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Enforcing Gauss' law in numerical simulations of Maxwell's equations, specially in plasma physics, is a well-known key issue. Although the set of Maxwell's equations used for simulations do not include divergence laws, augmented sytems which incor-porates Gauss' law while retaining an overall hyperbolic form are frequently used to cope with charge conservation defects. Focusing on bounded domains and usual boundary conditions, existence and well-posedness of associated augmented systems have already been established. These extensions are non-unique and, among them, some surprisingly do not model properly the solutions of Maxwell's equations any-more. This matter is illustrated by a constructive example of waves propagating in a rectangular waveguide. A result providing both existence and uniqueness of an extension from Maxwell's equation to a proper augmented problem is proved by a perturbation argument. The main idea is that the solutions of Maxwell's equations must be a ground state, whenever charge conservation holds, for the solutions of any proper associated augmented system.

Introduction

This paper studies a way to enforce charge conservation in Maxwell's equations whenever the density of charge and the induced displacement current are computed by numerically relevant means not necessarily granting charge conservation. This is a fundamental issue in the simulation of Maxwell's equations in the presence of charge as discussed in ( [START_REF] Munz | Maxwell's equations when the charge conservation is not satisfied[END_REF]). Such issue arises for instance in problems of both plasma physics and beam physics modelled by the Maxwell-Vlasov system. Particle In Cell methods are frequently used to solve the Vlasov equation and numerical noise is known to arise as a result ( [START_REF] Spirkin | A Three-dimensional Particle-in-Cell Methodology on Unstructured Voronoi Grids with Applications to Plasma Microdevices[END_REF]). One of well-known source of errors is unphysical numerical heating [START_REF] Cormier-Michel | Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators[END_REF].

Identifying numerical methods to solve Maxwell's system appropriately in this framework often results in the need to devise suitable schemes ( [START_REF] Pinto | Gauss-compatible Galerkin schemes for time-dependent Maxwell equations[END_REF]). Among the methods proposed to correct such errors, one of the most popular ones is the hyperbolic regularization introduced in [START_REF] Munz | Divergence correction techniques for Maxwell solvers based on a hyperbolic model[END_REF]. Its main practical interest is that it allows to keep using, through minor changes, classical numerical schemes to discretize Maxwell's sys-tem. The hyperbolic correction terms added in Maxwell's system act as Lagrange multipliers while preserving hyperbolicity, thus allowing efficient explicit time-stepping algorithms to be put to use. The new system is able to cope with source terms satisfying ∂ t ρ + ∇.J = 0, for which Maxwell's formalism crumbles down. It does so while numerically enforcing Gauss' law.

In [START_REF] Fornet | Mathematical study of a hyperbolic regularization to ensure gauss' law conservation in Maxwell-Vlasov applications[END_REF] the authors studied the connection between the original system and the augmented one in the case of unbounded domain. They also proposed a set of admissible boundary conditions (ie ensuring well-posedness of the system) for the augmented formulation generalizing some usual electromagnetic ones. However, this set is infinite and the practical question of which extended boundary condition to choose remained unclear.

The main concern here is to gain insight on how the bounded augmented system can be considered as a valid extension of the original one. We stress that this question is motivated by the fact that albeit well-posed, an extended system may not be in agreement with the laws of Electromagnetism. Both generalized impedance and admittance boundary conditions (including perfect electric and magnetic conductors) will be considered. Extended initial data will also have to be discussed due to their involvement in the extension process.

In this paper, we start recalling both hyperbolic regularization of Maxwell's equations and generalized well-posed boundary conditions for regularized systems (section 2). Then, by explicitely computing propagative modes in a rectangular wave guide for the extended system, we study the impact, sometimes out of order, of the choice of both initial condition and boundary conditions on the related solution (section 3). Finally, we state our definition of admissible generalization of initial and boundary conditions and provide an existence and uniqueness result of the extension from Maxwell's system to the associated augmented problem through admissible generalization (section 4).

