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Central limit theorem for a critical multi-type branching

process in random environment

June 18, 2020

E. Le Page (1), M. Peigné & C. Pham (2)

Abstract

Let (Zn)n≥0 with Zn = (Zn(i, j))1≤i,j≤p be a p multi-type critical branching process
in random environment, and let Mn be the expectation of Zn given a fixed environment.
We prove theorems on convergence in distribution of sequences of branching processes{

Zn

|Mn|/|Zn| > 0
}

and
{

lnZn√
n
/|Zn| > 0

}
. These theorems extend similar results for single-

type critical branching process in random environment.

Keywords: multi-type branching process, random environments, central limit theorem,
critical case.

1 Introduction

Single-type and multi-type branching processes in random environments (BPREs) are
a central topic of research; they were introduced in the 1960s in order to describe the
development of populations whose evolution may be randomly affected by environmental
factors.

In the single-type case, the behaviour of these processes is mainly determined by
the 1-dimensional random walk generated by the logarithms of the expected population
sizes mk, for k ≥ 0, of the respective generations; they are classified in three classes -
supercritical, critical and subcritical - of single-type BPREs, according to the fact that
the associated random walk tends to +∞, oscillates or tends to −∞. Their study is
closely related to the theory of fluctuations of random walks on R with i.i.d. increments;
when E [| logmk|] < +∞, the BPRE is supercritical (resp., critical and subcritical) when
E
[
| logmk|

]
> 0 (resp., E

[
| logmk|

]
= 0 or E

[
| logmk|

]
< 0).

In this context, a huge body of papers is devoted to study of the asymptotic behaviour
of the probability of non-extinction up to time n and the distribution of the population
size conditioned to survival up to time n. In the critical case, the branching process is
degenerate with probability one and the probability of non-extinction up to time n is
equivalent to c/

√
n as n → +∞, for some explicit positive constant c [15], [10]. The

convergence in distribution of the process conditioned to non-extinction comprises first

1Université de Bretagne-Sud, LMBA UMR CNRS 6205, Vannes, France.
emile.le-page@univ-ubs.fr

2Institut Denis Poisson UMR 7013, Université de Tours, Université d’Orléans, CNRS France.
peigne@univ-tours.fr, thidacam.pham@univ-tours.fr

1



the Yaglom classical theorem; the convergence of finite-dimensional distributions of the
processes was established by Lamperti and Ney [16] who showed that the limiting process
is a diffusion process and described its transition function. V.I. Afanasev described the
limiting process in terms of Brownian excursions [1]. These statements more or less claim
that the conditional logarithmic behaviour of the BPRE given its non-extinction at the
terminal time n is the same as the one of the associated random walk of conditional
mean values conditioned to staying positive. These results are extended in [3] under more
general assumptions, known as Spitzer’s condition in fluctuation theory of random walks,
and some additional moment conditions.

It is of interest to prove analogues of the above statements for multi-type BPREs
(Zn)n≥0. As in the single-type case, the set of multi-type BPREs may be divided into
three classes: they are supercritical (resp. critical or subcritical) when the upper Lyapunov
exponent of the product of random mean matrices Mk is positive (resp. null or negative)
[13]. Let us emphasize that the role of the random walk associated to the BPRE in the
single-type case is played in the multi-type case by the logarithm of the norm of some Rp-
valued Markov chain whose increments are governed by i.i.d. random p× p-matrices Mk,
for k ≥ 0, whose coefficients are non-negative and correspond to the expected population
sizes of the respective generations, according to the types of the particles and their direct
parents. Product of random matrices is the object of several investigations and many
limit theorems do exist in this context (see [4] and references therein). The theory of
their fluctuations is recently studied during the last decade using the promising approach
initiated by V. Denisov V. Wachtel [5].

The question of the asymptotic behaviour of the probability of non-extinction up to
time n is solved recently, under quite general moment assumptions and irreducibility
condition on the projective action of the product of matrices Mk; as in the single-type
case, it is proved that the probability of non-extinction up to time n is equivalent to c/

√
n

as n → +∞, for some explicit positive constant c [17], [8]. The asymptotic distribution
of the size of the population conditioned to non-extinction remains open; in this paper,
we prove a central limit theorem for the logarithm of the size of the population at time n,
conditioned to non-extinction.

2 Preliminaries, hypotheses and statements

We fix an integer p ≥ 2 and denote by R
p (resp. N

p) the set of p-dimensional column
vectors with real (resp. non-negative integer) coordinates; for any column vector x of
R
p defined by x = (xi)1≤i≤p, we denote by x̃ the row vector x̃ := (x1, . . . , xp). Let

1 (resp. 0) be the column vector of R
p whose all coordinates equal 1 (resp. 0). We

denote by {ei, 1 ≤ i ≤ p} the canonical basis, by 〈·, ·〉 the usual scalar product and by |.|
the corresponding L

1 norm. We also consider the general linear semi-group S+ of p × p
matrices with non-negative coefficients. We endow S+ with the L

1-norm denoted also by
|.|.

The multi-type Galton-Watson process we study here is the Markov chain (Zn)n≥0

whose states are p × p matrices with integer entries. We always assume that Z0 is non-
random. For any 1 ≤ i, j ≤ p, the (i, j)th component Zn(i, j) of Zn may be interpreted as
the number of particles of type j in the nth generation providing that the ancestor at time 0
is of type i. In particular,

∑p
i=1 Zn(i, j) = |Zn(., j)| equals the number of particles of type

j in the nth generation when there is 1 ancestor of each type at generation 0; this quantity
equals Zn(1̃, j), with the notations introduced below. Similarly,

∑p
j=1 Zn(i, j) = |Zn(i, ·)|

equals the size of the population at time n when there is one ancestor of type i at time 0.
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Let us introduce Galton-Watson process in varying environment and assume that the
offspring distributions of the process (Zn)n≥0 are given by a sequence of Np-valued random
variables (ξn)n≥0. More precisely, the distribution of the number of typed j children born
to a single-typed i parent at time n is the same as the one of ξn(i, j). Let ξn,k, n ≥ 0, k ≥ 1,
be independent random variables defined on (Ω,F ,P), where the ξn,k, k ≥ 1 have the same
distribution as ξn, for any n ≥ 0.

The process (Zn)n≥0 is thus defined by recurrence as follows: for any 1 ≤ i, j ≤ p and
n ≥ 0,

Zn+1(i, j) :=





p∑

ℓ=1

Zn(i,1)+...+Zn(i,ℓ)∑

k=1+Zn(i,1)+...+Zn(i,ℓ−1)

ξn,k(ℓ, j) when

p∑

ℓ=1

Zn(i, ℓ) > 0;

0 otherwise.

We denote by G the set of multivariate probability generating functions g = (g(i))1≤i≤p

defined by:

g(i)(s) =
∑

α∈Np

p(i)(α)sα,

for any s = (si)1≤i≤p ∈ [0, 1]p, where

1. α = (αi)i ∈ N
p and sα = sα1

1 . . . s
αp
p ;

2. p(i)(α) = p(i)(α1, . . . , αp) is the probability that a parent of type i has α1 children
of type 1, . . . , αp children of type p.

For each 1 ≤ i ≤ p, the distribution of the ith row vector (ξn(i, j))1≤j≤p of the ξn

is characterized by its generating function denoted by g
(i)
n , and set gn = (g

(i)
n )1≤i≤p and

g = (gn)n≥0. For any s = (si)1≤i≤p ∈ [0, 1]p,

g(i)n (s) = E

[
s
ξn(i,1)
1 s

ξn(i,2)
2 . . . sξn(i,p)p

]
.

For a given sequence g in G, we denote by Zg the Galton-Watson process corresponding
to g and omit the exponent g when there is no confusion; furthermore, we set for any
n ≥ 1,

g0,n = g0 ◦ g1 . . . ◦ gn−1 = (g
(i)
0,n)1≤i≤p,

where g
(i)
0,n = g

(i)
0 ◦ g1 . . . ◦ gn−1. For any 1 ≤ i ≤ p and s ∈ [0, 1]p,

E

[
sZ

g
n(i,·)

/
Zg
0 (i, ·) . . . , Zg

n−1(i, ·)
]
= gn−1(s)

Zg
n−1(i,·),

which yields that

E

[
sZ

g
n(i,·)

]
= E

[
s
Zg
n(i,1)

1 s
Zg
n(i,2)

2 . . . sZ
g
n(i,p)

p

]
= g

(i)
0,n(s).

More generally, for any z = (z1, . . . , zp) ∈ N
p, we denote by Zg

n(z̃, j) the number of particles
of type j in the nth generation providing that there are zi ancestors of type i at time 0,
for any 1 ≤ i ≤ p. Therefore,

E

[
sZ

g
n(z̃,·)

/
Zg
0 (z̃, ·), . . . , Zg

n−1(z̃, ·)
]
= g0,n(s)

z̃.

Before going further, we introduce some necessary notations. For n ≥ 0,
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1. we denote by Mgn the mean matrix Eξn:

Mgn = (Mgn(i, j))1≤i,j≤p with Mgn(i, j) = E[ξn(i, j)];

in other words,

Mgn =




∂g
(1)
n (1̃)

∂s1
. . .

∂g
(1)
n (1̃)

∂sp
...

∂g
(p)
n (1̃)

∂s1
. . .

∂g
(p)
n (1̃)

∂sp




;

2. for 1 ≤ i ≤ p, let B
(i)
gn be the Hessian matrices

B(i)
gn =

(
B(i)

gn (k, ℓ)
)
1≤k,ℓ≤p

:=

(
∂2g

(i)
n

∂sk∂sℓ
(1̃)

)

1≤k,ℓ≤p

=
(
E
[
ξn(i, k)(ξn(i, ℓ) − δk,ℓ)

])
1≤k,ℓ≤p

;

in particular, σ2gn(i, j) := Var(ξn(i, j)) = B
(i)
gn (j, j) +Mgn(i, j) −Mgn(i, j)

2.

3. and we set µgn :=

p∑

i=1

∣∣B(i)
gn

∣∣ and ηgn :=
µgn

|Mgn |2
.

The product of matrices Mg
0,n := Mg0 . . .Mgn−1 controls the mean value of Zn, according

to the value of Z0; indeed E[Zn] = Z0Mg0 . . .Mgn−1 for any n ≥ 0. The matrices Mgn ,
for n ≥ 0, have non-negative entries which plays an important role on the asymptotic
behaviour of the products Mg

0,n, for n ≥ 0.
We consider the cone of p-dimensional row vectors

R
p
+ :=

{
x̃ = (x1, . . . , xp) ∈ R

p
/

∀i = 1, . . . , p, xi ≥ 0
}
,

and the corresponding simplex X defined by:

X := {x̃ ∈ R
p
+

/
|x̃| = 1}.

We introduce the actions of the semi-group S+ on R
p
+ and X as follows:

• the right and the left linear actions of S+ on R
p
+ defined by:

(x̃,M) 7→ x̃M and (x̃,M) 7→Mx

for any x̃ ∈ R
p
+ and M ∈ S+,

• the right and the left projective actions of S+ on X defined by:

(x̃,M) 7→ x̃ ·M :=
x̃M

|x̃M | and (x̃,M) 7→M · x :=
Mx

|Mx|

for any x̃ ∈ X and M ∈ S+.
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For any M ∈ S+, let v(M) := min
1≤j≤p

( d∑

i=1

M(i, j)
)
. Then for any x̃ ∈ R

p
+,

0 < v(M) |x| ≤ |Mx| ≤ |M | |x|.

We set n(M) := max
(

1
v(M) , |M |

)
.

We also introduce some proper subset of S+ which is of interest in the sequel: for any
constant B ≥ 1, let S+(B) denote the set of p × p matrices M with positive coefficients
such that for any 1 ≤ i, j, k, l ≤ p,

1

B
≤ M(i, j)

M(k, l)
≤ B.

Following [6], we introduce some proper subset of generating functions of offspring
distributions; let ξ be a N

p-valued random variable defined by ξ = (ξ(i, j))1≤i,j≤p, with
generating function g (as described above).

