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1 Introduction

All the industrial flow solvers dedicated to high Reynolds turbulent flows for industrial configurations
are based on a formally second order accurate temporal and spatial discretization. There is a strong need
for more accurate discretization approaches in many fields like computational acoustics or Large Eddy
simulation which are still out of reach of systematic industrial studies. During the last ten years, several
numerical methodologies have emerged, mainly for compressible flows, which look promising in terms
of accuracy, computational cost and numerical robustness. A few of them concerned with incompressible
flows which need very specific developments that will be the topic of this extended abstract. Numerous
attempts were made to achieve high-order accurate unsteady INS solvers. However, plenty of them fails
to satisfy conservation laws. Mass, momentum, and energy conservation are essential for the robustness
of the method when solving the unsteady INS. Laminar flow and flows that typically have Reynolds
numbers below 104 are not affected greatly by the lack of conservation. However, for high Reynolds
numbers, i.e. turbulent flows, conservation laws must be satisfied in the numerical method to have a sta-
ble one. In order to satisfy the conservation laws numerically, the approximate velocity must be exactly
divergence-free to have an energy-stable and momentum conserving method. A proposed method was
developed that uses the same idea of approximation spaces mentioned in Rhebergen and Wells (2018),
but with different penalization. In addition, the approximation spaces were modified so that the method
can be applied for quadrilateral and hexahedral meshes.

2 Going to High-Order

It is accustomed among the CFD practitioners that high-order methods are the ones having the order
of accuracy of 3 or more. The capabilities of using high-order methods are vast. Although, high-order
methods can result in better accuracy, they are computationally less expensive than low-order methods.
This statement is true for simple smooth problems, i.e. the Poisson equation and can easily be proven.
However, is this statement true for INS on the industrial scale?
Before answering this question, the complexity added when solving the INS needs to be emphasized. The
difficulty is mainly due to the incompressibility constraint and turbulence modeling. In the next section,
how the high-order method can deal with the turbulent INS is briefly presented.

3 Numerical method

Hybrid Discontinuous Galerkin (HDG) provides a high-order, compact, and conservative discretization
method. The hybridization offers a convenient platform to satisfy the divergence-free condition in an
high-order framework, additionaly it reduces the overall operator size by reducing the number of DOF
(Degrees of Freedom). However, not all HDG methods compute exact divergence-free velocity fields.
Often, a post-processing operator is applied to acquire a divergence-free velocity field. Rhebergen and
Wells (2018) provided a simple and efficient solution to impose the divergence-free condition using hy-
bridization without the need of a post-processing operator to obtain an H(div)-conforming and pointwise
divergence-free approximate velocity field on triangular meshes. This is achieved by carefully defining
the approximation spaces of the velocity, pressure, trace velocity, and trace pressure. Most of the devel-
oped HDG methods for INS use the cell mean pressure instead of the trace pressure variable. The method
has been modified so it would work with turbulent flows for quadrilateral elements. The INS equation



can be written in the conservative form as,
∂u
∂t

+ ∇ (u⊗u) = −∇p + ν∇2u + s (1)

∇ · u = 0 (2)

Just for simplicity, we assume all Dirichlet boundary with uD defined at the boundaries. If uD satisfies
the solvability condition, then the pressure is unique up to a constant.
The bounded domain Ω is in Rd with boundary ∂Ω = ∂ΩD, d = 1, 2, or 3 is the physical space dimension,
and n is the outward unit normal to the boundary of Ω. The domain Ω is approximated by K number of
non-overlapping elements and each element has its faces F. Introducing the broken spaces Vh (T ) and
Wh (T ) associated with triangulation T = {K} in Ω which are the spaces for the approximate solution.
The broken spaces V̄h (F ) and W̄h (F ) associated with faces F = {F} in ∂Ω which are the spaces for the
trace variable. The approximation spaces are defined as follows,

Vh :=
{
φh ∈ [L2 (T )]d , φh ∈ [PN (K)]d ∀K ∈ T

}
, (3)

V̄h :=
{
φ̄h ∈ [L2 (F )]d , φ̄h ∈ [PN (F)]d ∀F ∈ F

}
, (4)

