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1. Introduction 1.1. Motivation and setting. We are interested in the asymptotic behavior of the value function associated to an optimal control problem, when the time-horizon tends to infinity. In particular, we want to deduce it as a consequence of a property that is satisfied by a large class of optimal control problems and arises when the time horizon is considered to be sufficiently large. This is the so-called turnpike property, which establishes that the optimal strategy in a controlled system during a sufficiently long time interval is to quickly stabilize from the initial state to the steady optimal one and not leave the latter until the time is close to the end. Morevoer, as a by-product of our study, we obtain the long-time behavior of the associated Hamilton-Jacobi-Bellman (HJB for short) equation in a case where the Hamiltonian is not strictly convex and not even coercive, a scenario much less considered in the literature. This indicates that, in some cases, this kind of assumptions on the structure of the Hamiltonian can be merely relaxed to weaker assumptions concerning the controllability and observability of the optimal control problem.

Let us introduce the mathematical framework that we will use throughout the paper. We denote by M n,m (R) (resp. M n (R)) the set of matrices over R with n rows and m columns (resp. n rows and columns). We consider the following optimal control problem in the finite-dimensional linear-quadratic setting, with constrained controls: for a given time horizon T > 0 and an initial state x ∈ R n , we denote the trajectory of the system by y(•), which is determined by the solution to the following controlled linear ODE:

(1. [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory, Systems & Control: Foundations & Applications[END_REF] ẏ(s) = A y(s) + B u(s), s ∈ (0, T )

y(0) = x,
where A ∈ M n (R), B ∈ M n,m (R), with n, m ≥ 1, are two given matrices, and u, that will be referred to as the control, can be any function in the set of admissible controls U T := L 2 (0, T ; U ), i.e. square-integrable functions [0, T ] → U , where U ⊆ R m is a given nonempty closed and convex set, which can be either bounded or not.

The optimal control problem is to minimize, over the admissible controls u ∈ U T , the cost functional (1.2) J T,x (u) := 1 2

T 0 u(s) 2 + C y(s) -z 2 ds + g(y(T )),

where C ∈ M n (R) is a given matrix, z ∈ R n is the prescribed target and g : R n → R is a given locally Lipschitz function bounded from below, known as the final cost.

The value function associated to the optimal control problem (1.1)-(1.2) is defined as

(1.3) V (x, T ) := inf u∈U T J T,x (u) 
, s.t. (1.1).

We also consider the associated stationary problem, consisting in the minimization of the steady functional

(1.4) J s (u, y) := 1 2 u 2 + C y -z 2 ,
over the set of controlled steady states (1.5)

M s := {(u, y) ∈ U × R n | Ay + Bu = 0} .
We denote by V s the value of the optimal steady cost, defined as (1.6) V s := min {J s (u, y), s.t. (u, y) ∈ M s } .

1.2.

A turnpike result for control-constrained LQR. In [START_REF] Porretta | Long time versus steady state optimal control[END_REF], it is proved that, in the case where U = R m , exponential turnpike holds under controllability of (A, B) and observability of (A, C). As we shall prove in Theorem 1.2 below, for the constrained control case (i.e. U ⊆ R m ), the validity of a weaker version of the turnpike property follows from the detectability of (A, C), the invertibility of A and the U -stabilizability of (A, B) (see Definition 1.1). In [START_REF]On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems[END_REF], for the constrained case, the validity of an even weaker version of the turnpike property (measure turnpike) was investigated under strong dissipativity assumptions and for the case when the steady optimum is at the interior of the admissible set. We point out that we shall not make the latter assumption, and thus, our turnpike result also applies to the case when the steady optimal control is on the boundary of the set of admissible controls U . In the sequel, we will sometimes refer to the steady optimal control u and its corresponding state y as the turnpike. Note that the steady functional J s , hence also the turnpike, are independent of the final cost g.

Let us first of all make precise the notion of constrained stabilizability.

Definition 1.1. Let A ∈ M n×n (R), B ∈ M n,m (R) and U ⊆ R m be closed and convex. We say that (A, B) is U -stabilizable to a trajectory y 1 , with some control

u 1 ∈ L 2 loc (0, +∞; U ), solution to (1.7) d ds y 1 (s) = Ay 1 (s) + Bu 1 s ∈ (0, +∞),
if there exists a control u ∈ L 2 loc (0, +∞; U ) for which the corresponding trajectory y solves (1.7) with an initial datum x ∈ R n , and such that

(1) u -u 1 ∈ L 1 (0, +∞; R m ) ∩ L 2 (0, +∞; R m ); (2) y -y 1 ∈ L 1 (0, +∞; R n ) ∩ L 2 (0, +∞; R n ); (3) u -u 1 L 1 ∩L 2 + y -y 1 L 1 ∩L 2 ≤ K y 1 (0) -x ,
where

• L 1 ∩L 2 := • L 1 (0,+∞) + • L 2 (0,+∞) and K = K(A, B, U ).
We say that (A, B) is U -stabilizable, when it is U -stabilizable to any trajectory y 1 solution to (1.7) with some control u 1 ∈ L 2 loc (0, +∞; U ) and for every initial datum x ∈ R n .

We refer to Remark A.3 for additional comments on the notion of U -stabilizability.

We may now give the statement of the turnpike result for the optimal control problem (1.1)-(1.2) with control constraints. Theorem 1.2. Assume (A, B) is U -stabilizable, (A, C) is detectable and A is invertible. Let (y, u) be the unique pair in M s minimizing (1.4), and for any T > 0, let u T ∈ U T be an optimal control minimizing J T,x in (1.2), and let y T be its associated state trajectory, solution to (1.1). Then, for any ε ∈ (0, 1), there exists

τ = τ (A, B, C, U, x, z, g, ε) > 0 such that, if T ≥ 2τ + 1, we have (1.8) y T (t) -y < ε ∀t ∈ [τ, T -τ ] .
Furthermore, there exists K = K(A, B, C, U, x, z, g), such that

(1.9) T 0 u T (s) -u 2 + y T (s) -y 2 ds ≤ K.
We note that existence and uniqueness of a minimizer (u, y) ∈ M s for (1.4), and then, for the turnpike, follows from the detectability of (A, C) (see the Remark A.2 in Appendix A). The uniqueness of the turnpike may fail, for instance, if the constraint set is nonconvex [START_REF] Pighin | Nonuniqueness of minimizers for semilinear optimal control problems[END_REF], and also if the constraint set is convex but the pair (A, C) is not detectable [START_REF] Pighin | The turnpike with lack of observability[END_REF]. 1.3. Main result. Our main result establishes the connection between the turnpike property and the long-time behavior of the value function (1.3). The latter is closely related to the value function associated to the corresponding infinite-horizon optimal control problem, that we define as

(1.10) W (x) := inf u∈Ax J ∞,x (u) = ∞ 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds,
where, for each u ∈ L 2 loc (0, +∞; U ), the function y ∈ C([0, +∞); R n ) is the solution to (1.1) in the time-interval (0, +∞), with initial condition x and control u. Here, the set of admissible controls is (1.11)

A x := u ∈ L 2 loc (0, +∞; U ) : ∞ 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds < +∞ . Theorem 1.3. Assume (A, B) is U -stabilizable, (A, C) is detectable and A is in- vertible.
Let z ∈ R n be given, and let g : R n → R be a given locally Lipschitz function bounded from below. Let V and W be the value functions defined in (1.3) and (1.10) respectively. Then, the following statements hold true:

(i) For any bounded set Ω ⊂ R n , we have

V (x, T ) -V s T -→ W (x) + λ, as T → ∞, uniformly in x ∈ Ω
where V s is the constant defined in (1.6) and the constant λ is given by

(1.12) λ = lim T →+∞ V (ȳ, T ) -V s T,
where ȳ is the state in the unique pair (ū, ȳ) ∈ M s minimizing (1.4). (ii) Moreover, W (•) is, up to an additive constant, the unique viscosity solution bounded from below to the stationary problem

(1.13) V s + max u∈U -∇W (x) • (Ax + Bu) - 1 2 u 2 = 1 2 Cx -z 2 x ∈ R n .
In addition, the equation (1.13) with a different constant c = V s does not admit any viscosity solution bounded from below.

