenticates all the senders by using its private key x (correctness is guaranteed since xSt ij =xr ij G=r ij Y). The verification is done by calculating all the keys corresponding to the received states and then by comparing the MAC ij ' computed with the one received (See Algorithm 2). If the verification holds, then the corresponding state St ij will be stored in BS's database and used for future decryptions and verifications. Otherwise the state will be rejected. As a result of this phase, the BS shares a state St ij with each node in the network. The PRF is iterated just once, since no encryption is considered in this phase This phase consists of three steps: encrypt-aggregate-verify. These steps work as follow:

Encrypt: In this step, the data value m ij captured by S ij is encoded before encryption. We slightly modify the Castelluccia et al.'s scheme in such a way that the encryption involves an encoded plaintext. The encoding function is similar to that used in [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF], but the difference is that the resulting code e ij is ciphered using symmetric encryption that is very faster than asymmetric one and also provides short ciphertexts. Unlike the forwarding phase, the HKDF outputs two keys in the aggregation phase namely, K ij1 and K ij2 , where K ij1 < M. The sensors encrypt the encoded plaintext and calculate the corresponding MAC using K ij1 and K ij2 , respectively. The encryption is performed using addition modulo the large number M, preloaded on sensors before deployment (See Algorithm 3). We note that M must be greater than e agg = ij otherwise correctness is not provided, if this property is verified then the decryption will result in a message e agg that is smaller than M. The nonce N ij used in HKDF ensures the dynamic keys needed for the security of encryptions. The MAC is then calculated on ciphertext (encrypt-then-MAC). Finally, the resulting ciphertext and MAC are sent to the corresponding CH j . Aggregate: In this step, the CH acts as a data aggregator, unlike forwarding phase (See Figure 4(b)). The CH combines all L-1 ciphertexts including its own ciphertext into one ciphertext C agg , the L-1 MACs and its own MAC into one MAC agg (See Algorithm 4). The ciphertexts are homomorphically aggregated using addition operation modulo M, and the MACs are Xored. After that, the outputs of Algorithm 4 i.e. C agg and MAC agg are sent to the BS or the nearest CH. For a CH that receives a packet from another CH, it just forwards the packet to the BS. In addition, the CH can notify the BS, the sensors that fail to send their packets. Each CH j performs the homomorphic aggregation as follow: Verify: In this step, after receiving all data packets i.e. corresponding to the aggregate of each cluster, the BS invokes the decryption and verification processes. The BS first computes the current keys corresponding to all network nodes using the states (shared in forwarding phase) stored in the BS's database. After that, the BS decrypts the aggregated ciphertext and retrieves the individual plaintexts (See Algorithm 5). Finally, after the calculation of each pair (C ij , MAC ij), the BS checks the end-to-end integrity. If the verification holds, the aggregated data e agg will be accepted, otherwise reject. The BS can identify the malicious node by notifying the CH j (corresponding to the infected aggregate) to send all pairs (C ij , MAC ij) and then by verifying each pair. Another advantage of our scheme is that there is no need to send the list of responding nodes to the BS since all sensors participate in the aggregate. In our scheme, each sensor produces an encryption and a signature MAC even if there is no sensed data. In fact, the non responding node simply uses a zero value of m in Algorithm 3, which does not influence the final result and, thus, avoiding the problem of [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF] (See Section 3.2). Therefore, as the BS is provided with all sensors data 4 , it is then able to perform any aggregation function on them, which is the main advantage of hop-by-hop solutions. Our scheme is then versatile and does not impose any bound on this function's nature. To summarize, i) the confidentiality service is provided through our modified additively homomorphic scheme, ii) the integrity service is ensured through MAC, and iii) the versatility aspect is guaranteed since the original individual messages are available for verification. The aggregation phase is performed several times until that the states St ij expire. Application's developers design the expiration date. The key expiration is a very important security measure where it allows a key refresh, which involves a new forwarding phase and then improves security. In our scheme, the node lifetime can be viewed as a sequence of epochs where each epoch consists of two phases namely forwarding and aggregation phase (see Figure 5). The expiration date is defined depending on the target application. In fact, the application's developers can judge that the security level used is not secure enough (for long term) for their sensitive information (e.g. against Brute Force Attack). So, a key refresh is important to improve the security. In this case, the expiration date can be preloaded on sensor before deployment, as used in our implementation in Section 5.2. Also, the synchronization with some nodes can be lost due to some malfunctioning, then, a novel forwarding phase can refresh synchronization. In this case, a novel forwarding phase can be requested from BS by using a specific active message.