General problem

First, we recall Maxwell equations satisfied by both electrical (E) and magnetic (H) fields in free space with electric current (J) density:

ε∂ t E -∇ × H = -J, µ∂ t H + ∇ × E = 0. ( 1 
)
To account for the presence of charge density (ρ), Gauss' law states, in addition to [START_REF] Munz | Maxwell's equations when the charge conservation is not satisfied[END_REF], that:

∇ • E = ρ/ε. (2) 
Since enforcing the divergence of the magnetic field to be zero is out the present topic, this equation has voluntarily been removed.

Although it does not always hold true on a discrete level, charge conservation condition

∂ t ρ + ∇ • J = 0, (3) 
is a necessary assumption for equation ( 1)-( 2) to have a meaning. It is a compatibility assumption between data acting as source terms.

Going from free space to a bounded and liptischtizian domain Ω, well-posed Initial Boundary Value Problems are obtained for system (1) by using for instance either electrical or magnetic impedance boundary conditions on ∂Ω. They are maximal dissipative ones given respectively by:

n × E + Zn × n × H = 0, ∂Ω, (4) or n × H -Y n × n × E = 0, ∂Ω, (5) 
where n si the outward unitary normal to ∂Ω, impedance parameters Z and Y stand for nonnegative real numbers (zero values give respectively perfectly electric and magnetic conditions), and initial condition:

(E(t = 0, •), H(t = 0, •)) = (E 0 , H 0 ) ∈ L 2 (Ω) 3 2 . ( 6 
)
We use Rauch's assumptions ( [START_REF] Rauch | Symmetric positive systems with boundary characteristic of constant multiplicity[END_REF]) concerning domain Ω and its boundary ∂Ω and take ε and µ as positive lipshitz continuous real functions. By [START_REF] Rauch | Symmetric positive systems with boundary characteristic of constant multiplicity[END_REF], for any source term

J ∈ L 1 ([0, T ], L 2 (Ω) 3 ), problems (1) 
-( 4)-( 6) and ( 1)-( 5)-( 6) have a unique solution (E, H) ∈ L 1 (0, T ), L 2 (Ω) 3 2 . In what follows, well-posed systems (1)-( 4)-( 6) and ( 1)-( 5)- [START_REF] Fornet | Mathematical study of a hyperbolic regularization to ensure gauss' law conservation in Maxwell-Vlasov applications[END_REF] 

   ε∂ t E χ -∇ × H χ + χ∇Φ χ = -J µ∂ t H χ + ∇ × E χ = 0 µ∂ t Φ χ + χ∇ • E χ = χρ/ε, (7) 
with initial condition:

(E χ (t = 0, •), H χ (t = 0, •), Φ χ (t = 0, •)) = (E 0 , H 0 , Φ 0 ) ∈ L 2 (Ω) 3 × L 2 (Ω) 3 × L 2 (Ω).
(8) The authors showed in [START_REF] Fornet | Mathematical study of a hyperbolic regularization to ensure gauss' law conservation in Maxwell-Vlasov applications[END_REF] that the boundary conditions (4) (resp. ( 5)) applied to unknowns (E χ , H χ ) and put together with the additional boundary condition:

α µ ε Φ χ + βn • E χ = 0, ∂Ω with (α, β) = (0, 0), (9) 
leads to well-posed problem for ( 7)-( 4)-( 9)-(8) (resp. ( 7)-( 5)-( 9)-( 8)), provided that ρ ∈

L 1 ([0, T ], L 2 (Ω)).
In what follows we will refer respectively to ( 7)-( 4)-( 9)-( 8) and ( 7)-( 5)-( 9)-( 8) as Pure Hyperbolic Maxwell equations PHM7 Z and PHM7 Y . Finally, the notation PHM7 Z/Y will be used to refer to any of those.