Wh :=
{
ξh ∈ L2 (T ) , ξh ∈ ∇ · [PN (K)]d ∀K ∈ T

}
(5)

W̄h :=
{
ξ̄h ∈ L2 (F ) , ξ̄h ∈ PN (F) ∀F ∈ F

}
. (6)

These are the vector spaces presented in Rhebergen and Wells (2018) with a modification for the defini-
tion of the space Wh, such that the method would be exactly point wise-divergence free for any element
shape. The approximate solution and trace variables are defined as follow, uh ∈ Vh, ūh ∈ V̄h, ph ∈ Wh,
and p̄h ∈ W̄h.
Velocity uh is of a degree N defined on the elements, pressure ph is of a degree same as ∇ · uh defined on
the elements, trace velocity ūh components and trace pressure p̄h are of a degree N defined on the facets.
It can be proven that the choice of this special approximation space for ph would automatically satisfy
the divergence-free condition in the approximate spaces,

∇ · uh = 0

As the divergence-free condition represents the pressure equation. In other words, the algorithm searches
for ph which satisfies this equation. Since the approximate spaces were designed to force ∇ ·uh ∈ Wh and
ph ∈ Wh, therefore uh will be exactly point-wise divergence-free. With this formulation the pressure acts
as a Lagrange multiplier to ensure that ∇ · u = 0 in the approximate space. Also, the LBB condition is
satisfied due to the reduced space for pressure approximation. The trace pressure p̄h has a different role
by acting as a Lagrange multiplier to force the normal velocity continuity at the faces, uh · n = ūh · n.
These two conditions can be written as,∫

K
uh · ∇ξh dx −

∫
∂K

uh · nξh ds = 0 ∀ξh ∈ Wh, (7)∫
∂K

uh · nξ̄h ds −
∫
∂K

ūh · nξ̄h ds = 0 ∀ξ̄h ∈ W̄h, (8)

After satisfying the mass continuity, a new variable q is defined to make the diffusion term suitable for
HDG,

∂u
∂t

+ ∇ f = −∇p + ν∇q + s (9)

q − ∇u = 0 (10)

f = u⊗u (11)

In which the trace variable q̄h is defined in terms of the velocity as,

n · (q̄h − qh) = τ (ūh − uh) (12)

where τ is a penalty parameter to ensure stability. For the sake of brevity, HDG discretization is applied
on the viscous, pressure, and advection terms to reach the final discretized form.



4 Turbulence Model

Another challenge that faces the high-order accurate INS is the turbulence modeling. For industrial appli-
cations at high Reynolds numbers, RANS is the most convenient method to simulate turbulence in terms
of computational time. Unfortunately, RANS has the largest modeling error. Hybrid LES/RANS provides
a solution that compromises between computational time and modeling accuracy, but yet involves RANS
modeling. It can be agreed upon that RANS is indispensable in the meantime for industrial applications.
For that reason, the high-order accurate INS solver needs to be capable of solving the RANS equations.
To solve the linear eddy viscosity RANS, a turbulence model is required to acquire the eddy viscosity.
The k − ω model includes two convection-diffusion equations with source terms. However, they form a
stiff operator due to their non-linearity. Furthermore, the k profile near the wall has very high gradients
and ω goes to infinity at the wall, this adds more complexity. Due to the non-linearity and the huge
gradients, oscillations appear near the high gradient zone. These oscillations result in negative quantities
for k and ω. Physically, these quantities can never be negative. With the change of sign, production and
dissipation terms are reversed, thus leading to a solution blowup. What even makes this worse is that
oscillations increase as Reynolds numbers increase or as the polynomial order increases. Which makes
high Reynolds number flows very challenging to model with high-order methods. Nonetheless, in this
extended abstract attempts were made to solve the turbulence equations using HDG. There are different
types of k − ω models, and the Wilcox 1998 model is chosen to start with.

5 Uniform flow test case

Although the uniform flow test case is a simple test, it can be a useful test case to check the divergence-
free condition. Additionally, the turbulence model can be tested, as the analytical solution is expressed
by Spalart and Rumsey (2007). The computational domain is a rectangle and inlet velocity is applied
from the left boundary, which is equal to 1 in the x-direction and 0 in the y-direction. Symmetry bound-
ary condition is applied at the bottom edge and outflow at the right and top edges. First, to show the
importance of using divergence-free methods, the conventional HDG is compared with the developed
point-wise divergence-free HDG for quadrilaterals. The contour of the divergence of velocity is plotted
for the two methods at different viscosities using 4th order HDG. These results were plotted after 6 linear
iterations for the steady state INS.