Notation 2.1 Let ε ∈]0, 1[ and K > 0. We denote by Gε,K the set of generating functions
of multivariate offspring distributions satisfying the following non-degeneracy assumptions:
for any n ≥ 0 and 1 ≤ i, j ≤ p,

(1) P
(
ξ(i, j) ≥ 2

)
≥ ε,

(2) P
(
ξ(i, ·) = 0

)
≥ ε,

(3) E
[
|ξ(i, ·)|2

]
≤ K < +∞.

D. Dolgopyat and co-authors in [6] proposed a deep and useful description of the behaviour
of the process (Zg

n)n≥0 when all the generating functions gn of the varying environment
g belong to Gε,K . We present and extend their results in section 3.3, they play a key
role in controlling the fluctuations of the Galton-Watson process in random environment,
conditioned to non-extinction (see Corollary 4.3).

In random environment, we consider a sequence f = (fn)n≥0 of i.i.d. random
variables defined on (Ω,F ,P) and we set f0,n = f0 ◦ f1 . . . ◦ fn−1 for any n ≥ 1; as above,
for any z̃ = (z1, . . . , zp) ∈ N

p and s ∈ [0, 1]p,

E

[
sZn(z̃,·)

/
Z0(z̃, ·) . . . , Zn−1(z̃, ·); f0, . . . , fn−1

]
= f0,n(s)

Zn−1(z̃,·).

For n ≥ 0, the random matrices Mn and B
(i)
n are i.i.d. and of non-negative entries.

The common law of the Mn is denoted by µ. In order to simplify the notations, we set

Mn :=Mfn , B
(i)
n = B

(i)
fn

and ηn := ηfn , with the notice that ηn are non-negative real valued
i.i.d. random variables. Moreover, letM0,n andMn,0 denote the right and the left product
of random matricesMk for k ≥ 0, respectivelyM0,n =M f

0,n =M0M1 . . .Mn−1 and Mn,0 =
Mn−1 . . .M1M0, with the convention that M0,0 = I. Therefore,

E

[
Zn

/
f0, f1, . . . , fn−1

]
= Z0M0 . . .Mn−1 = Z0M0,n P-a.s..

For any 1 ≤ i ≤ p, the probability of non-extinction at generation n given the envi-
ronment f0, f1, . . . fn−1 is

qfn,i := P

(
Zn(i, ·) 6= 0̃

/
f0, f1, . . . , fn−1

)

= 1− f
(i)
0 (f1(. . . fn−1(0̃) . . .)) = ẽi(1− f0(f1(. . . fn−1(0̃) . . .))),
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where the letter i presents the unique typed i ancestor, so that

E[qfn,i] = E

[
P(Zn(i, ·) 6= 0̃

/
f0, f1, . . . , fn−1)

]
= P(Zn(i, ·) 6= 0̃).

As in the classical single-type case, the asymptotic behaviour of the quantity E[qfn,i]

above is controlled by the mean of the offspring distributions. By [9], if E
[
ln+ |M0|

]
<

+∞, then the sequence

(
1

n
ln |M0,n|

)

n≥1

converges P-almost surely to some constant

limit πµ := lim
n→+∞

1

n
E
[
ln |M0,n|

]
. On the product space X × S+, we define the function

ρ by setting ρ(x̃,M) := ln |x̃M | for (x̃,M) ∈ X × S+. This function satisfies the cocycle
property, namely for any M,N ∈ S+ and x̃ ∈ X,

ρ(x̃,MN) = ρ(x̃ · M,N) + ρ(x̃,M). (2.1)

Under hypothesis H3(δ) introduced below, there exists a unique µ-invariant measure
ν on X such that for any continuous function ϕ on X,

(µ ∗ ν)(ϕ) =
∫

S+

∫

X

ϕ(x̃ ·M)ν(dx̃)µ(dM) =

∫

X

ϕ(x̃)ν(dx̃) = ν(ϕ).

Moreover, the upper Lyapunov exponent πµ defined above coincides with the quantity∫
X×S+ ρ(x̃,M)µ(dM)ν(dx̃) and is finite [4].

For any 0 < δ < 1, we consider the following hypotheses concerning the distribution µ
of the mean matrices Mn and the distributions of the random variables ξn at each step.

Hypotheses

H1(δ). E[| ln n(M1)|2+δ ] < +∞.
H2. (Strong irreducibility) There exists no affine subspaces A of Rd such that A∩ R

p
+

is non-empty, bounded and invariant under the action of all elements of the support of µ.
H3(δ). The support of µ is included in S+(B) with B = 1

δ .
H4. The upper Lyapunov exponent πµ equals 0.
H5(δ). µ(Eδ) > 0, where Eδ := {M ∈ S+ /∀x̃ ∈ X, ln |x̃M | ≥ δ}.

H6. E
[ µ1
|M1|2

(1 + ln+ |M1|)
]
< +∞.

Notice that the moment hypotheses H1(δ), H3(δ) and H6 are satisfied when the off-
spring generating functions fn, for n ≥ 0, belong to some Gε,K ; indeed, in this case, for
any 1 ≤ i, j ≤ p,

2pε ≤ |M1| ≤
p∑

i,j=1

E[ξ21(i, j)] ≤ p2K and µ1 ≤ p3K P−a.s.

A lot of researchers investigated the behaviour of the survival probability of (Zn)n≥0

in random environment, under various sets of rather restrictive assumptions. In [17]
and [8], we can find the most general statement in this context of multi-type Galton-
Watson process: when hypotheses H1–H6 hold for some δ > 0, there exist positive numbers
β1, . . . , βp such that for 1 ≤ i ≤ p,

lim
n→+∞

√
nP(Zn(i, ·) 6= 0̃) = βi. (2.2)
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Let β be the column vector in R
p
+ with entries β1, . . . , βp. Notice that hypothesis H6 above

is weaker than the one in [8]; indeed, the key argument in [17] and [8] is based on our
Lemma 4.2, whose proof is detailed in this article, which remains valid under assumptions
H1–H6 (for some δ > 0).

The convergence (2.2) relies on a deep understanding, developed in [19], of the behavior
of the semi-markovian random walk (Sn(x̃, a))n≥0 defined by Sn(x̃, a) = a+ln |x̃M0,n|, for
any x̃ ∈ X, a ≥ 0 and n ≥ 0. It is well known that this Markov walk satisfies a strong

law of large number and a central limit theorem; denote by σ2 := lim
n→+∞

1

n
E[S2

n(x̃, a)] its

variance and recall that, under Hypotheses H1 to H5, the quantity σ2 is positive.
Here comes the main result of the present paper; it concerns the asymptotic distribution

of the random variables ln |Zn(z̃, ·)| conditioned to non-extinction.

Theorem 2.2 Assume that
(1) there exist ε ∈]0, 1[ and K > 0 such that P-a.s, the offspring distributions fn, for

n ≥ 0, belong to Gε,K ;
(2) there exists δ > 0 such that hypotheses H2, H4 and H5(δ) hold.
Then for any z̃ ∈ N

p \ {0̃} and t ≥ 0,

lim
n→+∞

P

(
ln |Zn(z̃, ·)|√

n
≤ t

/
|Zn(z̃, ·)| > 0

)
=

2

σ
√
2π

Φ+

(
t

σ

)
,

where Φ+ denotes the cumulative function of the Rayleigh distribution:

Φ+

(
t

σ

)
:=

∫ t

0
s exp

(
−s

2

2

)
ds.

The first step to prove this main theorem is to provide a limit theorem for the pro-
cesses (Zn(z̃, j))n≥0, where z̃ ∈ N

p \ {0̃} and 1 ≤ j ≤ p, conditioned to non-extinction
and randomly rescaled; this statement is of intrinsic interest and holds under weaker the
assumptions H1–H6 (for some δ > 0).

Theorem 2.3 Assume that hypotheses H1–H6 hold for some δ > 0. Then, for any
z̃ ∈ N

p \ {0̃} and 1 ≤ j ≤ p, there exists a probability measure νz̃,j on R
+ such that for

any non-negative continuity point t of the distribution function s 7→ νz̃,j([0, s]),

lim
n→+∞

P

(
Zn(z̃, j)

|M0,nej|
≤ t
/

|Zn(z̃, ·)| > 0

)
= νz̃,j([0, t]).

Furthermore, if there exist ε ∈]0, 1[ and K > 0 such that fn ∈ Gε,K for any n ≥ 0, the
probability measures νz̃,j are supported on ]0,+∞[.

Theorem 2.2 is not a direct consequence of Theorem 2.3; we need an intermediate stage
which concerns the behaviour of the processes (x̃M0 . . .Mn−1)n≥0, for x̃ ∈ X, conditioned
to the event (|Zn(z̃, ·)| > 0). A close conditioned limit theorem involving the Rayleigh
distribution also holds (see Corollary 3.6 below) but its condition is not the one required
here. The following proposition fills this gap and is essential to connect the two statements
above.

Proposition 2.4 Assume that hypotheses H1–H6 hold for some δ > 0. Then for any
z̃ ∈ N

p \ {0̃}, x̃ ∈ X, a ≥ 0 and t ≥ 0,

lim
n→+∞

P

(
Sn(x̃, a)√

n
≤ t

/
|Zn(z̃, ·)| > 0

)
=

2

σ
√
2π

Φ+

(
t

σ

)
.

7



The article is structured as follows. In section 3, we present some useful auxiliary
results on product of random matrices and properties on varying environment. Section 4
is devoted to the random environment while the proofs of Theorem 2.3, Proposition 2.4
and Theorem 2.2 are detailed in sections 5, 6 and 7 respectively.

Notations. Let (un)n≥0 and (vn)n≥0 be two sequences of positive reals; we write

• un
c
� vn if un ≤ cvn for any n ≥ 0,

(and simply un � vn when un
c
� vn for some constant c > 0);

• un
c≍ vn when 1

cun ≤ vn ≤ cun for any n ≥ 0,

(and simply un ≍ vn when un
c≍ vn for some constant c > 0);

• un ∼ vn if lim
n→+∞

un
vn

= 1.

3 Auxiliary results

In this section, we state some well known and useful results about fluctuations of products
of random matrices with non-negative entries and some convergence theorems for multi-
type Galton-Watson processes in varying environment.

3.1 On positive matrices and their products

Following [11], we endow X with a bounded distance d such that any A ∈ S acts on X as
a contraction with respect to d. In the following lemma, we just recall some fundamental
properties of this distance.

Lemma 3.1 There exists a distance d on X which is compatible with the standard topology
of X and satisfies the following properties:

1. sup{d(x, y) / x̃, ỹ ∈ X} = 1.

2. |x− y| ≤ 2d(x, y) for any x̃, ỹ ∈ X.

3. For any M ∈ S+, set [M ] := sup{d(M · x,M · y) / x̃, ỹ ∈ X}. Then,

(a) d(M · x,M · y) ≤ [M ]d(x, y) for any x̃, ỹ ∈ X;

(b) [MN ] ≤ [M ][N ] for any M,N ∈ S+.

4. For any B ≥ 1, there exists ρB ∈]0, 1[ such that [M ] ≤ ρδ for any M ∈ S+(B).

Similar statements also hold for the right action of S+ and S+(B) on X.
The following Property is a direct consequence of Lemma 3.1: up to some normaliza-

tion, products of matrices in S+(B) converge to some rank-one matrix.
For any M = (M(i, j))1≤i,j≤p in S+, we denote by M the matrix with entries

M(i, j) =
M(i, j)

|M(·, j)| =
M(i, j)

∑k
ℓ=1M(ℓ, j)

.

Property 3.2 Let M = (Mn)n≥0 be a sequence of matrices in S+(B). Then the sequence
(M 0,n)n≥0 converges as n → +∞ towards a rank-one matrix whose columns are all equal
to M∞ = (M∞(i))1≤i≤p, where, for any 1 ≤ j ≤ p,

M∞(i) := lim
n→+∞

M0,n(i, j).

8



Let us also recall some important properties of matrices in S+(B).

Lemma 3.3 [9] Let T (B) be the closed semi-group generated by S+(B). For anyM,N ∈
T (B) and 1 ≤ i, j, k, l ≤ p,

M(i, j)
B2

≍ M(k, l).