A basic example: Transverse Magnetic mode in rectangular waveguide

To illustrate the problem encountered when trying to generalize Maxwell's Equations ME Z/Y into Purely Hyberbolic Maxwell's equations PHM7 Z/Y , we start by studying a basic example. This example deals with the propagation of a plane wave into a rectangular waveguide Ω = [0, a] × [0, b] × R with no charge (ρ = J = 0). Its interests lies in the ability to construct easily analytic modal solutions, which are often used on simulation codes for validation purpose. Our actual aim is to make a comparison between the solutions of PHM7 Z/Y and the solutions of ME Z/Y . It is an especially meaningful example to do such a comparison on since charge conservation is trivially ensured for both equations, which should physically lead to both sharing the same solution.

The two differential systems, which solutions have to be set face to face, are respectively given by: • Maxwell's equations ME Z with Z = 0, ie the boundary condition:

n × E = 0, R + × ∂Ω, (10) 
• PHM equations PHM7 Z with Z = 0 and parameters choice α = 0 and β = 0, ie:

n × E χ = 0, R + × ∂Ω, Φ χ = 0, R + × ∂Ω, (11) 
Now, we build analytic modal solutions of Transverse Magnetic type along z axis (T M z ) for system (11) let us follow the usual construction steps and ansatz on [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF], say:

(1) convert from time to frequency domain by:

E χ (x, y, z, t) = Re E χ (x, y, z)e -iωt ,
(2) look for solutions parametrized by γ ∈ R along:

E χ (x, y, z) = Re E x χ (x, y), E y χ (x, y), E z χ (x, y) T e -iγz .
Same operations are applied to H χ and Φ χ . Using a separation of variables, we get: 

                                             E x χ (x, y)= - iγ k
H z χ (x, y)= 0, Φ(x, y) = A Φ pq sin πp a x sin πq b y , (12) 
where m, n, p, q are integers, A mn and A Φ pq real coefficents, and under the assumption

γ = ω 2 εµ -k 2 mn = χ -2 ω 2 εµ -k 2 pq ∈ R with k st = π 2 s 2 a 2 + π 2 t 2 b 2 , ∀s, t ∈ N.
(13) One observes in (12) an a priori combination of usual Maxwell's TM modes (in bold) with additional χ-depending ones. Existence of such combination is linked to the possibility to choose non-zero values for coefficients A mn and A Φ pq under the assumption (13). Namely (1) If Φ 0 = 0, that is to say A Φ pq = 0 classical T M z mode is recovered for A mn = 0 and

γ = ω 2 εµ -k 2 mn , (14) 
(2) For non-zero Φ 0 , that is to say A Φ pq = 0, and for A mn = 0

π |χ| ≤ ω √ εµ min(a, b), and γ = χ -2 ω 2 εµ -k 2 pq , (15) 
a new unphysical T M z mode depending on Φ, thus denoted T M Φ z , is excited.

As a consequence, this example shows that solving PHM7 system with admissible extension (meaning here that extended problem is well-posed) of usual Maxwell's boundary conditions can produce solutions being either physical (there T M z ), unphysical (there T M Φ z ), or contaminated (there T M z and T M Φ z combined) in the sense that they are fully, not at all or seemingly solutions to ME. This extension being non-unique, we aim to analyse impact of its choice.

Main results: choices for boundary conditions

Example presented in section 3 sheds light on the influence of the choice of the parameters in [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF], which can lead, together with some initial values, to unexpected and unphysical solutions for PHM7 Z/Y . Our goal is to look for parameters such that corresponding solutions match with Maxwell's ones whenever possible and thus give a straightforward interpretation of generalized electromagnetic fields. Such conditions should be named admissible generalizations and are formulated hereafter. 

