
HAL Id: hal-02873871
https://hal.science/hal-02873871

Submitted on 18 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tiered Model-Based Safety Assessment
Kevin Delmas, Christel Seguin, Pierre Bieber

To cite this version:
Kevin Delmas, Christel Seguin, Pierre Bieber. Tiered Model-Based Safety Assessment. IMBSA 2019,
Oct 2019, Thessalonique, Greece. pp.141-156, �10.1007/978-3-030-32872-6_10�. �hal-02873871�

https://hal.science/hal-02873871
https://hal.archives-ouvertes.fr

Tiered Model-Based Safety Assessment

Kevin Delmas, Christel Seguin, and Pierre Bieber

ONERA/DTIM Université de Toulouse, 2 av. E. Belin, 31055 Toulouse, France
firstname.lastname@onera.fr

Abstract. Processes and techniques used for assessing the safety of a
complex system are well-addressed by safety standards. These standards
usually recommend to decompose the assessment process into different
stages of analysis, so called tiered safety assessment. Each analysis stage
should be performed by applying recommended assessment techniques.
To provide confidence in the correctness of the whole analysis, some
verification techniques, usually traceability checking, are applied between
two stages. Even if the traceability provides some confidence in the
correctness of the decomposition, the following problems remains How to
model the system behaviours at each stage of safety assessment? How to
efficiently use these stages during the design process? What is the formal
relationship between these modelling stages? To tackle these problems, we
propose a way to specify, formalize and implement the relations between
assessment stages. The proposal and its pros & cons are illustrated on a
Remotely Piloted Aircraft System (RPAS) use-case.

1 Introduction

The development of smart transport systems is classically addressed by tiered
processes (for instance V cycle) where product specifications are successively
refined until the final implementation phase.

The components of these systems may be subject to various kinds of faults
which may result in unacceptable safety issues. The safety effects of the potential
faults must therefore be carefully analysed and their acceptability assessed.
Achieving such activities with a monolithic safety assessment may be tedious,
error-prone, and would fail to provide confidence in the system dependability.

Standards like ARP-4754 [17] (aeronautics domain) provide a safety process
used successfully in the industrial domain to perform the safety assessment of
complex systems. One key of its success is the tight coupling of the development
and safety processes, that is in each development tier the relevant safety assess-
ment are processed and fed the next development steps with analyses results. A
safety process therefore generates analyses made at various level of granularity
and addressing various kinds of systems and components.

In addition to classical methods like fault trees or Markov chains (available in
[18]), newer approaches like Model Based Safety Assessment (MBSA) can be used
to perform the mentioned analyses. Altarica [2] is one of the most successful
safety modelling and assessment language used in an industrial context [12].

Besides the modelling and assessment ease brought by these approaches, ensur-
ing the consistency and traceability of safety analyses is still a prominent problem.

We claim that, like MBSE can been used [20] to tackle traceability and consis-
tency problems during development, the MBSA offers a suitable environment to
produce consistent and traceable safety analyses for complex systems.

The contribution of this paper is twofold, first it provides a methodology
to model the relations between development tiers, second it formalises these
relations with Altarica to benefit from the automated safety assessment. The
remainder of the paper is organised as follows: 1. the classical safety process
and its resulting analyses are succinctly presented (section 2) and the need of
traceability and consistency is motivated; 2. our modelling methodology and
its implementation using Altarica are presented (section 3); 3. the benefit of
our methodology (section 4) is demonstrated on a simplified RPAS use-case;
4. eventually the related work on safety analysis of complex systems is detailed
(section 5).

2 Safety process and MBSA

Complex systems are usually developed using a tiered process, that is some
design and validation activities are performed at each stage of development and
then fed the subsequent stages. Safety activities are performed throughout the
design process. Designers can rely on classical formalisms (for instance listed
in the ARP-4761 [16]). As identified by [14], the classical formalisms like fault-
trees or Markov chains embrace an architecture-agnostic modelling. Hence, a
tedious abstraction work must be achieved by the safety engineers to derive
the safety models out-of the system specification. Furthermore, adapting the
safety models after an evolution of the system design may be cumbersome and
error-prone. Architecture-aware formalisms, like component fault trees [8], finite
automata [4], mode automata [2] or hierachic safety assessments [13] have been
introduced to overcome the limitations of classical formalisms. Architecture-aware
formalisms provide a way to define the dysfunctional behaviour of entities called
components that are instantiated and connected to build the architecture of
a system. Ultimately this interconnection of components can be analysed by
automatic solvers like [15,3], this kind of analyses is the so-called Model-Based
Safety Assessment.