In particular, there exists c > 1 such that for any M,N ∈ T (B) and for any x̃, ỹ ∈ X,

1. |Mx| c≍ |M | and |ỹM | c≍ |M |,

2. |ỹMx| c≍ |M |,

3. |MN | c≍ |M ||N |.

3.2 Limit theorem for products of random positive matrices

Throughout this subsection, the matrices Mn, n ≥ 0, are i.i.d. and their law µ satisfies
hypotheses H1–H5 for some δ > 0. We introduce the homogenous Markov chain (Xn)n≥0

on X defined by the initial value X0 = x̃ ∈ X and for n ≥ 1,

Xn = x̃ ·M0,n.

Its transition probability P is given by: for any x̃ ∈ X and any bounded Borel function
ϕ : X → R,

Pϕ(x̃) :=

∫

S+

ϕ(x̃ ·M)µ(dM).

In the sequel, we are interested in the left linear action x̃ 7→ x̃M0,n of the right products
M0,n, for any x̃ ∈ X. By simple transformation, we see that

x̃M0,n = eln |x̃M0,n| x̃ ·M0,n,

which turns it natural to consider the random process (Sn)n≥0 defined by: for any x̃ ∈
X, a ∈ R and n ≥ 1,

S0 = S0(x̃, a) := a and Sn = Sn(x̃, a) := a+ ln |x̃M0,n|.

In order to simplify the notations, let Sn(x̃) := Sn(x̃, 0) for any x̃ ∈ X and any n ≥ 0. By
iterating the cocycle property (2.1), the basic decomposition of Sn(x̃, a) arrives:

Sn(x̃, a) = a+ ln |x̃M0,n| = a+
n−1∑

k=0

ρ(Xk,Mk).

It is noticeable that for any a ∈ R, the sequence (Xn, Sn)n≥0 is a Markov chain on X×R

whose transition probability P̃ is defined by: for any (x̃, a) ∈ X × R and any bounded
Borel function ψ : X× R → C,

P̃ψ(x̃, a) =

∫

S+

ψ(x̃ ·M,a+ ρ(x̃,M))µ(dM).

For any x̃ ∈ X and a ≥ 0, we denote by Px̃,a the probability measure on (Ω,F ,P) condi-
tioned to the event (X0 = x̃, S0 = a) and Ex̃,a the corresponding expectation; the index a
is omitted when a = 0 and Px̃ denotes the corresponding probability.
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We set R
+
∗ := R

+\{0} and define P̃+ the restriction of P̃ to X × R
+: for a > A and

any x̃ ∈ X,
P̃+((x̃, a), ·) = 1X×R+(·)P̃ ((x̃, a), ·).

Furthermore, we introduce
• the first (random) time at which the random process (Sn(x̃, a))n≥0 becomes non-

positive:

τ = τx̃,a := min{n ≥ 1 /Sn(x̃, a) ≤ 0}.

• the minimum mn for n ≥ 1, defined by

mn = mn(x̃, a) := min{S1(x̃, a), . . . , Sn(x̃, a)},

and we set
mn(x̃, a) := Px̃,a(mn > 0) = Px̃,a(τ > n) = P(τx̃,a > n).

In order to simplify the notations, when a = 0 let τx̃ := τx̃,0, mn(x̃) := mn(x̃, 0) and
mn(x̃) := mn(x̃, 0) for any x̃ ∈ X and any n ≥ 0.

We recall some important results about the behaviour of the random products of
variables M0,n and the distribution of τ , under Px̃,a.

Proposition 3.4 [19] Assume hypotheses H1 – H5 for some δ > 0. Then for any x̃ ∈ X

and a ≥ 0, the sequence
(
Ex̃,a[Sn; τ > n]

)
n≥0

converges to some quantity V (x̃, a). The

function V is P̃+-harmonic on X× R
+ and satisfies the following properties:

1. for any x̃ ∈ X, the function V (x̃, ·) is increasing on R
+;

2. there exist c > 0 and A > 0 such that for any x̃ ∈ X and a ≥ 0,

1

c
∨ (a−A) ≤ V (x̃, a) ≤ c(1 + a);

3. for any x̃ ∈ X, the function V (x̃, .) satisfies lim
a→+∞

V (x̃, a)

a
= 1.

The next statement allows to control the tail of the distribution of the random variable τ .

Theorem 3.5 [19] Assume hypotheses H1–H5 for some δ > 0. Then for any x̃ ∈ X

and a ≥ 0,

Px̃,a(τ > n) ∼ 2

σ
√
2πn

V (x̃, a) as n→ +∞,

where σ2 > 0 is the variance of the Markov walk (Xn, Sn)n≥0. Moreover, there exists a
constant c such that for any x̃ ∈ X, a ≥ 0 and n ≥ 1,

0 ≤ √
nPx̃,a(τ > n) ≤ cV (x̃, a).

Our hypotheses H1–H5 correspond to hypotheses P1–P5 in [19], except that hypothesis
H1 is weaker than P1. Indeed, the existence of moments of order 2+δ suffices. This ensures
that the map t 7→ Pt in Proposition 2.3 of [19] is C2, which suffices for this Proposition
to hold. Moreover, the martingale (Mn)n≥0 which approximates the process (Sn(x))n≥0

belongs to L
p for p = 2+ δ (and not for any p > 2 as stated in [19] Proposition 2.6). This

last property was useful in [19] to achieve the proof of Lemma 4.5, by choosing p great
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enough in such a way that (p − 1)δ − 1
2 > 2ε for some fixed constant ε > 0. Recently, by

following the same strategy as C. Pham, M. Peigné and W. Woess improved this part of
the proof, by allowing various parameters (see [18], Proof of Theorem 1.6 (d)).

As a direct consequence, up to some normalisation and conditioned to the event [mn >
0], the sequence (Sn)n≥1 converges weakly to the Rayleigh distribution.

Corollary 3.6 [19] Assume that hypotheses H1–H5 hold for some δ > 0. Then for any
x̃ ∈ X, a ≥ 0 and t > 0,

lim
n→+∞

Px̃,a

(
Sn√
n
≤ t
/
τ > n

)
= Φ+

(
t

σ

)
.

Theorem 3.5 leads to some upper bound in the local limit theorem.

Corollary 3.7 Assume hypotheses H1–H5 for some δ > 0. Then there exists a positive
constant c such that for any x̃ ∈ X, a, b ≥ 0 and n ≥ 1,

0 ≤ Px̃,a

(
Sn ∈ [b, b+ 1[, τ > n

)
≤ c

(1 + a)(1 + b)

n3/2
.

Proof. We follow and adapt the strategy of Proposition 2.3 in [2]. For fixed x̃ ∈ X and
a, b > 0, we write

En = En(x, a, b) :=
(
Sn(x̃, a) ∈ [b, b+ 1[, τx̃,a > n

)

=
(
ea|x̃M0,n| ∈ [eb, eb+1[, ea|x̃M0| > 1, . . . , ea|x̃M0,n| > 1

)

⊂
(
τx̃,a > n/3

)

∩
(
|x̃M0,n| ∈ [eb−a, eb−a+1[, ea|x̃M0,[2n/3]+1| > 1, . . . , ea|x̃M0,n| > 1

)
.

Let us decompose M0,n into three parts, using the notation Mk,n = Mk . . .Mn−1 for any
0 ≤ k < n and n ≥ 1. It holds that M0,n =M ′

nM
′′
nM

′′′
n with

M ′
n =M0,[n/3] =M0 . . .M[n/3]−1, M ′′

n =M[n/3],[2n/3] =M[n/3] . . .M[2n/3]−1

and
M ′′′

n =M[2n/3],n =M[2n/3] . . .Mn−1.

By Lemma 3.3, we may write, on the one hand
(
|x̃M0,n| ∈ [eb−a, eb−a+1[

)
=
(
|x̃M ′

nM
′′
nM

′′′
n | ∈ [eb−a, eb−a+1[

)

P-a.s.⊂
(
|M ′

nM
′′
nM

′′′
n | ∈ [eb−a, ceb−a+1[

)

P-a.s.⊂
(
|M ′′

n | ∈
[ eb−a

|M ′
n| |M ′′′

n | , c
3 eb−a+1

|M ′
n| |M ′′′

n |
[)

P-a.s.⊂
(
|x̃M ′′

n | ∈
[ eb−a

c|M ′
n| |M ′′′

n | , c
3 eb−a+1

|M ′
n| |M ′′′

n |
[)

and on the other hand, for any [2n/3] < k ≤ n,

1

c
|x̃M0,k| |Mk+1,n| ≤ |x̃M0,n| P-a.s.
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This yields that
(
|x̃M0,n| ∈ [eb−a, eb−a+1[, ea|x̃M0,[2n/3]+1| > 1, . . . , ea|x̃M0,n| > 1

)

P-a.s.⊂
(
|M[2n/3]+1,n| < ceb+1, . . . , |Mn−1,n| < ceb+1

)

P-a.s.⊂
(
|x̃M[2n/3]+1,n| < ceb+1, . . . , |x̃Mn−1,n| < ceb+1

)
.

Finally,

En
P-a.s.⊂ E′

n ∩ E′′
n ∩E′′′

n

with

E′
n = E′

n(x, a, b) =
(
τx̃,a > n/3

)
, E′′

n = E′′
n(x, a, b) =

(
|x̃M ′′

n | ∈
[ eb−a

c|M ′
n| |M ′′′

n | , c
3 eb−a+1

|M ′
n| |M ′′′

n |
[ )

and
E′′′

n = E′′′
n (x, a, b) =

(
|x̃M[2n/3]+1,n| < ceb+1, . . . , |x̃Mn−1,n| < ceb+1

)
.

The events E′
n and E′′′

n are measurable with respect to the σ-field Tn generated by
M0, . . . ,M[n/3]−1 and M[2n/3], . . . ,Mn−1; consequently,

P(En) ≤ P

(
P
(
E′

n ∩ E′′
n ∩E′′′

n | Tn
))

= E
[
1E′

n∩E′′′
n
P(E′′

n | Tn)
]
.

The random variable ln |x̃M ′′
n | are independent on Tn and their distribution coincides with

the one of S[n/3](x̃, 0). Therefore, by the classical local limit theorem for product of random
matrices with non-negative entries, for any x̃ ∈ X and a, b ≥ 0,

P
(
E′′

n | Tn
)P-a.s.
≤ sup

A∈R
P

(
|x̃M ′′

n | ∈
[
A, c4eA

[)
� 1√

n
.

Since the events E′
n and E′′′

n are independent, it follows that

P(En) �
P(E′

n ∩ E′′
n)√

n
=

P(E′
n)P(E

′′
n)√

n
. (3.1)

The probability of E′
n(x, a, b) is controlled by Theorem 3.5: uniformly in x̃ ∈ X and

a, b ≥ 0,

P(E′
n(x, a, b)) �

1 + a√
n
. (3.2)

To control the probability of the event E′′′
n (x, a, b), we introduce the stopping time

τ+ := min{n ≥ 1 |Sn ≥ 0}
and notice that its distribution satisfies the same tail condition as τ . Since

(M[2n/3],M[2n/3]+1, . . . ,Mn−1)
dist
= (M0,M1, . . . ,Mn−[2n/3]−1),

it holds uniformly in x̃, a, b that,

P(E′′′
n (x, a, b)) ≤ P

(
|x̃M0| < ceb+1, . . . , |x̃M0,n−[2n/3]| < ceb+1

)

= Px̃,− ln c−b−1(τ
+ > n− [2n/3])

� 1 + b√
n
. (3.3)

The proof is done, by combining (3.1), (3.2) and (3.3).
✷
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3.3 On the probability of extinction in varying environment

In this section we state some useful results concerning multi-type Galton-Watson processes
in varying environment g = (gn)n≥0.

For any 1 ≤ j ≤ p, the quantity
∣∣∣Mg

0,n(·, j)
∣∣∣ equals the mean number E[Zn(1̃, j)] of

particles of type j at generation n, given that there is one ancestor of each type at time

0. By Lemma 3.3, if all the Mgn belong to S+(B), then
∣∣∣Mg

0,n(·, j)
∣∣∣ ≍

∣∣∣Mg
0,n(i, j)

∣∣∣ ≍∣∣∣Mg
0,n

∣∣∣ for any 1 ≤ i, j ≤ p and n ≥ 0. Furthermore, by Property 3.2, the sequence of

normalized matrices (M
g

0,n)n≥0 converges as n → +∞ towards a rank-one matrix with
common column vectors Mg

∞ = (Mg
∞(i))1≤i≤p .