E χ = E and H χ = H. ( 16 
)
Remark 1. In [START_REF] Fornet | Mathematical study of a hyperbolic regularization to ensure gauss' law conservation in Maxwell-Vlasov applications[END_REF], authors proved that for any (J, ρ) satisfying (3) the solutions of unbounded ME and PHM7 verify (16) for any χ = 0 and any Φ 0 . In that sense, we should say that any parameters (Φ 0 , χ) are admissible for unbounded problem. In our framework, additional difficulties come from the presence of the boundary conditions and the need to extend them.

We now seek to find which set of parameters Φ 0 , α, β, χ = 0 provide admissible generalizations of ME Z/Y in the sense stated definition (4.1). This search will be latter divided in three separate searches over three subsets of parameters. We first expose preliminary computations in order to lead the reader through this process.

Let Φ 0 , α, β, χ = 0 be a set of parameters and assume that charge conservation (3) holds. Then, by difference between ( 1) and ( 7), one sees that looking for admissible extension in sense of definition 4.1 is the same as studying the following perturbation system with field differences δ

E := E χ -E and δ H := H χ -H satisfying    ε∂ t δ E -∇ × δ H + χ∇Φ χ = 0, µ∂ t δ H + ∇ × δ E = 0, µ∂ t Φ χ + χ∇ • δ E = 0. (17)
Proceeding in the same way with (4)-( 5) and ( 9), we find the boundary condition is given by:

   n × δ E + Zn × n × δ H = 0, or n × δ H -Y n × n × δ E = 0, ∂Ω, α µ ε Φ χ + βn • δ E = -βn • E, ∂Ω. (18) 
Lastly, initial values for this system are

δ E (t = 0, •) = δ H (t = 0, •) = 0 and Φ χ (t = 0, •) = Φ 0 . ( 19 
)
According to [START_REF] Fornet | Mathematical study of a hyperbolic regularization to ensure gauss' law conservation in Maxwell-Vlasov applications[END_REF], this new PHM system (17)-( 18)-( 19) is well-posed, which provides uniqueness of the solution obtained for a given choice of: δ E (t = 0), δ H (t = 0) and Φ 0 , α, β, χ = 0 .

Seeking admissible generalizations in the sense of definition 4.1, we aim to describe the set of parameters Φ 0 , α, β, χ = 0 such that δ E = 0(E χ = E) and δ H = 0(H χ = H), which imposes δ E (t = 0) = δ H (t = 0) = 0. As a result, the piece of solution Φ χ of the system (17)-( 18)-( 19) is also solution of (20).

       εχ∇Φ χ = 0, µ∂ t Φ χ = 0 α µ ε Φ χ + βn • E = 0, ∂Ω, Φ χ (t = 0) = Φ 0 . (20)
Remarking that Φ χ = Φ 0 , equations (20) imply that:

   Φ χ = Φ 0 , ∇Φ 0 = 0, α µ ε Φ 0 + βn • E = 0, ∂Ω. (21) 
In order to look for those admissible generalizations, our study is divided into three separate searches over the subset of parameters checking Φ 0 , α, β, χ = 0

• α = 0, β = 0 (Proposition 4.2) • α = 0 (Proposition 4.3) • α = 0, β = 0 (Proposition 4.5)
We emphasize that since (α, β) = 0, the above separation of cases accounts for the search of all possible admissible generalizations.

Let us begin with (α = 0, β = 0), which is the same as assuming only β = 0. 

Φ 0 = 0.
Moreover, function Φ χ vanishes for all time whenever (3) holds and there is uniqueness of the solution (E χ , H χ , Φ χ ) of problem PHM7 Z/Y obtained through these admissible generalizations for any given χ .

Proof. For all couple (α = 0, β = 0) equations ( 21) rewrite the same way:

   Φ χ = Φ 0 , ∇Φ 0 = 0, Φ 0 = 0, ∂Ω. (22) 
whose unique solution is Φ 0 = Φ χ = 0.

Let us continue by our search of admissible generalization with (α = 0, β = 0) : Proposition 4.3 (No admissible generalization condition with α = 0). There is no parameters Φ 0 , α, β, χ = 0 with α = 0 (which implies β = 0) defining an admissible generalization.

