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1 Introduction

Nowadays, in the context of transition modeling, the CFD community is moving towards the so-called
Local-Correlation based Transition Modeling (LCTM) concept. The main idea is to provide a set of
generic transport equations built using local informations, based on experimental correlations and cou-
pled with the already existing turbulence models. Within LCTM, the γ model, Menter et al. (2015), is
the transition model that we are going to analyze.
The γ model is included in the class of transition models based on the intermittency concept and the use
of only local informations to trigger the transition. Within LCTM, it is the only model Galilean invariant.
The transport equation for the intermittency γ is:

∂(ργ)
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∂x j
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∂
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µt

σγ

) ∂γ
∂x j

]
. (1)

Eγ and Pγ are the relaminarization/destruction term and production term, respectively. In the latter, the
constant Flength = 100 determines the magnitude of the production term, while Fonset is defined through
an empirical correlation and it is meant to activate the production of intermittency inside the boundary
layer, when the transition process starts. The definition of the correlation Fonset slightly changes accord-
ing to the transition mechanism. It is based on the relation between the vorticity Reynolds number Rev

and the momentum thickness Reθc ,
ReV

2.2Reθc

. (2)

Experimentally, indeed, it was observed that transition occurs when ReV =
ρy2S
µ reaches a critical value

inside the boundary layer.
The critical Reynolds number is computed through the correlation Reθc = f (TuL, λθL), which depends
on local quantities computed inside the boundary layer:

• the level of turbulence intensity inside the boundary layer is expressed as

TuL = min
(
100
√

2k/3
ωy

, 100
)
; (3)

• the pressure gradient parameter λθ can be expressed exploiting the incompressibility constraint in
2D as

λθ =
ρθ2

µ

dU
dS

= −
ρθ2

µ

dV
dy
, (4)

where dU
dS is the flow acceleration in the stream-wise direction, at the edge of the boundary layer

and dV
dy is the derivative of the wall normal velocity component V in respect of the direction normal

to the wall.

For a general geometry, dV
dy can be computed as:

dV
dy
≡ ∇(n · U) · n. (5)

where U and n are the velocity and normal to the wall vectors, respectively.



Coupling with SST turbulence model. In the original k − ω SST turbulence model, the transport
equation for the turbulence kinetic energy k is modified as it follows:

∂(ρk)
∂t

+
∂(ρu jk)
∂x j

= P′k + Plim
k − D′k +

∂

∂x j

[(
µ + σkµt

) ∂k
∂x j

]
, (6)

where the primary production term P′k and the destruction term D′k are redefined as

P′k = γPk and D′k = max(γ, 0.1) · Dk. (7)

The term Pk in Eq.(7) is equal to µtS Ω, according to Kato-Launder modification. The additional term of
production Plim

k is added in order to make the transition prediction more reliable when it develops under
low turbulence intensities.
Finally, the blending function F1 is redefined in order to guarantee the use of k − ω formulation in the
near wall region. In the presented work, γ model has been coupled with the 1994 version k−ω SST from
Menter.
We are going to discuss a 2D and a 3D computation. The simulations presented in the following where
computed using ISIS-CFD solver for incompressible flows.

2 2D-Flat Plate

With the purpose of evaluating the modeling error, we will present the results around a flat plate for
Re = 107 has been run. The inlet turbulence intensity is set to Tu = 0.536609% and three different eddy
viscosity ratios νt/ν = {270, 280, 290} were tested in order to evaluate the input/parameter uncertainties.
The simulations were run on a set of five geometrical similar structured O-grids provided by IST.
Multivariate Metrics. Following ASME V&V 20-2009, given a set of n validation points, we define the
n×n covariance matrix Uval = Unum + Ud + Uinput, whose entrances are the sum of the numerical, experi-
mental and input uncertainties. Computed the comparison error E = S −D (S numerical, D experimental)
at each given point, we define the multivariate metric as

Emv =

√
ET U−1

valE. (8)

Assuming that each estimate of the comparison E and uval is distributed as a Gaussian, we can define a

reference value for the multivariate metric Ere f =

√
n +
√

2n.
Through the multivariate metrics we can state that if Emv/Ere f is larger than one, it is an indication that
the model is not able to reproduce the experimental data within the range of the validation uncertainty at
each set point.
Results. In Figures (1) and (2) are presented the C f and the velocity profile Vx/V at X/L = 0.02035
(transition region) with the estimated error bars next to the correspondent comparison errors E(C f ) and
E(Vx/V). The multivariate metrics are reported in Tables (1) and (2).
In Fig.(1), we plot the skin friction profile all along the flat plate. The main discrepancies between the
model and the experimental data are in the transition region: the model predicts higher values of skin
friction in the transition region in respect of the experiments. It is interesting that there is no overlapping
between the numerical and experimental error bars in this region and this reflects the high multivariate
metrics computed in this zone (Table(1)). The source of this high uncertainty is related to the lack of
accuracy of the model, but also to the lack of accuracy of the experimental data. In addition, the experi-
mental uncertainty is very low and that could be an additional reason of the error bars non-overlapping.
The quantitative discrepancies between the experimental data and the computations in the laminar region
are related to the fact that the values of turbulence kinetic energy at the leading edge between com-
putations and experiments do not match, despite the freestream turbulence intensity at the inlet of the
computational domain has been tuned in order to have the experimental value of k at the leading edge.
Minor differences are observed in the turbulence region.
In general, the numerical uncertainty is the biggest contributor to the matrix Uval. Indeed, despite we