The following statement brings together several results obtained by D. Dolgopyat and
al. [6], O. D. Jones [12] and G. Kersting [14] in the varying environment framework. The
last point of this statement is a new key to the main theorem of this paper: the conditioned
central limit theorem for multi-type Galton-Watson processes in random environment.

Proposition 3.8 Let Zg = (Zg
n)n≥0 be a p multi-type Galton-Watson process in varying

environment g = (gn)n≥0. Assume that g ∈ E and that there exists B > 1 such that for
any n ≥ 0, the mean matrices Mgn belong to S+(B). Then

1. the extinction of the process Zg occurs with probability qgi < 1 for some (hence every)
i ∈ {1, . . . , p} if and only if for some (hence every) i, j ∈ {1, . . . , p},

∑

n≥0

1

Mg
0,n(i, j)

< +∞. (3.4)

2. If for some (hence every) i, j ∈ {1, · · · , p},
∑

n≥0

1

|Mg
0,n|

σ2gn(i, j)

|Mgn+1 |2
< +∞, (3.5)

then there exists a non-negative random column vector Wg = (Wg(i))1≤i≤p such
that E[Wg(i)] = Mg

∞(i) and as n→ +∞, for every i, j ∈ {1, . . . , p},

Wg
n(i, j) :=

Zg
n(i, j)∣∣∣Mg
0,n(·, j)

∣∣∣
=

Zg
n(i, j)

|E[Zg
n(1̃, j)]|

L2(Pg)−−−−→ Wg(i). (3.6)

3. Under conditions (3.4) and (3.5), for any 1 ≤ i ≤ p, it holds

P
(
Wg(i) = 0) = P

(
lim inf

n
|Zg

n(i, ·)| = 0
)
= qgi . (3.7)

Let us shortly comment on this statement.
• The first point means that condition (3.4) is equivalent to the fact that Zg is super-

critical.
• For a single-type supercritical Galton-Watson process (Zn)n≥0 in constant environ-

ment, it is well known that the sequence (Wn)n≥0, where Wn := Zn/E[Zn], is a non-
negative martingale, hence it converges P-a.s. towards some non-negative limit W (and
in L

1 under some other moment conditions). The second assertion corresponds to a weak
version of this property for multi-type Galton-Watson processes in varying environment,
without the martingale’s argument which fails here.

13



• The third assertion corresponds to the famous “Kesten-Stigum’s theorem”; this is
new result in the context of multi-type Galton-Watson processes in varying environment,
the proof is detailed in subsection 3.3. We refer to [14] and references therein.
Proof. Throughout this proof, in order to simplify the notations, we omit the exponent
g, except at the end when we need to specify the environment.

Assertion 1 follows by combining Proposition 2.1 (e) and Theorem 2.2 in [6].
Assertion 2 corresponds to Theorem 1 in [12].
In [12], one may also find some conditions on g which ensure that equality (3.7) holds;

nevertheless, as claimed by the author, “it can be difficult to check them”, except in some
restrictive cases. Therefore, as far as we know, Assertion 3 is a new statement; we detail
its proof here, by following the strategy developed by G. Kersting (Theorem 2 (ii) in [14])
and by using some estimations obtained in [6].

By construction of the Wg(i), 1 ≤ i ≤ p, the inclusion

(lim inf
n

|Zg
n(i, ·)| = 0) ⊂ (Wg(i) = 0)

is obvious. Hence, it suffices to show that P(Wg(i) = 0, lim infn |Zg
n(i, ·)| ≥ 1) = 0. We

decompose the argument into two steps.
Step 1. Comparison between P(lim infn |Zg

n(ℓ, ·)| = 0) and P(Wg(i) = 0).
By formula (7) in [6], since the sequence g1 = (gk)k≥1 belongs to E , the functions

g1,n = g1 ◦ . . . ◦ gn satisfy the following property: for s ∈ [0, 1[p,

n∑

k=1

1

|Mg
1,k|

� 1

|1− g1,n(s)|
� 1

|Mg
1,n|

1

|1− s| +
n∑

k=1

1

|Mg
1,k|

. (3.8)

By convexity of g0, there exists c0 ≥ 1 such that for any 1 ≤ i ≤ p and t ∈ [0, 1[p,

1

c0
≤ 1− g

(i)
0 (t)

|1− t| ≤ c0. (3.9)

(We detail the argument at the end of the present proof). Thus, by combining (3.8), (3.9)
and Lemma 3.3, for any 1 ≤ i ≤ p, it holds that

n∑

k=1

1

|Mg
0,k|

� 1

1− g
(i)
0,n(s)

� 1

|Mg
0,n|

1

|1− s| +
n∑

k=1

1

|Mg
0,k|

.

This yields
- on the one hand, by choosing s = 0,

1

P(|Zg
n(i, ·)| ≥ 1)

�
n∑

k=1

1

|Mg
0,k|

;

- on the other hand, by setting sλ = (e−λ/|Mg
0,n(·,1)|, 1, . . . , 1) with λ > 0,

1

1− E

[
e
−λ

Z
g
n(i,1)

|M
g
0,n

(·,1)|

] =
1

1− g
(i)
0,n(sλ)

≤ 1

|Mg
0,n|

1

1− e
− λ

|M
g
0,n

(·,1)|

+

n∑

k=1

1

|Mg
0,k|

.

This readily implies that for any 1 ≤ i, ℓ ≤ p,

1

1− E

[
e
−λ

Z
g
n(i,1)

|M
g
0,n

(·,1)|

] � 1

|Mg
0,n|

1

1− e
− λ

|M
g
0,n

(·,1)|

+
1

P(|Zg
n(ℓ, ·)| ≥ 1)

.
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By Lemma 3.3, it holds that |M0,n(·, 1)| ≍ |Mg
0,n|; furthermore, these quantities tend to

+∞ as n→ +∞, by (3.4). Hence

1

1− E

[
e−λWg(i)

] � 1

λ
+

1

P(lim inf
n

|Zg
n(ℓ, ·)| ≥ 1)

.

Letting λ→ +∞ yields that
1

1− P(Wg(i) = 0)
� 1

P(lim inf
n

|Zg
n(ℓ, ·)| ≥ 1)

.

In other words, there exists a constant κ ≥ 1 such that for any i, ℓ ∈ {1, . . . , p},

P(lim inf
n

|Zg
n(ℓ, ·)| ≥ 1) ≤ κP(Wg(i) > 0),

which implies that when P(Wg(i) > 0) ≤ 1
2κ ,

P(lim inf
n

|Zg
n(ℓ, ·)| = 0) ≥

(
P(Wg(i) = 0

)2κ
. (3.10)

To get this last inequality, we use the following elementary lemma.

Lemma 3.9 [14] Let κ ≥ 1 and A,B be two events such that P(A) ≤ κP(B) and
P(B) ≤ 1

2κ . Then
P(A) ≥ P(B)2κ.

Step 2. A martingale argument.
As G. Kersting in [14], we introduce a martingale defined by: for k ≥ 0 and any

i ∈ {1, . . . , p},
Mk := P(Wg(i) = 0

/
Zg
0 , . . . , Z

g
k ).

It is known that Mk → 1(Wg(i)=0) P-a.s. as k → +∞ by standard martingale theory; in
particular it converges P-a.s. towards 1 on the event (Wg(i) = 0).

The branching property of the process (Zg
n)n≥0 is used to express Mk in another form.

It is noticeable that Wg(i) depends on the whole sequence g; let us set gk := (gl)l≥k and
denote Wgk(i) the random variable defined as in (3.6) but with respect to the Galton-
Watson process Zgk corresponding to the environment gk. By the branching property,

Mk = P(Wgk(1) = 0)Z
g
k
(i,1) × . . . × P(Wgk(p) = 0)Z

g
k
(i,p),

so that for 1 ≤ ℓ ≤ p, as k → +∞,

P(Wgk(ℓ) = 0)Z
g
k
(i,ℓ) −→ 1 P-a.s. on the event (Wg(i) = 0). (3.11)

The same property holds, replacing the event (Wgk(ℓ) = 0) by (lim infn |Zgk
n (ℓ, ·)| = 0),

namely: for any ℓ ∈ {1, . . . , p}, as k → +∞,

P(lim inf
n

|Zgk
n (ℓ, ·)| = 0)Z

g
k
(i,ℓ) −→ 1 P-a.s. on the event (Wg(i) = 0). (3.12)

Indeed, every subsequence
(
P(lim inf

n
|Zgkr

n (ℓ, ·)| = 0)Z
g
kr

(i,ℓ)
)
r≥0

has a further subsequence

which converges to 1. In order to apply inequality (3.10), we distinguish two cases.
(i) Either P(Wgkr (ℓ) > 0) ≤ 1

2κ for k large enough; we may apply (3.10) and (3.11) to
obtain, P-a.s. on (Wg(i) = 0),

lim inf
r→+∞

P(lim inf
n

|Zgkr
n (ℓ, ·)| = 0)Z

g

kr
(i,ℓ) ≥ lim inf

r→+∞
P(Wgkr (ℓ) = 0)2κZ

g

kr
(i,ℓ) = 1.
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(ii) Or there exists a further subsequence (k′r)k≥0 such that P(Wgk′r (ℓ) > 0) > 1
2κ .

Hence, (3.11) implies that Zg
k′r
(i, ℓ) → 0 P-a.s. on (Wg(i) = 0), as r → +∞; in other

words Zg
k′r
(i, ℓ) = 0 for r large enough, thus P(lim inf

n
|Zgk′r

n (ℓ, ·)| = 0)
Zg

k′r
(i,ℓ)

= 1.

Finally, in both cases, convergence (3.12) holds. By Egorov’s theorem, for any ε > 0 and
k sufficiently large,

P(Wg(i) = 0, lim inf
n

|Zg
n(i, ·)| ≥ 1)

≤ ε+ P

(
p∏

ℓ=1

P(lim inf
n

|Zgk
n (ℓ, ·)| = 0)Z

g
k
(i,ℓ) ≥ 1− ε; |Zg

k (i, ·)| ≥ 1

)

≤ ε+
1

1− ε
E

[
p∏

ℓ=1

P(lim inf
n

|Zgk
n (ℓ, ·)| = 0)Z

g

k
(i,ℓ); |Zg

k (i, ·)| ≥ 1

]

= ε+
1

1− ε
E

[
P

(
lim inf

n
|Zg

n(i, ·)| = 0
/
Zg
0 , . . . , Z

g
n

)
; |Zg

k (i, ·)| ≥ 1
]

= ε+
1

1− ε
P

(
lim inf

n
|Zg

n(i, ·)| = 0; |Zg
k (i, ·)| ≥ 1

)
.

Letting k → +∞, we obtain that P(Wg(i) = 0, lim inf
n

|Zg
n(i, ·)| ≥ 1) ≤ ε and the claim

follows with ε→ 0.
✷

Proof of (3.9) We denote | · |2 the Euclidean norm on R
p. The second inequality is

classical:

|1− g
(i)
0 (t)| ≤

〈(
∇g(i)0

)
(1),1 − t

〉
= 〈Mg0(i, ·),1 − t〉 ≤ |1− t|2 � |Mg0 ||1− t|.

To prove the first inequality, let [t′,1] be the intersection of the cube [0, 1[p with the line

passing through t and 1. By convexity of g
(i)
0 on the segment [t′,1], it holds that

1− g
(i)
0 (t)

|1− t| � 1− g
(i)
0 (t)

|1− t|2
≥ 1− g

(i)
0 (t′)

|1− t′|2
≥ 1− g

(i)
0 (t′)√
p

.

The point t′ = (t′1, . . . , t
′
p) belongs to the boundary of the cube [0, 1[p and at least one of

its entries, say t′j , equals 0; hence, recalling that ξ0(i, ·) is a N
p-valued random variable

with generating function g
(i)
0 , then

1− g
(i)
0 (t′) ≥ 1− g

(i)
0 (1− ej) = 1− P(ξ0(i, j) = 0) = P(ξ0(i, j) ≥ 1) ≥ ε.