Proof of proposition 4.3 requires the following lemma:

Lemma 4.4. For any bounded liptschizian domain Ω, there exists an initial value set (E 0 , H 0 ) ∈ H rot (Ω) 2 and a source term

(J, ρ) ∈ C 0 ([0, T ], L 2 (Ω) 3 ) × C 1 ([0, T ], L 2 (Ω)) verifying charge conservation (3), such that the solution (E, H) ∈ C 1 ([0, T ], H rot (Ω)) 2 to ME Z/Y has a normal electric trace E • n non-vanishing in L 2 ([0, T ] × ∂Ω).
Proof of proposition 4.3. For all couple (α = 0, β = 0) equations ( 21) rewrite the same way:

   Φ χ = Φ 0 , ∇Φ 0 = 0, n • E = 0, ∂Ω. (23) 
We stress that in the equation ( 23) n • E is a given data. Since the following lemma shows that we can always contruct solutions of ME such that n • E = 0 on ∂Ω, thus incompatible with equation ( 23), this concludes the proof. Lemma 4.4 shows that there exists (E, H) solution to ME Z/Y with non-zero normal electric trace. Hence, for such (E, H) there is no (E χ , H χ , Φ χ ) satisfying both E = Eχ and n • E χ = 0.

Proof of lemma 4.4. Assume that for any initial value and source term satisfying (3) the solution to ME Z/Y has zero normal electric trace. We take an arbitrary solution (E, H) to such system. Now, let g be the solution to ∆g = 1, Ω, g = 0, ∂Ω.

(

System (24) has an unique solution in H 1 (Ω) since Ω is lipschitizian an bounded (see for instance [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF] theorem 3.14). From g, we introduce E the function E : (t, x) ∈ [0, T ] × Ω → E(t, x) -∇g(x) ∈ R 3 . We are going to show that ( E, H) is solution to ME Z/Y with initial condition and source term verifying the assumptions of the lemma but n 3 , and E(t, •) ∈ L 2 (Ω) 3 since g ∈ H 1 (Ω), and hence E ∈ C 1 ([0, T ], H rot (Ω)). So, the couple ( E, H) is solution to [START_REF] Munz | Maxwell's equations when the charge conservation is not satisfied[END_REF] with source term (J, ρ -ε), still verifying (3), and the initial value (E 0 -∇g, H 0 ). Now we show that ( E, H) verifies (4) or [START_REF] Pinto | Gauss-compatible Galerkin schemes for time-dependent Maxwell equations[END_REF]. First we evaluate n× E and n× E × n using tangent traces γ τ : u → n × u and π τ : u → n × (u × n). Let T H s (∂Ω) denote the space of tangent vector fields on ∂Ω with regularity H s for s = ± 1 2 . Both applications γ τ and π τ are surjective( [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF]) mapping from H rot (Ω) onto T H -1 2 (∂Ω) [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF]. Tangential trace of E(t, •) ∈ H rot (Ω) can thus be defined using Green identity:

• E = 0. It verifies ∂ t E = ∂ t E, ∇ × E(t, •) = ∇ × E(t, •) ∈ L 2 (Ω)
∀ψ ∈ H 1 (Ω) n × E(t, •), n × (ψ × n) T H -1 2 ,T H 1 2 = -n × E(t, •) × n , n × ψ T H -1 2 ,T H 1 2 = Ω ∇ × E(t, •) • ψ + Ω E(t, •) • ∇ × ψ = n × E(t, •), n × (ψ × n) T H -1 2 ,T H 1 2 + Ω ∇g • ∇ × ψ, (25) 
where