An illustrative example

In the following, we give an example to show how SASPKC works. As shown in Figure 6, we suppose a network consisting of a base station and 3 sensor nodes S 1 , S 2 and S 3 where S 3 is selected as CH. Assume that the forwarding phase is achieved so, each node has a state shared only with BS. We suppose that the data sensed by these nodes are respectively 7, 8 and 10, thus the number λ=4 (needed to represent the data captured). Each sensor first encodes the plaintext and then performs an encryption by adding the encoded plaintext to the current key (obtained using HKDF) modulo a large number, and finally sends the resulting ciphertext as well as the corresponding MAC to the CH. We note that in this example, small numbers are utilized in order to simplify the comprehension. However, very large numbers are used in practice. After that, the aggregator performs the homomorphic operation on ciphertexts and transmits the result along with aggregated MAC to the BS. Finally, the BS extracts the keys, decrypts and decodes the aggregated result to obtain the individual data (7, 8 and 10), and finally invokes the verification process.

PERFORMANCE EVALUATION AND ANALYSIS

In this section, we provide the security and performances analysis of SASPKC protocol. For security, we analyze the confidentiality and integrity and for the performances evaluation, we analyze the computation and communication overhead, energy consumption, scaling and portability.

Security analysis

SASPKC involves two phases; we begin with the security of forwarding phase: Theorem 1. The states St ij transmitted toward the BS in forwarding phase are secure.

Proof. The security is provided assuming that the Gap Diffie-Hellman GDH problem is hard 5 and the MAC is unforgeable. The MAC is calculated using the key K ij , which is derived via HKDF from r ij Y (unknown to attacker assuming that the GDH problem is hard) and , the preloaded secret key shared with BS. The fact that xSt ij = r ij Y, the BS can verify the integrity of all packets and authenticate the senders using x and . Meanwhile, considering that SASPKC uses an unforgeable MAC protocol such as HMAC [START_REF] Krawczyk | HMAC: Keyed-Hashingfor Message Authentication[END_REF], attackers cannot successfully forge packets in transmission phase.□ We note that, unlike St ij , which expires after an expiration date, is a key that never expires. After the expiration date, a sensor node will use the same key along with a nonce to send the new state. SASPKC aims to provide the captured data with end-to-end confidentiality and end-to-end integrity: Theorem 2. SASPKC provides the end-to-end data confidentiality in the presence of an attacker of category.1.

Proof. Our encryption is a slight modification of Castelluccia et al.'s scheme, which has indistinguishable encryptions. The difference is that the encryption involves an encoded plaintext.

It is clear that this modification does not negate the security since our modification is in the plaintext domain. So, SASPKC is as secure as the Castelluccia et al.'s scheme [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF]. Our encryption is information-theoretically secure i.e. it cannot be broken even against a computationally unbounded adversary. The authors of [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF] claimed that to provide security, the keys used for encryption must be dynamic i.e. change from one message to another. In order to provide the chosen plaintext security for our symmetric encryption, we use a nonce in our PRF, which ensures the pseudo randomness of keys. In fact, the encrypting device uses in addition to the state, a nonce for encryption, and similarly, the BS uses the same state and nonce for decryption. The nonce is a public value, which does not need to be hidden from the attacker; the only requirement is that the pair (state, nonce) is only used to encrypt one plaintext. In other words, the pair (state, nonce) must change from one message to another. In SASPKC, the state is calculated just once and a new nonce6 is generated for each message. The key K ij is used to 5

The GDH problem refers to a computational problem where an adversary, given (G,aG,bG) for unknown a,b∈ Fp, tries to compute a key abG with the help of DH-oracle, that is able to decide whether c=ab or not, given the tuple (G,aG,bG,cG) [START_REF] Okamoto | The Gap Problems: A New Class of Problems for the Security of Cryptographic Schemes[END_REF].