This achieves the proof.
✷

4 On the random environment

In this section, we present the random environment that we use and introduce some
considerable classical change of measure and its main properties.

Why this change of measure? The bright idea introduced to study critical branching
processes in random environment is to assume first that the random walk Sn is greater
than some constant −a, then let a → +∞ (see for instance [7] and references therein).
On the intermediate probability space, for almost all environment with respect to the new
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probability measure, the Galton-Watson processe we consider is in varying environment
and becomes a super critical process; we may thus apply Proposition 3.8 to each one of
these environment (quenched version).

Recall that f = (fn)n≥0 is a sequence of i.i.d. random variables with values in G.

4.1 Construction of a new probability measure P̂x̃,a

The P̃+-harmonic function V on X × R
+ gives rise to a Markov kernel P̃ V

+ on X × R
+

defined formally by:

P̃ V
+ φ =

1

V
P̃+(V φ)

for any bounded measurable function φ on X×R
+. By Proposition 3.4, there exists A > 0

such that V (x̃, a) > 0 whenever a > A; thus, for any x̃ ∈ X, a > A and n ≥ 1,

(P̃ V
+ )nφ(x̃, a) =

1

V (x̃, a)
Ex̃,a [(V φ)(Xn, Sn);mn > 0] .

We introduce a change of probability measure on the canonical path space ((X ×
R)⊗N, σ(Xn, Sn : n ≥ 0), θ) (3) of the Markov chain (Xn, Sn)n≥0 from P to the measure

P̂x̃,a characterized by the property that

Êx̃,a[φ(X0, S0, . . . ,Xk, Sk)] =
1

V (x̃, a)
Ex̃,a[φ(X0, . . . , Sk)V (Xk, Sk); mk > 0] (4.1)

for any positive Borel function φ on (X× R)k+1. By Proposition 3.4 and Theorem 3.5

lim
n→+∞

Ex̃,a[φ(X0, . . . , Sk)|mn > 0] =
1

V (x̃, a)
Ex̃,a[V (Xk, Sk)φ(X0, . . . , Sk);mk > 0]

= Êx̃,a[φ(X0, . . . , Sk)], (4.2)

which clarifies the interpretation of P̂x̃,a (see [17] section 3.2 for the details).
This probability may be extended to the whole σ-algebra σ(fn, Zn : n ≥ 0) as follows; the
extension is done in three steps:
Step 1. the marginal distribution of P̂x̃,a on σ(Xn, Sn : n ≥ 0) is P̂x̃,a characterized by
the property (4.1);
Step 2. for any n ≥ 0, the conditional distribution of (f0, · · · , fn) under P̂x̃,a given
X0 = x̃0 = x̃, . . . ,Xn = x̃n, S0 = s0 = a, . . . , Sn = sn equals the one of (f0, · · · , fn) under
P̂; namely, for any measurable sets G0, . . . , Gn in G and all (x̃i)0≤i≤n and (si)0≤i≤n

P̂x̃,a(fk ∈ Gk, 0 ≤ k ≤ n
/
Xi = x̃i, Si = si, 0 ≤ i ≤ n)

= P(fk ∈ Gk, 0 ≤ k ≤ n
/
Xi = x̃i, Si(x̃, 0) = si, 0 ≤ i ≤ n).

Step 3. the conditional distribution of (Zn)n≥0 under P̂x̃,a given f = (f0, f1, . . .) is the
same as under P,; namely, for any n ≥ 0 and 1 ≤ i ≤ p,

Êx̃,a

[
sZn(i,·)

/
Z0, . . . , Zn−1, f

(i)
0 , f1, . . . , fn−1

]
= E

[
sZn(i,·)

/
Z0, . . . , Zn−1, f

(i)
0 , f1, . . . , fn−1

]

= fn−1(s)
Zn−1(i,·).

3θ denotes the shift operator on (X × R)⊗N defined by θ
(

(xk, sk)k≥0

)

= (xk+1, sk+1)k≥0 for any

(xk, sk)k≥0 in (X× R)⊗N
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4.2 Some properties of the probability measures P̂x̃,a, x̃ ∈ X, a ≥ 0

The following lemma extends property (4.2) to the σ-algebra F∞ = σ(∨k≥0Fk) where
Fk := σ{fℓ, Zℓ | 0 ≤ ℓ ≤ k} for any k ≥ 0.

Lemma 4.1 Assume that hypotheses H1–H5 hold for some δ > 0. Let (Yk)k≥0 be a
sequence of bounded real-valued random variables adapted to the filtration (Fk)k≥0.

1. [8] For any x̃ ∈ X and a > A,

lim
n→+∞

Ex̃,a

[
Yk | τ > n

]
= Êx̃,a[Yk]. (4.3)

2. Moreover, if (Yk)k≥0 converges in L
1(P̂x̃,a) to some random variable Y∞,

lim
n→+∞

Ex̃,a

[
Yn | τ > n

]
= Êx̃,a[Y∞].

Proof. Property (4.3) is proved in [8]. The second assertion has an analogue version
in [8], where the almost-sure convergence is required; in fact, the convergence in L1 and
the boundedness of the Yk suffice.

For any k ∈ N,

√
nEx̃,a[Yn, τ > n] =

√
nEx̃,a[Yk, τ > n] +

√
nEx̃,a[Yn − Yk, τ > n],

with

lim
n→+∞

√
nEx̃,a[Yk, τ > n] = lim

n→+∞

√
nEx̃,a

[
Yk | τ > n

]
Px̃,a(τ > n)

=
2

σ
√
2π
V (x̃, a)Êx̃,a[Yk],

by (4.3) and Theorem 3.5. Since (Êx̃,a[Yk])k≥0 converges to Êx̃,a[Y∞] as k → +∞, it
remains to prove that

lim
k→+∞

lim
n→+∞

√
nEx̃,a

[
|Yn − Yk|; τ > n

]
= 0. (4.4)

We fix ρ > 1 and decompose Ex̃,a

[
|Yn − Yk|, τ > n

]
as

Ex̃,a

[
|Yn − Yk|, τ > n

]
= Ex̃,a

[
|Yn − Yk|, n < τ < ρn

]
+ Ex̃,a

[
|Yn − Yk|, τ > ρn

]
. (4.5)

For the first term in (4.5), since the random variables Yn are bounded, it is clear that

Ex̃,a

[
|Yn − Yk|, n < τ < ρn

]
� Px̃,a(n < τ < ρn)

= Px̃,a(τ > n)− Px̃,a(τ > ρn).

Therefore, by Theorem 3.5, for any k and ρ > 1,

lim sup
n→+∞

√
nEx̃,a

[
|Yn − Yk|, n < τ < ρn

]
� lim

n→+∞

√
nPx̃,a(τ > n)− lim

n→+∞

√
nPx̃,a(τ > ρn)

=
2

σ
√
2π
V (x̃, a)

(
1− 1√

ρ

)
−→ 0 as ρ→ 1.
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For the second term in (4.5), we write

Ex̃,a

[
|Yn − Yk|, τ > ρn

]
= Ex̃,a

[
E
[
|Yn − Yk|, τ > ρn

/
Fn

]]

= Ex̃,a

[
|Yn − Yk|mρn−n(Xn, Sn), τ > n

]

� 1√
n(ρ− 1)

Ex̃,a

[
|Yn − Yk|V (Xn, Sn); τ > n

]

=
1√

n(ρ− 1)
V (x̃, a)Êx̃,a

[
|Yn − Yk|

]
.

Hence, since Yn → Y∞ in L
1(P̂x̃,a),

lim sup
k→+∞

lim sup
n→+∞

√
nEx̃,a

[
|Yn − Yk|, τ > ρn

]

≤ c√
ρ− 1

V (x̃, a) lim sup
k→+∞

lim sup
n→+∞

Êx̃,a

[
|Yn − Yk|

]

=
cV (x̃, a)√
ρ− 1

lim sup
k→+∞

Êx̃,a

[
|Y∞ − Yk|

]
= 0.

✷

The following statement plays a crucial role in the sequel. It was first proved in the
multi-type context in [17] (Lemma 3.1), when the generating functions are linear-fractional;
then the general case was considered in [8] (Lemma 7). We generalize these statements
under weaker moment conditions.

Lemma 4.2 Assume hypotheses H1–H6 hold for some δ > 0. Then, for any x̃ ∈ X and
a > A,

+∞∑

n=0

Êx̃,a

[
e−Sn

]
< +∞ and

+∞∑

n=0

Êx̃,a

[
ηne

−Sn
]
< +∞.

Proof. In order to ease the arguments for proving the first part of the statement, we
begin by studying the second one. We fix x̃ ∈ X, a > A and n ≥ 0 and use Corollary 3.6
to control each term Êx̃,a

[
ηne

−Sn
]
. By the definition of the probability measure P̂x̃,a,

Êx̃,a

[
ηne

−Sn
]
= Êx̃,a

[
µn

|Mn|2
e−Sn

]

� Êx̃,a

[
µn

|MnXn|2
e−Sn

]
(by Lemma 3.3)

�
∫

Êx̃,a

[
µn

/
Xn = ỹ, Sn = s,Xn+1 = z̃, Sn+1 = t

]
es−2t

P̂x̃,a(Xn ∈ dỹ, Sn ∈ ds,Xn+1 ∈ dz̃, Sn+1 ∈ dt)

=

∫
E

[
µn

/
Xn = ỹ, Sn = s,Xn+1 = z̃, Sn+1 = t

]
es−2t

P̂x̃,a(Xn ∈ dỹ, Sn ∈ ds,Xn+1 ∈ dz̃, Sn+1 ∈ dt).
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Hence, by Proposition 3.4

Êx̃,a

(
ηne

−Sn
)
� Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

)
eSn−2Sn+1V (Xn+1, Sn+1);mn+1 > 0

)

� Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

)
eSn−2Sn+1 |Sn+1|;mn+1 > 0

)

� Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

)
eSn−2Sn+1

(
|Sn|+ ln+ |Mn|

)
;mn+1 > 0

)

(4.6)

On the one hand

Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

)
eSn−2Sn+1 |Sn|;mn+1 > 0

)

� Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

) e−Sn |Sn|
|Mn|2

;mn > 0
)

= E

( µn
|Mn|2

e−Sn |Sn|;mn > 0
)

≤ Ex̃,a

(
µn

|Mn|2
)
× E(e−Sn |Sn|;mn > 0). (4.7)

On the other hand

Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

)
eSn−2Sn+1 ln+ |Mn|;mn+1 > 0

)

� Ex̃,a

(
E

(
µn

/
Xn, Sn,Xn+1, Sn+1

)
e−Sn

ln+ |Mn|
|Mn|2

;mn > 0
)

≤ E

(
µn

|Mn|2
ln+ |Mn|

)
× Ex̃,a(e

−Sn ;mn > 0). (4.8)

By hypothesis H6, quantities E

(
µn

|Mn|2
)

and E

(
µn

|Mn|2
ln+ |Mn|

)
are both finite; fur-

thermore, Corollary 3.7 yields

n3/2Ex̃,a(e
−Sn |Sn|;mn > 0) � (1 + a)

∑

b≥0

(1 + b)2e−b < +∞.

Finally, combining (4.6), (4.7) and (4.8), we obtain that

sup
n≥1

n3/2Êx̃,a

(
ηne

−Sn
)
< +∞

and the lemma follows.
✷

As a direct consequence, P̂x̃,a-almost surely, the environment f do satisfy the conclu-
sions of Proposition 3.8.

Corollary 4.3 Assume that hypotheses H1–H6 hold for some δ > 0. Then, for P̂x̃,a-
almost all environment f = (fn)n≥0,

1. the process Zf becomes extinct with probability qf (i) < 1 for some (hence every)
i ∈ {1, . . . , p};

2. there exists a non-negative random column vector Wf = (Wf (i))1≤i≤p such that for
every i, j ∈ {1, . . . , p}, as n→ +∞,

Wf
n(i, j) :=

Zf
n(i, j)

|M f
0,nej |

L2(Pf )−−−−→ Wf (i). (4.9)
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3. For any 1 ≤ i ≤ p, it holds

(Wf (i) > 0) =
(⋂

n≥0

|Zf
n(i, ·)| = 0)

)
Pf - a.s.

