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Canonical Decomposition of
Dichotomous Basic Belief Assignment
Jean Dezert,1,∗Florentin Smarandache2,†
1 ONERA - The French Aerospace Lab,
Chemin de la Hunière, F-91761 Palaiseau, France.
2 Department of Mathematics,
Univ. of New Mexico, Gallup, NM, USA.

In this paper, we prove that any dichotomous basic belief assignment (BBA) m can be expressed
as the combination of two simple belief assignments mp and mc called respectively the pros and
cons BBAs thanks to the proportional conflict redistribution rule no 5 (PCR5). This decomposi-
tion always exists and is unique and we call it the canonical decomposition of the BBA m. We
also show that canonical decompositions do not exist in general if we use the conjunctive rule,
the disjunctive rule, Dempster’s rule, Dubois & Prade’s or Yager’s rules, or even the averaging
rule of combination. We give some numerical examples of canonical decompositions and discuss
of the potential interest of this canonical decomposition for applications in information fusion.

1 INTRODUCTION
The belief functions (BF) introduced by Shafer in the mid of 1970’s1 from Dempster’s
works are well known and used in the artificial intelligence community to model epis-
temic uncertainty and to reason with it for information fusion. In Dempster-Shafer the-
ory, the combination of basic belief assignments (BBAs) provided by distinct sources
of evidence is done with Dempster’s rule of combination which suffers of serious draw-
backs in high conflict situation as discussed by Zadeh16,17, but also in very low conflict
situations4. As a matter of fact many rules of combination have been proposed in the
literature2 (Vol. 2), among them the combination of two sources of evidence based on
the proportional conflict redistribution principle no5 (PCR5 rule)8 has been shown suc-
cessful in applications, and well justified theoretically. However its complexity remains
one of its limitations to prevent its use in large fusion problems.
∗email : jean.dezert@onera.fr
†email : smarand@unm.edu



In this work we show how the fusion of dichotomous BBAs could be done thanks
to their PCR5-based canonical decomposition which is always possible. Such decom-
position of dogmatic or nondogmatic BBA has never been presented in the literature
so far. Only a canonical decomposition based on conjunctive rule involving improper
BBA has been proposed by Smets in 19953 and extended later by Denœux12 to develop
the cautious rule of combination. Here the canonical decomposition we present is done
differently, and we show that any dichotomous BBA is always the result of the PCR5
fusion of a simple proper pro-evidence BBA mp with a simple proper contra-evidence
BBA mc, and we show that this decomposition is unique.

This paper is organized as follows. After a brief recall of basics of belief functions
in section 2, we present the canonical decomposition problem (CDP) in section 3 and
we show the impossibility to realize the CDP of a non dogmatic BBA with conjunctive
rule, disjunctive rule, Yager’s and Dubois & Prade rules, and even with the averaging
rule of combination. In section 4, we analyze the CDP based on Dempster’s rule of
combination and we show that it cannot be done for a dogmatic BBA. In section 5,
we prove that the canonical decomposition based on PCR5 rule always exist for all
the cases. In section 6, we present some particular decompositions of a dichotomous
BBA (including dogmatic BBA). Some numerical examples are presented in section
7, and potential interests of this PCR5-based canonical decomposition are discussed in
section 8. The last section concludes this paper and opens a challenging question for
application of this new approach.

2 BASICS OF BELIEF FUNCTIONS
Belief functions (BF) have been introduced by Shafer in1 to model epistemic uncer-
tainty. We assume that the answer1 of the problem under concern belongs to a known
(or given) finite discrete frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn}, with
n > 1, and where all elements of Θ are mutually exclusive2. The set of all subsets
of Θ (including empty set ∅ and Θ) is the power-set of Θ denoted by 2Θ. A proper
Basic Belief Assignment (BBA) associated with a given source of evidence is defined1

as a mapping m(·) : 2Θ → [0, 1] satisfying m(∅) = 0 and
∑

A∈2Θ m(A) = 1. In
some BF related frameworks, like in Smets Transferable Belief Model (TBM)3, m(∅)
is allowed to take a positive value. In this case,m(·) is said improper because it doesn’t
satisfy Shafer’s definition1. The quantity m(A) is called the mass of A committed by
the source of evidence. Belief and plausibility functions are respectively defined from
a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (1)

and
Pl(A) =

∑
B∈2Θ|A∩B 6=∅

m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

1i.e. the solution, or the decision to take.
2This is so-called Shafer’s model of FoD 2.



Bel(A) and Pl(A) are usually interpreted respectively as lower and upper bounds
of an unknown (subjective) probability measure P (A). A is called a Focal Element
(FE) of m(·) if m(A) > 0. When all focal elements are singletons then m(·) is called
a Bayesian BBA1 and its corresponding Bel(·) function is equal to Pl(·) and they are
homogeneous to a (subjective) probability measure P (·). The vacuous BBA, or VBBA
for short, representing a totally ignorant source is defined as3 mv(Θ) = 1. A dogmatic
BBA is a BBA such that m(Θ) = 0. If m(Θ) > 0 the BBA m(·) is nondogmatic.
A simple BBA is a BBA that has at most two focal sets and one of them is Θ. A
dichotomous non dogmatic mass of belief is a BBA having three focal elements A, Ā
and A ∪ Ā with A and Ā subsets of Θ.

In his Mathematical Theory of Evidence1, Shafer proposed to combine s ≥ 2 dis-
tinct sources of evidence represented by BBAs m1(.), . . . ,ms(.) over the same FoD
Θ with Dempster’s rule (i.e. the normalized conjunctive rule). The justification and
behavior of Dempster’s rule have been disputed over the years from many counter-
examples involving high and low conflicting sources (from both theoretical and practi-
cal standpoints) as reported in4–7.

Many rules of combination exist in the literature4, among them we recommend
the rule based on the proportional conflict redistribution principle no5 (PCR5 rule)8

which has been shown successful in applications and well justified theoretically. That
is why we analyze it in details for solving the BF canonical decomposition problem
(BF-CDP). PCR5 transfers the conflicting mass only to the elements involved in the
conflict and proportionally to their individual masses, so that the specificity of the
information is entirely preserved in this fusion process. (see2, Vol. 2 and Vol. 3 for full
justification and examples). The PCR5 combination of two BBAs m1 and m2 defined
on the same FoD Θ, denoted bymPCR5 = PCR5(m1,m2), is mathematically defined
as mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (3)

where all denominators in (3) are different from zero. If a denominator is zero, that
fraction is discarded. The properties of PCR5 can be found in9. Extension of PCR5 for
combining qualitative BBA’s can be found in2, Vol. 2 & 3. All propositions/sets are in
a canonical form. A variant of PCR5, called PCR6 has been proposed by Martin and
Osswald in2, Vol. 2, for combining s > 2 sources. The general formulas for PCR5 and
PCR6 rules are also given in2, Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6 lies in the way the proportional
conflict redistribution is done as soon as three (or more) sources are involved in the
fusion. From the implementation point of view, PCR6 is simpler to implement than
PCR5. For convenience, very basic (not optimized) Matlab codes of PCR5 and PCR6

3The complete ignorance is denoted Θ in Shafer’s book 1.
4see 2, Vol. 2 for a detailed list of fusion rules.



fusion rules can be found in2,10 and from the toolboxes repository on the web11. In the
sequel we work with PCR5 rule because only two BBAs are involved in the canonical
decomposition process we present.

3 THE CANONICAL DECOMPOSITION PROBLEM
We consider a dichotomous (simplest) FoD Θ made of only two exclusive elements A
and Ā, that is Θ = {A, Ā} and we consider a given proper5 BBA m(·) : 2Θ → [0, 1]
of the form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b (4)

with 0 < a < 1, 0 < b < 1 and a+ b < 1.
The conditions 0 < a < 1 and 0 < b < 1 mean that A and Ā are focal elements

of the BBA. The restriction a + b < 1 means that the BBA is nondogmatic. This
assumption of nondogmaticity of the BBA m(·) can be justified because most (if not
all) states of belief, being based on imperfect and not entirely conclusive evidence,
should be represented by nondogmatic belief functions, even if the mass m(Θ) is very
small as argued by Denœux in12 (p. 240). In fact, we can always slightly modify a
dogmatic BBAm(·) in a nondogmatic BBA by discounting it with some small discount
rate ε > 0 and letting ε tend towards 03. The case of dogmatic belief, as well as
degenerate cases with a = 0 and b = 0 will be discussed in Section 6. Note that
his assumption of nondogmaticity of the BBA m(·) is necessary for Smets canonical
decomposition3, but it is not essential for our PCR5-based canonical decomposition
because it also works with a dogmatic BBA as discussed in section 6.

The belief function canonical decomposition problem (BF-CDP) can be expressed
as follows:

Given a nondogmatic BBA m(·) as in (4) and a chosen rule of combination, find
the two following simple proper BBAs mp and mc of the form

mp(A) = x, mp(A ∪ Ā) = 1− x (5)

mc(Ā) = y, mc(A ∪ Ā) = 1− y (6)

with (x, y) ∈ [0, 1] × [0, 1], such that m = Fusion(mp,mc), for a chosen rule of
combination denoted Fusion(·, ·).

mp(·) is called the pro-BBA (or pro-evidence) of A, and mc(·) the contra-BBA (or
contra-evidence) of A. In the section 5 we prove that this decomposition is always
possible and unique and we call it the (PCR5-based) canonical decomposition of the
BBA m(·). The BBA mp(·) is interpreted as a source of evidence providing uncertain
evidence in favor of A, whereas mc(·) is interpreted as a source of evidence providing
uncertain evidence against A. The BBA m(·) can be interpreted as the result of the
PCR5 fusion of these two (pros and cons) aspects of evidence about A.

It is worth noting that this BF-CDP must not be confused with canonical decom-
position problem addressed by Smets in3 in his TBM framework, which is based on
conjunctive rule of combination and which involves, in general, improper BBAs, called
generalized simple BBA (GSBBA) in Smets terminology.

5which means that m(∅) = 0.



3.1 Impossibility of decompositions by some well-known rules
Here we analyze briefly the impossibility of a canonical decomposition for some well-
known rules of combination.

3.1.1 Conjunctive rule

We consider x > 1 and y > 1 so that the two BBAs are really informative (otherwise
they become vacuous and useless from decision-maing standpoint). In this case we
always have a conflict between mp(·) and mc(·) resulting of the conjunctive rule of
combination. That is

mconj(∅) = mp(A)mc(Ā) = x · y > 0 (7)

Hence mconj(∅) 6= 0 is incompatible with the constraint m(∅) = 0. Therefore, the
canonical decomposition of the BBA m(·) expressed as the conjunctive fusion of pros
and cons BBAsmp(·) andmc(·) is impossible to get in general6, but in the very degen-
erate cases where a = 0, or b = 0, or a = 0 and b = 0 which would involve vacuous
BBAs in the decomposition and of course will be useless.

3.1.2 Disjunctive rule

If we consider the disjunctive rule of combination of mp(·) and mc(·) we will always
obtain the vacuous BBA becausemp(A)mc(Ā),mp(A)mc(A∪Ā),mp(A∪Ā)mc(Ā)
and mp(A ∪ Ā)mc(A ∪ Ā) will all be committed to the uncertainty A ∪ Ā. There-
fore the combination result is nothing but the vacuous belief assignment mv , that is
Disj(mp,mc) = mv . In conclusion, we cannot make a decomposition of the BBA
m(·) based on the disjunctive rule in general because if m(·) is informative (e.g. not
vacuous) one always has a+ b < 1 so that m(A∪ Ā) < 1 whereas the disjunctive rule
of mp(·) and mc(·) will always provide m(A ∪ Ā) = 1.

3.1.3 Yager’s and Dubois & Prade rules

Due to the particular simple form of BBAs mp(A) and mc(·), Yager’s rule13 and
Dubois-Prade rule14 coincide. Based on these rules we are searching x and y in [0, 1]
such that

m(A) = a = x(1− y) (8)
m(Ā) = b = (1− x)y (9)

m(A ∪ Ā) = 1− a− b = (1− x)(1− y) + xy (10)

Because the third equation is dependent of the two first, we have only to solve the
following system of equations x − xy = a and y − xy = b. Assuming7 y < 1,
one gets from the first equation x = a

1−y . By replacing x by its expression in the

6that is for any a and b values of mass of focal elements A and Ā of the BBA m·).
7taking y = 1 would means that x(1− y) = 0 but m(A) = a with a 6= 0 in general, so that the choice

of y = 1 is not possible.



second equation y − xy = b we have to find y in [0, 1) such that (after basic algebraic
simplifications)

y2 + (a− b− 1)y + b = 0 (11)

This second order equation admits one or two real solutions y1 and y2 if and only if the
discriminant is null or positive respectively, that is if (a− b− 1)2 − 4b ≥ 0. However
this discriminant can become negative depending on the values of a and b. For instance,
for a = 0.4 and b = 0.5, we have (a− b− 1)2 − 4b = −0.79 which means that there
is no real solution for the equation y2 − 1.1 · y + 0.5 = 0. Therefore, in general, the
canonical decomposition of the BBA m(·) cannot be accomplished from Yager’s and
Dubois & Prade rules of combination.

3.1.4 Averaging rule

Suppose we combine mp(·) and mc(·) with the averaging rule. Then we are searching
x and y in [0, 1] such that

m(A) = a = (x+ 0)/2 (12)
m(Ā) = b = (0 + y)/2 (13)

m(A ∪ Ā) = 1− a− b = ((1− x) + (1− y))/2 (14)

This means that x = 2a and y = 2b with x and y in [0, 1]. So, if a > 0.5 or b > 0.5
the canonical decomposition is impossible to make with the averaging rule of com-
bination. Therefore, in general, the averaging rule is not able to provide a canonical
decomposition of the BBA m(·).

4 DECOMPOSITION BASED ON DEMPSTER’S RULE
Let consider a nondogmatic BBA m(A) = a, m(Ā) = b and m(A ∪ Ā) = 1 − a − b
with 0 ≤ a, b ≤ 1 and 1− a− b > 0, and let’s see if a decomposition of (·) is possible
based on Dempster’s rule of combination1. For this, we are searching x and y in [0, 1]
such that xy 6= 1 and

m(A) = a =
x(1− y)

1− xy
(15)

m(Ā) = b =
y(1− x)

1− xy
(16)

m(A ∪ Ā) = 1− a− b =
(1− x)(1− y)

1− xy
(17)

Because the third equality is redundant with the two first, we just have to solve the
system of two equations expressed as

(1− xy)a = x(1− y) (18)
(1− xy)b = y(1− x) (19)



That is, one should have

x− xy + axy = a (20)
y − xy + bxy = b (21)

with the constraints 0 < x < 1 and 0 < y < 1. So one must have

x =
a

1− y + ay
, y 6= 1

1− a
(22)

and solve the equation y − xy + bxy = b with x expressed as function of y as above.
We get the equation for a 6= 1

(a− 1)y2 + (1 + b− a)y − b = 0 (23)

whose solutions have the form

y =
−(1 + b− a)±

√
∆

2(a− 1)
(24)

where the discriminant ∆ is given by

∆ = (1 + b− a)2 − 4(1− a)b = 1 + b2 + a2 + 2b− 2a− 2ab+ 4ab− 4b

= a2 + b2 + 1− 2b+ 2ab− 2a = (a+ b− 1)2 = (1− a− b)2

One sees that ∆ is strictly positive because a+ b < 1 (m being a nondogmatic BBA).
So, there exist two real solutions y1 and y2 of (23) of the form

y1 =
−(1 + b− a) +

√
∆

2(a− 1)
=

b

1− a
(25)

y2 =
−(1 + b− a)−

√
∆

2(a− 1)
=

1− a
1− a

= 1 (26)

For the case a 6= 1, the second ”solution” y2 = 1 implies x = a
1−y2+ay2

= a
a = 1

which is not an acceptable solution8 because one must have xy 6= 1. The solution
(x, y) of the decomposition problem for a 6= 1 is actually given by the first solution y1,
that is

y = y1 =
b

1− a
∈ [0, 1) (27)

x =
a

1− y + ay
=

a

1− b
∈ [0, 1) (28)

The case a = 1 corresponding to the dogmatic BBA given by m(A) = a = 1,
m(Ā) = b = 0, m(A ∪ Ā) = 1 − a − b = 0 is analyzed in details in Section 6 - See
lemma right after Theorem 4.

8otherwise the denominators of Eqs. (15)–(17) will be equal to zero.



In summary, the unique solution of decomposition of a nondogmatic BBA with
0 < a < 1, 0 < b < 1 and a+ b < 1 using Dempster’s rule is x = a

1−b and y = b
1−a .

Example 1: Considerm(A) = a = 0.6,m(Ā) = b = 0.2 andm(A∪Ā) = 1−a−b =
0.2. The solution (x, y) of the decomposition of m(·) based on Dempster’s rule is x =
a

1−b = 0.6
1−0.2 = 0.75 and y = b

1−a = 0.2
1−0.6 = 0.5. Therefore, mp(A) = x = 0.75,

mp(A ∪ Ā) = 1 − x = 0.25 and mc(Ā) = y = 0.5, mc(A ∪ Ā) = 1 − y = 0.5. It
can be verified that mp ⊕mc = m, where ⊕ represents symbolically Dempster’s rule
of combination1.

5 DECOMPOSITION BASED ON PCR5 RULE
In this section we prove that the decomposition of a dichotomous nondogmatic BBA
m(·) based on PCR5 rule of combination is always possible and unique. Suppose we
combine mp(·) and mc(·) with the PCR5 rule of combination. Then we are searching
(x, y) ∈ [0, 1]2 satisfying

m(A) = a = x(1− y) +
x2y

x+ y
=
x2 + xy − xy2

x+ y
(29)

m(Ā) = b = (1− x)y +
xy2

x+ y
=
y2 + xy − x2y

x+ y
(30)

m(A ∪ Ā) = 1− a− b = 1− x− y + xy (31)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a+ b < 1.
The equations (29) and (30) can be rewritten as

x− xy2

x+ y
= a (32)

y − x2y

x+ y
= b (33)

from which (31) is redundant because (29) + (30) gives

x+ y − xy = a+ b (34)

Therefore (1 − x)(1 − y) = 1 − (a + b) and that is why the constraint a + b ≤ 1 is
necessary9 for the existence of the solution (x, y).

With x and y in [0, 1] the solutions of (32) and (33) verify

x ≥ a (35)
y ≥ b (36)

Moreover, the equality (34) implies

x(1− y) = a+ b− y ⇒ y ≤ a+ b (37)
y(1− x) = a+ b− x ⇒ x ≤ a+ b (38)

9In fact we use the constraint a+ b < 1 because in this section we consider only nondogmatic BBA. The
canonical decomposition of a dichotomous dogmatic BBA will be analyzed in the section 6.



For x 6= 1, from (34) one gets y = a+b−x
1−x and from (32) one has

x2 + xy − xy2 = ax+ ay (39)

Putting this expression of y in (39), yields the equation

x2 + (x− a)
a+ b− x

1− x
− x(

a+ b− x
1− x

)
2

− ax = 0 (40)

which can be expressed after elementary algebraic calculation as

x4 + (−a− 2)x3 + (2a+ b)x2 + (a+ b− ab− b2)x+ (−a2 − ab) = 0 (41)

This equation of degree 4 has at most four real solutions. We have to take only the
solution x from the open interval (0, 1) and y = (a+ b− x)/(1− x) with y ∈ [0, 1].

The general expression of the solutions of this quartic equation15 is very complicate
to obtain analytically even with modern symbolic computing systems like MapleTM, or
MathematicaTM, but the solutions can be easily calculated numerically by these com-
puting systems, and even with MatlabTMsystem (thanks to the fsolve command) as soon
as the numerical values are committed to a and to b. Another method to make the de-
composition consists to solve numerically the system of equations x2+xy−xy2

x+y = a and
y2+xy−x2y

x+y = b for numerical values committed to a and b thanks to MathematicaTM,
MapleTM, or MatlabTMcomputing systems for instance. Of course the solutions pro-
vided by the two methods are the same.

Example 2: Let consider m(A) = 0.6, m(Ā) = 0.3 and m(A ∪ Ā) = 0.1, therefore
a = 0.6 and b = 0.3. The quartic equation (41) becomes

x4 − 2.6x3 + 1.5x2 + 0.63x− 0.54 = 0 (42)

The four solutions of this quartic equation provided by the computing system10 are
approximately

x1 ≈ 0.7774780438

x2 ≈ 0.9297589637

x3 ≈ 1.419151582

x4 ≈ −0.5263885898

which are shown on the graph of figure 1 obtained easily from Desmos online tool11.
Clearly x3 and x4 are not acceptable solutions because they don’t belong to [0, 1].

If we take x1 ≈ 0.7774780438 then will get y1 = (a + b − x1)/(1 − x1) = (0.9 −
x1)/(1 − x1) ≈ 0.5506061437, so the pair (x1, y1) ∈ [0, 1]2 is a solution of the
decomposition problem of the BBA m(·). If we take x2 ≈ 0.9297589637 then will get
y2 = (a+ b−x2)/(1−x2) = (0.9−x2)/(1−x2) ≈ −0.4236692006, so we see that

10We did also obtain the same solutions with MapleTM, and also with MatlabTM.
11https://www.desmos.com/calculator



Figure 1: Plot of the quartic function.

y2 /∈ [0, 1] and therefore the pair (x2, y2) cannot be a solution of the decomposition
problem of the BBA m(·). Therefore the canonical masses mp(·) and mc(·) are given
by

mp(A) ≈ 0.7774780438, mp(A ∪ Ā) ≈ 0.2225219562

mc(Ā) ≈ 0.5506061437, mc(A ∪ Ā) ≈ 0.4493938563

It can be verified that the PCR5 combination of the BBAsmp andmc, denotedPCR5(mp,mc),
is equal to the BBA m(·). The following important theorem holds.

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with A 6= Θ and A 6= ∅ and
a nondogmatic BBA m(·) : 2Θ → [0, 1] defined on Θ by m(A) = a, m(Ā) = b,
and m(A ∪ Ā) = 1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA
m(·) has a unique canonical decomposition using PCR5 rule of combination of the
form m = PCR5(mp,mc) with pro-evidence mp(A) = x, mp(A ∪ Ā) = 1 − x and
contra-evidence mc(Ā) = y, mc(A ∪ Ā) = 1− y, where x, y ∈ [0, 1].

Proof: Based on (29)-(30), we have to prove that the following system Sa,b of equa-
tions always admits one and only one solution (x, y) ∈ [0, 1]× [0, 1]

Sa,b :

{
h(x, y) = a

h(y, x) = b
(43)

with h(x, y) = x2+xy−xy2

x+y = x − xy2

x+y . The h function can be prolonged in (0, 0) by
continuity by setting h(0, 0) = 0.

One has to prove the existence of a unique x ∈ [a, a+b] ⊂ [0, 1] and y ∈ [b, a+b] ⊂
[0, 1] solutions of Sa,b, or equivalently solutions of y = a+b−x

1−x and of (41) P (x) = 0
with

P (x) , x4 + (−a− 2)x3 + (2a+ b)x2 + (a+ b)(1− b)x− a(a+ b) (44)



Because12 lim
x→−∞

P (x) = +∞ and13 P (a) < 0, there exists x1 ∈ (−∞, a) such

that P (x1) = 0. The solution x1 is not acceptable because x1 6∈ [a, a+ b]. Because14

P (1) < 0 and lim
x→+∞

P (x) = +∞, there exists also x4 ∈ (1,+∞) such that P (x4) =

0. The solution x4 is not acceptable because x4 6∈ [a, a + b]. For a + b 6= 1, one
has15 P (a + b) > 0 and P (1) < 0. Therefore there exists x3 ∈ (a + b, 1) such
that P (x3) = 0 but this solution x3 is also not acceptable because x3 6∈ [a, a + b].
Because P (a) < 0 and P (a+ b) > 0 there exists x2 ∈ [a, a+ b] such that P (x2) = 0
which is the only satisfactory solution. The value y2 is given by y2 = a+b−x2

1−x2
, and

one has y2 > 0 because x2 < a + b and y2 < 1 because a + b < 1. Moreover,
from (33), y2 − b =

x2
2y2

x2+y2
which is always positive, therefore y2 > b, and from (34)

y2 − (a + b) = x2(y2 − 1) which is always negative, therefore y2 < a + b. This
completes the proof of the theorem 1.

6 PARTICULAR CASES OF DECOMPOSITIONS
Here we examine the canonical decomposition of particular cases, including dogmatic
BBA.

6.1 Dogmatic BBA: a+ b = 1

Theorem 2: Any dogmatic BBA defined by m(A) = a and m(Ā) = b, where a, b ∈
[0, 1] and a+ b = 1, has a canonical decomposition using PCR5 rule of combination of
the formm = PCR5(mp,mc) withmp(A) = x,mp(A∪Ā) = 1−x andmc(Ā) = y,
mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Proof: Any solution of Sa,b verifies

x− a =
xy2

x+ y
(45)

y − b =
x2y

x+ y
(46)

and therefore from (45)+(46) one has

(x− y)− (a− b) =
xy(y − x)

x+ y
(47)

which can be rewritten as

(x− y)[1 +
xy

x+ y
] = (a− b) (48)

12P (x) being polynomial, it is continuous and if P (c)P (d) < 0 there exist at least one solution between
[c, d]. Therefore, we are not sure a priori there is only one solution between [c, d]. In our case, the signs
of P (x) for x = −∞, a, a + b, 1,+∞ are respectively +,-,+,- and +. But because one has 4 intervals,
into each interval it is not possible to have more than one solution (because otherwise will get 5 or more
solutions, while this equation has only up to 4 real solutions). Therefore in each interval there exists only
one real solution.

13because P (a) = a2b− ab(a + b) = −ab2.
14because P (1) = −1 + a + b + (a + b)(1− b− a) = −(a + b− 1)2.
15because from (40), P (a+b)/(1−a−b)2 = (a+b)2−a(a+b)⇒ P (a+b) = b(a+b)(1−a−b)2 > 0.



This means that differences (x − y) and (a − b) have the same sign. Moreover from
(34) with a+ b = 1 one has x+ y−xy = 1, or equivalently (1−x)(1− y) = 0 which
is satisfied if x = 1, or if y = 1 or both equal one. We must distinguish three cases as
follows:

• If a < b then16 x < y therefore y = 1 and h(x, 1) = a. Solving h(x, 1) = a
is equivalent to solve x2 − ax− a = 0 which admits only one positive solution
x ∈ [a, a + b = 1] given by x = a+

√
a2+4a
2 . Note if a + b = 1 and a < b, then

necessarily a < 0.5.

• If a > b then x > y therefore x = 1 and h(1, y) = b. Solving h(1, y) = b
is equivalent to solve y2 − by − b = 0 which admits only one positive solution
y ∈ [b, a + b = 1] given by y = b+

√
b2+4b
2 . Note if a + b = 1 and a > b, then

necessarily b < 0.5.

• If a = b and a+ b = 1 then a = b = 0.5 and x = y = 1.

So we have proved that a decomposition based on PCR5 always exists and it is
unique also for any dogmatic dichotomous BBA. Therefore this decomposition of dog-
matic dichotomous BBA is canonical, which completes the proof of theorem 2.

Theorem 3: Any dogmatic BBA m(A) = a, m(Ā) = b with a+ b = 1 and 0 < a < 1
is not decomposable from Yager’s rule and Dubois-Prade rule of combination.

Proof: We have the following system of equations to solve

x− xy = a (49)
y − xy = b (50)

From (49) and (50), we get a − b = x − xy − (y − xy) = x − y, so y = x − a + b.
After replacing this expression of y into (49) and algebraic manipulations, we have to
solve

x2 − 2ax+ a = 0

whose solutions are of the form

x = a±
√
a(a− 1)

For 0 < a < 1 the system has no real solutions because a(a−1) < 0, which completes
the proof of Theorem 3.

Theorem 4: Any dogmatic BBA m(A) = a, m(Ā) = b with a + b = 1 is not
decomposable from Dempster’s rule of combination for the case when (a, b) 6= (1, 0)
and (a, b) 6= (0, 1).

Proof: We have the following system of equations to solve with 0 ≤ x, y ≤ 1 and
1− xy 6= 0

x− xy
1− xy

= a (51)

y − xy
1− xy

= b (52)

16because (x− y) and (a− b) have the same sign.



After adding the two equations (51) and (52) and because a + b = 1, we obtain
x−xy+y−xy

1−xy = a + b = 1, whence x + y − 2xy = 1 − xy, or x + y − xy = 1,
or x+ y(1− x) = 1, or y(1− x) = 1− x, or = 1−x

1−x = 1 when x 6= 1. From (52), one
should have y−xy

1−xy = b with y = 1, that is 1−x·1
1−x·1 = b, or 1 = b which is false because if

0 < a < 1 then b = 1− a 6= 1. This completes the proof of theorem 4.

Lemma: The dogmatic BBAsm(A) = 1,m(Ā) = 0 (case (a, b) = (1, 0)), orm(A) =
0, m(Ā) = 1 (case (a, b) = (0, 1)) have infinitely many decompositions based on
Dempster’s rule of combination.

Proof: For the case (a, b) = (1, 0) one has to solve with 0 ≤ x, y ≤ 1 and 1− xy 6= 0
the system of equations

x− xy
1− xy

= 1 and
y − xy
1− xy

= 0 (53)

This system is satisfied for x = 1 and y ∈ [0, 1), that is any value in [0, 1) can be
chosen for y.

For the case (a, b) = (0, 1) one has to solve with 0 ≤ x, y ≤ 1 and 1− xy 6= 0 the
system of equations

x− xy
1− xy

= 0 and
y − xy
1− xy

= 1 (54)

This system is satisfied for y = 1 and x ∈ [0, 1), that is any value in [0, 1) can be chosen
for x. Therefore one sees that for the case (a, b) = (1, 0) and the case (a, b) = (0, 1)
there is no unique decomposition of these BBAs from Dempster’s rule of combination,
which completes the proof of the lemma.

6.2 Case when a = 0 and b = 0 (i.e. m is the vacuous BBA)

This is the most degenerate case where the BBAm(·) corresponds to the vacuous BBA.
For averaging rule, conjunctive rule, Yager’s, Dubois-Prade’s, Dempster’s and PCR5
rules one has x = 0 and y = 0 (conflict between canonical masses is zero). In fact
the vacuous BBA m(·) can always be interpreted as the fusion of mp and mc, where
mp and mc are also vacuous BBAs. This degenerate case has no particular interest in
practice but to model the total ignorant state of knowledge.

6.3 Case when a = 0, or b = 0

In the case a = 0 and 0 < b ≤ 1, then for conjunctive rule, Yager’s, Dubois-Prade’s,
Dempster’s and PCR5 rules one has x = 0 and y = b (conflict between canonical
masses is zero) and m(·) corresponds to the fusion of vacuous pro-evidence mp = mv

with the contra-evidence mc = m. In the case 0 < a ≤ 1 and b = 0, then for
conjunctive rule, Yager’s, Dubois-Prade’s, Dempster’s and PCR5 rules one has x = a
and y = 0 (conflict between canonical masses is zero) and m(·) corresponds to the
fusion of the pro-evidence mp = m with the vacuous contra-evidence mc = mv .
These cases have no particular interest because they can be seen just as the combination
of pros (or cons) BBA with the vacuous BBA



6.4 Case when a = b ∈ (0, 0.5)

Theorem 5: In the case a = b ∈ (0, 0.5), the BBA m(A) = m(Ā) = a and m(A ∪
Ā) = 1−2a can be canonically decomposed from PCR5 rule with the BBAsmp(A) =
1 −
√

1− 2a, mp(A ∪ Ā) =
√

1− 2a and mc(Ā) = 1 −
√

1− 2a, mc(A ∪ Ā) =√
1− 2a.

Proof: From (29) and (30), one has x2+xy−xy2

x+y = a and one has also in this case
y2+xy−x2y

x+y = b = a. Therefore x2+xy−xy2 = y2+xy−x2y, or x2−xy2−y2+x2y =

0, or (x − y)(x + y + xy) = 0. x ≥ 0 and y ≥ 0 because they represent the masses.
Therefore x + y + xy ≥ 0. The sum x + y + xy = 0 if and only if x = y = 0,
but this produces the degenerate case, which is corresponding to a = b = 0 (i.e. the
vacuous BBA). Yet, in our theorem’s hypothesis we assumed a, b ∈ (0, 0.5), so a > 0,
and b > 0. Therefore x + y + xy > 0. Hence x = y. Therefore the canonical BBAs
must be of the form mp(A) = x, mp(A ∪ Ā) = 1− x and mc(Ā) = x, mc(A ∪ Ā) =

1 − x. So one must solve the equation17 x − x2 + x2

2 = m(A) = a, or equivalently
1
2x

2−x+a = 0, whose solutions are x1 = 1 +
√

1− 2a, and x2 = 1−
√

1− 2a. For
0 < a < 0.5, the solution x1 > 1 is not admissible because x1 /∈ [0, 1]. The solution
x2 is acceptable because if 0 < a < 0.5, then 0 < 2a < 1, or −1 < −1 + 2a < 0,
or (by multiplying by -1 the inequalities) 1 > 1 − 2a > 0, or 0 < 1 − 2a < 1, or√

0 <
√

1− 2a <
√

1, or 0 > −
√

1− 2a > −1, or 1 > 1 −
√

1− 2a > 0 hence
x2 ∈ (0, 1). This completes the proof of the theorem 5.

7 EXAMPLES
We give in Tables I-IX some numerical examples of PCR5-based canonical decompo-
sitions of BBA m(·) for different sampled values of a and b for convenience. These
numerical examples may be useful for researchers working with belief functions and
interested by this new type of decomposition in their own examples. The values have
been approximated at the 10th digit. Figures 2 and 3 show the shapes of the pro-
evidence x = f(a, b) and the contra-evidence y = g(a, b) surfaces proving graphically
the existence of canonical decomposition based on PCR5 at the sampling rate of 0.025.
The values (a, b) for which a + b > 1 are not acceptable and f(a, b) and g(a, b) have
been set to zero in the figures.

17In fact, we have also the second equation x − x2 + x2

2
= m(Ā) = b = a to solve which is the same

as the first one.



(a, b) x y
(0.1,0.1) 0.1055728059 0.1055728059
(0.1,0.2) 0.1155063468 0.2085867463
(0.1,0.3) 0.1283308324 0.3116654549
(0.1,0.4) 0.1445620975 0.4155040377
(0.1,0.5) 0.1653570911 0.5207531320
(0.1,0.6) 0.1926613985 0.6284087006
(0.1,0.7) 0.2298437881 0.7403124237
(0.1,0.8) 0.2834628414 0.8604398965
(0.1,0.9) 0.3701562119 1

Table I: Decomposition of BBA when m(A) = 0.1.

(a, b) x y
(0.2,0.1) 0.2085867463 0.1155063468
(0.2,0.2) 0.2254033308 0.2254033308
(0.2,0.3) 0.2477759456 0.3353044255
(0.2,0.4) 0.2763932022 0.4472135955
(0.2,0.5) 0.3133633342 0.5630877072
(0.2,0.6) 0.3628331876 0.6861104563
(0.2,0.7) 0.4339764332 0.8233289109
(0.2,0.8) 0.5582575695 1

Table II: Decomposition of BBA when m(A) = 0.2.

(a, b) x y
(0.3,0.1) 0.3116654549 0.1283308324
(0.3,0.2) 0.3353044255 0.2477759456
(0.3,0.3) 0.3675444680 0.3675444680
(0.3,0.4) 0.4098895428 0.4916206002
(0.3,0.5) 0.4669657064 0.6247896197
(0.3,0.6) 0.5506061437 0.7774780438
(0.3,0.7) 0.7178908346 1

Table III: Decomposition of BBA when m(A) = 0.3.



(a, b) x y
(0.4,0.1) 0.4155040377 0.1445620975
(0.4,0.2) 0.4472135955 0.2763932022
(0.4,0.3) 0.4916206002 0.4098895428
(0.4,0.4) 0.5527864045 0.5527864045
(0.4,0.5) 0.6442577571 0.7188975951
(0.4,0.6) 0.8633249581 1

Table IV: Decomposition of BBA when m(A) = 0.4.

(a, b) x y
(0.5,0.1) 0.5207531320 0.1653570911
(0.5,0.2) 0.5630877072 0.3133633342
(0.5,0.3) 0.6247896197 0.4669657064
(0.5,0.4) 0.7188975951 0.6442577571
(0.5,0.5) 1 1

Table V: Decomposition of BBA when m(A) = 0.5.

(a, b) x y
(0.6,0.1) 0.6284087006 0.1926613985
(0.6,0.2) 0.6861104563 0.3628331876
(0.6,0.3) 0.7774780438 0.5506061437
(0.6,0.4) 1 0.8633249581

Table VI: Decomposition of BBA when m(A) = 0.6.

(a, b) x y
(0.7,0.1) 0.7403124237 0.2298437881
(0.7,0.2) 0.8233289109 0.4339764332
(0.7,0.3) 1 0.7178908346

Table VII: Decomposition of BBA when m(A) = 0.7.

(a, b) x y
(0.8,0.1) 0.8604398965 0.2834628414
(0.8,0.2) 1 0.5582575695

Table VIII: Decomposition of BBA when m(A) = 0.8.



(a, b) x y
(0.9,0.1) 1 0.3701562119

Table IX: Decomposition of BBA when m(A) = 0.9.

Figure 2: Plot of x = f(a, b) pro-evidence surface.

Figure 3: Plot of y = g(a, b) contra-evidence surface.



8 INTEREST OF CANONICAL DECOMPOSITION
The canonical decomposition based on PCR5 offers several practical interests and ad-
vantages that are briefly listed here.

1. From the theoretical standpoint, one has proved that the canonical decomposition
based on PCR5 rule always exists in all the cases for nondogmatic or dogmatic
BBAs contrariwise to other rules of combination that only work in some restric-
tive cases. Therefore this decomposition is more general and mathematically
well justified.