As it is well-known, the value function V (x, T ) defined in (1.3) is the unique viscosity solution to the following Cauchy problem1 

(1.14)    ∂ T V + max u∈U -∇V • (Ax + Bu) -1 2 u 2 = 1 2 Cx -z 2 V (x, 0) = g(x).
A proof can be found in [33, §5, Thm.5 and Thm.6] (see also [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Thm. 7.2.4]). It relies on the methods in [6, Section III.3] (see also [START_REF] Evans | Partial differential equations[END_REF]Section 10.3]) and is based on the Dynamic Programming Principle.

Our main result in Theorem 1.3 then describes the long-time behavior of the solution to this problem. Note that in the case where the final cost g is a nonconvex time horizon T . We use the notation ∇V for the derivative of V with respect to x, and ∂ T V for its derivative with respect to T . These derivatives must be interpreted in the appropriate classical or viscosity sense depending on the situation, which will be specified in each situation. function, even if it is very smooth, the solution to (1.14) eventually loses regularity for T sufficiently large (see Example 2.6), and the equation must be interpreted in the viscosity sense [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF][START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] (see also [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Evans | Partial differential equations[END_REF]).

Remark 1.4. In view of Theorem 1.3, the value function V (x, T ) admits the asymptotic decomposition

V (x, T ) ∼ W (x) + V s T + λ as T ∼ ∞,
where each term can be identified with one of the three stages in the turnpike optimal trajectory (see Figure 1).

1. The term W (x) represents the cost of stabilizing the trajectory from the initial state x to the turnpike. Indeed, in a large time interval, optimal strategies will spend most of the time close to the turnpike where, in view of (1.10), the running cost of the infinite-horizon problem equals zero. 2. The term V s T corresponds to the running cost accumulated in the intermediate arc, where the time-evolution optima are close to the steady ones. 3. The constant λ represents the cost of leaving the turnpike in order to minimize the final cost g. This final arc does not appear in the infinite horizon problem, but it is always present in the finite horizon one, no matter how long the time-horizon is. Therefore, it has to be considered in the long-time decomposition of the value function. The way to single out this final arc from the rest of the trajectory is to consider the finite time horizon problem taking y as initial state, so that the cost of reaching the turnpike is 0 and then to subtract the cost during the transient arc V s T (see the definition of λ in (1.12)).

Let us also mention that such a constant λ is usually refered to as the ergodic constant (see §1.5) which, roughly speaking, insures the existence of a set which attracts all controlled trajectories (see [START_REF] Arisawa | Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor[END_REF][START_REF]Ergodic problem for the Hamilton-Jacobi-Bellman equation. II[END_REF]). And the turnpike plays the role of such set where all the trajectories get as close as we wish regardless of their initial position. Moreover, the value of λ represents the averaged cost of being around the turnpike (after omitting the first and second arcs).

In case the control constraints are not imposed (i.e. U = R m ), one can actually follow similar arguments as in [START_REF] Porretta | Long time versus steady state optimal control[END_REF] to prove exponential turnpike for the optimal control problem (1.1)-(1.2), under the assumptions of (A, B) being stabilizable and (A, C) detectable. We recall that exponential turnpike stands for the existence of constants K, µ > 0, independent of T , such that any optimal control-state trajectory (y T , u T ) satisfies

u T (t) -u + y T (t) -y ≤ K e -µt + e -µ(T -t) ∀t ∈ [0, T ].
This allows us to deduce the same conclusions of Theorem 1.3 for the unconstrained case without assuming that A is invertible.

We note that in this unconstrained case U = R m , the value function W for the infinite horizon problem, defined in (1.10), is the viscosity solution to the Hamilton-Jacobi-Bellman equation

(1.15) V s + 1 2 B * ∇W (x) 2 -A x • ∇W (x) = 1 2 C x -z 2 x ∈ R n ,
and the solution can be given as a quadratic form using Riccati Theory. We recall this result in the following proposition, and give a sketch of the proof in Appendix B for the sake of completeness.

Proposition 1.5. Let (u, y) be the minimizer for J s defined in (1.4). Then,

(1.16) F (y) := -B * E (y -y) + u defines an optimal feedback law for J ∞,x defined in the right hand side of (1.10), meaning that, for any x ∈ R n , the unique optimal control is given by

(1.17) u * (s) = -B * E (y * (s) -y) + u, s ∈ (0, T )
where E is the unique symmetric positive semidefinite solution to the Algebraic Riccati Equation

-EA -A * E + EBB * E = C * C (ARE)
and y * solves the closed loop equation

d ds y * (s) = (A + B F ) y * (s), s ∈ (0, ∞) y * (0) = x.
Moreover, the value function W defined in (1.10) is given by

W (x) = 1 2 (x -y) * E (x -y) + (p, x -y) R n ,
and is, up to an additive constant, the unique viscosity solution, bounded from below, to the equation (1.13).

1.4. Related literature. In the definition of the value function W in (1.10) associated to the infinite horizon problem, the normalisation of the running cost by subtracting the cost at the optimal steady state is indeed very often used in dissipativity-based approaches to turnpike properties, and in the analysis of receding-horizon optimal control. In this context, the normalised running cost is known as the supply rate, see [START_REF] Angeli | On average performance and stability of economic model predictive control[END_REF]Thm.2].

In this direction, let us mention the seminal work of Willems [START_REF] Willems | Least squares stationary optimal control and the algebraic Riccati equation[END_REF], where existence results for infinite horizon optimal control problems are proved under frequencydomain and time-domain conditions. Moreover, a full characterisation of the solutions to the algebraic Riccati equation is also provided. We also refer to the books [START_REF] Anderson | Optimal control: linear quadratic methods[END_REF][START_REF] Kwakernaak | Linear optimal control systems[END_REF] for the classical Riccati theory.

The relation between the value function and the turnpike property has been investigated by Grüne in [START_REF] Grüne | Approximation properties of receding horizon optimal control[END_REF] for the discrete-time setting in the context of receding horizon control (see also [START_REF] Grüne | Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems[END_REF][START_REF] Grüne | On the relation between strict dissipativity and turnpike properties[END_REF]). However. their motivations and also their conclusions are different to ours. There, the author presents an iterative method based on the turnpike property, which is used to approximate the infinite horizon problem by a sequence of finite horizon ones. The Assumption 4.1 in [START_REF] Grüne | Approximation properties of receding horizon optimal control[END_REF] represents, in fact, a discrete-time version of the turnpike property (see also Chapter 6 and 8 in [START_REF] Grüne | Nonlinear model predictive control[END_REF] for further details). Other related results in connection with Model Predictive Control can be found in [START_REF] Zanon | A tracking mpc formulation that is locally equivalent to economic mpc[END_REF][START_REF] Zanon | Economic mpc without terminal constraints: Gradientcorrecting end penalties enforce asymptotic stability[END_REF] and the references therein.

Other recent works related to our study are [START_REF] Faulwasser | On continuous-time infinite horizon optimal controldissipativity, stability and transversality[END_REF] and [START_REF] Breiten | On the turnpike property and the receding-horizon method for linear-quadratic optimal control problems[END_REF]. In [START_REF] Faulwasser | On continuous-time infinite horizon optimal controldissipativity, stability and transversality[END_REF], the interplay between dissipativity and stability properties in continuous-time infinite horizon optimal control problems have been studied, and moreover, the question on the link between the latter problem and the associated HJB equation has also been raised. In [START_REF] Breiten | On the turnpike property and the receding-horizon method for linear-quadratic optimal control problems[END_REF], the authors analyse the receding horizon control problem with finite stages in infinite-dimensions in order to study the corresponding infinite horizon problem. In particular, their Theorem 6.4 provides an error estimate between these two problems which is intimately related to the turnpike property. A recent survey of dissipativity methods in optimal control can be found in [START_REF]Dissipativity and optimal control[END_REF].