2.1 Reminder on MBSA and Altarica

Amongst the possible formalisms, Altarica [2] is one of the most popular and
successfully applied MBSA language in both academic and industrial fields. Since
Altarica is a formal language, its behaviour can be simulated and automated
safety assessment (like [15]) can be performed. Therefore, the underlying language
used in the models presented in this paper is Altarica and their analysis is
performed by the tool Cecilia-OCAS [5] from Dassault Aviation.

A system modelled with Altarica is a set of interconnected components,
these connections are considered as constraints over the possibles values of the
inputs and outputs of the components. These components therefore own the
following elements: 1. flow variables the inputs and outputs that are used to

interface the node with its environment; 2. state variables the internal variables
that can encode node’s functional or dysfunctional state (e.g. failure modes);
3. events the elements used to trigger the transitions amongst node’s states, note
that these events can be deterministic (e.g. reconfiguration events) or probabilistic
(failure events). The node’s functional and/or dysfunctional behaviour is defined
by the following relations between states, flows and events: 1. transitions encode
the possible state evolutions, each transition written g ` e→ a informally means
”when the guard g (condition over the current state and the value of the flow
variables) is true when the event e is triggered then the action a is performed
(assignment of state variables)”; 2. assertions encode the constraints between
the possible values of flow and state variables. In the sequel we assume that the
output flows are defined by the inputs flows and the state variables (dataflow
restriction).

2.2 Reminder on the safety assessment process

To ensure the dependability of complex systems, the safety assessment process
must be tailored to the development process. The standards like ARP4754 and
ISO26262 promote a safety assessment process where various safety activities are
performed throughout the development process.

Generally, a safety plan can be seen as an application of the following safety
assessment pattern at various levels:

Hazard Analysis (HA) Identify the conditions, in a given context, that may
rise safety issues so-called failure conditions (FC) and allocate safety objectives
(called SOs) to these failure conditions commensurate with the hazard’s
severity (or the previous safety objectives). These safety objectives are bounds
over safety indicators (called SIs) such as the acceptable minimal number of
root failures of a FC, the upper bound of a FC occurrence rate.

Safety Assessment (SA) Assess the proposed architecture against the objec-
tives and derive from this assessment the safety objectives that must be met
by the subsequent architectures designed during the development process.

For instance, during the aircraft specification definition an Aircraft Level,
Functional Hazard Assessment (AFHA) is performed and provides the failure
conditions and their severity. The context is specified through a set of assumptions
that must be traced and ultimately confirmed to ensure the validity of the analysis.

Once the aircraft’s sub-systems are known and their dependencies identified,
then a Preliminary Aircraft Safety Assessment (so-called PASA) is performed.
This analysis provides the appropriate safety objectives that must be fulfilled by
the aircraft’s systems.

The applicant must then demonstrate the fulfilment of the PASA safety objec-
tives on each system with various assessments performed throughout the system’s
development process. In the sequel we will adopt the following three-stage develop-
ment process (used in [7]): 1. operational: considering the system failures and their
impact in its operational environment (AFHA/PASA); 2. functional: considering
the safety impact of function failures on the system’s environment (FHA/PSSA

AFHA PASA

FHA
PSSA

(functional)

PSSA
(physical)

global SO

operation spec
FCs

SSO

SSO
system spec

FCs
FSO

FSO

implementation spec

dependability info

trace assump-
tions

trace assump-
tions

integrate failure

integrate failure

(a) Classic safety assessments

A
F

H
A Operation

model

Functional
model

Physical
model

SO
operation spec

FCs

system spec

implementation spec

dependability info

rep
la

ce
a
llo

ca
te

Automatic
assess-
ment

SIs

(b) Tiered Model-Based Safety Assessment

Fig. 1: Safety assessment processes

functional); 3. physical: considering the safety impact of implementation failures
on the function or system environment (PSSA physical).

2.3 Relations between safety assessments

When moving from one stage to another one, failures of the former architecture
will depend on the failures of the components of the new architecture. The
figure 1a identifies the relations between assessment performed during the safety
activities. The explicit relations (plain arrows) are the data exchanged by the
analysts to perform the safety assessments. For instance, performing the FHA
of a system needed some knowledge of the system specification and the safety
objectives allocated to assessed system. Some other relations are implicit (dotted
line), since they fall under the expertise of the analyst to properly deriving and
tracing some piece of information between stages. For instance, the analyst must
identify the failure conditions (expressed over functions) that are related to a
system failure mode for which a safety objective has been allocated.