Proof. By Lemma 4.2, for any x̃ ∈ X and a > A,

Êx̃,a

[
E

[
+∞∑

n=0

e−Sn

/
f0, . . . , fn−1

]]
< +∞ and Êx̃,a

[
E

[
+∞∑

n=0

ηne
−Sn

/
f0, . . . , fn−1

]]
< +∞,

which yields, for P̂x̃,a-almost all f ,

E

[
+∞∑

n=0

e−Sn(x̃,a)
/
f

]
< +∞ and E

[
+∞∑

n=0

ηne
−Sn(x̃,a)

/
f

]
< +∞.

Hence, by Lemmas 4.2 and 3.3, for P̂x̃,a-almost all f and any 1 ≤ i, j ≤ p, on the one hand,

+∞∑

n=0

1

|M f
0,n(i, j)|

< +∞,

and on the other hand,

+∞∑

n=0

1

|M f
0,n|

∣∣B(i)
fn

∣∣
|Mfn |

≤
+∞∑

n=0

1

|M f
0,n|

ηfn < +∞.

Hence, P̂x̃,a-almost all environment f satisfy the hypotheses of Proposition 3.8, Corollary
4.3 follows immediately.

✷

4.3 On the extinction of (Zn(z̃, ·))n≥0 in random environment

The following result extends property (2.2) to Galton-Watson processes (Zn(z̃, ·))n≥0 with
any initial population z̃ ∈ N

p.
Recall that for any n ≥ 0 and i ∈ {1, . . . , p}, the probability of extinction at time n of

(Zn(i, ·))n≥0, given the environment f (or equivalently given f0, . . . , fn−1) equals

qfn,i = P(|Zn(ẽi, ·)| > 0 / f0, . . . , fn−1) = 1− f
(i)
0 f1 . . . fn−1(0̃).

For any environment f , the sequence (qfn,i)n≥0 converges to some limit, denoted qfi .
By the branching property, for any z̃ = (z1, . . . , zp) ∈ N

p,

qfn,z̃ := P(|Zn(z̃, ·)| > 0 /f0, . . . , fn−1)

= 1−
p∏

i=1

[f
(i)
0 f1 . . . fn−1(0̃)]

zi = 1−
p∏

i=1

[1− qfn,i(0̃)]
zi .

Let us denote qfz̃ the limit of the sequence (qfn,z̃)n≥0.
For any x̃ ∈ X and a > A, it holds that

P(|Zn(z̃, ·)| > 0) = E[qfn,z̃] and P̂x̃,a(|Zn(z̃, ·)| > 0) = Êx̃,a[q
f
n,z̃].
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By the dominated convergence theorem,

lim
n→+∞

P(|Zn(z̃, ·)| > 0)) = P(∩n≥0(|Zn(z̃, ·)| > 0))) = E[qfz̃]

(resp. lim
n→+∞

P̂x̃,a(|Zn(z̃, ·)| > 0) = P̂(∩n≥0(|Zn(z̃, ·)| > 0))) = Ê[qfz̃]).

These two limits are related to each other in the following way.

Property 4.4 Assume that hypotheses H1–H6 hold for some δ > 0. Then for any x̃ ∈ X

and z̃ ∈ R
p
+,

lim
n→+∞

√
nP(|Zn(z̃, ·)| > 0) = lim

a→+∞
V (x̃, a)Êx̃,a(q

f
z̃) = 〈z, β〉,

where β = (β1, . . . , βp) with βi > 0 given in (2.2).

Proof. Let z̃ = (z1, . . . , zp) 6= 0̃. By using the branching property of the Galton-Watson
process,

|Zn(z̃, ·)| =
p∑

i=1

|Zn(ziẽi, ·)| =
p∑

i=1

zi∑

k=1

|Zn,k(i, ·)|,

where the random variables Zn,k = (Zn,k(i, j))i,j , for n, k ≥ 0, are independent and Zn,k
dist
=

Zn for any n, k ≥ 0. Hence, by combining the independence of these random variables and
property (2.2), we obtain

P(|Zn(z̃, ·)| = 0) =

p∏

i=1

zi∏

k=1

P(|Zn,k(i, ·)| = 0)

=

p∏

i=1

(
1− βi√

n
(1 + o(n))

)zi

= 1− 〈β, z〉√
n

(1 + o(n)).

Moreover, by [17], it holds that βi = lim
a→+∞

V (x̃, a)Êx̃,a[q
f
i ] for any 1 ≤ i ≤ p; thus

lim
a→+∞

V (x̃, a)Êx̃,a[q
f
z̃] = 〈z, β〉.

Similarly, we need to extend property (4.9) to Galton-Watson processes (Zn(z̃, ·))n≥0 with
any initial population z̃ ∈ R

p
+. The following statement is a direct consequence of a

combination of Corollary 4.3 and the branching property.

Property 4.5 Assume that hypotheses H1–H6 hold for some δ > 0. Then for all x̃ ∈
X, a > A and P̂x̃,a-almost all environment f = (fn)n≥0, any z̃ ∈ R

p
+ \ {0}, and any

j ∈ {1, . . . , p},

Wf
n(z̃, j) :=

Zf
n(z̃, j)

|M f
0,nej |

L2(Pf )−−−−→ Wf (z̃) :=

p∑

i=1

zi∑

k=1

Wf
k(i),

where the random variables Wf
k for k ≥ 0, are independent copies of Wf .

In particular, for any j ∈ {1, . . . , p},

lim
n→+∞

E
f [Zf

n(z̃, j)]

|M f
0,nej |

= lim
n→+∞

∑p
i=1 ziE

f [Zf
n(i, j)]

|M f
0,nej |

= 〈z,E[Wf ]〉.

Furthermore, if there exist ε ∈]0, 1[ and K > 0 such that fn ∈ Gε,K for any n ≥ 0, then

(Wf (z̃) > 0) =
⋂

n≥0

(|Zf
n(z̃, ·)| > 0) Pf - a.s. (4.10)
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5 Proof of Theorem 2.3

By a standard argument in probability theory, since the random variable Zn(z̃, j)/|M0,nej |,
for n ≥ 0, z̃ ∈ N

p \ {0̃} and 1 ≤ j ≤ p, are non-negative, it suffices to prove that the
sequence of Laplace transform

λ 7→ E

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

) /
|Zn(z̃, ·)| > 0

]

converges on [0,+∞[ to some function which is continuous at 0.
We fix z ∈ N

p \ {0̃} and 1 ≤ j ≤ p. For any λ ≥ 0,

E

[
exp−

(
λ

−Zn(z̃, j)

|M0 . . .Mn−1ej |

) /
|Zn(z̃, ·)| > 0

]

=

√
nE
[
exp

(
−λ Zn(z̃,j)

|M0...Mn−1ej |

)
, |Zn(z̃, ·)| > 0

]

√
nP(|Zn(z̃, ·)| > 0)

.

By Property 4.4, it suffices to prove that the sequence (φn,z̃,j)n≥0 defined by

∀λ ≥ 0, φn,z̃,j(λ) :=
√
nE

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
, |Zn(z̃, ·)| > 0

]

converges to some function φz̃,j : R
+ → [0, 1] such that

lim
λ→0+

φz̃,j(λ) = φz̃,j(0) = 〈z, β〉.

A candidate for this limit is

φz̃,j(λ) =
2

σ
√
2π

+∞∑

k=0

Ex̃,a

[
V (Xk, 0)1(Tk=k)Ψ(λ,Xk, 0, Zk(z̃, ·), f ◦ θk)

]
,

where

Ψ(λ, x̃′, a′, z̃′,g) := Êx̃′,a′

[
exp
(
−λ Wg(z̃′)

〈α,E(Wg)〉
)
1∩n>1(|Zg

n(z̃′,·)|>0)

]
(5.1)

for any λ ≥ 0, x̃′ ∈ X, a′ > 0, z′ ∈ N
p \ {0} and g ∈ GN. For any n ≥ 1, we set

Tn = max{k / 0 ≤ k ≤ n such that Sk = mn}; the random variable Tn satisfy the
following simple properties:

- Tn ≤ n for any n ≥ 1;
- Tn does not depend on the value of S0;
- let mk,n := min{Sk+1 − Sk, . . . , Sn − Sk}, then for any 0 ≤ k ≤ n,

(Tn = k) = (Tk = k) ∩ (mk,n > 0).
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These random variable yields to the following decomposition

φn,z̃,j(λ) =
√
nE

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
; |Zn(z̃, ·)| > 0

]

=
√
nEx̃,a

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej|

)
; |Zn(z̃, ·)| > 0, Tn = n

]

+
√
n

n−1∑

k=0

Ex̃,a

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
; |Zn(z̃, ·)| > 0, Tn = k

]

=
√
nEx̃,a

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej|

)
; |Zn(z̃, ·)| > 0, Tn = n

]

︸ ︷︷ ︸
Σ1(n,λ)

+
√
n

n−1∑

k=0

Ex̃,a

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
; |Zn(z̃, ·)| > 0, Tk = k,mk,n > 0

]

︸ ︷︷ ︸
Σ2(n,λ)

.

The following lemma shows that

lim
n→+∞

Σ1(n, λ) = 0, uniformly in λ ≥ 0. (5.2)

Lemma 5.1 There exists a positive constant c such that for any n ≥ 1, x̃ ∈ X, a > 0 and
z ∈ N

p \ {0},

Px̃,a(|Zn(z̃, ·)| > 0, Tn = n) ≤ c
|z|
n3/2

.

The term Σ2(n, λ) may be decomposed as follows: for 1 ≤ ℓ ≤ n− 1 fixed,

Σ2(n, λ) =
√
n

ℓ∑

k=0

Ex̃,a

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
; |Zn(z̃, ·)| > 0, Tk = k,mk,n > 0

]

︸ ︷︷ ︸
Σ2,1(n,ℓ,λ)

+
√
n

n−1∑

k=ℓ+1

Ex̃,a

[
exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
; |Zn(z̃, ·)| > 0, Tk = k,mk,n > 0

]

︸ ︷︷ ︸
Σ2,2(n,ℓ,λ)

and we study separately the two terms Σ2,1(n, ℓ) and Σ2,2(n, ℓ). Firstly,

Σ2,1(n, ℓ, λ)

=

ℓ∑

k=0

√
n√

n− k
Ex̃,a

[√
n− k exp

(
−λ Zn(z̃, j)

|M0 . . .Mn−1ej |

)
; |Zn(z̃, ·)| > 0, Tk = k,mk,n > 0

]

=

ℓ∑

k=0

√
n√

n− k

∫
df0 . . . dfk−1 δM0,k

(dM)

∫
P
(
Zk(z̃, ·) ∈ dZ | f0, . . . , fk−1

)
1(Tk=k)1(|Z|>0)

×
√
n− k Ex̃·M,0

[
exp

(
−λ Zf◦θk

n−k (Z, j)

|MM0,n−k ◦ θkej |

)
; |Zf◦θk

n−k (Z, ·)| > 0, τ ◦ θk > n− k

]
.
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Let us fix 0 ≤ k ≤ ℓ and set Yn,k(λ,Z, j) := exp

(
−λ Zf◦θk

n−k (Z, j)

|MM0,n−k ◦ θkej |

)
1
(|Zf◦θk

n−k
(Z,·)|>0)

for n > k. By Property 4.5, for P̂x̃·M,0-almost all environment g,

• the sequence

(
Zg
n−k(Z, j)

|Mg
0,n−kej |

)

n>k

converges in L
2(Pg) to Wg(Z) =

p∑

i=1

Zi∑

l=1

Wg
l (i)

where the W g
l , for l ≥ 1 are independent copies of Wg;

• let αi := |M(·, i)| for 1 ≤ i ≤ p and α = (αi)1≤i≤p, it holds that

|MMg
0,n−kej |

|Mg
0,n−kej |

=

∑p
i=1 αiM

g
0,n−k(i, j)∑p

i=1M
g
0,n−k(i, j)

=

∑p
i=1 αiE

g[Zn−k(i, j)]

Eg|Zn−k(·, j)|
−−→ 〈α,E[Wg]〉 as n→ +∞;

• lim
n→+∞

1(|Zg
n−k

(Z,·)|>0) = 1∩n>k(|Zg
n−k

(Z,·)|>0)).