A similar result to Theorem 1.3(i) also appears in [START_REF] Kouhkouh | Dynamic programming interpretation of turnpike and Hamilton-Jacobi-Bellman equation[END_REF], where the terms λ, V s and W (•) are represented by a different approach: a Riccati operator in an augmented state space is introduced, taking into account the target z as a state variable (with zero dynamics). A description of the asymptotic behavior of such Riccati operators is provided in [33, Lemma 2], which then is the key ingredient to determine the desired asymptotic behavior.

In the present manuscript, our analysis relies on the study of the value functions of both the finite-time and infinite-time horizon problems and their corresponding partial differential equations, together with the optimality conditions they satisfy. The latter tools (in particular the PDE characterization) are different from those usually encountered in Riccati theory and in dissipativity-based approaches, and help us to establish the link between the turnpike property as known in control theory with the asymptotic behavior of a certain class of PDEs, that is, a timeevolutive HJB equation and its corresponding ergodic version.

Known results on long-time behavior for Hamilton-Jacobi equations.

Observe that the PDE in (1.14) is a Hamilton-Jacobi equation of the form

(1.18) ∂ T V + H(x, ∇V ) = (x), in R n × (0, +∞),
where, in our case, the function H : R n × R n → R, known as the Hamiltonian, and the function : R n → R are given by

(1.19) H(x, p) = max u∈U -p • (Ax + Bu) - 1 2 u 2 and (x) = 1 2 Cx -z 2 .
The long-time behavior for equations like (1.18) has been widely studied in the literature, especially in the flat torus, but also in more general settings, e.g. [START_REF] Barles | Large time behavior of unbounded solutions of first-order Hamilton-Jacobi equations in R N[END_REF][START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Fujita | Asymptotic solutions of Hamilton-Jacobi equations in euclidean n space[END_REF][START_REF] Ishii | Asymptotic solutions for large time of Hamilton-Jacobi equations[END_REF][START_REF]Asymptotic solutions for large time of Hamilton-Jacobi equations in euclidean n space[END_REF][START_REF]A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Roquejoffre | Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[END_REF] and the references therein. Here, we deal with unbounded solutions in the whole space R n , a scenario much less studied compared to the case in the n-dimensional torus. In the recent work [START_REF] Barles | Large time behavior of unbounded solutions of first-order Hamilton-Jacobi equations in R N[END_REF] it is proved, under suitable hypotheses on H, the existence of a constant c ∈ R such that

(1.20) V (x, T ) -c T → ϕ(x), as T → ∞,
where ϕ is called a corrector, and is a viscosity solution to the stationary Hamilton-Jacobi equation

(1.21) c + H(x, ∇ϕ) = (x), in R n .
This is also called the ergodic problem [START_REF] Arisawa | Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor[END_REF][START_REF]Ergodic problem for the Hamilton-Jacobi-Bellman equation. II[END_REF][START_REF] Barles | Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi equations[END_REF] and c is known as the ergodic constant. For equations like (1.21), a solution is understood as a pair (c, ϕ), where c is a constant and ϕ is a (continuous) viscosity solution to (1.21).

In Theorem 1.3, we have obtained long-time asymptotics of the form (1.20) for the solution to the HJB equation (1.14). Although in [START_REF] Barles | Large time behavior of unbounded solutions of first-order Hamilton-Jacobi equations in R N[END_REF], the unbounded case (space domain Ω = R n ) is treated, we point out that in our setting, the Hamiltonian does not satisfy all the assumptions required in [START_REF] Barles | Large time behavior of unbounded solutions of first-order Hamilton-Jacobi equations in R N[END_REF]. In particular, our function H(x, p) defined in (1. [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]) is neither strictly convex in the p variable nor coercive (in view of (1.19), the Hamiltonian is coercive if and only if B * has a trivial kernel).

The paper is structured as follows. In subsection 2.1, we prove a first result which is a direct consequence of the turnpike property, namely, the time-averages of the value function converge to the ergodic constant as the time horizon tends to infinity. In subsection 2.2, we study the auxiliary infinite horizon optimal control problem introduced in (1.10). Finally, in subsection 2.3, we give the proof of Theorem 1.3. In Section 3, we sum up the conclusions of the paper and give a list of possible research lines. Finally, for the reader's convenience and self-consistency of the paper, we include Appendix A, with the proof of the turnpike property stated in Theorem 1.2, and Appendix B, with some elements taken from classical Riccati Theory, without proof, which are necessary to justify Proposition 1.5.

Infinite horizon problem and proof of Theorem 1.3

The proof of Theorem 1.3 relies on the turnpike property, which ensures that the optimal control for the problem (1.3) and its corresponding state trajectory remain close to the steady optima for any t far away from 0 and T .

2.1.

A first consequence of the turnpike property. We start with a result which is a direct consequence of the turnpike property in Theorem 1.2. It ensures that the time-averages of the cost-functional J T,x (•), evaluated in the optimal control u T , converge to the value of the steady optimal control problem as T → +∞.

Proposition 2.1. Under the assumptions of Theorem 1.3, let V (x, T ) be the value function defined in (1.3) and V s defined as in (1.6). Then, for any x ∈ R n , we have

(2.1) 1 T V (x, T ) -→ T →+∞ V s .
In order to prove the above proposition we need to rewrite the functional J T,x defined in (1.2) in a different way. Roughly speaking, we need the running cost to be centered at the turnpike. This is the content of the following Lemma. Lemma 2.2. Under assumptions of Theorem 1.3, let (u, y) be the steady optimal control-state pair for the functional J s defined in (1.4) and V s := J s (u, y). Then, for any T > 0, x ∈ R n and u ∈ U T , we have

J T,x (u) = T V s + 1 2 T 0 u(s) -u 2 + C (y(s) -y) 2 ds + T 0 [(u, u(s) -u) R m + (Cy -z, C (y(s) -y)) R n ] ds + g(y(T )) (2.2) and J T,x (u) ≥ T V s + 1 2 T 0 u(s) -u 2 + C (y(s) -y) 2 ds (2.3) + (p, x -y(T )) R n + g(y(T )),
where p ∈ R n is the optimal adjoint steady state (Lagrange multiplier) and is independent of T, x and u.

Proof of Lemma 2.2. In view of the definition of J T,x in (1.2), we can compute

J T,x (u) = 1 2 T 0 u(s) -u + u 2 + C y(s) -Cy + Cy -z 2 ds + g(y(T )) = T 2 u 2 + C y -z 2 + 1 2 T 0 u(s) -u 2 + C (y(s) -y) 2 ds + T 0 [(u, u(s) -u) R m + (Cy -z, C (y(s) -y)) R n ] ds + g(y(T )) = T V s + 1 2 T 0 u(s) -u 2 + C (y(s) -y) 2 ds + T 0 [(u, u(s) -u) R m + (Cy -z, C (y(s) -y)) R n ] ds + g(y(T )). (2.4)
We now focus on the term

(2.5) T 0 (C y -z, C (y(s) -y)) R n ds.
We recall that the pair (u, y) is optimal. Then, by using the convexity of U and the invertibility of A, for any u ∈ U we have the first order optimality condition 2

(2.6) (p, B (u -u)) R n ≥ -(u, u -u) R m ,
where 0 = A * p + C * (C y -z), which means that u is the projection of -B * p onto U . On the other hand, the pairs (u(•), y(•)) and (u, y) satisfy the equation in (1.1). Hence, we have

(2.7) d ds (y -y) = A(y -y) + B(u -u) s ∈ (0, T ) y(0) -y = x -y. Now, since A is invertible the set M s := u, -A -1 Bu | u ∈ U is well defined.
Therefore, for a.e. s ∈ (0, T ), u(s) (i.e. the time-evolution control evaluated at time s) is an admissible steady control in M s . Hence, we are allowed to use (2.6), getting

T 0 (p, B(u(s) -u)) R m ds ≥ - T 0 (u, u(s) -u) R m ds.
Employing the above inequality and (2.7) and taking into account y(0) = x, the term (2.5) writes as:

T 0 (Cy -z, C (y(s) -y)) R n ds = T 0 (C * (Cy -z) , y(s) -y) R n ds = - T 0 (p, A (y(s) -y)) R n ds = - T 0 p, d ds (y -y) -B(u -u) R n ds = (p, y(0) -y) R n -(p, y(T ) -y) R n + T 0 (p, B(u -u)) R m ds ≥ (p, x -y(T )) R n - T 0 (u, u(s) -u) R m ds. (2.8)
Finally, the conclusion follows by combining (2.4) and (2.8).