Fig. 1: ν = 10−2 Fig. 2: Div-free ν = 10−2 Fig. 3: ν = 10−9 Fig. 4: Div-free ν = 10−9

It can be clearly seen that divergence increases as viscosity decreases in the conventional HDG
method. While the point-wise divergence-free HDG always maintains a divergence-free velocity field
upto the machine precision for any viscosity. In the steady case for low Reynolds numbers, this diver-
gence in the velocity can be somehow accepted, however in transient cases the blow up is definite for
long duration simulations. The divergence-free HDG is then coupled with the k − ω turbulence model.
The values of k and ω are specified at the inlet. It is expected to for the turbulence variables to decay in
the x-direction. The results obtained are plotted for ν = 10−6 at different and polynomials degrees and
stretching near the inlet using quad meshes.
The polynomial degree of 2, 4, 6, and 10 with 23, 24, 21, and 22 DOF respectively in the x-direction
are used. In the first case, the stretching was not enough to obtain stable solutions for higher order cases
as shown in Fig. 5. While for the larger stretching, the results were stable even for the 10th order ap-
proximation. For equally spaced elements in x, only the 2nd order was stable, and the solution exhibits
an undershoot that gives negative turbulence values. Apart from the shortcomings regarding stability, the



accuracy increases as the order increases as it can be shown in the Fig. 5,6,7. An important finding from
these results is that, order-refinement increases the accuracy but upto a certain limit then it results in
negative turbulence quantities then it blows up.

Fig. 5: ω on a less stretched mesh Fig. 6: k on a stretched mesh Fig. 7: ω on a stretched mesh

6 Channel flow test case

To understand the behavior of high-order RANS near the boundary layer in fully turbulent flows, the
channel flow test case is chosen. Periodic boundary conditions are applied in the flow direction for all
the variables, while no-slip wall boundary condition is applied on the other direction. A constant source
term is added to the momentum equation as a pressure gradient to induce a flow. By keeping the source
term as a constant, various mesh sizes are used for code verification.
The solutions are compared to the classical finite volume solution, where y+ and the DOF are kept the
same. The solution of the finite volume on a very fine grid is used as a reference solution to compare the
FV and 3rd order HDG. Tests were made at Re = 2 × 106 with 40, 60, and 120 DOF in the y-direction.
The corresponding y+ is 1.6, 0.85, and 0.36 respectively. While the second nearest element to the wall
is located at yelem+ of 5.7, 3.1, and 1.3 respectively. The near wall analytical solution for ω is used as a
boundary condition for the second nearest element to the wall,

ω =
6ν

βoy2
wall

as ywall → 0 (13)

Results are shown for the lower half of the channel with a half-height of 1 using structured triangular
meshes. The value of the penalty parameters τ, τk, and τω are set to Re

200 .
It can be seen that HDG predicts better profiles for the velocity, k, and ω near the wall. However, the
values of k at the channel centerline are always less than the FV and the reference solution. At the very
coarse mesh in Fig. 12 the oscillations near the curve maximum is visible. In Fig. 11, HDG gives a much
better result than the FV for the whole velocity profile. It is observed that lower y+ values are needed as
the Reynolds number increases. The observations were nearly the same for higher Reynolds number. An
overshoot of k near the maximum value is also noticed in Fig. 12. It is noted that the reference values is
only considered as the best possible result for FV at finner meshes not the overall best results. In addition,
the HDG solution does not match the FV solution on the very fine mesh as shown in Fig. 20-22.

