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Abstract

In this paper, we propose a new end-to-end methodology to optimize the energy performance
as well as comfort and air quality in large buildings without any renovation work. We introduce
a metamodel based on recurrent neural networks and trained to predict the behavior of a general
class of buildings using a database sampled from a simulation program. This metamodel is
then deployed in different frameworks and its parameters are calibrated using the specific
data of two real buildings. Parameters are estimated by comparing the predictions of the
metamodel with real data obtained from sensors using the CMA-ES algorithm, a derivative free
optimization procedure. Then, energy consumptions are optimized while maintaining a target
thermal comfort and air quality, using the NSGA-II multi-objective optimization procedure.
The numerical experiments illustrate how this metamodel ensures a significant gain in energy
efficiency, up to almost 10%, while being computationally much more appealing than numerical
models and flexible enough to be adapted to several types of buildings.

Keyword: Recurrent neural networks; surrogate models; Building Energy Model; Building
energy optimization.

1 Introduction

In 2009, the building industry accounted for over 40% of the total French energy consumption, as
well as almost a quarter of greenhouse emissions. In the ecological context where energy waste
cannot be ignored, improving the energy efficiency of the building industry is an important step.
This translated in an objective of 38% reduction in the consumption of the building industry for
2020, through the renovation of 400 000 apartments per year,raised to 500 000 six years later.
However, despite setting higher and higher objectives toward renovating the French building park,
the actions carried out to date still fall short in terms of results, as stated by the Ademe (Agency
for the environnement and energy). According to the National Low-Carbon Strategy (SNBC), the
average number of yearly renovations is expected to be around 370 000 for the period 2015-2030.
The aim of this paper is to provide optimal building management settings governing Heating,
Ventilation and Air-conditioning (HVAC) in order to improve thermal comfort and optimize energy
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consumption, without costly, invasive or time consuming renovation works. Global energy demand
for heating, ventilation and air-conditioning in commercial or public buildings has been increasing
rapidly for the past few decades. This rising demand is at the root of the complex problem of
simultaneously maintaining a satisfactory comfort in buildings (air and indoor temperature quality)
and reducing the environmental impact. This makes the analysis of building energy performance a
challenging multi-criteria problem.

This analysis is decomposed into three steps: (i) designing a model to predict future energy
loads and indoor temperature based on the HVAC system and weather data, (ii) calibrating the
unknown parameters of this model with real data obtained from sensors in each building and (iii)
optimizing the HVAC settings to minimize the total energy consumption in future periods while
maintaining a given thermal comfort. Step (i) can be achieved with simulators that describe heat
transfers between the building and its environment such as EnergyPlus, TRNSYS or DOE-2. They
predict the indoor temperatures and consumptions from the description of the building, HVAC
settings and weather data. However, their accuracy relies heavily on the precision of the building
description: window to wall ratio, exposition, thermal conductivity or heat capacity among others.
Because our strategy does not involve renovation works on the building site and use a simplified
building description we usually can only provide rough estimates of these input parameters. The
calibration procedure in step (ii) aims at obtaining a parameter estimate associated with accurate
indoor temperatures and consumptions predictions. We measure the discrepancy between model
predictions and real data with a loss function that is minimized in a iterative process. Because
these methods require tremendous number of calls to the modelling function, the calibration step
quickly becomes excessively time consuming. One popular alternative in the building optimization
literature consists in replacing such simulators by surrogate models.

Metamodelling approaches substitute the physical simulator with a much faster surrogate model
during calibration and optimization tasks. This surrogate model is trained on a dataset of sim-
ulations conducted by the simulator, that aims at exhaustively capturing building behaviors for
various building geometries and management settings. The most recent statistical models make
this step more and more relevant in our context, as their accuracy reaches new heights while their
computational time is constantly reduced. Yet, most approaches only implement the most simple
architectures for building optimization.