According to the figure 1a, we can identify two kinds of implicit relations:

Allocations express the dependencies between components of two architectures,
such as the the resource dependencies created by mapping functions on
physical components.

Replacements link some parameters of two assessments performed at various
stages, typically the environment assumptions between AFHA and FHA.

The validity of the global safety assessment relies on the identification and
tracing of these relations. The prominent threats to validity are:

Traceability If the analyst is not able to trace the dependencies or the links
between assessments’ parameters, the demonstration of the global safety
objectives can be compromised by inconsistencies between safety assessments.

Composability The assessments performed throughout the design process are
dedicated to the identification and assessment of precise kinds of failures
e.g. operational specification failures for PASA. The fulfilment of the global
objective is achieved by a composition of the safety assessments. Some
piece of information of an assessment may be considered during subsequent
assessments. If the assessment framework does not provide some mechanisms
to handle such dependencies between assessments, the analyst must handle
them manually ; that may be error-prone and time-consuming.

Maintainability The safety assessment is more likely to be an iterative process
than a linear process. The analyst needs to efficiently reflect the evolution
of the design on the safety assessments. Because of the system’s complexity
the safety impact of a design choice may spread way beyond the considered
architecture, so handling system’s evolution manually is error-prone and can
compromise the whole safety assessment.

To tackle these problems, we present an MBSA approach extended with a
formal modelling of the relations between the safety assessments built throughout
the design process, so-called Tiered Model-Based Safety Assessment.

3 Formalisation of the tiered safety assessment with
Altarica

We introduce the notion of Tiered Model-Based Safety Assessment providing a
formal modelling of the relations between the safety assessments identified in the
previous section.

3.1 Overview of the approach

The formalisation provides a convenient way to express replacement and allocation
relations between two architectures . Thanks to this modelling, the relations
between safety assessments (identified in the figure 1a) can be greatly reduced
and boils down to the ones depicted in the figure 1b.

The formalisation mainly addressed the relations PASA / functional PSSA
and functional PSSA / physical PSSA. The former can been seen as a replacement
relation where the failure modes of the systems are expressed as failure conditions
over the functions of the systems. The latter is an allocation relation introducing
the dependencies of functions on physical items. Thanks to MBSA, these relations
can be modelled as constraints between the models of various architectures
and the safety assessment can be delegated to an automatic solver. Since the
relations between architectures will be formally modelled, the failure conditions
contributing to the global hazards identified in the AFHA does not need to be
further refined in subsequent architectures. One just enables the relations that
must be considered according to the assessment level and performs its assessment
(whatever the level) on the failure conditions of the operational level. Therefore
the safety objective allocation phase and the adaption of system failure as function
failure conditions (FHA) are not needed any more. Beyond this simplification,
the proposed process provides a solution to the following threats of validity:

Traceability By formalising the relations between the models, the analyst will
need to identify and express them to perform the safety assessments. So
the relations between safety assessments and the assumptions made on the
impact of component failures on another architecture are natively traced.

Composability The analyst can perform an assessment using the information
dispatched over several models since the relations are formally expressed.
The relations can then be activated to perform a safety assessment of the
aggregation of the safety knowledge contained in the models.

Maintainability Eventually the safety impact of any evolution of an architec-
ture (at any level) is automatically considered during safety assessment since
its impact will spread through the relations between models.

3.2 Relation specifications

To properly integrate the notion of relation in the safety assessment models, one
must provide a formal definition of such relations.

Definition 1 (Notations and Modelling assumption). Let us consider that
the behaviour of a component c is described by a set of state transitions Tc and
an output function σc providing the output failure modes according to the inputs
valuations and the current state. Let the valuation of a variable x be denoted
by V [x] and the Cartesian product of the valuations of a set X of variables be
denoted by V [X] =

∏
x∈X V [x]. Let Vx 7→a be the extension of V with x ∈ X. To

introduce the definitions of the relations we assume that if a component c can fail
then its possible failure modes are encoded by a unique state variable S of type
FM containing the failure modes and a mode encoding the correct state denoted
by ok which is the initial value of S.

Allocation The purpose of an allocation relation is to consider the resource
dependencies of a component, in addition to its own failures. Let c be the
initial component modelling the component without considering the allocation
dependencies. Adding an allocation relation can be seen as a transformation of c
into another component a. Let R be an input of a providing the failure mode of
the component’s resource, then the transitions remains unchanged, thus Tc = Ta
and when the resource dependencies are fulfilled (R = ok) then for any valuation
V of I and state s we have σa(VR 7→ok, s) = σc(V, s).