We can now give the proof of Proposition 2.1, which follows from Lemma 2.2 and the U -stabilizability assumption in Definition 1.1.

Proof of Proposition 2.1. Let x ∈ R n be fixed, and consider, for all T > 0, the trajectory y 1 (t) = y for all t ∈ [0, T ], which is associated to the constant control u 1 (t) = u for all t ∈ (0, T ). By the U -stabilizability assumption (see Definition 1.1), there exist a control u and its associated state trajectory y such that

u -u L 1 ∩L 2 + y -y L 1 ∩L 2 ≤ K y 1 (0) -x .
2 Indeed, consider the function f : [0, 1] -→ R, defined as f (δ) := Js ((u, y) + δ (u -u, y -y)).

Since (u, y) minimizes Js, f achieves its minimum at δ = 0, whence f (0) ≥ 0. Now, by (1.4), f (0) = (u, u -u) R m + (C y -z, C (y -y)) R n . Now, the invertibility of A guarantees the existence of an adjoint state p solving 0 = A * p + C * (C y -z). Then, we can rewrite

f (0) = (u + B * p, u -u) R m , whence (remembering that f (0) ≥ 0) (p, B (u -u)) R n ≥ -(u, u -u) R m .
Using the linearity of the dynamics, we can deduce from this that y(t) -y ≤ K y 1 (0) -x for all t ∈ [0, T ]. Then, using Lemma 2.2 and the definition of the value function, we deduce that (2.9)

V (x, T ) ≤ J T,x (u) ≤ T V s + C,
for some constant independent of T .

The lower bound follows from (2.3) applied to the optimal control u T , that is

J T,x (u T ) ≥ T V s + 1 2 T 0 u T (s) -u 2 + C (y T (s) -y) 2 ds + (p, x -y T (T )) R n + g(y T (T )).
It then suffices to notice that the integral term is positive and, by the T -uniform bound of the optimal trajectory in Lemma A.4, the two last terms in the above inequality are bounded by a constant K independent of T . Hence, one has

(2.10) V (x, T ) = J T,x (u T ) ≥ T V s -K.
The conclusion then follows after dividing the inequalities (2.9) and (2.10) by T and taking the limit as T → +∞.

We end this subsection with the following Lipschitz estimate, uniform in T , that is also consequence of the turnpike property and will be useful in the proof of Theorem 1.3.

Lemma 2.3. Assume (A, B) is U -stabilizable and (A, C) is detectable. Let V be the function defined in (1.3). Then, for any M > 0, there exists a constant K M > 0 such that for all T > 0 and all x 1 and x 2 in R n satisfying x i ≤ M , we have

|V (x 2 , T ) -V (x 1 , T )| ≤ K M x 2 -x 1 .
Proof. We prove this Lemma by using the definition of V (x, T ) as minimal value of J T,x . Let u T ,x1 ∈ U T be an optimal control for J T,x1 .

Step 1 Construction of stabilizing control Since (A, B) is U -stabilizable, there exists a control û ∈ L 2 (0, T ; U ), such that

(2.11) û -u 1 L 1 ∩L 2 (0,T ) + ŷ -y 1 L 1 ∩L 2 (0,T ) ≤ K (A, B, U ) x 2 -x 1 ,
ŷ being the solution to (1.1), with initial datum x 2 and control û and

• L 1 ∩L 2 := • L 1 (0,T ) + • L 2 (0,T ) .
We have then

(2.12) |J T,x2 (û) -J T,x1 (u T ,x1 )| ≤ K M x 2 -x 1 ,
where K M is independent of T > 0.

Step 2 Conclusion For i = 1, 2, let u T ,xi be optimal controls for J T,xi and let û defined as above for u := u T ,x1 . Then, by definition of value function and (2.12)

V (x 2 , T ) -V (x 1 , T ) = J T,x2 (u T ,x2 ) -J T,x1 (u T ,x1 ) ≤ J T,x2 (û) -J T,x1 (u T ,x1 ) ≤ K M x 2 -x 1 .
By the arbitrariness of x 1 and x 2 , we obtain the desired Lipschitz property.

2.2.

The infinite horizon linear-quadratic problem. Here we introduce the auxiliary infinite time horizon optimal control problem announced in the introduction, that allows us to compute the optimal cost of stabilizing the trajectory to the turnpike from the initial state. For each x ∈ R n , the dynamics are determined by the same ODE in (1.1), in this case considering the time interval (0, ∞):

(2.13) ẏ(s) = A y(s) + B u(s), s ∈ (0, ∞) y(0) = x.
The set of admissible controls is A x as defined in (1.11) where V s = J s (u, y) is the constant defined in (1.6). And the problem we shall consider is to minimize the cost functional

(2.14) J ∞,x (u) := ∞ 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds,
over the controls u ∈ A x . The value function for this problem is W (x) as is defined in (1.10). Note that the set of admissible controls is different for each x. In addition, since (A, B) is U -stabilizable to y, we deduce that it is nonempty for all x.

The following lemma follows directly from the definition of A x .

Lemma 2.4. Let (u, y) be the minimizer for J s defined in (1.4). For any x ∈ R n and any control u ∈ A x , we denote by y the solution to (2.13) with control u and initial datum x. Then it holds u -u ∈ L 2 (0, +∞; R m ) and y -y ∈ L 2 (0, +∞; R n ).

In addition, {y(t)} t>0 is bounded in R n and satisfies y(t) -→ y as t → +∞.

The functional J ∞,x can be written as

(2.15) J ∞,x (u) ≥ 1 2 ∞ 0 u(s) -u 2 + C (y(s) -y) 2 ds + (p, x -y) R n
and it admits a minimizer u * in A x .

Proof.

Step 1 Boundedness of {y(t)} t>0 ⊂ R n Take any u ∈ A x and let y be the solution to (2.13), with initial datum x and control u. By Lemma A.1 applied to y -y, we have

y(t) -y 2 ≤ K x -y 2 + t 0 u(s) -u 2 + C (y(s) -y) 2 ds , whence 1 2 t 0 u(s) -u 2 + C (y(s) -y) 2 ds ≥ α y(s) -y 2 -K,
where α = α(A, C) > 0 and K = K(A, B, C, x, z) ≥ 0. Using the above inequality and adapting (2.3), yields

J ∞,x (u) = lim t→+∞ t 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds ≥ lim t→+∞ 1 2 t 0 u(s) -u 2 + C (y(s) -y) 2 ds +(p, x -y(t)) R n ≥ lim sup t→+∞ 1 2 t 0 u(s) -u 2 + C (y(s) -y) 2 ds -K (1 + y(t) -y ) ≥ lim sup t→+∞ α y(t) -y 2 -K ( y(t) -y + 2) ≥ α 2 lim sup t→+∞ y(t) -y 2 -K.
Now, since u ∈ A x , the functional J ∞,x (u) < +∞. This, together with the above estimate, implies the boundedness of {y(t)} t>0 ⊂ R n .