2. This canonical decomposition of any dichotomous BBAm(·) into the pro-evidence
mp(·) and the contra-evidence mc(·) allows to define now the notion of internal
conflict of a (dichotomous) source of evidence, denoted Kint(m), by

Kint(m) , mp(A)mc(Ā) (55)

where mp(A) = x and mc(Ā) = y are the canonical factors of the BBA m(·)
based on PCR5 rule of combination. It is worth noting that the BBA m(·) has
no internal conflict, if and only if at least one of its factor is the vacuous belief
mass, that is if x = 0 or y = 0, or both, which makes sense. For instance
the BBA m(A) = 0.3 and m(A ∪ Ā) = 0.7 doesn’t carry internal conflict
because mp = m and mc = mv (the vacuous BBA) so that its internal conflict
Kint(m) , mp(A)mc(Ā) = 0.3 · 0 = 0. In fact in this example the BBA m(·)
carries only uncertain pro-evidence, and vacuous contra-evidence. This internal
conflict measure should contribute somehow in the definition of the information
content carried by a (dichotomous) source of evidence. This aspect however is
not detailed in this paper and is left for future research works. It is clear that the
maximum of internal conflict Kint(m) = 1 is obtained for the dogmatic BBA
m(A) = m(Ā) = 0.5 whose canonical decomposition by PCR5 is mp(A) = 1
and mc(Ā) = 1 which shows the full conflict between the pro-evidence mp(·)
and the contra-evidence mc(·) of the source. Of course, there is no internal
conflict for the vacuous BBA. More precisely, Kint(mv) = 0 because if a =
b = 0 then one has x = y = 0 calculated from PCR5-based decomposition.

3. This canonical decomposition allows also to define the notion of level of uncer-
tainty U(m) of a dichotomous source of evidence m(·) as the conjunction of the
uncertainties of pro and contra evidences, that is

U(m) , mp(A ∪ Ā)mc(A ∪ Ā)

= (1− x)(1− y) = 1− x− y + xy

= 1− x− y +Kint(m) (56)

Because of PCR5-based decomposition one gets (as already shown in (31))U(m) =
1−a− b which always belongs to [0, 1]. The formula (56) is interesting because
it clearly shows the link between the pro-evidence value x, the contra-evidence



Figure 4: Internal conflict Kint(m).

value y and the internal conflict Kint(m) = xy. Clearly, if x = 0 and y = 0,
then Kint(m) = 0 and the uncertainty is maximal (i.e. U(m) = 1) because the
dichotomous BBA m is the vacuous BBA m(A∪ Ā) = 1. It can be verified that
a dichotomous BBA m has no uncertainty (U(m) = 0) if and only if x = 1, or
y = 1, or both which means that m(·) is a Bayesian dichotomous BBA.

4. The canonical decomposition allows also to adjust/revise easily a dichotomous
source of evidence (if needed) according the knowledge one has on it. For in-
stance, suppose one knows that the source which provides the BBA m(·) usually
over estimates with a reinforcement factor of βp = 20% the belief mass commit-
ted to hypothesis A but is always fair (unbiased) when committing its mass to Ā.
Under this condition, we make the canonical decomposition ofm(·) to getmp(·)
and mc(·) and we have to discount18 the pro-evidence mp(·) with the discount-
ing rate of αp = 1/(1 + βp) to get the new unbiased BBA m′p(·) and keep the
contra-evidence mc(·) unchanged, so that the corrected (unbiased) BBA m′(·)
will be obtained by the PCR5 combination of m′p(·) with mc(·). Of course sim-
ilar principles can be applied to discount (or reinforce) mc(·) as we prefer (and
when necessary) by choosing the adequate discounting (or reinforcing) factors.

5. This canonical decomposition opens the door to new rules of combination for
the fusion of S ≥ 2 (dichotomous) distinct19 BBAs ms(·), s = 1, 2 . . . , S.
After making their canonical decompositions to get S pro-evidences mp,s =
(mp,s(A),mp,s(Ā),mp,s(A ∪ Ā)) = (xs, 0, 1 − xs) and S contra-evidences
mc,s = (mc,s(A),mc,s(Ā),mc,s(A∪ Ā)) = (0, ys, 1− ys) for s = 1, 2, . . . , S,
one can for instance combine the S informative non-conflicting pro-evidences

18We use classical Shafer’s discounting method 1.
19i.e. cognitively independent.



mp,s altogether by the conjunctive rule (or any rule one prefers) to get the com-
bined pro-evidence mp(·), and do similarly to combine altogether the non con-
flicting contra-evidences mc,s to get the combined contra-evidence mc(·). Once
mp(·) and mc(·) are calculated, we combine them with PCR5 to get the final re-
sulting BBA. Processing this way will greatly simplify the combination of many
dichotomous BBAs. Once the decomposition of each dichotomous BBA is done,
we could also consider to apply some importance discounting10 with rates βs to
combine separately the set of BBAs {mp,s, s = 1, . . . , S} and the set of BBAs
{mc,s, s = 1, . . . , S} before making their PCR5 combination.

9 CONCLUSIONS
In this work we have proved that any dichotomous basic belief assignment (nondog-
matic, or dogmatic) can be decomposed into two simpler proper belief assignments
called the pro-evidence and contra-evidence that can be combined with PCR5 rule to
retrieve the original BBA. This canonical decomposition is unique and is always possi-
ble. No simple explicit form of the expression of the solution exists but the solution can
be found quite easily with numerical solvers (MatlabTM, MapleTM, etc). We have also
shown that the decomposition of any dichotomous basic belief assignment cannot be
done in all the cases with other well-known rules of combination, which reinforce the
interest of PCR5 principle for belief function combination. This PCR5-based canonical
decomposition allows also to establish the notion of internal conflict of a dichotomous
source of evidence which could be helpful in some applications. It offers the possibility
to combine several dichotomous sources of evidence based on the fusion of their canon-
ical components. This will be presented in details in a forthcoming publication. The
open challenging question is how to extend this notion of canonical decomposition for
working with more general basic belief assignments to make their combination more
effective (if possible), and how could we define a measure of (uncertain) information
thanks to this canonical decomposition.
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