Replacement The purpose of a replacement relation is to replace the spontaneous
occurrence of a failure mode (encoded in S) by a some function over the compo-
nent failures of another architecture. So let us consider the initial component c
modelling the component without considering the replacement relation. Replace-
ment can be seen as a transformation of c into another component r. Let R be
an input of r providing the new failure mode then the transitions of c involving
S assignment must be no more fireable in r for any valuation of the state and
inputs. Moreover for any state s and valuation V of I ∪ R such that s = V [R]
then σr(V) = σc(V [I], s). Note that σr does not depends on S any more since it
is totally replaced by R.

3.3 Modelling relations

The formalisation of the relations is founded on dependency modelling through
Altarica flows. These flows carry the information gathered from one architec-
ture model to another one. The integration of the information in the targeted
architecture model is achieved by flow connection to the standard interface of
the definition 2.

Definition 2 (Relation interface). Let c be a component, FM be its failure
modes then the following inputs must be provided by c:

Activation (A) is a boolean input enabling the failure mode transitions.
Resource (R) is an input of type FM providing the failure mode of the under-

lying resources used by c.

From the specification of the replacement and allocation relations, one can
transform any components c satisfying the assumptions of the section 3.2 into a
component c′ that can be used to encode the replaced and allocated version of
c. The activation of the desired relation is based on the A and R inputs of the
interface.

Definition 3 (Interface implementation). Let c be a component, Tc be its
transition set, σc its output function, TE be the set of transitions containing
an assignment of S, V be a valuation of I ∪R and s be the current state. The
transition set Tc′ and output function σc′ of the adaptation c′ of c implementing
the interface can be defined as follows:

Tc′ = {g ∧ ¬A ` e→ a|g ` e→ a ∈ TE} ∪ (Tc \ TE)

σc′(V, s) =

{
σa(V, s) if A
σc(V [I], V [R]) otherwise

No relation If the component is not linked by a replacement nor an allocation
relation then its internal failures (S) and inputs (I) only impact its outputs, so the
activation input should be set to true and the resource input should be ok. Since
A is always true then in any transition of c′, g ∧ A⇒ g so Tc′ = Tc. Moreover,
for any valuation V of I ∪R and state s we have σc′(V, s) = σa(V, s), in addition
when R = ok we also have σa(V [I]R 7→ok, s) = σc(V [I], s) so σc′(V, s) = σc(V [I], s)
holds.

Replacement When a component failure modes are replaced, A must be set to
false and R connected to the replacement function. Since A = false, for all
transition g ` e→ a ∈ Tc′ containing an assignment of S we have ¬A⇒ ¬g hence
the transitions encoding the failure evolution of c are not fireable. Furthermore,
let σr(V) = σc(V [I], V [R]) then we have σc′(V, s) = σr(V) so for any state s and
valuation V of I ∪R such that s = V [R] we have σc′(V, s) = σr(V) = σc(V [I], s).

Allocation When component resource dependencies are considered A must be
set to true and R connected to the allocation function. Since A = true, we have
Tc = Tc′ and the output function is σc′(V, s) = σa(V, s). By definition of σa for
any state s, valuation V of I ∪R where V [R] = ok we have σa(V, s) = σc(V [I], s)
so σc′(V, s) = σc(V [I], s) holds.

I

A

R

O

(a) Generic Block

true ?I

A

R

O

(b) Alarm Block

I1
I2

O

(c) Best operator

I1
I2

O

(d) Worst operator

=I1

I2
O

(e) Equal operator

Fig. 2: Standard components

1 node g e n e r i c b l o c k
2 flow // i n t e r f a c e f l ows
3 I : FM : in ; // input FM
4 O : FM : out ; // output FM
5 R : FM : in ; // a l l o c or r e p l a c e FM
6 A : bool : in ; // a c t i v a t e
7 state //component FM
8 S : FM;
9 event // one event per fm in FM

10 efm1 , . . . , efmn ;
11 in i t // i n i t i a l l y component i s ok

12 S := ok ;
13 trans
14 // f a i l u r e s are permanent
15 S = ok and A ` efm1 → S := FM 1 ;
16 . . .
17 S = ok and A ` efmn → S := FM n ;
18 assert
19 // output FM i s the worst o f
20 //R, S and I
21 O = worst(I ,worst(R, S)) ;
22 end

Listing 1.1: Altarica code of the generic Block

3.4 Standard components

The Altarica models presented in the remainder of the paper are build on top
of a library of generic components providing the interface of the definition 2.
The fallible components of the figures 2a and 2b are named blocks (graphically
discriminated by an internal circle) and provides the relation interface. Conversely
the infallible components of the figures 2c and 2d, named operators, does not
provide the relation interface. The operator best of figure 2c (resp. worst of figure
2d) provides the lowest (resp. greatest) failure mode amongst I1 and I2 according
a total order < over the failure modes. A possible definition and concretisation
of the generic block is provided by the example 1.