Hence, for any 0 ≤ k ≤ ℓ, the sequences (Yn,k(λ,Z, j))n>k converge in L
1(P̂x̃·M,0) to

the random variable

Y∞,k(λ,Z) := exp

(
−λ Wf◦θk(Z)

〈α,E(Wf◦θk)〉

)
1⋂

n>k(|Zf◦θk
n−k

(Z,·)|>0))
.

Lemma 4.1 yields that

lim
n→+∞

√
n− k Ex̃·M,0

[
Yn,k(λ)

/
τ ◦ θk > n− k

]
= Êx̃·M,0[Y∞,k(λ,Z)].

Consequently

lim
n→+∞

Σ2,1(n, ℓ, λ)

=

ℓ∑

k=0

∫
df0 . . . dfk−1 δM0,k

(dM)

∫

(|Z|>0)
P(Zk(z̃, ·) ∈ dZ|f0, . . . , fk−1)1(Tk=k)

× 2

σ
√
2π
V (x̃ ·M, 0) Êx̃·M,0

[
exp

(
−λ Wf◦θk(Z)

〈α,E(Wf◦θk)〉

)
1∩n>k(|Zf◦θk

n−k
(Z,·)|>0)

]

=
2

σ
√
2π

ℓ∑

k=0

Ex̃,a

[
V (Xk, 0)1(Tk=k)Ψ(λ,Xk, 0, Zk(z̃, ·), f ◦ θk)

]

where Ψ is defined in (5.1). Notice that, by Lemma 5.1, for any k ≥ 1,

0 ≤ Ex̃,a

[
V (Xk, 0)Ψ(λ,Xk , 0, Zk(z̃, ·), f ◦ θk)

]

� Px̃,a(Tk = k, |Zk(z̃, ·)| > 0) � |z|
k3/2

(5.3)

so that uniformly in λ ≥ 0,

lim
ℓ→+∞

lim
n→+∞

Σ2,1(n, ℓ, λ) =
2

σ
√
2π

+∞∑

k=0

Ex̃,a

[
V (Xk, 0)Ψ(λ,Xk, 0, Zk(z̃, ·), f ◦ θk)

]
(5.4)

exists and is finite.
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Let us control the term Σ2,2(n, λ).

Σ2,2(n, λ)

=
√
n

n−1∑

k=l+1

∫
df0 . . . dfk−1 δM0,k

(dM)

∫
P(Zk(z̃, ·) ∈ dZ|f0, . . . , fk−1)1(Tk=k)1(|Z|>0)

× Ex̃·M,0

[
exp

(
−λ Zn−k(Z, j)

|MM0,n−kej |

)
; |Zn−k(Z, ·)| > 0, τ > n− k

]

≤ √
n

n−1∑

k=l+1

∫
df0 . . . dfk−1δM0,k

(dM)

∫
P(Zk(z̃, ·) ∈ dZ|f0, . . . , fk−1)1(Tk=k)1(|Z|>0)Px̃·M,0(τ ◦ θk > n− k)

=
√
n

n−1∑

k=l+1

Ex̃,a

[
PXk,0(τ ◦ θk > n− k);Tk = k; |Zk(z̃, ·)| > 0

]
.

By Theorem 3.5 and Proposition 3.4,

Σ2,2(n, λ) �
n−1∑

k=l+1

√
n√

n− k
Px̃,a(Tk = k; |Zk(z̃, ·)| > 0)

≤ |z|
n−1∑

k=l+1

√
n√

n− k k3/2

� |z|
(

1√
l
+

1√
n

)

which readily implies, uniformly in λ ≥ 0,

lim sup
l→+∞

lim sup
n→+∞

Σ2,2(n, λ) = 0 (5.5)

We conclude by combining (5.2), (5.4) and (5.5). In particular, since the above conver-
gences are uniform in λ ≥ 0, it holds that lim

λ→0+
φz̃,j(λ) = φz̃,j(0).

Finally, let us prove that νz̃,j({0}) = 0 when the offspring generating functions belong
to Gε,K . It suffices to prove that the Laplace transform of νz̃,j (or equivalently the function

φz̃,j) tends to 0 as λ→ +∞. Indeed, by (4.10), P̂x̃,a-almost surely,

Ψ(λ,Xk, 0, Zk(z̃, ·), f ◦ θk) = ÊX̃k,0

[
exp
(
−λ Wg(z̃)

〈α,E(Wf◦θk)〉
)
1(Wf (z̃)>0)

]/
z̃=Zk(x̃,·)

−→ 0 as λ→ +∞.

Hence, by combining the Lebesgue dominated convergence theorem and (5.3),

lim
λ→+∞

φz,j(λ) = 0.

This achieves the proof.
✷

It remains to prove Lemma 5.1.
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Proof of Lemma 5.1. By the branching property, for any z̃ ∈ N
p \ {0̃} and P-almost

all environment f ,

Zf
n(z̃, ·) =

p∑

i=1

z1+...+zi∑

k=z1+...+zi−1

Zf
n,k(i, ·),

where the Zf
n,k, for k ≥ 1, are i.i.d. copies of Zf

n; in particular, if |Zf
n(z̃, ·)| > 0, then there

exist i and k such that 1 ≤ i ≤ p and z1+ . . .+ zi−1 ≤ k ≤ z1+ . . .+ zi and |Zf
n,k(i, ·)| > 0.

Hence, noticing that Tn does not depend on the value of (X0, S0) and using Lemma 3.3,
for any x̃ ∈ X and a > A,

Px̃,a(|Zn(z̃,·)| > 0, Tn = n) = Px̃,0(|Zn(z̃, ·)| > 0, Tn = n)

≤
p∑

i=1

ziPx̃,0(|Zn(i, ·)| > 0, Tn = n)

≤
p∑

i=1

ziEx̃,0

[
|Zn(i, ·)|;Tn = n

]

=

p∑

i=1

ziEx̃,0

[
E[|Zn(i, ·)|/f0, . . . , fn−1];Tn = n

]

=

p∑

i=1

ziEx̃,0

[
|M0,n|;Tn = n

]

= |z|Ex̃,0

[
|M0,n|;Tn = n

]

= |z| Ex̃,0

[
|M0,n|;Sn ≤ S0, Sn ≤ S1, . . . , Sn ≤ Sn−1

]

≤ |z| E
[
|M0,n|; |M0,n| ≤ c, |M0,n| ≤ c|M0,1| . . . , |M0,n| ≤ c|M0,n−1|

]

= |z| E
[
|Mn,0|; |Mn,0| ≤ c, |Mn,0| ≤ c|Mn,n−1|, . . . , |Mn,0| ≤ c|Mn,1|

]

since (M0, . . . ,Mn−1)
dist.
= (Mn−1, . . . ,M0)

≤ |z| E
[
|Mn,0|; |Mn,0| ≤ c, |Mn−1,0| ≤ c2, . . . , |M1,0| ≤ c2

]

≤ c |z| E
[
|Mn,0x|; |Mn,0x| ≤ c2, |Mn−1,0x| ≤ c2, . . . , |M1,0x| ≤ c2

]

= c3 |z| E
[
1

c2
|Mn,0x|;

1

c2
|Mn,0x| ≤ 1,

1

c2
|Mn−1,0x| ≤ 1, . . . ,

1

c2
|M1,0x| ≤ 1

]

= c3 |z| Ex,− ln c2
[
exp (S′

n);S
′
n ≤ 0;S′

n−1 ≤ 0, . . . , S′
1 ≤ 0

]

= c3 |z| Ex,− ln c2
[
exp (S′

n); τ
′ > n

]

with S′
n = S′

n(x, a) = a+ ln |M0,nx| for any x̃ ∈ X and a ∈ R and τ ′ = τ ′x,a = min{n ≥ 1 :
S′
n(x, a) > 0}.
Similar statements as Theorem 3.5, Proposition 3.4 and Corollary 3.7 also exist for

the sequence (S′
n(x, a))n≥0 and the stopping time τ ′; in particular, there exists a positive

constant c′ such that for any x̃ ∈ X, a, b ∈ R and n ≥ 1,

0 ≤ Px,a(S
′
n ∈]b− 1, b], τ ′ > n) ≤ c′

(1 + |a|)(1 + |b|)
n3/2

.

27



Therefore,

Px̃,a(|Zn(z̃,·)| > 0, Tn = n)

≤ c3 |z| Ex,− ln c2
[
exp (S′

n); τ
′ > n

]

= c3 |z|
∑

b≤0

eb Px,− ln c2
(
S′
n ∈]b− 1, b], τ ′ > n

)

≤ c3 (1 + | ln c2|) c′ |z|


∑

b≤0

eb(1 + |b|)


 1

n3/2
.

✷

6 Proof of Proposition 2.4

We fix t ∈ R, x̃ ∈ X, a > A and z̃ ∈ N
p \ {0̃}. By Property 4.4, we have to prove that the

sequence (√
nP

(
Sn(x̃, a)√

n
≤ t , |Zn(z̃, ·)| > 0

))

n≥0

converges as n→ +∞ and identify its limit.
For any b ≥ 0, ρ ∈]0, 1[ and m ∈ {1, . . . , [ρn]}, we may decompose the quantity

√
nP

(
Sn(x̃, a)√

n
≤ t , |Zn(z̃, ·)| > 0

)

as

√
nP

(
Sn(x̃, a)√

n
≤ t, |Zn(z̃, ·)| > 0, τx̃,b ≤ n

)

︸ ︷︷ ︸
An(b)

+
√
nP

(
Sn(x̃, a)√

n
≤ t, |Zn(z̃, ·)| > 0, τx̃,b > n

)

= An(b) +
√
nP

(
Sn(x̃, a)√

n
≤ t, |Z[ρn](z̃, ·)| > 0, τx̃,b > n

)

−√
nP

(
Sn(x̃, a)√

n
≤ t, |Z[ρn](z̃, ·)| > 0, |Zn(z̃, ·)| = 0, τx̃,b > n

)

︸ ︷︷ ︸
Bn(b,ρ)

= An(b)−Bn(b, ρ) +
√
nP

(
Sn(x̃, a)√

n
≤ t, |Zm(z̃, ·)| > 0, τx̃,b > n

)

︸ ︷︷ ︸
Cn(b,ρ,m)

−√
nP

(
Sn(x̃, a)√

n
≤ t, |Zm(z̃, ·)| > 0, |Z[ρn](z̃, ·)| = 0, τx̃,b > n

)

︸ ︷︷ ︸
Dn(b,ρ,m)

= An(b)−Bn(b, ρ) + Cn(b, ρ,m) −Dn(b, ρ,m).

We control these terms one by one.
Step 1. The sequence (An(b))n≥0 converges to A(b) ≥ 0 and lim

b→+∞
A(b) = 0.

This is a direct consequence of the following inequality: for any n ≥ 1 and b ≥ 0,

√
nP (|Zn(z̃, ·)| > 0, τx̃,b ≤ n) ≤ c |z| (1 + b)e−b,
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for some positive constant c. Indeed, by (3.8) and (Lemma 3.3, for all x̃ ∈ X and 1 ≤ k ≤ n,
it holds P-a.s. that

P(|Zn(i, ·)| > 0 | f0, · · · , fn−1) = 1− f
(i)
0,n(0̃) ≤

(
n∑

l=1

1

|M0,l|

)−1

≤ c|x̃M0,k|

so that
P(|Zn(i, ·)| > 0 | f0, · · · , fn−1) ≤ cemn(x̃,0).

This yields

√
nP (|Zn(z̃, ·)| > 0, τx̃,b ≤ n)

≤ √
n

p∑

i=1

ziE
[
P

(
|Zn(i, ·)| > 0

/
f0, · · · , fn−1

)
, τx̃,b ≤ n

]

≤ c
√
n |z| E

[
emn(x̃,0); τx̃,b ≤ n

]

≤ c
√
n |z| E

[
emn(x̃,0);mn(x̃, 0) < −b

]

= c
√
n |z|

+∞∑

k=0

e−k−b
P (−k − 1− b ≤ mn(x̃, 0) < −k − b)

≤ c
√
n |z|

+∞∑

k=0

e−k−b
P (mn(x̃, 0) ≥ −k − 1− b)

= c
√
n |z|

+∞∑

k=0

e−k−b
Px̃,k+1+b(τ > n)

� |z| e−b
+∞∑

k=0

(b+ k + 2)e−k � |z| (1 + b)e−b by Proposition 3.4 and Theorem 3.5.