In this paper, we first propose to train a metamodel based on Recurrent Neural Networks (RNN).
We propose a comparison of several approaches which illustrates that sequence to sequence models,
such as RNN, can yield a significant increase in performances with respect to the alternatives previ-
ously considered in such settings. In addition, we propose to compare such RNN to attention-based
models which are the go-to architectures in other fields to predict sequences with complex depen-
dencies. This study allows to introduce a new metamodel, outperforming standard alternatives used
in building optimization. This metamodel, which depends on a few physical parameters, is then
calibrated using the CMA-ES optimization procedure and real data to provide accurate predictions
for various types of buildings. Two real buildings were used to illustrate the flexibility of this ap-
proach. The final step of our end-to-end methodology consists in optimizing energy loads, while
maintaining a given level of comfort. This multi-criteria optimization problem requires determining
an optimal compromise between consumption and comfort, as improving one objective results in
degrading the other. This optimization is achieved through an iterative algorithm, justifying our
choice of replacing simulators with a faster surrogate model. Following this methodology, we were
able to train and calibrate our metamodel and to reduce the hourly consumption of two buildings
by 5% and 10%.
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2 Related works

2.1 Physical simulator

Modelling building behavior is traditionally achieved through models based on physical equations
that describe heat transfer between the building and its environment. The most common softwares
available, EnergyPlus, TRNSYS or DOE-2, are used to simulate the system behavior based on a
schematic view of the building. EnergyPlus was used for instance in [Shabunko et al., 2018] to build
three types of typical designs and to benchmark the energy performance of 400 residential buildings.
In [Zhao et al., 2016], the authors proposed a predictive control framework based on Matlab and
EnergyPlus in order to optimize energy consumptions while meeting the individual thermal comfort
preference. In [Magnier and Haghighat, 2010], the authors highlight the performances of TRNSYS
as a physical simulator, as well as its limits in terms of computational speed: the authors argue that
a full optimization process would take as much as ten years, had they not replaced TRNSYS with a
surrogate model during optimization. The authors of [Bre et al., 2016] studied the optimization of a
single-family house using a combination of Energy-Plus and the NSGA-II optimization algorithm,
and discussed sensitivity analysis using the Morris screening method. Likewise, the authors of
[Recht et al., 2014] performed sensitivity and uncertainty analysis on another building simulator
known as COMFIE, and displayed its modelling performances on a passive building.

In these papers, a schematic building is used in the simulation program and considered as
a baseline for energy loads. This demonstrates the capability of such approaches in producing
benchmarks but no comparison to real data obtained from sensors are provided which makes such
results not suitable in a decision process involving data from sensors in real buildings.

2.2 Surrogate models

The building optimization literature has seen an increasing number of surrogate approaches, as
recent sophisticated statistical models provide appealing solutions to be used in this context. In
[Bre et al., 2020, Reynolds et al., 2018], statistical models are trained on a dataset sampled from
EnergyPlus, allowing significant computational savings during optimization. In [Bre et al., 2020],
the authors proposed to combine NSGA-IT with an artificial neural network metamodel, here a Feed
Forward Network (FFN), in order to optimize the consumption of a 83m? house. Optimization
was also conducted with the original building simulator, EnergyPlus, in order to compare both
results and ensure that the FNN could be used as a substitute during optimization. Similarly,
[Reynolds et al., 2018] proposed a FFN based meta modelling approach to reduce up to 25% the
energy consumption in a small office building. EnergyPlus was used to sample a dataset for various
zones of the building. The metamodel was tested using a 4-week long EnergyPlus simulation with
variable set point temperatures and using an alternative weather file. An example of recurrent
neural architecture as a surrogate model can be found in [Ohta et al., 2020], where the authors
focused on an air-conditioning optimization problem using time series.

If these articles justify the use of metamodels, the question of which type of model to choose
remains. In an in-depth review, [Roman et al., 2020] compares standard statistical models, such
as polynomial regression, multivariate adaptive regression splines, Gaussian processes or Decision
Trees, in the context of building performance simulation. Artificial Neural Networks models stand
out as a particularly relevant alternative, but are often presented in their most simple, time in-
dependent form, such as the FFN used in [Bre et al., 2020]. Although they may yield accurate
predictions in some frameworks, these neural networks are not adapted to time series problems,
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and are usually substituted for there sequential counterparts, such as recurrent or convolutional
based approaches. Therefore, designing metamodels for building calibration and optimization is
likely to benefit from such recurrent and attention-based models.

Recurrent Neural Network (RNN) were first introduced as a more suited architecture for deal-
ing with time varying input patterns [Mozer, 1989]. By replacing buffer based approaches with an
updated context state, RNN are able to solve time series problems with short time dependencies,
but are lackluster in problems requiring long term memory due to vanishing and exploding gradient
[Bengio et al., 1994]. Long Short Term Memory proposed in [Hochreiter and Schmidhuber, 1997]
aim at bridging that gap by enforcing error flow throughout time in the network. The LSTM ar-
chitecture was modified in [Cho et al., 2014] in order to simplify its implementation and improve
computation times, resulting in a novel model called Gated Recurrent Unit (GRU). In parallel to
these advances on recurrent architectures, Convolutional Neural Networks (CNN), rendered popular
by [Krizhevsky et al., 2012] for image classification, have been adapted to time series problem. The
approaches proposed in [Jézefowicz et al., 2016, Kim et al., 2016] outperformed traditional Natu-
ral Language Processing (NLP) models by replacing the embedding layer with a character-level
convolutional layer.

Recurrent and convolutional approaches coincide in that temporally close time steps data are
matched together. In 2017, [Vaswani et al., 2017] proposed an attention based approach to solving
NLP tasks that consider the entire input sequence in parallel. The Transformer model is based on
a self-attention mechanism, that computes an attention value for every element of a sequence with
respect to all others to model their dependency. This attention mechanism allows to understand
at each time step which input elements are crucial to predicting the new state. This makes these
networks more interpretable than their most widely-used recurrent counterparts such as LSTM or
GRU networks and motivate a keen interest for such approach to predict complex time series.

2.3 Calibration

Approaches based on building behavior simulation rely on many unknown physical parameters.
Instead of costly campaigns to measure these parameters, that would have to be reiterated for each
new building, they may be estimated using an automatic calibration procedure by minimizing a cost
function which associates, with each set of parameters, the discrepancy between the simulations
and the true energy loads and temperatures, see [Coakley et al., 2014, Le Corff et al., 2018]. As
shown in [Nagpal et al., 2019], calibration yields sufficiently accurate results for a variety of different
buildings. This ensures limited additional costs to fit a trained metamodel to new buildings. In
many related works, this problem cannot be solved since no real data are used in the calibration
step, see [Bre et al., 2020, Reynolds et al., 2018], i.e. the calibration is performed based only on
simulated data. Optimization is thus conducted without justifying that the theoretical energy
savings could be applied to any real building.

The calibration task revolves around a non differentiable optimization problem, which is often
tackled by using genetic optimization methods. In [Aird et al., 2016], the authors demonstrate the
use of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to select a set of estimated
parameters that jointly minimize the coefficient of variation of the root mean square error, and the
normalized mean bias error. All criteria can instead be combined in a single calibration error, in
order to turn to single objective differentiation free algorithms that offer a single best candidate,
avoiding the need for further selection processes. In [Le Corff et al., 2018], the CMA-ES algorithm
([Igel et al., 2007]) minimizes a combination of heating and cooling errors.
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2.4 Our approach

In this paper, we propose an end-to-end methodology, from dataset sampling to metamodel calibra-
tion and optimization using data obtained from wireless sensors set in large buildings. We introduce
a new metamodel to predict building behaviors after a comprehensive study of several approaches
from traditional RNN to a model based on a Transformer architecture [Vaswani et al., 2017].
Once the metamodel is trained using a dataset built using TRNSYS, all the parameters of real
buildings and of their Building Management System (BMS) are estimated using real measurements
with the CMA-ES algorithm [Igel et al., 2007]. A multi-objective methodology to improve energy
efficiency and maintain thermal comfort is then implemented by acting only on the BMS. The
NSGA-II approach is used to obtain the Pareto optimal parameters. The performance of this
metamodel are compared both in terms of accuracy and computational efficiency with TRNSYS.
The paper is organized as follows. Section 3 provides all the deep learning architectures used in
this paper to build a metamodel. It also describes the data and variables used in our metamodel.
Section 4 illustrates the performance of our metamodel in the calibration and optimization processes
for three real buildings. The numerical experiments illustrate how the same metamodel ensures a
significant gain in energy in various settings in comparison to the considered alternatives.