Example 1 (Interface implementation). The generic block is generic over the set
of failure modes (FM) and thus the Altarica code 1.1 must be concretised
with a given failure mode set to obtain the Altarica model of this block. As
requested by the definition 2 the initial state is ok. To fulfil the Transition
constraints for allocation and replacement, the transition’s guards complies to the
definition 3. The function worst is used whatever the value of A i.e. σc′ = σa = σc.
Nevertheless, when A is true we have σc′ = σa and when A is false we know
that S = ok so σc′(I,R, S) = worst(I, worst(R, ok)) = worst(I,R) = σc(I,R).
So this implementation complies to the definition 3.

In the sequel we will consider that blocks own the following generic failure
modes: the block does not provide its intended behaviour (called lost); the block
provides an erroneous behaviour (called err). A system can then be a concrete
block where FM = {ok, err, lost}.

3.5 Decomposing analyses

A safety assessment considering only the component failures of a specific architec-
ture is obtained by deactivating all the components of the other architectures and
building replacement relations. The only contributors to the high-level hazards
will be the component failures of the target architecture. Through the replacement
relation, the analyst will benefit from the failure propagation modelled in the
higher level architectures to perform its safety assessment.

If the analyst want to consider the failure of several architecture levels simul-
taneously then the considered components must be activated and an allocation
relation must be defined between the considered levels. For instance, such an
analysis on functional and physical levels can provide the combination of function
specification and physical failures that may contribute to top level hazards.

4 Safety assessment of an RPAS system

Let us illustrate the modelling framework on a simplified remotely piloted aircraft
system (RPAS) 1. The drone’s mission is to inspect an infrastructure locate in a
pre-defined evolution zone. Since some populated areas located nearby, the drone
should not fly, land nor crash outside the evolution zone.

If one wants to use such system, the hazards inherent to the RPAS must be
identified and their likelihood demonstrated as acceptable. To do so, the hazards
should be identified out-of the failure modes of the top level functions of the
RPAS that are Control Flight i.e. stay in the evolution zone and Abort Flight i.e.
detect the conditions where motors must be cut off.

The severity of a failure condition is classified using a severity scale derived
from the ARP4754, here let us only consider Catastrophic as a potential ground or
in-flight collision leading to one or several fatalities and Hazardous as a controlled
crash in a predefined zone without stringent access control. The simplified AFHA
of the table 1 provides an assessment of the safety impacts.

In addition, the AFHA must provide the safety objectives attached to these
failure conditions, in the remainder of this paper we consider that Catastrophic
failure conditions must not be reached by single failures. We will not illustrate
the safety assessment based on quantitative measure. Note that one can easily
perform such quantitative assessment with the minimal cutsets computed for
each architecture. Consequently we will assess only the failure condition Fly away
without flight abortion capability (CAT) that could lead to collision with vehicles
or other aircraft.

4.1 Operational-level assessment

The RPAS is constituted of a Flight Controller System (FCS) managing the
flight plan and the trajectory of the drone. The Flight Termination System (FTS)
monitors the FCS and can reconfigure the FCS to mitigate its failure, the ultimate
action of the FTS is to trigger a controlled crash to avoid a fly-away. The identified

1 available at www.onera.fr/sites/default/files/274/IMBSA2019code.zip

www.onera.fr/sites/default/files/274/IMBSA2019code.zip

(a) Functional Architecture (b) Physical Architecture

Fig. 3: Functional and physical architectures

failure conditions are encoded as observers over the FCS and FTS systems as
follows: 1. a fly-away occurs when the FCS provides an erroneous control of the
drone and the FTS is not able to trigger a controlled crash; 2. a crash in the
zone occurs when the FCS is lost or if the FTS triggers a controlled crash. The
minimal cutsets of these failure conditions has been generated automatically by
Cecilia-OCAS:

MCS = {{FCS.err, FTS.lost}}

So at this stage the no single failure mode requirement for Catastrophic failure
condition is fulfilled. Nevertheless the latter result holds if no common mode of
failures are added during functional and physical architecture design.