Step 2 Proof of u -u ∈ L 2 (0, +∞; R m ) and y -y ∈ L 2 (0, +∞; R n ). By Step 1, there exists a constant K(u) ≥ 0, such that ∀ t > 0, y(t) ≤ K(u). By (2.3), one gets (2.16)

t 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds ≥ 1 2 t 0 u(s) -u 2 + C (y(s) -y) 2 ds + (p, x -y(t)) R n
and using the above bound, for any t > 0, we have

t 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds ≥ 1 2 t 0 u(s) -u 2 + C (y(s) -y) 2 -K(u), whence, since u ∈ A x , +∞ > J ∞,x (u) = lim t→+∞ t 0 1 2 u(s) 2 + 1 2 C y(s) -z 2 -V s ds ≥ 1 2 ∞ 0 u(s) -u 2 + C (y(s) -y) 2 ds -K(u),
which in turn implies u -u ∈ L 2 (0, +∞; R m ) and C(y -y) ∈ L 2 (0, +∞; R n ). Now, since the pair (A, C) is detectable, adapting the techniques of the proof of Lemma A.1, we have in fact y -y ∈ L 2 (0, +∞; R n ).

Step 3 Proof of y(t) -→ y as t → +∞. Now, since y -y ∈ L 2 (0, +∞; R n ), there exists a sequence t m → +∞, such that y(t m ) -→ m→+∞ y.

By the above convergence and u-u ∈ L 2 (0, +∞; R m ) and C(y-y) ∈ L 2 (0, +∞; R n ), for any ε > 0, there exists m ε ∈ N such that for every m > m ε y(t m ) -y < ε and

+∞ tm u(s) -u 2 + C (y(s) -y) 2 ds < ε 2 .
Then, by Lemma A.1, for any m > m ε and for any t > t m we have

y(t) -y 2 ≤ K y(t m ) -y 2 + t tm u(s) -u 2 + C (y(s) -y) 2 ds < 2Kε 2 ,
whence y(t) -→ y as t → +∞.

Step 4 Proof of (2.15) The representation formula (2.15) is a consequence of (2.14), (2.16), u -u ∈ L 2 (0, +∞; R m ), y -y ∈ L 2 (0, +∞; R n ) and y(t) -→ t→+∞ y. Existence of the minimizer follows from (2.15) and the Direct Method in the Calculus of Variations.

Next we prove a local Lipschitz estimate for W that will be used in the proof of Theorem 1.3. Lemma 2.5. Assume (A, B) is U -stabilizable to y and (A, C) is detectable and let W be the function defined in (1.10). Then, for any M > 0, there exists a constant

K M > 0 such that |W (x 2 ) -W (x 1 )| ≤ K M x 2 -x 1 ,
for all x 1 and x 2 in R n satisfying x i ≤ M .

Proof. The proof follows the techniques in the proof of Lemma 2.3.

2.3.

Proof of Theorem 1.3. We are now in position to give the proof of Theorem 1.3. We split the proof in three steps. In the first one, we prove the statement (i) of the Theorem about the convergence of the value function. In the step 2, we prove the uniqueness result for the solution of the Hamilton-Jacobi-Bellman equation associated to the infinite horizon problem. Finally, in step 3, we prove that, in the unconstrained case U = R n , the value function for the infinite horizon problem is in

C 1 (R n ).
Proof of Theorem 1.3.

Step 1: Convergence. Let Ω ⊂ R n be a bounded set. For any given x ∈ Ω and T > 0, let u T (•) and y T (•) be an optimal control for problem (1.1)-(1.2) and its corresponding state trajectory. Then, as a consequence of the DPP, for any T > 0 we can write

(2.17) V (x, T ) = 1 2 T 2 0 u T (s) 2 + C y T (s) -z 2 ds + V y T T 2 , T 2 .
Now, using Lemma 2.3 and that, as a consequence of the turnpike property (1.8), y T (T /2) → ȳ as T → ∞, we deduce that lim

T →∞ V y T T 2 , T 2 -V ȳ, T 2 = 0.
Hence, we have lim

T →∞ V y T T 2 , T 2 - T 2 V s = lim T →∞ V y T T 2 , T 2 -V ȳ, T 2 +V ȳ, T 2 - T 2 V s = lim T →∞ V ȳ, T 2 - T 2 V s =: λ. (2.18)
The existence of this limit can be justified by proving that the function

T -→ V (ȳ, T ) -T V s
is decreasing and bounded from below. Indeed, observe that if u T is an optimal control for J x,T , then for any T > T , we can use the control

û(s) := ū s ∈ (0, T -T ) u T (s) s ∈ [T -T, T )
to prove the monotonicity. The boundedness from below can be obtained from the turnpike property.

Let us now prove that (2.19) lim

T →+∞ 1 2 T 2 0 u T (s) 2 + C y T (s) -z 2 ds - T 2 V s = W (x).
Let u * ∈ A x be the optimal control for the functional J ∞,x defined in (1.10) and y * its corresponding state trajectory. For any T > 0, as a consequence of the DPP for the infinite horizon problem, we have

W (x) = T 2 0 1 2 u * (s) 2 + 1 2 C y * (s) -z 2 -V s ds + W y * T 2 ≤ 1 2 T 2 0 u T (s) 2 + C y T (s) -z 2 ds - T 2 V s + W y T T 2 . (2.20)
Now, observe that by plugging ȳ in formula (2.15) in Lemma 2.4, one can easily see that W (ȳ) = 0. Then, using Theorem 1.2 and that, by Lemma 2.5, the function

W (•) is continuous, we deduce that (2.21) lim inf T →+∞ 1 2 T 2 0 u T (s) 2 + C y T (s) -z 2 ds - T 2 V s ≥ W (x).
Using again the DPP, this time for the value function V , we obtain for any T > 0:

V (x, T ) = 1 2 T 2 0 u T (s) 2 + C y T (s) -z 2 ds + V y T T 2 , T 2 
≤ 1 2 T 2 0 u * (s) 2 + C y * (s) -z 2 ds + V y * T 2 , T 2 . (2.22)
Using this time the DPP for W (the first equality in (2.20)), we can compute 1 2

T 2 0 u * (s) 2 + C y * (s) -z 2 ds = W (x) + T 2 V s -W y * T 2 .
And combining this identity with (2.22), we obtain 1 2

T 2 0 u T (s) 2 + C y T (s) -z 2 ds - T 2 V s ≤ W (x) -W y * T 2 +V y * T 2 , T 2 -V y T T 2 , T 2 .
This inequality, together with W (ȳ) = 0, the Lipschitz continuity of V from Lemma 2.3 and the fact that, by the turnpike property and Lemma 2.4, we have that y T (T /2) and y * (T /2) converge to ȳ as T → ∞, gives lim sup

T →+∞ 1 2 T 2 0 u T (s) 2 + C y T (s) -z 2 ds - T 2 V s ≤ W (x).
From this inequality and (2.21), it follows (2.19).

Finally, combining (2.17), (2.18) and (2.19) we obtain

(2.23) V (x, T ) -T V s -→ T →+∞ W (x) + λ.
Step 2: Uniqueness for the ergodic equation.

The proof that (V s , W (•)) satisfies the equation (1.13) can be carried out by standard methods in optimal control theory. In the case where the inclusion U ⊂ R m is strict (i.e. when we have constraints on the control), the function W is not expected to enjoy C 1 regularity, and one has to use the theory of viscosity solutions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. We omit the proof since it follows exactly the arguments in [START_REF] Kouhkouh | Dynamic programming interpretation of turnpike and Hamilton-Jacobi-Bellman equation[END_REF]Thm. 5] (which is an adaptation of [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Thm. 7.2.4] to the LQ setting), dropping the dependency on time.