Fig. 8: u at Re = 2×108 with 120
DOFs at y+ = 0.29

Fig. 9: k at Re = 2× 108 with 120
DOFs at y+ = 0.29

Fig. 10: ω at Re = 2 × 108 with
120 DOFs at y+ = 0.29



Fig. 11: u at Re = 2×106 with 40
DOFs at y+ = 1.6

Fig. 12: k at Re = 2× 106 with 40
DOFs at y+ = 1.6

Fig. 13: ω at Re = 2× 106 40 120
DOFs at y+ = 1.6

Fig. 14: u at Re = 2×106 with 60
DOFs at y+ = 0.85

Fig. 15: k at Re = 2× 106 with 60
DOFs at y+ = 0.85

Fig. 16: ω at Re = 2 × 106 with
60 DOFs at y+ = 0.85

Fig. 17: u at Re = 2 × 106 with
120 DOFs at y+ = 0.36

Fig. 18: k at Re = 2 × 106 with
120 DOFs at y+ = 0.36

Fig. 19: ω at Re = 2 × 106 with
120 DOFs at y+ = 0.36

For the velocity, there is a considerable difference between the FV and DG solutions in the velocity
near the centerline of the channel. A similar difference is observed in Fig. 21 for k. While the largest
difference in ω is near the wall as shown in Fig 22. At the moment, the exact reason why the FV solution
does not match the DG solution at the very fine is not clear. Nevertheless, it is suggested that this mis-
match is due to the different treatment of the boundary condition for ω at the wall.

Fig. 20: u plot for HDG vs FV on
a very fine grid at Re = 2 × 106

Fig. 21: k plot for HDG vs FV on
a very fine grid at Re = 2 × 106

Fig. 22: ω plot for HDG vs FV on
a very fine grid at Re = 2 × 106

At this range of high Reynolds numbers, verification exercise is more useful than validation for such
test case. The velocity and turbulence quantities are computed at different meshes to perform a grid re-



finement study. Then the results are fitted to a power series in order to estimate the convergence rate. The
number of elements in y changed from 30 to 300, this corresponds to y+ values of 0.85 to 0.10 and yelem+

values of 3.1 to 0.37 respectively. The mean and maximum velocity, maximum k, min ω, and shear stress
at the wall are chosen to estimate their convergence rates. Expected convergence rates were obtained
which is roughly equal N + 1 for all variables except the shear stress. The shear stress convergence is not
monotonic, possibly due to the near wall oscillations for the mesh with 30 elements in y.
Negative values of k are observed near the wall with some oscillations, however as these values are
restricted to the viscous sublayer, their effect are negligible. Unfortunately, if these negitive values ap-
peared in the rest of the domain, they obstruct the convergence. To solve this problem, a generalization
of limiting negative k values to zeros and taking the absolute values of ω is proposed to fit the high-
order method. During the simulation it was noticed that, as long as the the cell averaged values of the
turbulence quantities are positive, the convergence can be guaranteed. Thus, a scaling limiter is applied
to preserve the value of the cell average of the element with eliminating the negative values. The scaling
limiter is defined in the paper by Zhang and Shu (2010), is applied to limit k and 1

ω .

7 Conclusion

The challenges of achieving an industrial high-order incompressible RANS k−ω solver can be clarified in
this report. Fundamentally, an algorithm which is capable of calculating a point-wise exactly divergence-
free velocity that can be used for hexahedral and tetrahedral is essential. The method presented in this
report has this feature without the need of post-prepossessing operators or unclear penalization. How-
ever, the reduced element proposed needs to be optimized. In addition, a study on improving the penalty
parameter would be useful at high Reynolds numbers as increasing the penalty parameter for the whole
domain increases the conditioning number of the global matrix. Moreover, the global operator lost its
symmetry with the introduction of turbulence. For that reason, efficient preconditioners are strongly re-
quired for these kinds of problems in order to compete with the finite volume solvers. The channel flow
test case gives an indication that high-order RANS solvers have the ability to outperform the finite vol-
ume solvers in terms of accuracy per degrees of freedom. Yet, the computational time would be less for
the finite volume solvers for the current implementations.

With the introduction of the scaling limiter, the k −ω equations can be solved using high-order methods.
Nevertheless, it is not clear what should be done if the average mean values of the turbulence quantities
fail to have positive values. The implicit treatment of the negative source terms may solve this problem.
In order to fully test this method, test cases other the 2D channel and uniform flow should be used.

High-order RANS for INS is promising and with some more adjustments, high-order INS solvers can
compete with the FV solvers in terms of robustness.
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