4.2 Functional-level analysis

The functional architecture is depicted by the figure 3a wherein Acquisition
functions acquire flight parameters and monitor adversary conditions; Monitoring
acquires data are checked by independent alarms; TrajectoryControl functions
controlling the drone from flight parameters and control mode; MotorSwitch
cutting motors’ power supply if the flight termination mode is selected.

Function Failure Context Consequences Severity
Control Flight err cannot abort flight Crash outside evolution zone Catastrophic

can abort flight Crash inside evolution zone Hazardous
lost - Crash inside evolution zone

Abort Flight lost cannot control flight Crash outside evolution zone Catastrophic
can control flight No safety effect NSE

err - Crash inside evolution zone Hazardous

Table 1: Simplified AFHA of the RPAS

The last node called FDIRBoard encodes the on-board safety policy that
selects the control mode according to the alarm states. The selection rules are
coded as an Altarica automaton selecting the control mode according the alarm
states. More precisely, at any time flight termination is chosen when the attitude
or trajectory are not correct, otherwise emergency landing is chosen if the rain
or wind or altitude or energy are not correct, otherwise hovering mode is chosen
in case of loss of GNSS or localization, otherwise the mission mode is selected.

To perform the safety assessment, the analyst must replace the operation
failure modes by some failure conditions over the functional architecture. To
achieve that we saw that the component must be deactivated and the new failure
mode must be provided trough R. The replacement relation considered is 1. the
trajectory state provides the state of the FCS; 2. when the trajectory or the
attitude estimation is not correct then the flight termination must be triggered
and the switch should cut the motor otherwise the FTS does not works properly.

Thanks to the replacement relation, the analyst can compute the following
cutsets integrating the safety knowledge of the functional architecture. The result
shows that the functional architecture does not integrate common mode of failure
for the Catastrophic failure conditions. The analyst can then allocate these
functions on physical resources.

MCS =

{GPSSignalMonitoring.err, T rajectoryControl.P ilot.err},
{Localisation.err, T rajectoryControl.P ilot.err},
{MotorSwitch.lost, AttitudeAcq.err},
{MotorSwitch.lost, T rajectoryControl.P ilot.err}

4.3 Physical-level analysis

The physical architecture shown by the figure 3b is composed of two processors
executing the software, sensors, motors, and two power supply channels.

Each acquisition function is allocated both on a processor and on a sensor.
The monitoring, control mode selection, trajectory control and abort flight are
implemented as software executed on the processors. The trajectory management
additionally depends on the motor to control the drone’s trajectory. Let us
consider that the analyst wants to consider only one processor and power supply
channel in the physical architecture. The safety assessment considering this
allocation relation can be assessed by computing the new cutsets, for the sake of
readability we display the cutsets containing only physical failures.

MCS = {{Alim1.err}, {Processor1.err}, {Alim1.lost, IMU.err}{Processor1.lost, IMU.err}}

Allocating all components on the same power supply and processor produces a
common mode of failures identified by the minimal cutsets generator. The analyst
must reconsider its allocation relation to avoid such a single point of failure.
For instance, allocating the monitoring, FDIR and MotorSwitch on the second
processor and the other software on the first one. Hence the second processor
should be powered by the second power supply. The validity of the reallocation

is assessed by recomputing the minimal cutsets:

MCS =

{Alim2.err, Alim1.err}, {Alim2.err, IMU.err},
{Alim2.err, Processor1.err}, {Alim2.lost, Alim1.err},
{Alim2.lost, IMU.err}, {Alim2.lost, Processor1.err},
{Processor2.err, Alim1.err}, {Processor2.err, IMU.err}
{Processor2.err, Processor1.err}, {Processor2.lost, Alim1.err},
{Processor2.lost, IMU.err}, {Processor2.lost, Processor1.err}

5 Related work

Tiered safety assessment processes propose to decompose the global task in several
easiest sub-tasks to master the analysis of complex systems. Each sub-task uses
a specific model for an analysis which is focussed on an abstract system view or
a more detailed subpart. The issue is to ensure the maintainability, traceability
and composability of all these models and analyses.

We explored in this paper the use of a unique model which can progressively
integrate several models, while keeping possible the analyses of the model subparts
at the relevant granularity level. We used of course the composition and hierarchy
features of AltaRica. However, this is not enough. Safety models are not limited
to structures: they encompass more or less sophisticated failure propagation
logics. So our main contribution was to clarify the logical dependencies between
the subparts of interest and to show how they can be encoded to ease the model
update and its tiered analysis. A difficulty was to do it in a way which preserves
the analysis tractability and the results readability for all tiers of the process.