•, • T H -1 2 ,T H 1 2
stands for the duality product over T H -1 2 (∂Ω) -T H 1 2 (∂Ω). If the last term of (25) vanishes then it ensures n × E(t, •) = n × E(t, •). In the same way, we would obtain n × E(t, •) × n = n × (E(t, •) × n). Hence ( E, H) will verify (4) or [START_REF] Pinto | Gauss-compatible Galerkin schemes for time-dependent Maxwell equations[END_REF] when (E, H) does. So, last term of (25) is evaluated following the 2D case in [START_REF] Brenner | Hodge decomposition for divergence-free vector fields and two-dimensional Maxwells equations[END_REF] (lemma 2.4): we introduce the decomposition ([9] formula (3.14)) ∇θ| ∂Ω = ∇ ∂Ω θ + ∂ n θ where ∇ ∂Ω θ and ∂ n θ respectively stand for the surface gradient and the normal derivative of any function θ being H 1 in the vicinity of ∂Ω. It comes (see for instance [START_REF] Monk | Finite Element Methods for Maxwell's Equations[END_REF] remark 3.32)

Ω ∇g • ∇ × ψ = n × ψ, n × (∇g × n) T H -1 2 ,T H 1 2 = n × ψ, ∇ ∂Ω g T H -1 2 ,T H 1 2 .
According to (24), g is zero on ∂Ω, so we finally get

Ω ∇g • ∇ × ψ = 0, ∀ψ ∈ H 1 (Ω).
What we need to do to conclude the proof is demonstrate that n • E = 0. By hypothesis, for any t ≥ 0 we get n There is no parameters Φ 0 , α, β, χ = 0 with α = 0 and β = 0 defining an admissible generalization.

• E(t, •) = 0, thus n • E(t, •) = ∂ n g.
Proof. we now have to deal with (21) without assuming that either α or β are zero, which rewrites as :

     Φ χ = Φ 0 , ∇Φ 0 = 0, Φ 0 = -β α √ µ ε n • E, ∂Ω. (26) 
Equation (26) shows that Φ χ is constant (almost everywhere) in space and time on any connected component of Ω. Thus one simply needs to show that there exists solution to Maxwell's equations such that n • E is not constant on the boundary of any connected component of Ω to end the proof. To do so, we are going to adapt the demonstration of lemma 4.4.

Without loss of generality, we assume that Ω is connected. Now, we split Ω into two sets Ω 1 and Ω 2 with non-empty interiors and note Γ = ∂Ω 1 ∩ ∂Ω 2 their common boundary. Moreover, assume that Γ is lipschtizian and non-empty for the induced topology. Such configuration can be achieved for instance by choosing two distinct points a and b on ∂Ω and taking Ω 1 = B(a, |ab|/2) ∩ Ω and Ω 2 = Ω\Ω 1 , noting B(a, |ab|/2) the open ball with center a and radius half the distance between a and b. Now consider g 1 and g 2 unique solutions to

     ∆g 1 = 1/|Ω 1 |, Ω 1 , g 1 = 0, ∂Ω 1 \Γ, ∂ n g 1 = 0, Γ, and 
     ∆g 2 = -1/|Ω 2 |, Ω 2 , g 2 = 0, ∂Ω 2 \Γ, ∂ n g 2 = 0, Γ. (27) 
Combining g 1 and g 2 we define a new function g ∈ H 1 (Ω) with

g(x) := g 1 (x) if x ∈ Ω 1 , g 2 (x) if x ∈ Ω 2 .
Now, following proof of lemma 4.4, we assume that any solution ME Z/Y has constant normal electric trace and we choose of those noted E and we introduce E : (t, x) ∈ [0, T ] × Ω → E(t, x) -∇g(x) ∈ R 3 . Note that g is zero on ∂Ω, so we still get

Ω ∇g • ∇ × ψ = 0, ∀ψ ∈ H 1 (Ω) and E thus verifies ME Z/Y and E • n = E • n -∂ n g. But,
for this choice of g we now have

       ∂Ω∩Ω1 ∂ n g = ∂Ω∩Ω1 ∂ n g 1 = ∂Ω1 ∂ n g 1 - Γ ∂ n g 1 = - Ω1 ∆g 1 = -1, ∂Ω∩Ω2 ∂ n g = ∂Ω∩Ω2 ∂ n g 2 = ∂Ω2 ∂ n g 2 - Γ ∂ n g 2 = - Ω2 ∆g 2 = 1,
hence ∂ n g is not-constant, and so is E • n.