encrypt only one plaintext, since it changes in every round, and all keys are unique with a very high probability. Furthermore, the output of the PRF is directly used thanks to the encoding function employed. Roughly speaking, the choice of M still depends on e agg in our case, even if the output is directly used. Thus, the IND-CPA level is achieved in SASPKC without the requirement of a length-matching hash function [START_REF] Chan | On the privacy of concealed data aggregation[END_REF]. Therefore, the security against attacker of category.1 is provided.□ Recall from Section 3 that the attacker of category.2 targets the integrity of data, and try to deceive the base station by accepting a malicious result by replaying, modifying or forging packets. Theorem 3. SASPKC provides the end-to-end data integrity in the presence of an attacker of category.2.

Proof. An attack of category.2 is directly tackled by the aggregate MAC scheme; if a malicious action against integrity is occurred, then the end-to-end verification will fail. The security proof of the scheme is provided in [START_REF] Katz | Aggregate Message Authentication Codes[END_REF]. In the following, we prove the security of SASPKC through an analysis of the security against attacks that can be launched by an adversary of category.2:

Replay attack: SASPKC uses different keys for encryption and authentication from one packet to another. After an amount of time t, the attacker who replays the packet of the i-th round of aggregation phase, it is obvious that the check process will fail because the base station uses the key k of the (i+ t)-th round (no longer the key of the i-th round) to verify the data.

Malleability: As previously mentioned, the malleability is a serious threat for HE. The Castelluccia et al.'s scheme is vulnerable to this attack. In fact, a ciphertext (m + k) mod M can easily be altered by: mod M = (m+k)+10 mod M. SASPKC uses aggregate MACs which allows the base station to verify the data end-to-end and authenticate the senders. Consequently, if the encrypted data is modified, the check process will fail and the base station will reject the fake aggregate.

Packet forgery: There are two cases: i) forge packets without node compromise, and ii) forge packets with node compromise. In the first case, the attacker cannot produce a valid ciphertext and MAC without knowing the current corresponding keys, because SASPKC utilizes different keys for every message. In the second case, after node capture, the attacker can use the node to (i) act as a legitimate node (ii) forge a plaintext that is close to the legitimate plaintext, and (iii) forge a plaintext that is quite different from the plaintext. For the two first, there is no secure aggregation solution actually that detects such actions, but for the last, the base station in SASPKC is able to detect the malicious node through the encoding function employed because the forged message exceed the number of bits allowed to represent the data. Also, if the compromised node is a CH, the latter cannot access to the plaintext data of his member nor deceive the base station by accepting a malicious plaintext, because the corresponding keys are unknown to the attacker. In other words, the compromised aggregator can only modify its own plaintext to try to mislead the base station.□

Performance evaluation

Our scheme aims to reduce computation and communication overhead. In the following, we analyze our proposal's performances:

Computation overhead analysis

The implementation is done on TelosB motes [START_REF]Crossbow technology[END_REF], the 16-bit Texas Instruments MSP430F1611 microcontroller with 48 KB of flash ROM, 10 KB of static RAM, and running at a clock frequency of 8 MHz. To analyze the computation complexity, we denote symbol SM is the cost of one scalar multiplication, MA is the cost of one modular addition and SG is the cost of one signature. Note that SG is also considered for one HKDF because HMAC is used for both key derivation and signature generation. In forwarding phase, each sensor has to compute its state and forwards it to the base station. The computation involves 2SM+2SG operations. In aggregation phase, each sensor takes MA+2SG operations to compute an encryption and a signature. The CH nodes spend 2*(L-1)*MA operations (considering that the Xor operation is also a modular addition (mod 2)) to perform the homomorphic aggregation. We note that BS operations are not analyzed because it is considered as a powerful device. Therefore, the total computation cost of SASPKC for one epoch is 2SM+2SG+ NS*(NR*(MA+2SG) + 2*R*MA*(L-1)) where NS is the number of session in one aggregation phase.

To give a sense to this, we implement the above operations on TelosB. In our implementation, we use TinyOS and TinyECC, TinyOS is an open source designed for low-power wireless devices [START_REF] Levis | TinyOS: An operating system forWireless Sensor Networks[END_REF] and TinyECC is a freely library that provides operations of elliptic curve over prime field F p [START_REF] Liu | TinyECC: Elliptic Curve Cryptography for SensorNetworks[END_REF], the domain parameters secp160r1 is used. We develop an application, which provides state calculation, symmetric encryption and MAC calculation. For our HKDF and signatures, we use the HMAC provided in the library that considers SHA-1 as hash function. The HKDF produces a 20 bytes key in forwarding phase and two 20 bytes keys (for encryption and authentication) in aggregation phase. Note that M is chosen to be 2 160 , in order to avoid any overflow. Before calculating the computation cost of our cryptographic functions, we focus on scalar point multiplication, its efficiency and its security against side channel attacks.

The SM is the major operation of ECC, its represents 80% of the key calculation time [START_REF] Gura | Comparing elliptic curve cryptography and RSA on 8bit CPUs[END_REF]. TinyECC provides some optimization switches that can be turn on or off based on application needs, including the switch of Sliding Windows Method (SWM). This method uses some precomputation to improve the performance of SM especially when the involved point is fixed and known a priori. In SASPKC, the SM is performed with the two points G and Y namely, the base point and the BS's public key, which are both, fixed and known a priori. The execution of SM involves the execution of both, point addition (A) and point doubling (D) if the corresponding bit of the expansion of the scalar is 0, and only a point doubling in the other case. Among the contributions of the present work is to propose a protected implementation of SASPKC against SPA (Attacker of category.3). The purpose of SPA attack is to deduce the sequence of A and D from a single power trace obtained during the execution of SM. These two operations have different costs where A takes longer than D [START_REF] Boudia | The impact of ECC's scalar multiplication on wireless sensor networks[END_REF]. In order to prevent SPA, some countermeasures must be incorporated in the implementation in order to make the processing time of the SM algorithm independent from the operands. With unprotected implementation, the state in SASPKC is compromised and consequently all past and future encryptions will be compromised. In our implementation, we use the fast and SPA-secure scalar multiplication proposed in [START_REF] Hedabou | Some ways to secure Elliptic Curve Cryptosystem[END_REF], used to secure the implementation of ECEG in [START_REF] Merad Boudia | Fast and secure implementation of ECC-based concealed data aggregation in WSN[END_REF]. This method not only improves performance but also avoids SPA. In fact, a new representation of the scalar is utilized, which is represented by a sequence of non-zero bit-strings with 1 and -1. Also, the algorithm stores only 2 w-1 points instead of 2 w -1 for the original comb method [START_REF] Lim | More Flexible Exponentiation with Precomputation[END_REF], where w is the window used, and this without increasing the execution time. More details about comb method and its SPA-secure version can be found in [START_REF] Merad Boudia | Fast and secure implementation of ECC-based concealed data aggregation in WSN[END_REF]. Note that the two methods are added to the library. Theorem 4. SASPKC provides the security against attacker of category.3.

Proof. The implementation considers the SPA-secure algorithm [START_REF] Hedabou | Some ways to secure Elliptic Curve Cryptosystem[END_REF] in which the operations performed consist of a sequence of alternative point doubling and point addition, namely, DA|DA|…DA|DA. Therefore, our implementation does not leak any information about the secret r ij to SPA attacker.□ Table 2 shows the execution time of our cryptographic functions implemented on TelosB mote. The precomputations for both G and Y are performed in the Stpke.init () function. The execution time is taken by the average of several executions. Since the curve points Y and G are fixed, the overhead of Stpke.init () can be neglected by performing the precomputations offline and distribute the points to every sensor node prior to deployment. We note that SPA attack is only considered for state calculation namely, Stpke.state (). In fact, the state in SASPKC is used for long term (aggregation phase), and with unprotected implementation, SPA attacker can recover the state, which consequently compromises all communications in aggregation phase. However, the keys used for encryption and authentication change from one message to another. Therefore, the operations performed in aggregation phase namely, Stpke.encrypt () and Hom.Add () are not vulnerable to SPA. Our results presented in Table 2 show that the Comb method can significantly improve the execution time of SM needed in forwarding phase. Also, it is showed that the SPA-secure version proposed in [START_REF] Hedabou | Some ways to secure Elliptic Curve Cryptosystem[END_REF] is not only secure against SPA but also faster, namely, 61% and 15% than SWM and Comb, respectively, which are both vulnerable to SPA. Meanwhile, in SASPKC, the point compression technique is adopted to transmit the state, which allows representing a point using the minimum possible number of bits. The decompression effort requires the computation of one square root in prime fields [START_REF] De Meulenaer | Stealthy Compromise of Wireless Sensor Nodes with Power Analysis Attacks[END_REF], but since this operation is only performed at BS which is assumed to be a powerful device in terms of computation capabilities, energy resources, memory, etc. this operation can be done efficiently using algorithm such as [START_REF] Billy | Fast Point Decompression for Standard Elliptic Curves[END_REF].

In aggregation phase and for encryption, the sensor takes about 0.081s to encrypt and produce a MAC i.e. MA+2SG. If we compare with encryption effort of related works, we can find that our proposal is the most efficient. The works [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF] both use ECEG for encryption, which takes approximately the same execution time as our forwarding phase. In our scheme, this time is consumed only in forwarding phase. The major advantage of stateful encryption is that two SM are saved for each encryption. In aggregation level, the aggregator performs the homomorphic operation on encrypted data and needs only a few amount of computation to perform the aggregation. In [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF][START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF], this operation needs to perform calculation over elliptic curve, which causes not only an important computation overhead that leads to high energy consumption but also increases the end-to-end delay where the BS must to wait an important amount of time before receiving the aggregated data. Our scheme takes advantages of both kind of encryption to reduce the computation overhead, it uses El Gamal scheme to generate a state (shared only with BS), enabling encryption in all future transmissions. Our system also uses the best features of symmetric encryption that are the fast computation and small ciphertext.

Communication overhead analysis

Fisrt of all, the complexity of communication is O(1) for non CH nodes and O(L) for CH nodes in forwarding phase because all packets are transmitted toward the BS. Therefore, the total communication cost (i.e. the number of transmitted packets) in this phase is R(2L-1). In aggregation phase, the communication is a convergecast traffic toward the BS where every sensor sends one packet .i.e. O(1) for both Non-CH and CH nodes. Therefore, the total communication cost is N. We note that we consider the case where CH nodes are directly connected to the BS. Otherwise, these costs could increase, the increase will depend on the depth, The number L and the actual phase.

In what follow, we present new simulation results that complement, in terms of communication overhead and energy consumption, the experimental and analytical study presented in the previous sections. Results fully confirm the suitability of our protocol to ensure a high level of security with minimal overhead. We select TOSSIM [START_REF] Levis | TOSSIM: Accurate and scalable simulation of entire tinyos applications[END_REF], a widely used simulator for sensor networks. We use the TOSSIM-CC2420 simulator provided in the TinyOS distribution. It models the CC2420 radio. We simulate the three schemes, SHA [START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF], EVCDA [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF], and ours in order to properly make the comparison and to obtain accurate results. The reason to choose these two works for comparison is that they provide a comparable level of security (end-to-end confidentiality and integrity) as ours. In three simulation scenarios, 50, 100 and 150 sensor nodes are randomly deployed within a square area with a single base station centered.