This is rather original. Indeed, the mainstream idea of the literature is to
handle the maintainability, traceability and composability of all the sub-models
and analyses by characterizing the relations between analyses made at different
design stages, more or less formally and outside the models.

5.1 Relation through refinement

The approaches propose to consider a complex system as a layered system. For
instance in [19], a framework of safety modelling is for layered safety mechanisms
is implemented using event-B [1]. The notion of layer can encompass various
meaning, in [19] and [9], a layer is a model of a safety mechanism handling failures
either locally, or by using dedicated safety mechanisms (sub-layers) or by invoking
more general-purpose safety mechanism (up-layer). Instead of performing safety
analyses for each layer of safety mechanisms and handling manually the relations
between them, the authors of [9] propose to formalise the layer hierarchy with the
notion of refinement of event-B. Using such a framework enables the designers
to formalise the behaviour of fault-tolerance mechanisms and to perform a global
formal analysis for some fault-tolerance properties.

Another notion of layer is exploited in [6] as a way to represent several abstrac-
tion stages. The proposed framework is based on component fault trees where the

user can define abstract component fault trees. A notion of concretisation can
then be used to provide a realisation of a specification. The framework assists
the analyst be providing automatic consistency checks.

As shown by the presented works, providing a formal notion of refinement is
a way to ensure the maintainability, the traceability and the composability of
the assessment. Nevertheless, the refinement preserve logical properties and it
does not offer any guaranty on the preservation of probabilities. Our approach
does not pretend to solve this issue. However, the replacement and allocation
enable a quick computation of cutsets and associated probabilities.

5.2 Relation through synchronisation

The approach of [12] addressed the safety assessment of tiered system by focusing
their effort on the formalisation of the allocation between architectures produced
at various design stages. The authors propose to use the MBSA to model the
dysfunctional models of these architectures in a single model. The allocation is
then formalised through the notion of synchronization provided by the mode
automaton formalism (more information on synchronisation can be found in [14]).

Allocation through synchronisation is an efficient and light way to model
the dependencies between components of various architectures. Nevertheless, an
allocation dependency can be considered as an arbitrary complex function of
resource failures, for instance the dependency of a function on its implementation
resource can be a set of resource failure combinations. Unfortunately the synchro-
nisation language expressivity limits the modelisable dependencies. Moreover,
the synchronisation are not oriented, so it is not possible to encode that a failure
event is caused by a combination of failure events (as a safety analyst may want
to represent the resource dependency). Usual dependencies like common causes
are not sufficient to cover the full spectrum of dependencies of an allocation.

5.3 Relation through traceability

Another kind of approaches like [11] relies on the traceability between the safety
and design process. In this work the analysis and design phases are modelled
as UML elements and the relations between them are explicitly modelled. The
analyst is then able to link the designed architecture to the corresponding safety
model. The traceability between the safety and design is used to ease the manual
checking.

The approach of [7] proposes to analyse complex system using MBSA. The
idea is to decompose the system’s architecture at various levels straightforwardly
linkable to the design phase of the system. At each level the failure conditions and
the dependencies between the components of the architecture are modelled. Note
that a model may embed some information from an upper level. Furthermore,
the failure conditions expressed at a given level must be refined at subsequent
analysis levels. The traceability and consistency between models is then manually
handled. Some methods like [10] can be used to link component failures and then
compare the minimal cutsets produced by the safety assessments.

Such approaches suffer from the following issues: 1. the integration of some
information of an upper level architecture is tedious and can generate some
inconsistencies between models if the information is not integrated properly;
2. without formal modelling of the relations the maintainability is not addressed;
3. manual handling of the traceability for complex system can be the source of
inconsistencies between models and assessments. Nevertheless, our approach can
be seen as an extension of the approach of [7] wherein the architectural models
are formally linked through allocation and replacement relations.

6 Conclusion

Summary The tiered safety assessment is recommended by the safety standards
to master the complexity of assessment of complex systems. This recommendation
is currently implemented by performing separately complementary fault tree
analysis or failure mode and effect analysis and by tracing in documents the links
between hypothesis or results provided by each analysis. When possible, a sub-
fault tree replaces a leaf when design details are given, e.g. after allocating physical
resources to a function. However, it is not easy to maintain the traceability links
between all these data when the analysis of a new component is added or when
hypotheses are modified. This paper identified the replacement and allocation
relation used in multi-staged safety assessment. It formalises the meaning of these
relations and shows how they can be implemented with Altarica. The practical
interest of the approach is illustrated on a RPAS case study.