The following Theorem 4.6 states the main result of this paper and is a straifhtforward consequence of Propositions 4.2, 4.3 and 4.5.

Theorem 4.6 (Parameters providing a unique admissible generalization). The only set of parameters Φ 0 , α, β, χ = 0 providing admissible generalization in the sense of definition 4.1 are Φ 0 = 0, α = 0, β = 0, χ = 0 . More precisely, for a given problem ME Z/Y there is, for any given χ = 0 a unique extension PHM7 Z/Y formed by the augmented ME Z/Y system together with the additionnal initial and boundary conditions on Φ χ given respectively by : Φ χ (t = 0) = Φ 0 = 0, Ω, Φ χ = 0, ∂Ω.

To illustrate the meaning of previous results, we look back on the constructive example presented in section 3. One sees that:

(1) boundary condition used in (11) is an admissible generalization of that in [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF] and satisfies hypotheses of theorem 4.2, (2) thus when taking Φ χ (t = 0) = 0, it leads to A Φ pq = 0 and solutions (12) reduce to usual T M z modes (in agreement with theorem 4.2, (3) on the other hand, when Φ χ (t = 0) = 0 (12) shows existence of non-Maxwell solutions..

Conclusion

This paper proposes a definition of admissible generalizations ot solutions of Maxwell's equations ME Z/Y bounded by admittance(or impedance) boundary conditions into solutions of PHM7 Z/Y used to get a better control on divergence. The need for such a work was highlighted through a simple constructive example of solutions of PHM7 Z/Y , proving not to be valid EM fields, even while the charge conservation law is satisfied, which is both unexpected and abnormal. This problem arises from the bounded nature of the considered problems. An existence and uniqueness of admissible generalizations of a given problem ME Z/Y is given. It is obtained by adding the following : Additional Initial Condition Φ χ (t = 0) = 0, Additional Boundary Condition Φ χ = 0, ∂Ω.

Even though these conditions were already put to use for some PHM7 Z/Y , alternative non-equivalent conditions are also proposed as valid ones to perform numerical simulations. The practical interest of this work is both to gain insight on the meaning of such choices and to issue a clear warning against proceeding in a non-equivalent manner. Analytic calculus of modal solutions in rectangular wave guide surprisingly provides a pretty good example of the problematic at hand.

Definition 4 . 1 (

 41 admissible generalization). A set of parameters Φ 0 , α, β, χ = 0 define an admissible generalization if for any initial values (E 0 , H 0 ) and any (J, ρ) satisfying the charge conservation property (3), solutions (E χ , H χ , Φ χ ) of problem PHM7 Z/Y and solutions (E, H) of problem ME Z/Y verify

Proposition 4 . 2 (

 42 Admissible generalization for β = 0). If β = 0 (which implies α = 0), a set of parameters Φ 0 , α, β, χ = 0 defines an admissible generalization if and only if

  Integrating by part the first equations of (24) against test function identically equal to 1, it comes |Ω| = Ω ∆g = -∂Ω ∂ n g, thus showing that ∂ n g, and by the way n • E, can't be the zero function over ∂Ω.

Proposition 4 . 5 (

 45 No admissible generalization condition with α = 0 and β = 0).

  will respectively be refered to as bounded Maxwell's equations and noted ME Z and ME Y . We will use the generic notation ME Z/Y to denote either ME Z or ME Y . Augmented hyperbolic form of ME Z (resp. ME Y ) is obtained through the proxy variable Φ acting as a Lagrange multiplier to enforce the divergence law and allowing to cope with ∂ t ρ + ∇ • J = 0: