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Abstract

In this paper, we propose a new end-to-end methodology to optimize
energy performance and thermal comfort in office buildings, without any
renovation work. The process is decomposed into three steps: metamodel
training, model calibration and optimization. We introduce and train a
metamodel on thousands of weather and building settings scenarios, us-
ing samples from a physical simulation model. Its much faster computa-
tion time allows for the calibration of two weakly instrumented buildings,
through a derivative free optimization procedure. Using historic data
from these buildings, we estimate up to 60 unknown parameters defined
by energy managers, such as heat capacity, window area or exposition.
Energy consumptions are finally minimized while maintaining a target
thermal comfort using the Pareto front provided by a multi-objective op-
timization algorithm. Our approach allows the computation of the entire
calibration-optimization pipeline on several types of buildings. Moreover,
the numerical experiments illustrate how it may ensure a significant gain
in energy efficiency, up to almost 10%, while being computationally much
more appealing than simulation programs.

Index terms— Recurrent neural networks, Metamodel, Building Energy
Model, Calibration, Optimization

1 Introduction

In 2009, the building stock accounted for over 40% of the total French en-
ergy consumption, as well as almost a quarter of greenhouse emissions (Loi

∗This work was supported by grants from Région Ile-de-France
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Grenelle1). In the ecological context where energy waste cannot be ignored,
improving this energy efficiency is an important step. This translated in an
objective of 38% reduction in the consumption of the building stock for 2020,
through the renovation of 400,000 apartments per year2, raised to 500,000 six
years later3. However, despite setting higher and higher objectives, the actions
carried out to date still fall short in terms of results, as stated by the Ademe
(Agency for the environnement and energy)4. According to the National Low-
Carbon Strategy (SNBC), the average number of yearly renovations is expected
to be around 370,000 for the period 2015-20305.

The aim of this paper is to provide optimal building management settings
governing Heating, Ventilation and Air-conditioning (HVAC) in order to im-
prove thermal comfort and optimize energy consumption, without costly, inva-
sive or time consuming renovation works. Global energy demand for heating,
ventilation and air-conditioning in commercial or public buildings has been in-
creasing rapidly for the past few decades. This rising demand is at the root
of the complex problem of simultaneously maintaining a satisfactory thermal
comfort in buildings and reducing the environmental impact. This makes the
analysis of building energy performance a challenging multi-criteria problem.

The solution proposed in this paper is decomposed into three steps: (i) de-
signing a model to predict future energy loads and indoor temperature based
on the HVAC system and weather data, (ii) calibrating the unknown param-
eters of this model with real data obtained from sensors in each building and
(iii) optimizing the HVAC settings to minimize the total energy consumption
in future periods while maintaining a given thermal comfort. Step (i) can be
achieved with simulators that describe heat transfers between the building and
its environment such as EnergyPlus, TRNSYS or DOE-2. They predict the
indoor temperatures and consumptions from the description of the building,
HVAC settings and weather data. However, their accuracy relies heavily on the
precision of the building description: window to wall ratio, exposition, thermal
conductivity or heat capacity among others. Because our strategy does not
involve renovation works on the building site and use a simplified building de-
scription we usually can only provide rough estimates of these input parameters.
The calibration procedure in step (ii) aims at estimating the parameters of the
model proposed in (i) to provide accurate indoor temperatures and consump-
tions predictions. We measure the discrepancy between model predictions and
real data with a loss function that is minimized iteratively. Because this mini-
mization requires tremendous number of calls to the model designed in step (i),
the calibration step quickly becomes excessively time consuming. A very pop-
ular practice in the building optimization literature consists in using surrogate
models.

Metamodelling approaches substitute in step (i) the physical simulator with

1Loi Grenelle I, Article 3
2Loi Grenelle I, Article 5
3Loi relative à la Transition Energétique pour la Croissance Verte, Article 3
4Hervé Lefebvre, head of the Climat departiement of the Ademe, 2019
5Stratégie Nationale Bas-Carbone (SNBC)
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a much faster surrogate model to tackle calibration and optimization tasks. This
surrogate model is trained on a dataset of simulations conducted by the simula-
tor, that aims at exhaustively capturing building behaviors for various building
geometries and management settings. The most recent statistical models make
this step more and more relevant in our context, as their accuracy reaches new
heights while their execution time is constantly reduced. Yet, most approaches
only implement the most simple architectures for building optimization.

In this paper, we first propose to train a metamodel based on Recurrent
Neural Networks (RNN). We propose a comparison of several approaches which
illustrates that sequence to sequence models, such as RNN, can yield a sig-
nificant increase in performances with respect to the alternatives previously
considered in our framework. In addition, we propose to compare such RNN
to attention-based models which are the go-to architectures in other fields to
predict sequences with complex dependencies. Our metamodel, which depends
on a few physical parameters, is then calibrated using real data to provide accu-
rate predictions for various buildings. Two real buildings were used to illustrate
the flexibility of this approach. The final step of our end-to-end methodology
consists in optimizing energy consumptions, while maintaining a given level
of comfort. This multi-criteria optimization problem requires determining an
optimal compromise between consumption and comfort, as improving one ob-
jective results in degrading the other. This optimization is achieved through an
iterative algorithm, justifying our choice of replacing simulators with a faster
surrogate model. Following this methodology, we were able to train and cali-
brate our metamodel and to reduce the hourly consumption of two buildings by
5% and 10%.