Limitations and Future works The relations considered in our approach always
trace a safety knowledge to a higher architecture level. Nevertheless, the behaviour
of an architecture can be needed to model the failure propagation in a lower-level
architecture. This kind of relations needs to be specifically address since it can
considerably enhance the accuracy of the safety assessment on complex systems.
Moreover, the proposed modelling approach provides a way to build a monolithic
model containing various levels of safety knowledge. Consequently, the automatic
safety assessment does not benefit from this modelling paradigm, that may lead to
poor assessment performance. A solution would be to develop a solver considering
the modelling paradigm to enhance the efficiency of the assessment.

Acknowledgment This work is part of the Phydias french study which is granted
by the DGAC to study drone safety.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. A. Arnold, G. Point, A. Griffault, and A. Rauzy. The altarica formalism for
describing concurrent systems. Fundamanta Informaticae, 40(2-3):109–124, 1999.

3. B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio, C. Mattarei,
A. Micheli, and G. Zampedri. The xsap safety analysis platform. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 533–539. Springer, 2016.

4. B. Bittner, M. Bozzano, A. Cimatti, and G. Zampedri. Automated verification and
tightening of failure propagation models. In AAAI, pages 907–913, 2016.

5. Dassault. Cecilia OCAS framework, 2014.
6. D. Domis, K. Höfig, and M. Trapp. A consistency check algorithm for component-

based refinements of fault trees. In IEEE 21st International Symposium on Software
Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4 November 2010,
pages 171–180, 2010.

7. J.-L. Farges, C. Saurel, C. Seguin, F. Deschamp, A. Favre-Bonté, A. Ruaudel,
A. Desfosses, and M. Laval. Addressing safety assessment of autonomous robot
operation and design with model based safety assessment. In Lambda Mu 21
�Mâıtrise des risques et transformation numérique: opportunités et menaces�,
2018.

8. B. Kaiser, P. Liggesmeyer, and O. Mäckel. A new component concept for fault
trees. In Proceedings of the 8th Australian workshop on Safety critical systems and
software-Volume 33, pages 37–46. Australian Computer Society, Inc., 2003.

9. L. Laibinis and E. Troubitsyna. Fault tolerance in a layered architecture: a general
specification pattern in b. In Proceedings of the Second International Conference
on Software Engineering and Formal Methods, 2004. SEFM 2004., pages 346–355.
IEEE, 2004.

10. O. Lisagor, M. Bozzano, M. Bretschneider, and T. Kelly. Incremental safety
assessment: Enabling the comparison of safety analysis results. In 28th International
System Safety Conference (ISSC)[submitted to], 2010.

11. F. Mhenni, J.-Y. Choley, N. Nguyen, and C. Frazza. Flight control system mod-
eling with sysml to support validation, qualification and certification. IFAC-
PapersOnLine, 49(3):453–458, 2016.

12. M. Morel. Model-based safety approach for early validation of integrated and
modular avionics architectures. In International Symposium on Model-Based Safety
and Assessmemt, pages 57–69. Springer, 2014.

13. Y. Papadopoulos and J. A. McDermid. Hierarchically performed hazard origin and
propagation studies. In Computer Safety, Reliability and Security, pages 139–152.
Springer, 1999.

14. T. Prosvirnova. AltaRica 3.0: a Model-Based approach for Safety Analyses. PhD
thesis, Ecole Polytechnique, 2014.

15. A. Rauzy. Mathematical foundations of minimal cutsets. Reliability, IEEE Trans-
actions on, 50(4):389–396, 2001.

16. SAE. Aerospace Recommended Practices 4761 - guidelines and methods for con-
ducting the safety assessment process on civil airborne systems and equipment,
1996.

17. SAE. Aerospace Recommended Practices 4754a - Development of Civil Aircraft
and Systems, 2010.

18. A. Villemeur. Reliability, availability, maintainability and safety assessment. John
Wiley & Sons, 1992.

19. I. Vistbakka, E. Troubitsyna, and A. Majd. Multi-layered safety architecture of
autonomous systems: Formalising coordination perspective. In 2019 IEEE 19th
International Symposium on High Assurance Systems Engineering (HASE), pages
58–65. IEEE, 2019.

20. M. Zeller, D. Ratiu, and K. Höfig. Towards the adoption of model-based engineering
for the development of safety-critical systems in industrial practice. In Computer
Safety, Reliability, and Security - SAFECOMP 2016 Workshops, ASSURE, DECSoS,
SASSUR, and TIPS, Trondheim, Norway, September 20, 2016, Proceedings, pages
322–333, 2016.

	Tiered Model-Based Safety Assessment

