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An elementary proof of the one dimensional Poincaré inequality and the Jacobi lemma

This note serves teaching purposes and aims to show in an almost elementary way, that Fourier series and in particular Parseval's formula is not needed in order to obtain the sharp one dimensional Poincaré inequality.

Introduction

In every introductory course on calculus of variations, the model problem

(P) inf X F (u) := x 2 x 1 F x, u, u dx ,
where

X := {u ∈ C 1 [x 1 , x 2 ] , u(x 1 ) = α, u(x 2 ) = β and F ∈ C 2 [x 1 , x 2 ] × R × R , is consid- ered.
The first basic theorem asserts that X ∩C 2 (x 1 , x 2 ) -minimizers satisfy the Euler-Lagrange equation. An important special case is when F is independent of x and the classical example of a harmonic oscillator of a unit mass with a spring constant λ 2 and initial position set at zero; that is α = β = 0 and

F(x, z, p) = F λ (x, z, p) := 1 2 (p 2 -λ 2 z 2 ), λ > 0,
is usually demonstrated. Denote respectively by (P λ ) and F λ , the problem (P) and the functional F for the above integrand F λ . We also write (E λ ) when referring to the Euler-Lagrange equation associated to (P λ ) and set m λ := inf X F λ (•). Note that by a change of variables, it suffices to consider (P λ ) for x 1 = 0 and x 2 = 1 only.

Equation (E λ ) is u +λ 2 u = 0 which implies all real valued solutions have the form γ cos(λ

x)+ δ sin(λ x), for γ, δ ∈ R. Moreover, if 0 < λ < π, then since sin(λ ) cannot vanish, the only X- solution of (E λ ) (i.e. satisfying u(0) = u(1) = 0) is u 0 (x) := 0, x ∈ [0, 1]. If λ = π then all X-solutions have the form u δ (x) := δ sin(πx), x ∈ [0, 1],
for some δ ∈ R. We easily deduce then that for all values of λ

F λ (u δ ) = δ 2 4 π 2 -λ 2 .
Hence, if λ > π, letting δ → ∞ shows m λ = -∞ and hence (P λ ) has no solution in this case.

Clearly, F λ (u 0 ) = 0 for all λ < π while F π (u δ ) = 0 for any δ ∈ R and one needs to know in * Universität Mannheim (Math IV), Mannheim 68159, Deutschland. Email: psaradakis@uni-mannheim.de 1 addition that m λ ≥ 0 to claim that minimizers are u 0 if λ < π, and {u δ | δ ∈ R} if λ = π. This is implied by the Poincaré inequality (sometimes also called Friedrich's inequality): it asserts that

1 0 ϕ 2 dx ≥ π 2 1 0 ϕ 2 dx ∀ ϕ ∈ C 1 c (0, 1) . (1) 
Here, C 1 c (0, 1) stands for the set of all continuously differentiable functions with compact support in (0, 1). A standard approximation argument validates this inequality for all functions in X. This note aims to present one more proof of (1). For instance, in [D] two proofs are given: the first one (see pg 87, Example 2.24) is, in my opinion, the most unnatural since it uses an auxiliary function which is provided to the reader essentially out of nowhere (see function Φ(x, u) on pg 88), in order for the hypotheses of Theorem 2.22 to be satisfied. Theorem 2.22 in turn is presented as a motivation for the brief account on fields theory and the Weierstrass-Hilbert theorem presented in the next section there. Another proof using Fourier series and in particular Parseval's formula is provided later (see pg 195, Theorem 6.1 and Remark 6.2 (iv)). This second proof appears in many books on calculus of variations. The proof I present here is elementary as no knowledge other than the basis of the family {u δ | δ ∈ R} we obtained above and an integration by parts are required.

The proof

Since sin(πx) is strictly positive in (0, 1), given ϕ ∈ C 1 c (0, 1) , we may define an auxiliary function ϑ through the formula ϕ(x) = ϑ (x) sin(πx),

x ∈ (0, 1).

We have then ϕ = ϑ sin(πx) + πϑ cos(πx) and so

F λ (ϕ) = 1 0 ϕ 2 -π 2 ϕ 2 dx = 1 0 ϑ 2 sin 2 (πx) + 2πϑ ϑ sin(πx) cos(πx) + π 2 ϑ 2 cos 2 (πx) -π 2 ϑ 2 sin 2 (πx) dx = 1 0 ϑ 2 sin 2 (πx) + 1 2 π ϑ 2 sin(2πx) + π 2 ϑ 2 cos(2πx) dx.
Performing the indicated integration by parts in the second term of the last equality, we conclude

1 0 ϕ 2 -π 2 ϕ 2 dx = 1 0 ϑ 2 sin 2 (πx) dx. (2) 
Since the right hand side of this is nonnegative and ϕ ∈ C 1 c (0, 1) was chosen arbitrarily, the proof is completed. This proof is inspired by a similar in character transformation performed in [BrV] where an identity analogous to (2) is a crucial step towards establishing improved versions of Hardy's inequality. It is actually a very popular argument and is sometimes referred to as the ground state substitution (see for example [PT] and [FrLS]).

3 Jacobi lemma After a search in classical treatises on calculus of variations, I found equality (2) disguised in the monumental work [GH]. It is a particular case of the Jacobi lemma (see [GH], pg 279). In fact the accessory integral Q corresponding to an extremal ū of problem F , coincides with F in the case of problem (P λ ). Indeed, following [GH]- §2.1, Chapter 5, the accessory integral is defined by

where

and ū is an extremal of F λ . For F = F λ we have a(x) = 1, b(x) = 0 and c(x) = -λ 2 . In particular the coefficient functions a, b and c are independent of extremals of F λ and moreover

On the other hand, Jacobi's lemma asserts the identity

where v is any strictly positive Jacobi field (along ū); that is, v is a strictly positive solution of the Euler-Lagrange equation associated with the problem of minimizing Q on X. But (3) implies this problem is the same as (P λ ). Hence, coupling (3) and ( 4), and taking v(x) = sin(πx) we obtain (2). However, the above proof is unnoticed in [GH] since a weaker form of Poincaré's inequality, with the smaller constant 1 in place of the sharp π 2 , is given right after Jacobi's lemma (see pg 279 in [GH]).