Step 2. For any b ≥ 0, ρ ∈]0, 1[ and 0 ≤ m ≤ [ρn], the sequence (Dn(b, ρ,m))n≥0

converges to 0.
It suffices to prove that

lim
n→+∞

√
nP
(
|Zm(z̃, ·)| > 0, |Z[ρn](z̃, ·)| = 0, τx̃,b > n

)
= 0. (6.1)

For 1 ≤ m ≤ [ρn],

Px̃,b

(
|Zm(z̃, ·)| > 0, |Z[ρn](z̃, ·)| = 0, τ > n

)

= Px̃,b (|Zm(z̃, ·)| > 0, τ > n)− Px̃,b

(
|Z[ρn](z̃, ·)| > 0, τ > n

)

= Ex̃,b

[
P(|Zm(z̃, ·)| > 0 | f0, . . . , fn−1)− P(|Z[ρn](z̃, ·)| > 0 | f0, . . . , f[ρn]−1); τ > n)

]

= Ex̃,b

[
qfm,z̃ − qf[ρn],z̃; τ > n

]
.
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Hence, by Theorem 3.5,

Px̃,b(|Zm(z̃, ·)| > 0,|Z[ρn](z̃, ·)| = 0, τ > n)

≤ cEx̃,b

[
(qfm,z̃ − qf[ρn],z̃)

V (X[ρn], S[ρn])√
n− [ρn]

; τ > [ρn]

]

≤ c√
n(1− ρ)

E

[
(qfm,z̃ − qf[ρn],z̃)V (X[ρn], S[ρn]); τ > [ρn]

]

=
c√

n(1− ρ)
V (x̃, a)Êx̃,b

[
qfm,z̃ − qf[ρn],z̃

]
.

Therefore,

lim
m→+∞

lim
n→+∞

√
nPx̃,b(|Zm(z̃, ·)| > 0, |Z[ρn](z̃, ·)| = 0, τ > n)

≤ c√
1− ρ

V (x̃, a) lim
m→+∞

lim
n→+∞

Êx̃,b[q
f
m,z̃ − qf[ρn],z̃]

︸ ︷︷ ︸
Êx̃,b[q

f
m,z̃

−qf
z̃
]

= 0.

where the last equality is a direct consequence of the preamble of subsection 4.3.
Step 3. For any b ≥ 0 and ρ ∈]0, 1[, the sequence (Bn(b, ρ))n≥0 converges to 0.

We write

0 ≤ Bn(b, ρ) = P

(
Sn(x̃, a)√

n
≤ t, |Z[ρn](z̃, ·)| > 0, |Zn(z̃, ·)| = 0, τx̃,b > n

)

≤ P
(
|Z[ρn](z̃, ·)| > 0, |Zn(z̃, ·)| = 0, τx̃,b > n

)

= Px̃,b

(
|Z[ρn](z̃, ·)| > 0, τ > n

)
− Px̃,b (|Zn(z̃, ·)| > 0, τ > n) .

By Lemma 4.1 and Theorem 3.5 ,

lim
n→+∞

√
nPx̃,b (|Zn(z̃, ·)| > 0, τ > n) =

2

σ
√
2π
V (x̃, b)Êx̃,b

[
qfz̃

]

and it suffices to check that the sequence
(√
nPx̃,b

(
|Z[ρn](z̃, ·)| > 0, τ > n

))
n≥0

converges

to the same limit. Indeed, for 1 ≤ m ≤ [ρn],

√
nPx̃,b

(
|Z[ρn](z̃, ·)| > 0, τ > n

)

=
√
nPx̃,b (|Zm(z̃, ·)| > 0, τ > n)−√

nPx̃,b

(
|Zm(z̃, ·)| > 0, |Z[ρn](z̃, ·)| = 0, τ > n

)

with

• lim
n→+∞

√
nPx̃,b (|Zm(z̃, ·)| > 0, τ > n) =

2V (x̃, b)

σ
√
2π

P̂x̃,b(|Zm(z̃, ·)| > 0), by Lemma 4.1

and Theorem 3.5;
• lim

n→+∞

√
nPx̃,b

(
|Zm(z̃, ·)| > 0, |Z[ρn](z̃, ·)| = 0, τ > n

)
= 0 by (6.1) of Step 2.

Hence

lim
m→+∞

lim
n→+∞

√
nPx̃,b

(
|Z[ρn](z̃, ·)| > 0, τ > n

)
=

2V (x̃, b)

σ
√
2π

P̂x̃,b

(
qfz̃

)

and the proof is complete.
Step 4. For any b ≥ 0 and ρ ∈]0, 1[,

lim
m→+∞

lim
n→+∞

Cn(b, ρ,m) =
2

σ
√
2π
V (x̃, b) Êx,b[q

f
z̃] Φ

+

(
t

σ

)
.
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Assume that n ≥ 2m. On the one hand, when t < 0, the quantity t + b−a√
n

becomes

negative when n is great enough, in which case
(

Sn√
n
≤ t+ b−a√

n

)
∩ (τ > n) = ∅; therefore,

the above limit holds in this case. On the other hand, when t ≥ 0,

P

(
Sn(x̃, a)√

n
≤ t, |Zm(z̃, ·)| > 0, τx̃,b > n

)

= Px̃,b

(
Sn√
n
≤ t+

b− a√
n
, |Zm(z̃, ·)| > 0, τ > n

)

= Ex̃,b

[
Px̃,b

(
Sn√
n
≤ t+

b− a√
n
, |Zm(z̃, ·)| > 0, τ > n

/
f0, . . . , fm−1, Z0, . . . , Zm

)]

= Ex̃,b [|Zm(z̃, ·)| > 0, τ > m,

Px̃,b

(
Sm + Sn−m ◦ θm(Xm, Sm)√

n−m
≤ tn,m, τ(Xm,Sm) > n−m

/
f0, . . . , fm−1, Z0, . . . , Zm

)]
,

where tn,m =
(
t+ b−a√

n

) √
n√

n−m
. By Corollary 3.6, as n→ +∞,

√
nPx̃,b

(
Sn√
n
≤ s, τ > n

)
→ 2V (x̃, a)

σ
√
2π

Φ+
( s
σ

)
=

2V (x̃, a)

σ
√
2π

(
1− exp

(
− s2

2σ2

))
,

then

√
n−m P

(Sm(x̃, a) + Sn−m ◦ θm(Xm, Sm)√
n−m

≤ tn,m, τ(Xm,Sm) > n−m
/
f0, . . . , fm−1, Z0, . . . , Zm

)

=
2

σ
√
2π
V (Xm, Sm)

(
1− exp

(
−
t2n,m
2σ2

))
(1 + o(n−m)).

Therefore,

√
nP

(
Sn(x̃, a)√

n
≤ t, |Zm(z̃, ·)| > 0, τx̃,b > n

)

=
2

σ
√
2π

√
n√

n−m
Ex̃,b

[
V (Xm, Sm)(1 + o(n−m))

(
1− exp

(
−
t2n,m
2σ2

))
, |Zm(z̃, ·)| > 0, τ > m

]

=
2

σ
√
2π

√
n√

n−m
V (x̃, b) Êx̃,b

[(
1− exp

(
−
t2n,m
2σ2

))
(1 + o(n−m)); |Zm(z̃, ·)| > 0

]

−→ 2

σ
√
2π

(
1− exp

(
− t2

2σ2

))
V (x̃, b) P̂x̃,b(|Zm(z̃, ·)| > 0) as n→ +∞.

Finally

lim
m→+∞

lim
n→+∞

√
nP

(
Sn(x̃, a)√

n
≤ t, |Zm(z̃, ·)| > 0, τx̃,b > n

)

=
2

σ
√
2π

(
1− exp

(
− t2

2σ2

))
V (x̃, b) P̂x̃,b


⋂

m≥0

[|Zm(z̃, ·)| > 0]




=
2

σ
√
2π

Φ+

(
t

σ

)
V (x̃, b) P̂x̃,b

(
qfz̃

)
.
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Step 5. Conclusion
By the four previous steps and Property 4.4, letting n→ +∞, then m → +∞ and at

last b→ +∞, we obtain that

lim
n→+∞

√
nP

(
Sn(x̃, a)√

n
≤ t , |Zn(z̃, ·)| > 0

)
=

2

σ
√
2π

Φ+

(
t

σ

)
.

✷

7 Proof of Theorem 2.2

Let ε > 0. Then

P

(∣∣∣ ln |Zn(z̃, ·)|√
n

− Sn(x̃, a)√
n

∣∣∣ ≥ ε
/

|Zn(z̃, ·)| > 0
)

= P

(
| ln |Zn(z̃, ·)| − Sn(x̃, a)| ≥ ε

√
n
/

|Zn(z̃, ·)| > 0
)

= P

( |Zn(z̃, ·)|
eSn(x̃,a)

≥ eε
√
n
/

|Zn(z̃, ·)| > 0

)

+ P

( |Zn(z̃, ·)|
eSn(x̃,a)

≤ e−ε
√
n
/

|Zn(z̃, ·)| > 0

)

≤
p∑

j=1

P

(
Zn(z̃, j)

eSn(x̃,a)
≥ eε

√
n/p

/
|Zn(z̃, ·)| > 0

)

+ P

(
Zn(z̃, 1)

eSn(x̃,a)
≤ e−ε

√
n
/

|Zn(z̃, ·)| > 0

)

≤
p∑

j=1

P

(
Zn(z̃, j)

|M0,nej|
≥ c ea+ε

√
n/p

/
|Zn(z̃, ·)| > 0

)

+ P

(
Zn(z̃, 1)

|M0,ne1|
≤ 1

c
ea−ε

√
n
/

|Zn(z̃, ·)| > 0

)

(where c is the constant which appears in Lemma 3.3)

=

p∑

j=1

(
1− P

( |Zn(z̃, j)|
|M0,nej |

< c ea+ε
√
n/p

/
|Zn(z̃, ·)| > 0

))

+ P

(
Zn(z̃, 1)

|M0,ne1|
≤ 1

c
ea−ε

√
n
/

|Zn(z̃, ·)| > 0

)
.

Fix A > 1 then there exists a number nA great enough such that c ea+ε
√
nA/p > A and

1
c e

a−ε
√
nA < 1/A ; without loss of generality, we assume νz̃,j({ 1

A , A}) = 0. Hence, for any
n ≥ nA,

P

(∣∣∣ ln |Zn(z̃, ·)|√
n

− Sn(x̃, a)√
n

∣∣∣ ≥ ε
/

|Zn(z̃, ·)| > 0
)

≤
p∑

j=1

(
1− P

( |Zn(z̃, j)|
|M0,nej |

< A
/

|Zn(z̃, ·)| > 0

))
+ P

(
Zn(z̃, 1)

|M0,ne1|
≤ 1

A

/
|Zn(z̃, ·)| > 0

)
;

hence, by Theorem 2.3,

lim sup
n→+∞

P

(∣∣∣ ln |Zn(z̃, ·)|√
n

−Sn(x̃, a)√
n

∣∣∣ ≥ ε
/

|Zn(z̃, ·)| > 0
)
≤

p∑

j=1

(1− νz̃,j([0, A]))+νz̃,1([0, 1/A]).

32



Since the νz̃,j are probability measures on ]0,+∞[, it holds νz̃,j([0, A]) → 1 and νz̃,j([0, 1/A]) →
0 for any 1 ≤ j ≤ p, as A→ +∞. This yields

lim
n→+∞

P

(∣∣∣ ln |Zn(z̃, ·)|√
n

− Sn(x̃, a)√
n

/
≥ ε

∣∣∣ |Zn(z̃, ·)| > 0
)
= 0.

We complete the proof by combining Proposition 2.4 and Slutsky’s lemma.
✷
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