In order to prove that W (x) is the unique (up to an additive constant) viscosity solution to (1.13) bounded from below, we argue by contradiction. Let c ∈ R, and let W 1 ∈ C(R n ) be a bounded from below continuous function satisfying the equation c + H(x, ∇W 1 ) = (x) in the viscosity sense. Here, the Hamiltonian H and the function are defined as in (1.19). Observe that the function given by

V 1 (x, T ) = c T + W 1 (x)
is a viscosity solution to the problem (1.14) with initial condition g(x) = W 1 (x), which is bounded from below. We can then deduce that V 1 (x, T ) is actually the value function associated to the optimal control problem (1.1)-(1.2) with final cost g(x) = W 1 (x). And since W 1 (•) is bounded from below, we can use the statement (i) in Theorem 1.3 to deduce that lim

T →+∞ V 1 (x, T ) -V s T = W (x) + λ, for all x ∈ R n ,
for some λ ∈ R depending on the final cost W 1 (•). Hence, using the definition of V 1 (x, T ) we obtain lim

T →+∞ W 1 (x) + (c -V s ) T = W (x) + λ, for all x ∈ R n .
This implies that c = V s and also that

W 1 (x) -W (x) = λ, for all x ∈ R n .
Let us finish this section with an illustrative example that shows why the value function V (x, T ) is not in general differentiable. As we will see, for a suitable nonconvex final cost g, the global minimizer for J T,x with x = 0 and T sufficiently large is not unique. This implies in particular that the subdifferential of V (•, T ) contains more than one element and hence V (•, T ) is not differentiable at 0 for T sufficiently large (see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Theorem 7.4.17], and further examples can be found in [16, page 200]). In general, It can be shown (see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Theorem 1.5.3]) that there exists a finite time horizon during which the solution is smooth, but afterwards, it develops singularities (see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Theorem 1.5.6]).

Example 2.6. Let us consider the optimal control problem (1.1)-(1.2) with the pair of matrices (A, B) being controllable and C being any matrix. As a final cost, we consider the function

g ε (x) = 1 ε [ x 4 -x 2 ],
where ε > 0 will be chosen later.

Our goal is to show that if ε > 0 sufficiently small, the functional

(2.24) J T,0 (u) := 1 2 T 0 u(s) 2 + C y(s) 2 ds + g ε (y(T )),
admits (at least) two distinguished global minimizers whenever T > 2.

Let us first prove that, if ε > 0 is sufficiently small, then for any T > 1, the control u ≡ 0 is not optimal. Fix x 1 a minimizer of the function g : R n -→ R defined as g(x) := x 4 -x 2 and set

ũ(s) = 0 s ∈ (0, T -1) u 1 (t -T + 1) s ∈ (T -1, T ),
where u 1 is any control solving the controllability problem

ẏ1 (s) = A y 1 (s) + B u 1 (s), s ∈ [0, 1] y 1 (0) = 0, y 1 (1) = x 1 .
Let ỹ be the solution to (1.1),with control ũ. Since x = 0 with control u = 0 is a stationary point of (1.1), by uniqueness of solution we have

ỹ(s) = 0 s ∈ (0, T -1) y 1 (t -T + 1) s ∈ (T -1, T ),
Let us now evaluate the functional J T,0 defined in (2.24) at ũ and compare it with the control u ≡ 0. Since min R n g(x) < 0, we have

J T,0 (ũ) = 1 2 1 0 u 1 (s) 2 + C y 1 (s) 2 ds + 1 ε x 1 4 -x 1 2 = 1 2 1 0 u 1 (s) 2 + C y 1 (s) 2 ds + 1 ε min R n g < 0 = J T,0 (0)
for a sufficiently small ε. This means that u ≡ 0 is not a global minimizer of (2.24).

Finally, since the final cost g ε and the running cost in (2.24) are continuous and bounded from below, then by the Direct Method in the Calculus of Variations, there exists a minimizer u T of (2.24). Moreover, we have that u T = 0 if T > 1. And since the initial condition of the admissible trajectories is 0, then if we denote by y T the optimal trajectory corresponding to u T , we have -y T is the trajectory corresponding to -u T . Now, by definition of (2.24), J T,0 (-u T ) = J T,0 (u T ) = min U T J T,0 , whence u T and -u T are two distinguished global minimizers of (2.24).

Conclusions and open problems

In this manuscript, we have studied the long time behavior of the value function associated to a finite-dimensional linear-quadratic optimal control problem with any target z, a general terminal cost g and constrained controls. To do so, we have introduced an infinite-time horizon optimal control problem and studied its value function W (x). This allows us to provide an asymptotic decomposition of the value function V (T, x) for the original control problem with finite time horizon and which is of the form W (x) + V s T + λ, where each of the terms corresponds to the cost of the optimal trajectory during one of the three stages of the turnpike strategy.

We now present some open problems.

3.1. Control problems governed by nonlinear state equations. We formulate this for a special control problem. Let A be an n × n symmetric positive definite matrix and let f : R -→ R be an increasing nonlinearity of class C 1 and with f (0) = 0. For a given time horizon T > 0, an initial state x in R n and a control u ∈ U T := L 2 (0, T ; U ) the corresponding trajectory y(•) solves

y (s) + A y(s) + f (y(s)) = B u(s), for s ∈ [0, T ] y(0) = x,
where the control operator is given by the matrix B ∈ M n,m (R) and the nonlinear term f (y(s)) = (f (y 1 (s)) , . . . , f (y n (s))).

The optimal control problem is to minimize, over the admissible controls u ∈ L 2 (0, T ; U ), the cost functional J T,x (u) := 1 2

T 0 u(s) 2 + C y(s) -z 2 ds where C ∈ M n (R) is a given matrix and z ∈ R n is the prescribed running target. The value function is defined as V (x, T ) := inf u∈U T J T,x (u). In the same line as for the LQ problem treated in this manuscript, one can also introduce the steady functional J s (u, y) := 1 2 u 2 + C y -z 2 to be minimized over the subset of controlled steady states M s := {(u, y) ∈ U × R n | Ay + f (y) = Bu} and define V s := min Ms J s . These kind of problems have been treated both in a finite dimensional framework [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF] and in a PDE framework [START_REF]Remarks on long time versus steady state optimal control[END_REF][START_REF] Trélat | Steady-state and periodic exponential turnpike property for optimal control problems in hilbert spaces[END_REF][START_REF] Trélat | Integral and measure-turnpike properties for infinite-dimensional optimal control systems[END_REF][START_REF]The turnpike property in semilinear control[END_REF]. Available results in the literature typically require smallness conditions on the running target.

By using the techniques developed in the above references, it is possible to get bounds on the space derivatives of the value function, which allow to apply the Ascoli-Arzelà Theorem as in the proof of Theorem 1.3. For small targets, by using the turnpike results of [START_REF]The turnpike property in semilinear control[END_REF] and adapting the techniques of the present manuscript, we can deduce large time asymptotics of the value function as in Theorem 1.3.

However, for large targets, to the best of our knowledge, the turnpike theory is not complete. In particular, we cannot identify the limit as we do in (2.23) 

T →+∞ 1 T V (x, T ) ≥ V s .
From a control perspective, the above inequality means that in time large there is no time-evolving strategy significantly better than the steady ones. Actually, in case the time evolving functional is restricted to time independent controls, (3.1) has been proved in [41, section 4], by Γ-convergence. However, to the best of our knowledge, the above inequality is unknown if the time-evolution functional is minimized over time dependent controls and it is an interesting open problem.

3.2. Complete turnpike theory in constrained control. Throughout our manuscript, we assumed A invertible. It would be nice to get a turnpike result under constraints, without this assumption.

Furthermore, the rate of convergence of the time-evolution optima towards the steady ones should be investigated. An exponential bound could be obtained by applying the arguments of [START_REF] Esteve | Turnpike in lipschitz-nonlinear optimal control[END_REF] to ũ := u -u and ỹ := y -y.

3.3.

Characterization of the ergodic constant in a more general case. In our setting, the constant c in (1.21) corresponds to V s , which is the minimal value of the steady problem. This has been obtained as a consequence of the validity of the turnpike property for our problem. It would be interesting to generalize this characterization for more general problems, by using Hamilton-Jacobi techniques instead of turnpike theory.

3.4.

Hamilton-Jacobi equations with non-coercive Hamiltonian. As we have anticipated, the function p -→ H(x, p), as defined in (1.19), is not coercive whenever B * has a nontrivial kernel. This prevented us from using available results in the Hamilton-Jacobi literature. We have then employed turnpike theory to obtain long time behavior results in our context.