In our scheme, the states are points that belong to the elliptic curve and they are transmitted in their compressed form which requires only 1+ [log 2 p] bits, which means 21 bytes in our implementation and the HMAC used outputs 160 bits (20 bytes) that can be truncated to 10 bytes following [START_REF] Krawczyk | HMAC: Keyed-Hashingfor Message Authentication[END_REF]. In aggregation phase, we use an encoded plaintext of 20 bytes, which results in a 20 bytes ciphertext. Hence, our proposal uses only short packet in order to provide both end-to-end confidentiality and integrity. The end-to-end security proposed in [START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF][START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF][START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF] incurs much communication overhead compared to our scheme. The overhead can be computed following the way used to send the corresponding packets, which corresponds to two different ways: i) send longer messages (since 802.15.4 supports up to 127 bytes) which increases the bit error rate and decreases the reliability of the network as used in [START_REF] Albath | Secure hierarchical data aggregation in wireless sensor networks[END_REF], and (ii) split the packet into blocks and send each block separately which incurs not only delay but also additional headers overhead as used in [START_REF] Ozdemir | Integrity protecting hierarchical concealed data aggregation for wireless sensor networks[END_REF]. Nevertheless, whatever the way used in these schemes, we argue that our solution provides greater reduction in energy consumption due to the number and size of messages needed to validate the sensors data. To give a sense to this, we run our three simulations, each simulation run lasts for 500s, and each result is averaged over several simulation runs. We use a simple TDMA-based clustering algorithm to transmit data to the base station. 4, 8 and 12 Cluster Heads (CHs) are selected for the three topologies 50, 100 and 150, respectively, thus, the number of nodes per cluster L ∈ [START_REF] Przydatek | Secure information aggregation in sensor networks[END_REF][START_REF] Sun | An efficient and verifiable concealed data aggregation scheme in wireless sensor networks[END_REF]. In our application, the non-CH node sends (every 20 seconds) a packet to the corresponding CH, the CH aggregates and sends the result to the BS. For our scheme, non-CH nodes first send their states and then securely report information (using the state) about the region where they are deployed to the BS. We note that for the same simulation time, an expiration date is considered 5 times in 5E (5 Epochs) and 10 times in 10E (10 Epochs), while 1E (1 Epoch) represents only one forwarding phase and one aggregation phase. We measure the communication overhead as the total data transmitted in the network. The results are presented in Figure 7 for different scenarios. Simulations results show that our scheme incurs less communication overhead compared to related works. This is due to the use of stateful public key encryption in which data is encrypted using symmetric encryption that yields to short ciphertexts and consequently short packets. The results show also that even if the security is improved in our scheme (by using several epochs for the same time duration), the overhead remains acceptable. Furthermore, the advantage of using StPKE can be observed in the case where the density of the network increases, see Figure 7 energy consumed by CH and Non-CH nodes is reduced considerably in our scheme and this is due to, on one hand, the nodes continuously (for each aggregation round) perform intensive calculations in EVCDA and SHA while in our scheme the costly operations are performed just in forwarding phases, on the other hand, in addition to participating in the aggregation process, the CH nodes perform aggregation function (the homomorphic operation). In SHA and EVCDA, this operation requires addition over elliptic curve while it requires only a few amount of computation in our proposal.

Recent works [START_REF] De Meulenaer | On the energy cost of communication and cryptography in wireless sensor networks[END_REF][START_REF] Piotrowski | How public key cryptography influences wireless sensor node lifetime[END_REF] showed that the energy cost of communications could be neglected with asymmetric computations. The authors, however, stated that if the energy required for cryptographic computations is reduced, this cost would become important the computational cost of traditional PKE by saving two exponentiations (two ECC's scalar multiplications). Therefore, it

Scaling Analysis

The proposed scheme is scalable, we can add as clusters as we want. The only condition is that, the number of nodes per cluster L does not exceed the maximum number of nodes that can support the encoding function. In Table 5, we show how this number can change with the security level and λ (the number of bits needed to represent the data). We note that the reference technique such as used in [START_REF] Sanli | secure reference-based data aggregation protocol for wireless sensor networks[END_REF] can significantly reduce the number λ. For multi-hop networks, the CH that receives an aggregated ciphertext from another CH has just to transmit the corresponding packet to the BS or the nearest CH. Table 5. Maximum number of nodes per cluster encryption and aggregate MAC to provide the end-to-end confidentiality and the end-to-end integrity, respectively. Experimental and simulation results confirmed the efficiency of our proposal in terms of energy used and show that, compared to other model proposed in current literature, our scheme achieves a comparable level of security with considerably better performance. To the best of our knowledge, this work is the first to address the security issues of data aggregation in wireless sensor networks by using stateful public key encryption. The proposed scheme can be very useful in a military application where the base station needs to continuously collect relevant data from each sensor node about the target area, and this, while providing a strong security against adversary that aims to disturb the network. In future work, we aim to extend our work to support nodes mobility, while considering new attacks such as selective forwarding.

Figure 1 .

 1 Figure 1. Bellare et al.'s cryptosystem[START_REF] Bellare | Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation[END_REF]

Figure 2 .