2 Related works

2.1 Physical simulators

Physical simulators based on thermal propagation equations are traditionally
used to describe buildings. The most common pieces of software available, Ener-
gyPlus, TRNSYS or DOE-2, are used to simulate the system behavior based on a
schematic view of the building. EnergyPlus was used for instance in (Shabunko
et al., 2018) to build three types of typical designs and to benchmark the energy
performance of 400 residential buildings. In (Zhao et al., 2016), the authors pro-
posed a predictive control framework based on Matlab and EnergyPlus in order
to optimize energy consumptions while meeting the individual thermal comfort
preference. In (Magnier and Haghighat, 2010), the authors highlighted the per-
formances of TRNSYS as a physical simulator, as well as its limits in terms
of computational speed: the authors claimed that a full optimization process
would take as much as ten years, had they not replaced TRNSYS with a surro-
gate model during optimization. The authors of (Bre et al., 2016) studied the
optimization of a single-family house using a combination of Energy-Plus and
the NSGA-II optimization algorithm, and discussed sensitivity analysis using
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the Morris screening method. Likewise, the authors of (Recht et al., 2014) per-
formed sensitivity and uncertainty analysis on another building simulator known
as COMFIE, and displayed its modelling performances on a passive building.

These papers demonstrate the capability of such approaches to optimize en-
ergy loads, given a building simulator. However, because they require numerous
calls to the physical simulation function, they are very computationally inten-
sive. Additionally, they do not leverage any data generated by a real building.

2.2 Metamodels

The building optimization literature has seen an increasing number of surrogate
approaches, as recent sophisticated statistical models provide appealing solu-
tions to be used in this context. In (Bre et al., 2020; Reynolds et al., 2018),
statistical models were trained on a dataset sampled from EnergyPlus, allowing
significant computational savings during optimization. In (Bre et al., 2020),
the authors proposed to combine NSGA-II with an artificial neural network
metamodel, here a Feed Forward Network (FFN), in order to optimize the con-
sumption of a 83 m2 house. Optimization was also conducted with the original
building simulator, EnergyPlus, in order to compare both results and ensure
that the FFN could be used as a substitute during optimization. Similarly,
(Reynolds et al., 2018) proposed a FFN based meta modelling approach to re-
duce up to 25% the energy consumption in a small office building. EnergyPlus
was used to sample a dataset for various zones of the building. The metamodel
was tested using a 4-week long EnergyPlus simulation with variable set point
temperatures and using an alternative weather file. An example of recurrent
neural architecture as a surrogate model can be found in (Ohta et al., 2020),
where the authors focused on an air-conditioning optimization problem using
time series.

If these articles justify the use of metamodels, the question of which type of
model to choose remains. In an in-depth review, (Roman et al., 2020) compares
standard statistical models, such as polynomial regression, multivariate adap-
tive regression splines, Gaussian processes or Decision Trees, in the context
of building performance simulation. Artificial Neural Networks models stand
out as a particularly relevant alternative, but are often presented in their most
simple, time independent form, such as the FFN used in (Bre et al., 2020). Al-
though they may yield accurate predictions in some frameworks, these neural
networks handle every time step independently, and are thus not adapted to
time series problems. They are usually substituted for their sequential coun-
terparts, such as recurrent or convolutional based approaches, as demonstrated
by the authors of (Sendra-Arranz and Gutiérrez, 2020). In their paper, they
explored various architectures of Long Short Term Memory models, in order to
predict HVAC consumption in buildings. Therefore, designing metamodels for
building calibration and optimization is likely to benefit from such recurrent
and attention-based models.

Recurrent Neural Network (RNN) were first introduced as a more suited
architecture for dealing with time varying input patterns (Mozer, 1989). By
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replacing buffer based approaches with an updated context state, RNN are able
to solve time series problems with short time dependencies, but are lackluster in
problems requiring long term memory due to vanishing and exploding gradient
(Bengio et al., 1994). The Long Short Term Memory (LSTM) model proposed
in (Hochreiter and Schmidhuber, 1997) aims at bridging that gap by enforcing
error flow throughout time in the network. The LSTM architecture was modified
in (Cho et al., 2014) in order to simplify its implementation and improve com-
putation times, resulting in a novel model called Gated Recurrent Unit (GRU).
In parallel to these advances on recurrent architectures, Convolutional Neural
Networks (CNN), rendered popular by (Krizhevsky et al., 2012) for image clas-
sification, have been adapted to time series problem. The approaches proposed
in (Józefowicz et al., 2016; Kim et al., 2016) outperformed traditional Natural
Language Processing (NLP) models by replacing the embedding layer with a
character-level convolutional layer.

Recurrent and convolutional approaches coincide in that temporally close
time steps data are matched together. In 2017, (Vaswani et al., 2017) proposed
an attention based approach to solve NLP tasks that consider the entire in-
put sequence in parallel. The Transformer model is based on a self-attention
mechanism, that computes an attention value for every element of a sequence
with respect to all others to model their dependency. This attention mechanism
allows to understand at each time step which input elements are crucial to pre-
dict the new state. This makes these networks more interpretable than their
most widely-used recurrent counterparts such as LSTM or GRU networks and
motivates a keen interest for such approaches to predict complex time series.

2.3 Calibration

Sampling inside temperatures and consumptions requires many unknown phys-
ical parameters. Instead of costly campaigns to measure these parameters, that
would have to be reiterated for each new building, they may be estimated using
an automatic calibration procedure by minimizing a cost function which as-
sociates, with each set of parameters, the discrepancy between the simulations
and the true consumptions and temperatures, see (Coakley et al., 2014; Le Corff
et al., 2018). As shown in (Nagpal et al., 2019), calibration yields sufficiently ac-
curate results for a variety of different buildings. This ensures limited additional
costs to fit a trained metamodel to new buildings. In many related works, this
problem cannot be solved since no real data are used in the calibration step, see
(Bre et al., 2020; Reynolds et al., 2018), i.e. the calibration is performed based
only on simulated data. Optimization is thus conducted without justifying that
the theoretical energy savings could be applied to any real building.

The calibration task revolves around a non differentiable optimization prob-
lem, which is often tackled by using genetic optimization methods. In (Aird
et al., 2016), the authors demonstrate the use of the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) to select a set of estimated parameters that
jointly minimize the coefficient of variation of the root mean square error, and
the normalized mean bias error. All criteria can instead be combined in a single
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calibration error, in order to turn to single objective differentiation free algo-
rithms that offer a single best candidate, avoiding the need for further selection
processes. In (Le Corff et al., 2018), the CMA-ES algorithm introduced in (Igel
et al., 2007) was used to minimize a combination of heating and cooling errors.

2.4 Our approach

In this paper, we propose an end-to-end methodology, from dataset sampling
to metamodel calibration and optimization using data obtained from wireless
sensors set in large buildings. We introduce a new metamodel to predict building
behaviors after a comprehensive study of several approaches from traditional
RNN to a model based on a Transformer architecture (Vaswani et al., 2017).
The performance of this metamodel are compared both in terms of accuracy
and computational efficiency with TRNSYS.

Once the metamodel is trained using a dataset built using TRNSYS, all
the parameters of real buildings and of their Building Management System
(BMS) are estimated using real measurements with the CMA-ES algorithm. A
multi-objective methodology to improve energy efficiency and maintain thermal
comfort is then implemented by acting only on the BMS. The NSGA-II approach
is used to obtain a Pareto front, i.e. a set of optimal compromises between
consumption and comfort, whereby improving one criteria leads to necessarily
degrading the other. Our methodology is summarized in a flowchart in the
appendix, see Figure 9.

The paper is organized as follows: Section 3 provides all the deep learning
architectures used in this paper to build a metamodel. It also describes the data
and variables used in our metamodel. Section 4 illustrates the performance of
our metamodel in the calibration and optimization processes for two real build-
ings. The numerical experiments illustrate how the same metamodel ensures
a significant gain in energy in various settings in comparison to the considered
alternatives.

3 Meta modelling

3.1 Notations

Let (Yk)k≥0 be a multivariate variable describing the state of the building at
each hour, denoted by the index k. Based on the modeling of an equivalent
building by energy managers, this variable contains 8 time series, such as inside
temperatures, heating, cooling and ventilation consumptions, see Table 7 for a
detailed list. The aim of the metamodel introduced in this paper is to provide
a numerically efficient solution to predict (Yk)k≥0 from several sets of input
variables.

Input time series are divided in two variables: (ϕk, ψk)k≥0. The input ϕk
contains weather data at time k, such as outdoor temperature, relative humid-
ity or irradiance values, see Table 6; ψk stores the information relative to the
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building usage: activation hours of the AC and ventilation systems, comfort
and reduced temperatures (thermal objectives when the building is occupied or
empty), see Table 5. The parameter λ represents all unknown parameters re-
garding the geometrical description of the buildings (windows area ratio, etc.),
as well as parameters related to heat transfer (heat capacity, infiltration rate,
etc.), and occupation schedules, see Table 4. We assume in this study that this
parameter set does not evolve with time.

In this section, we describe how a simulator may be used to train the meta-
model which aims at mimicking its outputs for various choices of λ, (ψk)k≥0,
and of meteorological data (ϕk)k≥0.

3.2 Proposed benchmarks

In most recent works, a great deal of research activities focused on FFN as
surrogate models, see (Bre et al., 2020; Magnier and Haghighat, 2010; Reynolds
et al., 2018). Although they may lead to interesting performance during the
training phase, these fully connected architectures are not well suited for time
series prediction, in particular for long time spans. We ceased this opportunity
to explore other approaches that have proven to be more relevant for solving
time series tasks in the past few years. Therefore, we decided to evaluate the
go-to architectures for time series: a bidirectional LSTM, a bidirectional GRU
(BiGRU), a hybrid model mixing both convolutional and GRU layers (ConvGru)
and a Feed Forward Network (FFN) as used in previous works. In addition to
those models, a Transformer model, which introduces an attention mechanism
to model dependencies, is also considered. These models have been implemented
using the deep learning framework PyTorch.

3.3 Our proposed metamodel

Our metamodel is a function fθ : (hk−1, uk) 7→ yk with parameters θ that maps,
at each time step k, the building state uk ≡ (ϕk, ψk, λ) and a hidden state
hk−1 depending on the past values (u1, . . . , uk−1), to a prediction of its indoor
temperature and consumptions yk. The model is trained to produce accurate
predictions by tuning its parameters θ, usually referred to as weights, through
an iterative back propagation algorithm, where predictions yk are compared to
the ground truth Yk.

We use as a backbone a many to many RNN architecture, and denote by
h`k and x`k the hidden state and input of layer 1 ≤ ` ≤ L at time step k, in
particular x0k ≡ uk. The hidden state is traditionally initialized as the zero
vector, h`0 ≡ 0 for all 1 ≤ ` ≤ L.

In the original and most simple definition of a RNN, the hidden state is
computed recursively as h`k = tanh(W `

ihx
`
k + W `

hhh
`
k−1 + b`h), where Wih, Whh

and bh are the weight matrices and bias learned during training, and initialized
with random values. Our metamodel is based on a LSTM architecture and
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replaces the update of the hidden state by the following state equations:

Γ`i = σ(W `
xix

`
k +W `

hih
`
k−1 + b`i) ,

Γ`f = σ(W `
xfx

`
k +W `

hfh
`
k−1 + b`f ) ,

Γ`o = σ(W `
xox

`
k +W `

hoh
`
k−1 + b`o) ,

c̃k = tanh(W `
xcx

`
k +W `

hch
`
k−1 + b`c) ,

c`k = Γ`f ∗ c`k−1 + Γ`i ∗ c̃k .
h`k = Γ`o ∗ tanh c`k .

An additional fully connected layer is added on top of the RNN architecture,
following results presented in (Sendra-Arranz and Gutiérrez, 2020):

yk = σ(Wyh
L
k + by) ,

where σ is the sigmoid activation function σ : x 7→ (1+e−x)−1. The architecture
is represented in Figure 1. The parameters to be estimated during the training
phase of the metamodel are

θ =
{(
W `
xi,W

`
hi,W

`
xf ,W

`
hf ,W

`
xo,W

`
ho,W

`
xc,W

`
hc,Wy, b

`
i , b

`
f , b

`
o, b

`
c, by

)
1≤`≤L

}
.

Figure 1: Our metamodel architecture (left), and a detailed LSTM cell (right).
The LSTM cell improves on the classic RNN by introducing a cell state ct
supposed to carry long term memory, without additional alterations, throughout
the sequence. The three input gate Γi, forward gate Γf and output gate Γo
determine whether information in both hidden state hk and cell state ck should
be carried away or discarded.

3.4 Dataset sampling

The training dataset is sampled by exploring the input space of the simulator.
We chose TRNSYS in this paper but any simulator can be used to train the
metamodel.
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We define ranges for each input variable in λ and (ψk)k≥0 with the help of
energy managers, such as highest and lowest scheduled temperature, or the most
early and late hour of arrival of occupants, see the appendices for a complete
list of these ranges. Because our dataset aims at capturing multiple buildings,
these ranges are not centered around a specific set of variables, but rather cover
all possible values across our cluster of buildings. In addition, real weather
data (ϕk)k≥0 acquired between June and August 2020 around the Parisian area
where used to obtain a dataset consistent with the real buildings.

In our numerical experiments, we chose a uniform sampling method over the
ranges for each building and weather variable. This allows us to easily split the
dataset uniformly into training and testing sets, which is crucial to validate the
metamodel.

The input vector uk contains 27 variables at each time step: 8 variables
from λ, 7 from ϕk and 12 from ψk. A total of 15,000 training examples were
sampled, an example being a month i.e. 672 hours. During the training phase,
the parameters of each metamodel described in Section 3, and called θ in the
detailed case of the RNN approach, are estimated based on this dataset. The
metamodels compared in this section are defined with a latent dimension of
demb = 64 and a total of L = 4 layers. Hyper parameters, such as learning rate,
dropout, number of epochs or batch size, were chosen empirically by interpreting
the cost history of the model during the training, and the learning curve.

3.5 Training

During training, for each example, we compute the Mean Squared Error (MSE)
loss, and combine consumption and temperature errors:

MSET =

∑M
k=1(Tk − T̂k)2∑M
k=1(Tk − T )2

and MSEQ =

∑M
k=1(Qk − Q̂k)2∑M
k=1(Qk −Q)2

T =
1

M

M∑
k=1

Tk and Q =
1

M

M∑
k=1

Qk

loss = βMSET + (1− β)MSEQ ,

where M is the number of data in each example, Tk and Qk are the ground
truth at time k, and T̂k and Q̂k are the predictions given by the metamodel
with the current value θ of the metamodel for temperature and total consump-
tion respectively. In the experiments below, as the inside temperatures and
all consumptions are normalized, we chose the non informative value β = 0.5.
We chose the Adam optimizer (Kingma and Ba, 2015) and all simulations were
computed on a single 1080TI GPU card.

3.6 Validation

Validation is essential to identify any potential overfit of the model on the train-
ing dataset. In this study, we implement a traditional cross-validation, whereby
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Table 1: Metrics (means and standard deviations) of the metamodels on the val-
idation splits. The best mean values are displayed in bold (the lowest losses and
mean squared errors). Time is the computation time to run a single simulation
through the network, and was estimated by averaging 100 inferences. Our se-
lected architecture is detailed in Section 3.3, and achieves the best performances
on all metrics, while still being on par with most models in computation time.

BiGRU Transformer Ours ConvGru FFN
Loss (×10−4) 2.05 (1.61) 2.72 (2.88) 1.65 (1.47) 2.26 (2.04) 90.5 (41.1)
MSET (×10−5) 1.00 (1.53) 1.49 (2.75) 0.820 (1.44) 1.20 (2.05) 39.5 (39.7)
MSEQ (×10−4) 3.84 (2.05) 4.12 (3.01) 2.75 (1.72) 3.53 (1.77) 172 (60.2)
MSEocc

T (×10−5) 4.60 (7.16) 6.56 (12.2) 3.79 (6.81) 5.89 (9.91) 176 (189)
MSEocc

Q (×10−4) 1.45 (1.00) 2.07 (1.80) 1.22 (0.878) 1.85 (1.23) 113 (50.8)

∆QTot (×10−3) 4.03 (11.7) 20.1(12.4) 2.46 (12.0) 14.9 (16.2) 1.82 (68.8)
Time (×10−2s) 6.46 4.52 6.51 6.77 0.341

the dataset is split into k folds, and the model is trained on the k − 1 first
folds and evaluated on the last. We average this validation score by iteratively
changing the validation fold, as detailed by the authors of (Seyedzadeh et al.,
2020), with k = 5. This method ensures that our model is always evaluated
on unseen data, which demonstrates is generalization capability and avoids any
potential bias of the validation split. Table 1 displays the mean values and
standard deviations of the loss function of this cross validation at the end of
the training procedure. The table also displays the mean squared error MSET

(resp. MSEQ) on the temperatures (resp. consumptions) only, as well as these
same metrics computed only during occupation time: MSEocc

T and MSEocc
Q . For

a global consumption evaluation, we compute the absolute relative error on the
cumulative consumptions ∆QTot .

4 Energy Optimization in real buildings

The experiments conducted in our paper to analyze the performance of the
trained metamodel focused on the optimization of two buildings in the Parisian
region. Each one is represented by a single thermal zone.

• Stanley is a 18, 512m2 building. It is delimited by four vertical walls of
dimension 2, 314m2, 1, 917m2, 2, 123m2 and 1, 725m2, as well as a roof
and ground of dimension 2, 304m2. The main insulator is a 10 cm layer
of polystyrene. It was built in 1983.

• Livingstone is a 13, 594m2 building, including 4 vertical walls with respec-
tive areas 1, 678m2, 1, 274m2, 1, 281m2 and 1, 252m2, a horizontal roof
and a horizontal ground of dimension 4, 653m2 and 4, 286m2. The main
insulator is a 8 cm layer of polyurethane. It was built in 2006.

Based on a commonly used rule, it is assumed that 2/3 of the full area is
occupied by people. Assuming that each occupant requires 12m2, this allows to
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set the initial values for the number of occupants and the number of PCs (set
to 1.2 times this value) in the building during occupancy hours. These values
are assumed to be known and fixed and used to sample the training dataset.

4.1 Calibration

During the training phase, metamodel parameters are estimated by minimizing
the loss function on the simulated dataset which corresponds to various config-
urations associated with choices of λ and (ψk, ϕk)k≥0. Because this dataset is
sampled from a simulation model, we trained the metamodel ignoring real build-
ing related noise and measurement errors. Additionally, both the BEM and our
metamodel require λ that cannot be properly identified for each building es-
pecially without renovation work. By comparing the metamodel predictions to
real historic data during the calibration phase, we search for a set of building
related parameters that best match reality. During this step, the weights θ of
the metamodel are frozen, meaning that we no longer update each weight matrix
of the neural network.

We can compute, for each given set of input parameters λ and (ψk, ϕk)k≥0,
the difference between estimated and real historical data. Goodness of fit of the
model is measured with a normalized Mean Square Error denoted ∆calib defined
in (2), following the performance evaluation criteria in (Ajib, 2018). Because
this is a non differentiable problem, the cost function cannot be minimized using
a stochastic gradient descent algorithm as in the training step; instead we use the
CMA-ES algorithm (Hansen et al., 2003), an evolutionary algorithm designed
to solve constrained non-convex optimisation problems. In our experiments,
the variables we adjust for fitting are constrained by the same ranges defined in
the data sampling section. The algorithm is implemented by the author of the
paper in the pycma library6.

Following traditional methodology in building calibration, we measure the
performances of the calibrated model with the Mean Bias Error (MBE) and Co-
efficient of variation of the Root Mean Square Error (Cv(RMSE)) criteria. For
any sequence (zk)1≤k≤M associated with predictions (ẑk)1≤k≤M , these quanti-
ties are defined as follows:

MBE(%) = 100

∑M
k=1 (zk − ẑk)∑M

k=1 zk
, Cv(RMSE)(%) = 100

RMSE

z
, (1)

RMSE =

(∑M
k=1 (zk − ẑk)2

M

)1/2

, z =
1

M

M∑
k=1

zk

∆calib =

∑M
k=1(zk − ẑk)2∑M
k=1(zk − z)2

(2)

where M is the number of data in each example. In a detailed review of cali-
bration methods, the authors of (Fabrizio and Monetti, 2015) have gathered the

6https://github.com/CMA-ES/pycma
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international recommended ranges regarding these criteria, when validating a
calibrated model. Regardless of the simulation program, the Cv(RMSE) should
fall within ±20%, and the MBE± 5% when considering hourly calibrations. As
shown in Table 2, our results for both consumptions and indoor temperatures
calibration are well within these guidelines.

Calibration was run for both the metamodel and the original BEM (TRN-
SYS) for a maximum of 3 hours. As shown in Table 2, we can achieve satisfac-
tory results for Stanley in this timespan, as both model converge to close values
for both the Cv(RMSE) and MBE. Figure 3 displays both models calibration
results, compared to real data. On the other hand, TRNSYS calibration of
Livingstone is sensibly below the results obtained with the metamodel, as cali-
bration did not converge in the available time, see Figure 2. The calibration of
the metamodel reached convergence but with a tremendous number of epochs,
that would have required to run TRNSYS for about 10 hours in order to get
similar performances. As a comparison, we calibrated the metamodel for the
same number of epochs as TRNSYS, and obtained similar results. This experi-
ment comforts the idea that TRNSYS and the metamodel behave similarly after
the calibration step, but the much shorter computation time of the metamodel
allows us to better calibrate complex buildings, such as Livingstone. See Figure
4 for a visualization of the TRNSYS and metamodel calibration after one hour.

Table 2: Calibration metrics for Stanley and Livingstone buildings, see 1. Con-
vergence is reached for Stanley after 300 iterations, which is not enough for
Livingstone, as displayed in Figure 2. This table demonstrates that the meta-
model and TRNSYS perform similarly when calibrated for the same number
of iterations, although the metamodel is much faster. Additionally, only the
metamodel is able to reach convergence for Livingstone in a reasonable time
frame.

MBEQ Cv(RMSE)Q MBET Cv(RMSE)T Iterations Computational time
Stanley

Metamodel -0.627 11.0 0.134 1.20 300 2mn
TRNSYS -0.409 12.1 -0.264 1.24 300 3h

Livingstone
Metamodel -0.690 14.2 -0.0551 1.29 10000 1h
Metamodel -0.574 14.2 -0.413 1.95 300 2mn
TRNSYS -1.08 15.8 0.156 1.96 300 3h

Validation The metamodel will assist the decision process for building man-
agement by simulating thermal behavior of future weeks. Because the cali-
bration process requires real data, the metamodel is calibrated on several past
weeks, in order to capture the real building behavior in a situation as close as
possible to the future period we aim to match.

We validate the calibration phase using two successive weeks, by applying
the calibrated settings to the two following weeks, with fresh weather data, and
compare the results to the true observed values. The results are displayed in
Figure 5 and display encouraging results, as the simulation of the metamodel
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Figure 2: Calibration cost evolution for the metamodel and TRNSYS (∆calib,
see 2), on Livingstone and Stanley. Both models were calibrated for 300 epochs,
which is enough to reach convergence for Stanley, but not Livingstone.

Figure 3: Consumption and temperature simulations after calibration, for both
the metamodel and TRNSYS, for Stanley.
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Figure 4: Consumption and temperature simulations after calibration, for both
the metamodel and TRNSYS, for Livingstone.

on the two unseen weeks is able to match most trends is both consumption and
indoor temperature.

4.2 Optimization

After a successful calibration, the metamodel is supposed to have correctly es-
timated building parameters λ, enabling it to accurately reproduce the thermal
exchanges of the real building, as confirmed by the validation step.

The parameters ψk associated with the HVAC system can then be opti-
mized for a given set of weather data ϕk. The optimization tasks consists in
finding a set a usage related parameters that reduce consumption while keeping
the same level of comfort. Optimizing energy consumption requires minimizing
two conflicting objectives, making it impossible to find a solution that optimize
both objectives simultaneously. Instead, we search for optimal compromises
between energy consumption and comfort, and plot each proposition to form
a Pareto front, see Figure 6. Combinations of energy consumption and com-
fort are unreachable below the Pareto front, and suboptimal above; we always
aim at sampling points at the intersection. Indeed, for any such optimal com-
promise, we can always get a higher level of comfort, for the price of a higher
consumption. The consumption criteria is the energy load during the month; the
comfort criteria is the gap between indoor temperature and a constant reference

14



Figure 5: Consumption and temperature simulations after calibration on two
weeks (top), simulation on the two following weeks for the same parameters
(bottom), for Stanley. Although curves for the validation weeks are not matched
perfectly, the metamodel is able to capture most trends of both consumption and
indoor temperature. The remaining difference can be explained by the absence
of real building usage settings ψ for the calibration week. This experiment
comforts our assumption that the calibration step leads to a correct estimation
of building parameters λ.
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temperature T ∗:

Comf =
1

NOcc

(
NOcc∑
k=1

1k∈Occ(T̂k − T ∗)2
)1/2

and Q̄ =
1

N

N∑
k=1

Q̂k ,

where T ∗ = 22.5◦C, Nopt is the number of hours to be considered in the opti-
mization process and Occ is a subset of daytime hours specifying at which hours
the target temperature has to be reached in the building. Following recent works
in building energy optimization, we search for a set of optimal parameters using
NSGA-II, see (Deb et al., 2000), another evolutionary algorithm, but adapted
to multi objective problems. An implementation can be found in the Pygmo7

library. In the absence of a stopping condition, we simply run the optimization
for 3000 iterations (2 hours). Results can be viewed as a Pareto front which is
given in Figure 6 for the second month used in the calibration process. As ob-
served during calibration, this process can take a colossal number of iterations
before achieving satisfactory results, once again justifying the use of a much
faster metamodel. The predicted time series associated with the BMS parame-
ters selected in Figure 6 are given in Figure 7. The relative gain, as well as the
expected energy savings for both building are available in Table 3.

Table 3: Energy gain after optimization. Relative gain represents the energy
load reduction between calibration and optimization steps, when maintaining
the initial level of comfort. We then apply this coefficient to the real monthly
consumption to obtain the reduction forecast in MWh. We also provide a more
interesting reduction obtained by reducing the comfort criteria by 0.5◦C.

relative gain (%) prevision (MWh) relative gain / 0.5◦C (%) prevision / 0.5◦ C (MWh)
Stanley 5.32 8.05 10.5 15.9

Livingstone 9.92 9.96 17.3 17.3

5 Conclusion

Optimizing building energy consumption is a challenging task which requires
carefully integrated sensors to solve a multi-objective problem based on com-
putationally very intensive calibration and optimization procedures. For this
reason, most related works focus on a single aspect of the problem. In this
paper, we proposed an end-to-end meta modelling methodology to tackle this
problem in weakly instrumented buildings, with a small computational budget.

Our methodology relies on samples from a simulation program, such as TRN-
SYS, wherein building behavior can be approximated by an equivalent model
defined by energy managers. We experimented with various deep learning ar-
chitectures to substitute the physical simulator, such as RNN and Transformer,
and report sensible improvements over models described in the literature. Addi-
tionally, because these models allow the computation of multiple simulations in

7https://esa.github.io/pygmo2/
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Figure 6: Pareto front after optimization for the Stanley (left) and Livingstone
(right) building. We select the point of closest equivalent comfort, corresponding
to a 5.3% (Stanley) and 9.9% (Livingstone) reduction in consumption. Combi-
nations of energy consumption and comfort are unreachable below the Pareto
front, and suboptimal above; we always aim at sampling points at the intersec-
tion.
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Figure 7: Consumption and temperature simulations after optimization (meta-
model) for the Stanley building.

parallel, we were able to significantly cut the computation time of the calibration
and optimization steps, by a factor of over 70.

We implemented a calibration step in order to estimate specific features of
a building, such as heat capacity, window to wall ratio, or air infiltration rates.
Although the metamodel approximates a simplified equivalent model, we suc-
cessfully calibrated two real buildings based on data gathered from only a few
sensors. Convergence was reached for the first building after 300 iterations, and
displayed encouraging results when we applied estimated parameters to predict
fresh data from unseen weeks. Here, we demonstrated that calibration with
TRNSYS achieved similar results, although requiring a much longer computa-
tion time. On the second building, it took about 10, 000 iterations before the
metamodel reached convergence, which would have represented 100 computa-
tion days with TRNSYS. This experiment showed that by reducing computation
time, the metamodel is able to calibrate buildings which would have been impos-
sible for physical simulators. We believe that the greater difficulty to calibrate
some buildings can be explained by less informative data due to noisy sensors,
change in the building’s usage during the experiment, etc.

Lastly, we were able to reduce energy consumption while preserving the same
level of comfort in the building. We explored the space of possible usage settings
and reached a family of solutions offering equivalent compromises of both ob-
jectives. For the solution providing the closest level of comfort as the historical
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data, we obtained a consumption reduced by 5% and 10%. By depreciating the
comfort objective of 0.5◦C, we were able to further reduce consumption by up
to 17%.

Our study highlights the potential for hourly optimization of multiple build-
ings, from a single metamodel training. Future works could focus on exploring
a wider variety of buildings, to assess the reach of adaptability and applicabil-
ity of such a metamodel. Because the training dataset was sampled based on
a simplified equivalent model, calibration performances may drop when facing
more complex buildings. An open question is the design of an automatic clus-
tering procedure of many buildings from the equivalent description provided by
energy managers. Such unsupervised clustering would allow the design of few
metamodels trained only once and specifically built to target all buildings in
each cluster.

Integration of a metamodel in the end-to-end pipeline could also open the
way for improving calibration performances. Indeed, we believe that one of the
main obstacles in calibrating lies in the observation noise of sensors data. While
physical simulators can only simulate well defined thermal diffusion equations,
we can modify our metamodel to take into account this inherent noise. We
believe that this leads the way to interesting future research works for instance
on the development on new finetuning procedures. Here, real data obtained
in a building would be used to update the weights of the metamodel in order
to capture specific behaviors that are not described by the physical simulator.
Such approaches could benefit from statistical models such as general state space
models to capture the complex statistical structure of the observations.
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A Additional illustrations

Figure 8: Indoor temperature and consumption for Real data, Calibration and
Optimization for Livingstone.
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Figure 9: A flowchart summarizing our end-to-end methodology.
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B Ranges used to train the metamodel

Variable Minimum Maximum Step
airchange infiltration vol per h (m3h−1) 0.1 0.5 0.1

capacitance kJ perdegreK perm3 (kJK−1m−3) 50 300 10
power VCV kW heat (kW) 0 1000 100
power VCV kW clim (kW) 0 1000 100

nb occupants 1000 2000 200
nb PCs 1000 2000 200

percent light night 0 70 10
percent PCs night 0 70 10

facade 1 thickness 2 (m) 0.05 0.15 0.05
facade 2 thickness 2 (m) 0.05 0.15 0.05
facade 3 thickness 2 (m) 0.05 0.15 0.05
facade 4 thickness 2 (m) 0.05 0.15 0.05
roof 1 thickness 3 (m) 0.05 0.15 0.05

facade 1 window area percent 40 50 5
facade 2 window area percent 40 50 5
facade 3 window area percent 40 50 5
facade 4 window area percent 40 50 5
start occupation monday (h) 7 9 1
start occupation tuesday (h) 7 9 1

start occupation wednesday (h) 7 9 1
start occupation thursday (h) 7 9 1

start occupation friday (h) 7 9 1
end occupation monday (h) 17 20 1
end occupation tuesday (h) 17 20 1

end occupation wednesday (h) 17 20 1
end occupation thursday (h) 17 20 1

end occupation friday (h) 17 20 1

Table 4: List of parameters contained in λ, along with sampling and calibration
ranges. During training of the metamodel, occupation values are converted in
a one dimensional time serie, with value 0 or 1 based on the occupation state
of the building.
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Variable Minimum Maximum Step
start clim day (h) 7 9 1
end clim day (h) 18 20 1

t clim red day (◦C) 24 30 0.5
t clim conf day (◦C) 20 24 0.5
start heat day (h) 6 8 1
end heat day (h) 17 19 1

t heat red day (◦C) 17 22 0.5
t heat conf day (◦C) 22 24 0.5

start ventilation day (h) 7 9 1
end ventilation day (h) 18 20 1
t ventilation day (◦C) 18 26 0.5

vol ventilation day 0.7 1.7 0.3

Table 5: List of variables contained in ψk, along with their ranges. Each pa-
rameter can hold a different value for each day of the week. For ease of reading,
we replaced them by a single line, as the ranges are the same for every day.

Variable Description
DNI Direct Normal Irradiance

IBEAM H Direct Horizontal Irradiance
IBEAM N Direct Normal Irradiance
IDIFF H Diffuse Horizontal Irradiance
IGLOB H Global Horizontal Irradiance

RHUM Outdoor Relative Humidity
TAMB Outdoor temperature

Table 6: Weather data as contained in ϕk.

Variable Description
Q AC OFFICE AC consumption

Q HEAT OFFICE Heat consumption
Q PEOPLE Heating power due to human activities in the building

Q EQP Consumption of equipment, such as computers, elevators, fridges
Q LIGHT Consumption of lights
Q AHU C Consumption of AHU when cooling outside air
Q AHU H Consumption of AHU when heating outside air

T INT OFFICE Indoor temperature

Table 7: Output variables of the equivalent model designed by the energy man-
agers, contained in Yk.
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