3.5. The infinite dimensional case. It is well known that the turnpike property holds as well in the infinite dimensional case (see [START_REF] Porretta | Long time versus steady state optimal control[END_REF][START_REF]Remarks on long time versus steady state optimal control[END_REF][START_REF] Trélat | Steady-state and periodic exponential turnpike property for optimal control problems in hilbert spaces[END_REF][START_REF] Trélat | Integral and measure-turnpike properties for infinite-dimensional optimal control systems[END_REF][START_REF]The turnpike property in semilinear control[END_REF]). In this setting, one can still associate to the infinite dimensional optimal control problem an analogue of the HJB equation that captures the evolution of the value function. Indeed, this can be handled for instance by means of the so-called Master equation whose characteristics are of HJB type. Such equation appears in the context of Mean Field Games and its long time behavior was studied for instance in [START_REF] Cardaliaguet | Long time behavior of the master equation in mean field game theory[END_REF]. We refer also to [START_REF] Bensoussan | The master equation in mean field theory[END_REF][START_REF]On the interpretation of the master equation[END_REF].

To proceed with the antistable part, we shall first prove the existence of an observability constant K = K(A, C) ≥ 0, such that for any ỹ ∈ H 1 (0, T ; L 0+ (A)) solution to d ds ỹ = Aỹ in (0, 1), we have

(A.4) ỹ L ∞ (0,1) + ỹ L 2 (0,1) ≤ K C ỹ L 2 (0,1) .
To that end, define

• a : L 0+ (A) -→ R + , x a := ỹx L ∞ (0,1) + ỹx L 2 (0,1)
and

• b : L 0+ (A) -→ R + , x b := C ỹx L 2 (0,1) ,
where ỹx solves On the one hand, due to the arbitrariness of [a, b], this yields

y 2 2 L ∞ (0,T ) ≤ K T 0 C y 2 2 ds + T 0 f 2 2 ds .
On the other hand,

T 0 y 2 2 ds ≤ T i=0 i+1 i y 2 2 ds + T T -1 y 2 2 ds ≤ K T i=0 i+1 i C y 2 2 ds + i+1 i f 2 2 ds +K T T -1 C y 2 2 ds + T T -1 f 2 2 ds ≤ K T 0 C y 2 2 ds + T 0 f 2 2 ds .
Then, for any t ∈ [0, T ], we have

y 2 (t) 2 + T 0 y 2 2 ds ≤ K T 0 C y 2 2 ds + T 0 f 2 2 ds ≤ K T 0 C y 2 2 ds + T 0 f 2 ds ≤ K T 0 C y 2 ds + T 0 C y 1 2 ds + T 0 f 2 ds ≤ K y(0) 2 + T 0 C y 2 ds + T 0 f 2 ds , (A.5)
where in the last inequality we have employed (A.3).

Step 4 Conclusion

Putting together (A.3) and (A.5), we conclude.

Remark A.2. Observe that, assuming that(A, C) is detectable, we have, for some β = β(A, C) > 0, the inequality

(A.6) y s 2 ≤ β Ay s 2 + C y s 2 , ∀y s ∈ R n ,
This is a consequence of inequality (A.2) applied to the trajectory ỹ(t) := ty s , (see [START_REF] Porretta | Long time versus steady state optimal control[END_REF]). The steady inequality (A.6) yields strict convexity of J s and hence uniqueness of the minimizer for the stationary optimal control problem (1.4).

Remark A.3. In the Definition 1.1, by using u -u 1 ∈ L 1 (0, +∞; R m ) and y -y 1 ∈ L 1 (0, +∞; R n ) together with d ds (y (s) -y 1 (s)) = A (y (s) -y 1 (s))+B (u (s) -u 1 (s)), s ∈ (0, +∞), the solution y stabilizes towards y 1 , i.e. y (t) -y 1 (t) -→ t→+∞ 0. Note also that U -stabilizability follows from exact controllability under the control constraint u (t) ∈ U (see e.g. [START_REF] Brammer | Controllability in linear autonomous systems with positive controllers[END_REF][START_REF] Lee | Foundations of optimal control theory[END_REF][START_REF] Trélat | Contrôle optimal: théorie & applications[END_REF]). In case U = R m , the U -stabilizability is equivalent to (unconstrained) exponential stabilizability of (A, B) [10, Remark 2.2 page 24].

We now prove the following result, which provides an upper bound y T uniform in T , and also gives the inequality (1.9) from Theorem 1.2.

Lemma A.4. There exists K = K(A, B, C, U, x, z, g) such that, for any T ≥ 1 and for every t ∈ [0, T ], we have Now, by U -stabilizability, there exists a control û ∈ L 2 (0, +∞; U ), such that û -u ∈ L 2 (0, +∞; R m ) ∩ L 1 (0, +∞, R m ), ŷ -y ∈ L 2 (0, +∞; R n ) ∩ L 1 (0, +∞; R n ), where ŷ is the solution to (1.1), with initial datum x and control û. Therefore J T,x (u T ) -T V s ≤ J T,x (û) -T V s Then, Λ is invertible and

(A.
Λ -1 Ham Λ = A -BB * E 0 0 -(A -BB * E) * .
As a consequence, Ham is invertible and its spectrum does not intersect the imaginary axis.

The first part of the above Lemma is Riccati theory (see, for instance, [15, Fact 1-(a) and Fact 1-(f)] or [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory, Systems & Control: Foundations & Applications[END_REF]). The second part 3 is taken from [43, We recall that the pair (u, y) satisfies the steady optimality system which reads as By [34, Theorem 3.7 pages 237-238], there exists a unique minimizer u * for J ∞,x , given by (1.17 
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 1 Figure 1. Optimal state fulfilling the turnpike property and associated asymptotic decomposition of the value function.
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 42222 ds ỹx (s) = A ỹx (s), s ∈ (0, 1) ỹx (0) = x. Now, using that, being (A, C) is detectable, all the modes in L 0+ (A) are observable (see definition of detectability in[15, at the bottom of page 232]), we deduce that both • a and • b are norms on the subspace L 0+ (A). Since L 0+ (A) is finite dimensional, they are equivelent, whence (A.4) follows.Step Estimate for the antistable part By definition Ay 2 + f 2 in (0, T ), Consider an arbitrary interval [a, b] ⊂ [0, T ], with length |b -a| = 1. By step 3, we have y ∞ (a,b) + y 2

u 2 T 0 u 2 T 0 u 1 2 T 0 u

 2020120 T (s) -u 2 + y T (s) -y 2 ds ≤ K Proof of Lemma A.[START_REF] Arisawa | Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor[END_REF]. By Lemma A.1 applied to y -y, we havey T (t) -y 2 ≤ K x -y 2 + T 0 u T (s) -u 2 + C (y T (s) -y) 2 ds , whence 1 T (s) -u 2 + C (y T (s) -y) 2 ds ≥ α y T (s) -y 2 -K,where α = α(A, C) > 0 and K = K(A, B, C, x, z) ≥ 0. Using the above inequality, together with Lemma 2.2 (inequality (2.3)), yieldsJ T,x (u T ) -T V s = (s) -z 2 -V s ds ≥ 1 T (s) -u 2 + C (y T (s) -y) 2 ds +(p, x -y T (T )) R n + g(y T (T )) ≥ T (s) -u 2 + C (y T (s) -y) 2 ds -K (1 + y T (T ) -y ) ≥ α y T (T ) -y 2 -K ( y T (T ) -y + 2)≥ α 2 y T (T ) -y 2 -K. (A.9)

0 [

 0 ) -u 2 + C (ŷ(s) -y) 2 ds + T (u, û(s) -u) R m + (Cy -z, C (ŷ(s) -y)) R n ] ds + g(ŷ(T )) ≤ K, (A.10)where = K(A, B, C, U, x, z, g). Hence, putting together (A.9) and (A.10), we getα 2 y T (T ) -y 2 -K ≤ J T,x (u T ) -T V s ≤ J T,x (û) -T V s ≤ K,i.e. the desired boundedness for y T .such that A -BB * E is stable, i.e. the real part of the spectrum Re(σ(A -BB * E)) ⊂ (-∞, 0); + I n ,where S is solution to the Lyapunov equation S(A -BB * E) * + (A -BB * E)S = BB * .