 2 Figure 2. Castelluccia et al.'s scheme[START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF]

Figure 3 .

 3 Figure 3. Network model Notation Definition NR Number of sensor nodes R Number of cluster heads in the network CHj

Algorithm 1 :Figure 4 .

 14 Figure 4. Data transmission in SASPKC: (a) Forwarding phase and (b) Aggregation phase

Algorithm 3 :

 3 Encrypt & sign (Sij) Input: mij , (rij , Stij) , Y , M , Nonce Output: Cij , MACij 1. Encode mij into eij=mij||0 z , where z=λ*(i-1). 2. Compute the current Kij= HKDF (Stij||rijY||Y , Nij) where Kij = Kij1|| Kij2 3. Compute Cij= Kij1+ eij mod M. 4. Compute MACij= HMAC (Cij, Kij2)

Algorithm 4 :

 4 Homomorphic aggregation (CHj) Input: All pairs (Cij , MACij)where i∈{ 1,…,L} Output: Cagg , MACagg 1. For L ciphertexts (C1j…CLj) 1.1.Compute Cagg= ij mod M 2. For L MACs (MAC1j...MACLj) 2.1.Compute MACagg= ⊕MACij

Figure 5 .

 5 Figure 5. Node lifetime.

Figure 6 .

 6 Figure 6. An illustrative example

Figure 7 .

 7 Figure 7. The communication overhead for different topologies: (a) 50 nodes, (b) 100 nodes and (c) 150 nodes

 (b) and (c).

Algorithm 5 :

 5 End-to-end verification (BS)

	Input: All pairs (Cagg, MACagg)j , Where j ∈{ 1,…, R}
	Output: MAC verification	
	1. Compute all currents Kij= HKDF(Stij||xStij|| Y , Nij)
	2. For each pair (Cagg, MACagg)j	
	2.1.Compute eagg= Cagg-	ij1 mod M
	2.2.Decode (eagg,L, λ): mi=e[(i-1)* λ, λ*i-1], where i=1,…,L
	2.3.For each mi, where i=1,…,L	
	2.3.1.Compute MACi	
	2.4. Compute MAC ' agg = ⊕MACi
	2.5. if MAC ' agg = MACagg Then eagg is accepted
	Otherwise eagg is rejected

Table 2 .

 2 Execution time of our cryptographic functions

	Cryptographic function	Execution time	SPA
		SWM (w=4)	5.82s	Yes
		Comb (w=4)	2.71s	Yes
	Stpke.state()	Sec.Comb (w=4)	2.85s	No
		Sec.Comb (w=5)	2.29s	No
	Stpke.encrypt()	0.081s	No
		Hom.add()	0.002s	No

Table 4 ,

 4 the estimated total energy costs of SHA, EVCDA and SASPKC at CH and Non-CH node are presented. The results show that as opposed to SASPKC, computations compose almost the overall cost of SHA and EVCDA on TelosB mote.

	Scheme		CH	Non-CH
		Comm	33.446 (60%)	15.029 (48%)
	SASPKC(1E)	Comp Total	21.999 (40%) 55.465	16.649 (52%) 31.678
		Comm	35.711 (32%)	15.191 (20%)
	SASPKC(5E)	Comp Total	77.461 (68%) 113.172	63.038(80%) 78.229
		Comm	38.103 (21%)	15.284 (11%)
	SPSPKC(10E)	Comp Total	141.145 (79%) 179.248	128.369 (89%) 143.653
		Comm	39.007 (3%)	16.748 (1%)
	EVCDA [13]	Comp Total	1497.143 (97%) 1536.15	1408.692 (99%) 1425.44
		Comm	90.744 (4%)	27.488 (1%)
	SHA [14]	Comp Total	2038.263 (96%) 2129.007	1950.672 (99%) 1978.16

Table 4 .

 4 The estimated total energy costs (in mj) of SHA, EVCDA and SASPKC at CH and Non-CH node in a network of 100 nodes.

IND-CPA is the highest security level against passive adversary; it is equivalent to semantic security[START_REF] Fontaine | A Survey of Homomorphic Encryption for Nonspecialists[END_REF].