3 Meta modelling

3.1 Notations

Let (Yi)r>0 be the state of the building i.e. the inside temperatures and the consumptions of
the building management system. The index k denotes time where, in the setting of this paper,
data are collected every hour. The aim of the metamodel introduced in this paper is to provide a
numerically efficient solution to predict (Yx)r>o from several sets of input variables.

The parameter 0414 represents all unknown parameters regarding the geometrical description
of the buildings (windows area ratio, etc.), as well as parameters related to heat transfer (heat
capacity, infiltration rate, etc.). Input time series are divided in three variables (W, O, Ii)k>o0-
The input Wj, contains weather data at time k, such as outdoor temperature, relative humidity or
irradiance values; Oy, is a single value time series representing whether the building is occupied at
time step k; Ij stores all information relative to the building usage: activation hours of the AC
and ventilation systems, comfort and reduced temperatures (thermal objectives when the building
is occupied or empty). In this section, we describe how a simulator may be used to train the
metamodel which aims at mimicking its outputs for various choices of Opuiia, (Ik)k>0, (Ok)k>0 and
of meteorological data (Wy)k>0. The appendix displays a complete list of the variables contained
in Ovuita, (Lx)k>0, (Ok)k>0 and in (Wy)g>o for the numerical experiments of this paper.

3.2 Proposed benchmarks

In most recent works, a great deal of research activities focused on FFN as surrogate models, see
[Bre et al., 2020, Magnier and Haghighat, 2010, Reynolds et al., 2018]. Although they may lead to
interesting performance during the training phase, these fully connected architectures are not well
suited for time series prediction, in particular for long time spans. We ceased this opportunity
to explore other approaches that have proven to be more relevant for solving time series tasks
in the past few years. Therefore, we decided to evaluate the go-to architectures for time series:
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a bidirectional LSTM, a bidirectional GRU (BiGRU), a hybrid model mixing both convolutional
and GRU layers (ConvGru), and a Feed Forward Network (FFN) as used in previous works. In
addition to those models, a Transformer model, which introduces an attention mechanism to model
dependencies, is also considered. These models have been implemented using the deep learning
framework PyTorch.

3.3 Our proposed metamodel

Our metamodel is a function fy_ . : (hg—1,ur) — yr with parameters Opeto that maps, at each
time step k, the building state ug = (Wi, O, I, Opuia) and a hidden state hy_1 depending on the
past values (ug,...,ug_1), to a prediction of its indoor temperature and consumptions yi. The
model is trained to produce accurate predictions by tuning its parameters 0,ets, usually referred
to as weights, through an iterative back propagation algorithm, where predictions yj, are compared
to the ground truth Yj.

We use as a backbone a many to many RNN architecture, and denote by hfc and xi the hidden
state and input of layer 1 < ¢ < L at time step k, in particular :vg = wug. The hidden state is
traditionally initialized as the zero vector, h§ = 0 for all 1 < ¢ < L.

In the original and most simple definition of a RNN, the hidden state is computed recursively
as hf; = tanh(thzﬁ + W}fhh£71 + bfl), where Wy, Wh, and by, are the weight matrices and bias
learned during training, and initialized with random values. Our metamodel is based on a LSTM
architecture and replaces the update of the hidden state by the following state equations:

Lo = o(Wiya + Wiyhi g + b)),

T = o(Whay, + Wi phi_y +05%),

Lo = o(Wigwy + Wyohiy +05),
& = tanh(Wiay + Wychi_q +bL),
¢ =Tl * iy + 0+
Y, = Ff),k % tanh ¢}, .

An additional fully connected layer is added on top of the RNN architecture:
Yk = J(Wyhlg +by)

where ¢ is the sigmoid activation function o : 2 + (1 +e~%)~L
The architecture is represented in Figure 1. The parameters to be estimated during the training
phase of the metamodel are

Ometa = {(Wﬁw Wifuv Wi( ) Wiffﬂ Wizov W}fo’ Wzé:v Wlfcv Wyv bfw be ’ bf)? bg’ by)1<Z<L} ’

3.4 Dataset sampling

The training dataset is sampled by exploring the input space of the simulator. We chose TRNSYS
in this paper but any simulator can be used to train the metamodel. We define ranges for each
input parameters in Gpyiia, (Ix)r>0 and (Ok)k>0 with the help of energy managers, such as highest
and lowest scheduled temperature, or the most early and late hour of arrival of occupants, see the
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Figure 1: Our metamodel architecture (left), and a detailed LSTM cell (right).

appendices for a complete list of these ranges. Because our dataset encompasses multiple buildings,
these ranges are not centered around a specific set of parameters, but rather cover all possible values
across our cluster of buildings. In addition, real weather data (Wj)k>0 acquired between June and
August 2020 where used to obtain a dataset consistent with the real buildings. In our numerical
experiments, we chose a uniform sampling method over the ranges for each variable. This allows
us to easily split the dataset uniformly into training and testing sets, which is crucial to validate
the metamodel.

The input vector uy contains 27 variables at each time step: 7 variables from 6.4, 7 from
Wi, 1 from Op and 12 from I. A total of 15,000 training examples were sampled, an example
being a month i.e. 672 hours. During the training phase, the parameters of each metamodel
described in Section 3 are estimated based on this dataset (called Opeta in the detailed case of the
RNN approach). The metamodels compared in this section are defined with a latent dimension of
demp = 64 and a total of L = 4 layers. Hyper parameters, such as learning rate, dropout, number
of epochs or batch size, were chosen empirically.

3.5 Training and validation

During training, for each example, we compute the Mean Squared Error (MSE) loss, and combine
consumption and temperature errors:

N N

1 e3 a te 1 A ta

MSEGTmeca _ N Z(T’fmem _ Tk)2 and MSE%’” a N Z(sze _ Qk)2
k=1 k=1

loss(Ometa) = BMSE{?chta (- B)MSE%"M ’

where NN is the number of data in each example, Ty and @)y are the ground truth at time k, and
Tlf meta and QZ‘“““ are the predictions given by the metamodel with the current value 0,¢5 of the
metamodel for temperature and consumption respectively. In the experiments below, as the inside
temperatures and all consumptions are normalized, we chose the non informative value = 0.5.



End-to-end deep meta modelling

Table 1: Metrics (means and standard deviations) of the metamodels on the validation dataset.
The best mean values are displayed in bold (the lowest losses and mean squared errors). Time is the
computation time to run a single simulation through the network, and was estimated by averaging
100 inferences.

BiGRU Transformer Ours ConvGru FFN

Loss  (x107%)  2.05 (1.61) 2.72(2.88)  1.65 (1.47) 2.26 (2.04) 90.5 (41.1)
MSEr (x1075) 1.00 (1.53) 1.9 (2.75) 0.820 (1.44) 1.20 (2.05) 39.5 (39.7)
MSEq (x107%) 3.84(2.05) 4.12(3.01) 2.75 (1.72) 3.53 (1.77) 172 (60.2)
MSES® (x1075)  4.60 (7.16)  6.56 (12.2)  3.79 (6.81) 5.89 (9.91) 176 (189)
(1.00) (1.80)

) )

MSE® (x107%)  1.45(1.00) ~ 2.07 (1.80)  1.22 (0.878) 1.85(1.23) 113 (50.8)
Agree (x1073) 403 (11.7)  20.1 (12.4)  2.46 (12.0) 14.9 (16.2) 1.82 (68.8)
Time  (x10~2s) 6.46 4.52 6.51 6.77 0.341

We chose the Adam optimizer [Kingma and Ba, 2015] and all simulations were computed on a
single 1080TI GPU card. Table 1 displays the mean values and standard deviations of the loss
function on the validation dataset after training. The table also displays the mean squared error
MSEr (resp. MSEq) on the temperatures (resp. consumptions) only, as well as these same metrics
computed only during occupation time: MSES™ and MSEOQCC. For a global consumption evaluation,
we compute the absolute relative error on the cumulative consumptions Agror.

4 Energy Optimization in real buildings

The experiments conducted in our paper to analyze the performance of the trained metamodel
focused on the optimization of two buildings in the Parisian region. Each one is represented by a
single thermal zone.

e Stanley is a 18,512m?2 building. It is delimited by four vertical walls of dimension 2, 314 m?,
1,917m?2, 2,123 m? and 1,725m?, as well as a roof and ground of dimension 2,304 m?2. The
main insulator is a 10 ¢m layer of polystyrene. It was built in 1983.

e Livingstone is a 13,594 m? building insulated with a 8 cm layer of polyurethane, including 4
vertical walls with respective areas 1,678 m2, 1,274m?, 1,281 m? and 1,252 m?, a horizontal
roof and a horizontal ground of dimension 4,653 m? and 4,286 m2. It was built in 2006.

Based on a commonly used rule, it is assumed that 2/3 of the full area is occupied by people.
Assuming that each occupant requires 12 m?, this allows to set the initial values for the number of
occupants and the number of PCs (set to 1.2 times this value) in the building during occupancy
hours. These values are assumed to be known and fixed and used to sample the training dataset.

4.1 Calibration

During the training phase, metamodel parameters are estimated by minimizing the loss function on
the simulated dataset which corresponds to various choices of Oyyilq and (Ix, Ok, Wi) k>0, associated
with building behaviors (Y%)r>0. Because this dataset is sampled from a simulation model, we train
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the metamodel ignoring real building related noise and measurement errors. Additionally, both the
BEM and our surrogate model require y,,jq that cannot be properly identified for each building
especially without renovation work. By comparing the metamodel predictions to real historic data
during the calibration phase, we search for a set of building related parameters that best match
reality.

During this step, the weights Octa of the metamodel are frozen, meaning that we no longer
update each weight matrix of the neural network. Using the coefficient of determination as a
cost function, we can compute, for each given set of input parameters Oyyuia and (Ix, Ok, Wi) k>0,
the difference between estimated and real historical data. Because this is a non differentiable
problem, the cost function cannot be minimized using a stochastic gradient descent algorithm as
in the training step; instead we use the CMA-ES algorithm [Hansen et al., 2003], an evolutionary
algorithm designed to solve constrained non-convex optimisation problems. In our experiments, the
variables we adjust are constrained in a realistic range of values, advised by energy managers. In
our experiments, the variables we adjust for fitting are constrained by the same ranges defined in
the data sampling section. The algorithm is implemented by the author of the paper in the pycma
library!.

Following traditional methodology in building calibration, we measure the performances of
the calibrated model with the Mean Bias Error (MBE) and Coefficient of variation of the Root
Mean Square Error (Cv(RMSE)) criteria. For any sequence (zj)1<k<nm associated with predictions
(Zk)1<k<m, these quantities are defined as follows:

M ~
MBE(%) = 100W . Cu(RMSE)(%) = 100R1\QSE ,
k=1 %k
- 1/2 M
_ (Sl Gk =) 1
RMSE—( i , Z—M;zk

where M is the number of data in each example. In a detailed review of calibration methods,
the authors of [Fabrizio and Monetti, 2015] have gathered the international recommended ranges
regarding these criteria, when validating a calibrated model. Regardless of the simulation program,
the Cv(RMSE) should fall within +20%, and the MBE + 5% when considering hourly calibrations.
As shown in Table 2, our results for both consumptions and indoor temperatures calibration are
well within these guidelines.

Calibration was run for both the metamodel and the original BEM (TRNSYS) for a maximum
of 3 hours. As shown in Table 2, we can achieve satisfactory results for Stanley in this timespan,
as both model converge to close values for both the Cv(RMSE) and MBE. Figure 3 displays
both models calibration results, compared to real data. On the other hand, TRNSYS calibration
of Livingstone is sensibly below the results obtained with the metamodel, as calibration did not
converge in the available time, see Figure 2. The calibration of the metamodel reached convergence
but with a tremendous number of epochs, that would have required to run TRNSYS for about 10
hours in order to get similar performances. As a comparison, we calibrated the metamodel for the
same number of epochs as TRNSYS, and obtained similar results. This experiment comforts the
idea that TRNSYS and the metamodel behave similarly after the calibration step, but the much
shorter computation time of the metamodel allows us to better calibrate complex buildings, such

Thttps://github.com/CMA-ES/pycma
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Livingstone TRNSYS
2.5 Livingstone Metamodel
= = Stanley TRNSYS
—— Stanley Metamodel
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Figure 2: Calibration cost evolution for the metamodel and TRNSYS, on Livingstone and Stanley.
Both models were calibrated for 300 epochs, which is enough to reach convergence for Stanley, but
not Livingstone.

as Livingstone. See Figure 4 for a visualization of the TRNSYS and metamodel calibration after
one hour.

Table 2: Calibration metrics for Stanley and Livingstone buildings.

MBE; Cv(RMSE)o MBEy Cu(RMSE)r Iterations Computational time

Stanley
Metamodel -0.627 11.0 0.134 1.20 300 2mn
TRNSYS -0.409 12.1 -0.264 1.24 300 3h
Livingstone
Metamodel -0.690 14.2 -0.0551 1.29 10000 1h
Metamodel  -0.574 14.2 -0.413 1.95 300 2mn
TRNSYS -1.08 15.8 0.156 1.96 300 3h

Validation The metamodel will assist the decision process for building management by simulating
thermal behavior of future weeks. Because the calibration process requires real data, the metamodel
is calibrated on several past weeks, in order to capture the real building behavior in a situation as
close as possible to the future period we aim to match. We validate the calibration phase using two
successive weeks, by applying the calibrated settings to the two following weeks, with fresh weather
data, and compare the results to the true observed values. The results are displayed in see Figure 5
for Stanley building.

4.2 Optimization

Once the metamodel is calibrated, we can use it as an accurate simulator for how the building
will react to changes in its usage. After a successful calibration, all building related variables

10
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Figure 3: Consumption and temperature simulations after calibration, for both the metamodel and
TRNSYS, for Stanley.

contained in Oy,,5q are correctly estimated. The parameters [ associated with the HVAC system
can be optimized for a given set of weather data Wj. The optimization tasks consists in finding a
set a usage related parameters that reduce consumption while keeping the same level of comfort.
Optimizing energy consumption requires minimizing two conflicting objectives, making it impossible
to find a solution that optimize both objectives simultaneously. Instead, we search for optimal
compromises between energy consumption and comfort, in the form of a Pareto front. Indeed, for
any such optimal compromise, we can always get a higher level of comfort, for the price of a higher
consumption. The consumption criteria is the energy load during the month ; the comfort criteria
is the gap between indoor temperature and a constant reference temperature 7*:

Comf =

Noce N 1/2 ~ 1 N
(Z Lyeoce(Th — T*)2> and Q=+ > Qk,
k=1

where T* = 22.5°C, N°P! is the number of hours to be considered in the optimization process
and Occ is a subset of daytime hours specifying at which hours the target temperature has to be
reached in the building. Following recent works in building energy optimization, we search for a
set of optimal parameters using NSGA-II ([Deb et al., 2000]), another evolutionary algorithm, but

Occ
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Figure 4: Consumption and temperature simulations after calibration, for both the metamodel and
TRNSYS, for Livingstone.

adapted to multi objective problems. An implementation can be found in the Pygmo? library.
In the absence of a stopping condition, we simply run the optimization for a set 3000 epochs (2
hours). The result can be viewed as a Pareto front which is given in Figure 6 for the second month
used in the calibration process. As observed during calibration, this process can take a colossal
number of epochs before achieving satisfactory results, once again justifying the use of a much faster
metamodel. The predicted time series associated with the BMS parameters selected in Figure 6 are
given in Figure 7. The relative gain, as well as the expected energy savings for both building are
available in Table 3.

Table 3: Energy gain after optimization. Relative gain represents the energy load reduction between
calibration and optimization steps, when maintaining the initial level of comfort. We then apply
this coeflicient to the real monthly consumption to obtain the reduction forecast in MWh. We also
provide a more interesting reduction obtained by reducing the comfort criteria by 0.5° C.

prevision (MWh) | relative gain / 0.5° C (%)
8.05 10.5
9.96 17.3

prevision / 0.5°C (MWh)
15.9
17.3

| relative gain (%)
5.32
9.92

Stanley
Livingstone

2https://esa.github.io/pygmo2/
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5 Conclusion

In this paper, we proposed an end-to-end meta modelling methodology to optimize building energy
loads with a small computational budget. A calibration step allows to tune the proposed metamodel
to ensure compatibility between simulations and real building observations. This metamodel can
also be used to optimize the BMS of real buildings with a multi-criteria optimization process. We
experimented with various deep learning architectures more suited to recurrent problems than Feed
Forward Networks. Results show that a wide variety of models display encouraging results on our
sampled dataset, while largely outperforming FFN.

The main impact of our study is to provide a fast process which is able to calibrate a model
and to use the calibration results to optimize the settings of the BMS. We illustrated how other
available thermal exchange solvers cannot reach optimality in a reasonable time.
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B Ranges used to train the metamodel

Variable Minimum Maximum Step
airchange_infiltration_vol_per_h (m3h~1) 0.1 0.5 0.1
capacitance_kJ_perdegreK_perm3 (kJK~'m~3) 50 300 10
power_VCV _kW heat (kW) 0 1000 100
power_VCV kW clim (kW) 0 1000 100
nb_occupants 1000 2000 200
nb_PCs 1000 2000 200
percent_light_night 0 70 10
percent_PCs_night 0 70 10
facade_1_thickness 2 (m) 0.05 0.15 0.05
facade_2_thickness 2 (m) 0.05 0.15 0.05
facade_3_thickness 2 (m) 0.05 0.15 0.05
facade_4 _thickness 2 (m) 0.05 0.15 0.05
roof_1_thickness_3 (m) 0.05 0.15 0.05
facade_1_window_area_percent 40 50 5
facade_2_window_area_percent 40 50 5
facade_3_window_area_percent 40 50 5
facade_4_window_area_percent 40 50 5

Table 4: 60y,,;q ranges.
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Variable Minimum Maximum Step
start_clim_day (h) 7 9 1
end_clim_day (h) 18 20 1
t_clim_red_day (°C) 24 30 0.5
t_clim_conf_day (°C) 20 24 0.5
start_heat_day (h) 6 8 1
end_heat_day (h) 17 19 1
t_heat_red_day (°C) 17 22 0.5
t_heat_conf_day (°C) 22 24 0.5
start_ventilation_day (h) 7 9 1
end_ventilation_day (h) 18 20 1
t_ventilation_day (°C) 18 26 0.5
vol_ventilation_day 0.7 1.7 0.3

Table 5: Ij, ranges. Each parameter can hold a different value for each day of the week. For ease
of reading, we replaced them by a single line, as the ranges are the same for every day.

Variable Minimum Maximum Step
start_occupation_monday (h) 7 9 1
start_occupation_tuesday (h) 7 9 1
start_occupation_wednesday (h) 7 9 1
start_occupation_thursday (h) 7 9 1
start_occupation_friday (h) 7 9 1
end-occupation_monday (h) 17 20 1
end-occupation_tuesday (h) 17 20 1
end_occupation_wednesday (h) 17 20 1
end_occupation_thursday (h) 17 20 1
end_occupation_friday (h) 17 20 1
Table 6: Oy ranges.
Variable Description
DNI Direct Normal Irradiance

IBEAM_H Direct Horizontal Irradiance
IBEAM_N Direct Normal Irradiance
IDIFF_H  Diffuse Horizontal Irradiance
IGLOB_H Global Horizontal Irradiance
RHUM Outdoor Relative Humidity
TAMB Outdoor temperature

Table 7: Weather data as contained in Wj.
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variable description

Q-AC_OFFICE AC consumption
Q-HEAT_OFFICE Heat consumption

Q-PEOPLE Heating power due to human activities in the building

Q_-EQP Consumption of equipment, such as computers, elevators, fridges
Q_LIGHT Consumption of lights

Q-AHU_C Consumption of AHU when cooling outside air

Q-AHU_H Consumption of AHU when heating outside air

T_INT_OFFICE Indoor temperature

Table 8: BEM output variables at each time step.
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