2 T 0 u 2 u 2 + C y -z 2 + 1 2 T 0 u(s) -u 2 + 0 [ 2 T 0 u(s) -u 2 + 0 [ 3 Λ - 1 = 2 + 2 T 0 u 0 [ 0 (

 2022202020203122000 subsection III.B].We are now ready to prove Proposition 1.5.Proof of Proposition 1.5. First of all, let us show that the minimization of J ∞,x is equivalent to the minimization ofJ ∞,x : L 2 loc (0, +∞; R m ) -→ R ∪ {+∞} ) -u 2 + C (y(s) -y) 2 ds,where y is the solution to (1.1), with initial datum x and control u. Let us show this by proceeding as in the proof of (2.3), and concluding with Lemma 2.4. We first consider the finite horizon cost functional with final cost g = 0, that isJ T,x (u) = 1 (s) -u + u 2 + C y(s) -Cy + Cy -z 2 ds = T C (y(s) -y) 2 ds + T (u, u(s) -u) R m + (Cy -z, C (y(s) -y)) R n ] ds = T V s + 1 C (y(s) -y) 2 ds + T (u, u(s) -u) R m + (Cy -z, C (y(s) -y)) R n ] ds. (B.3) In + S E -S -C y(s) -z 2 -V s ds = 1 (s) -u 2 + C (y(s) -y) 2 ds + T (u, u(s) -u) R m + (Cy -z, C (y(s) -y)) R n ] ds.Then we focus on the term (B.4)T C y -z, C (y(s) -y)) R n ds.

(B. 5 ) 0 = 0 ( 0 (

 5000 Ay -BB * p 0 = A * p + C * (C y -z), with u = -B * p. On the other hand, the pairs (u(•), y(•)) and (u, y) satisfy the equation in (1.1). Hence, we have (B.6)d ds (y -y) = A(y -y) + B(u -u) s ∈ (0, T ) y(0) -y = x -y.Then, using (B.5) and (B.6) and taking into account that y(0) = x and u = -B * p, we can compute the term (B.4) as follows:T Cy -z, C (y(s) -y)) R n ds = T 0 (C * (Cy -z) , y(s) -y) R n ds = -T 0 (p, A (y(s) -y)) R n ds = -y) -B(u -u) R n ds = (p, y(0) -y) R n -(p, y(T ) -y) R n + T B * p, u(s) -u) R m ds = (p, x -y(T )) R n -T 0 (u, u(s) -u) R m ds. (B.7)Finally, the conclusion follows by combining (B.3) and (B.7) and then letting T → +∞ since from Lemma 2.4 one has u -u ∈ L 2 (0, +∞; R m ), y -y ∈ L 2 (0, +∞; R n ) and y(T ) → y.

  y) * E (x -y) , whence, by (1.10) and (2.15) which is now an equality,W (x) = inf L 2 loc (0,+∞;R m ) J ∞,x (u) + (p, x -y) R n = 1 2 (x -y) * E (x -y) + (p, x -y) R n ,as desired.

Note that, as defined in (1.3), the value function V depends on the initial condition x and the
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Appendix A. Proof of the turnpike property

This appendix is devoted to the proof of the turnpike property stated in Theorem 1.2. The main difficulty resides in the fact that we are considering the constrained control case. In addition, we do not make the assumption of the steady optimal control u being at the interior of the control set U , which would make the proof much easier, and moreover would allow us to prove turnpike with an exponential rate.

We start by proving the following crucial Lemma which is a direct consequence of [START_REF] Porretta | Long time versus steady state optimal control[END_REF]Remark 2.1] and we include its proof for self-consistency.

Lemma A.1. Assume (A, C) is detectable and take f ∈ L 2 (0, T ; R n ). Then, there exists a constant K = K (A, C) ≥ 0, independent of T and f , such that for any T ≥ 1 and for any y solution to

we have

Proof. In the present proof, K will denote a (sufficiently large) constant depending only on (A, C).

Step 1 Decomposition into stable and antistable part Following the notation of [START_REF] Callier | Convergence of the time-invariant Riccati differential equation towards its strong solution for stabilizable systems[END_REF], L -(A) and L 0+ (A) denote resp. the A-invariant subspaces of R n spanned by the generalized eigenvectors of A corresponding to eigenvalues λ of A such that Re(λ) < 0 and Re(λ) ≥ 0. By linear algebra,

, where ⊕ stands for the direct sum. Then, let y be a solution to (A.1). Denote by y 1 and y 2 resp. the projections of y onto L -(A) and L 0+ (A). Then, y = y 1 + y 2 and, for i = 1, 2, d ds

where f 1 and f 2 stand for resp. the projection of f onto L -(A) and L 0+ (A).

Step 2 Estimate for the asymptotically stable part We have

All the eigenvalues of L A L -(A) are strictly negative, where we have denoted by L A the linear operator associated to the matrix A. Then, we have, for any s ∈ [0, T ] (A.3)

the constant K depending only on A.

Step 3 An observability inequality in the time interval [0, 1] Moreover, by inequality (2.3), the boundedness from below of g together with (A.10), we have

Then, inequality (A.8) follows from an application of Lemma A.1. This finishes the proof.

We now prove the validity of the turnpike property.

Proof of Theorem 1.2. Inequality (1.9) has already been proved in Lemma A.4. It remains to prove (1.8). Throughout this proof, K will always denote a (sufficiently large) constant depending only on A, B, C, U , x, z and g.

By (1.9), for any η ∈ (0, 1), there exists ζ = ζ(A, B, C, U, x, z, g, η) > 0 such that, for all T > ζ, we have

By Integral Mean Value Theorem, for any

By the U -stabilizability, there exists a control ũ ∈ L 2 (t T,1 , +∞; U ), such that

and its associated trajectory ỹ, solution to (1.1) with initial condition y

with estimates

the constant γ depending only on (A, B, U ). Set (A.14)

By using (A.13) and (A.14), we get

Now, let us define the functional

defined for any u ∈ L 2 (t T,1 , t T,2 ; U ), where y(•) is the solution to (1.1) with control u and initial condition y(t T,1 ) = y T (t T,1 ).

Let us estimate from above the following quantity

By adapting the techniques of Lemma 2.2 to the functional Q in (A. [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF], we obtain the analogous version of (2.3), which reads as

Now, using the definition of J T,x and Q, along with the fact that u T minimizes J T,x , we deduce

Using the defintion of Q in (A. [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]) and the choice of the control û in (A.14), we get

Now, noting that u T and û coincide in the interval (t T,2 , T ), and that T -t T,2 ≤ ζ, we can use Gronwall's inequality to estimate

where C is independent of T . Moreover, using the local Lipschitz continuity of g and (A.7), we obtain

Then, from the estimate (A.17), an analogous version of the identity (2.2) for the functional Q, combined with (A.17), (A.13) and (A.15), yields

where K is independent of T .

Then, by Lemma A.1, for any s ∈ [t T,1 , t T,2 ], Although the proofs of our main results (Theorems 1.2 and 1.3) do not rely on the use of the classical Riccati theory, which is not applicable to our case due to the constraints on the control, we note that in the unconstrained case U = R m , we may use the Riccati theory to obtain the value function W (x) explicitly as a positively definite quadratic form. We recall that, following Theorem 1.3, the value function W (x) is the limiting profile of the asymptotic decomposition of the value function V (T, x).

The proof of Proposition 1.5 is based on the following well-known Lemma, concerning the properties of the Algebraic Riccati Equation, and the corresponding Hamiltonian matrix

One can realize that Ham is the associated matrix to the optimality system (B.5).

Lemma