To be able to decrypt, the base station must know exactly which sensor did or did not contribute to the aggregate.

The individual data can be obtained from eagg using the decoding function (See Algorithm

[START_REF] Chen | Sensor network security: a survey[END_REF].

The nonce used is an implicit sequence number, which is initialed and incremented from one packet to another.

Energy consumption analysis

Energy consumption is the core issue in WSNs. Computation and communication are two aspects that have a direct impact on energy consumption and consequently the node's lifetime. TOSSIM-CC2420 incorporates PowerTOSSIM [START_REF] Shnayder | PowerTOSSIM: Efficient Power Simulation for TinyOS Applications[END_REF], a power modeling extension to TOSSIM. PowerTOSSIM includes a model of the power consumption of the TelosB motes. However, TOSSIM does not model CPU execution time; it cannot provide accurate information for calculating CPU energy consumption. For this aim, we add for every transmitted/received packets the corresponding computation overhead involved, we take the model used in [START_REF] Liu | TinyECC: Elliptic Curve Cryptography for SensorNetworks[END_REF], the energy consumption E can be calculated by using the formula E = U×I×t, whereby U denotes the voltage, I denotes the current, while the execution time is represented by t. For 2 AA batteries, the voltage is about 3.0V. As stated in [START_REF] Liu | TinyECC: Elliptic Curve Cryptography for SensorNetworks[END_REF], the amount of current draw for TelosB is 1.8mA for MCU On/Radio Off. Hence, the energy consumption of our cryptographic functions can be calculated and are presented in Table 3. The above measures are added to our energy model. We perform our simulations for the three schemes (we note that for SHA, we use the measures provided in [START_REF] Kumar | Secure hierarchical data aggregation in wireless sensor networks: Performance evaluation and analysis[END_REF] and for EVCDA, we consider an encryption cost of 3SM, one D and one hash while an aggregation cost of 2*(L-1)*D as stated in [START_REF] Chen | recoverable concealed data aggregation for data integrity in wireless sensor networks[END_REF]), each simulation run lasts for 500s, the estimated energy consumptions in the whole network, and at CH and Non CH nodes are presented in Figure 8 compared with related works. This gain can be explained by the fact that much lesser computation overhead is incurred in our scheme due to the use of symmetric primitives and the efficient implementation of asymmetric operations (states calculation). Consequently, for the same level of security provided, the network lifetime is hugely improved. In Figure 8(b), we show that the average

Cryptographic function

Portability Analysis

SASPKC has been also implemented on another popular platform namely MicaZ mote, equipped with the 8-bit ATmega128L processor clocked at 7.3728 MHz, 4 kBRAM, and 128 kB Flash memory [START_REF]Crossbow technology[END_REF], and in which encouraging results were obtained. In fact, the state calculation needs only 1.48s using the algorithm proposed in [START_REF] Hedabou | Some ways to secure Elliptic Curve Cryptosystem[END_REF], the encrypt&sign function takes about 0.057s and the homomorphic operation requires only a few amount of computation namely 0.0012s. Following the model used in [START_REF] Liu | TinyECC: Elliptic Curve Cryptography for SensorNetworks[END_REF], the corresponding energy consumption is calculated and presented in Table 6. Since TelosB is more power-efficient than MicaZ, its energy consumption is lower. In fact, the results show that even if the execution time on MicaZ mote is 34% faster than TelosB, the latter requires only about 27% energy consumed by MicaZ mote for the same time duration.

SASPKC vs. Related Work

In Table 7, a comparison in terms of security (confidentiality and integrity), efficiency (computation and communication overheads) and versatility with related works is presented. The major advantages of our protocol are that all sensing data can be verified only at reader device (BS). Also, it employs symmetric key encryption and MAC, which lead to an efficiency in terms of computation and communication overhead. Finally, the versatility is provided. In fact, it is more interesting to provide the WSN's user with precise data instead of an aggregate representing the individual messages.

CONCLUSION AND FUTURE WORKS

We proposed SASKPC, a novel secure data aggregation scheme for WSNs based on stateful public key encryption and homomorphic encryption. In WSNs, performing data aggregation while ensuring data confidentiality and integrity is a challenge. The proposed scheme uses an additive homomorphic