obtain reasonable value of the order of accuracy p, which is above 1.6, the numerical uncertainty per-
centage is high because the meshes are not in the asymptotic range. For this reason, we are planning to
run new simulations on a set of finer meshes.
In Fig.(2), the velocity profile Vx/V at X/L = 0.02035 in the transition region is plotted. We notice that
numerically the production term of turbulence kinetic energy is too strong, slightly accelerating the tran-
sition process in the boundary layer. As discussed for the skin friction distribution, the modeling error
results to be higher in the transition region in respect of the laminar and turbulence one, as we can observe
from the multivariate metrics computed at three different slices in the three different regions reported in
Table(2).
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(a) Numerical (S) and Experimental (D) C f ×103 pro-
files on the flat plate surface.
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Fig. 1: Error bars for the Skin Friction C f .

Laminar Region Transition Region Turbulent Region Total
E/Ere f 2.34 4.03 0.71 2.89

Table 1: Multivariate metric for the skin friction in different regions and all over the flat plate.

X/L = 0.01006 X/L = 0.02035 X/L = 0.05273
E/Ere f 1.58 4.56 1.73

Table 2: Multivariate metric for the velocity profiles at different positions along the flat plate.
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Fig. 2: Vx/V and E(Vx/V) with error bars in the transition region at X = 0.02035L .



3 γ Model - Towards 3D

The crossflow effects in the γ model are included through the C1-correlation proposed by Arnal (1984).
According to the correlation, the crossflow transition occurs when the following criterion is met:

Reδ∗
δ2t

150 f (HS )
> 1, (9)

where Reδ∗
δ2

is the crossflow Reynolds number and f (Hs) is a function of the shape factor.
The C1 criterion is locally formulated and implemented as:

TC1local =
CRS F

150
(GΨReV ) > 1. (10)

Each function in the parenthesis in (10) accounts for a specific effect:

• G accounts for the influence of the pressure gradient, i.e. the shape factor;

• the indicator Ψ is a non-dimensional measure of the local crossflow strength in respect of the
streamwise strength and it is defined as:

Ψ =
∣∣∣∣−→n · ∇( −→ω

|
−→ω |

)∣∣∣∣y, (11)

with −→n wall normal and −→ω vorticity. The vorticity −→ω and its derivatives in the normal direction
are used because they are the only physical quantities which describe the 3-dimensionality of the
boundary layer;

• ReV is the local vorticity Reynolds number.

The crossflow transition is then triggered through the onset function

Fonset,CF = min[max[100(TC1local − 1), 0], 1]. (12)

3.1 6:1 Prolate Spheroid
The model described above was tested on the 6:1 prolate spheroid configuration. We compared two differ-
ent simulations with the experimental results performed in the low speed wind tunnel at DLR Gottingen,
Kreplin et al. (1985). The simulations have run for α = 15◦, Re = 6.5 × 106. Under these conditions
Tolmienn-Schlichting transition is observed on the leeward side next to the symmetry plane, while the
transition in the middle and windward side is dominated by crossflow instabilities.
We have set to different combinations of values of turbulence intensity and eddy viscosity ratios at the
inlet: (1) Tu = 0.15% and νt

ν = 21, (2) Tu = 0.5% and νt
ν = 250. The first combination leads to ω = 1

and it represents an unphysical way to reduce the turbulence kinetic energy decay ahead of the leading
edge; the second combination mathematically results in a value of k at the leading edge as the one of the
experiments. Simulations have been run on half model. The grid, provided by DLR, is unstructured with
a total number of nodes N = 53938, of which 1253 on the spheroid surface, with y+ = 1.
Results. In Fig.(3) are shown the experimental and the numerical skin friction distributions on the sur-
face for the different inlet conditions. The differences between computations and experiments are huge:
none of the computations is able to predict crossflow transition, because the crossflow criterion is never
activated in the first cells next to the wall. In both cases, the model is predicting natural transition.
In Fig.(3b) and (4a), we observe the skin friction distribution for Tu = 0.15% and νt

ν = 21, on two differ-
ent planes x-z and x-φ, where 0◦ 6 φ 6 180◦. On the leeward side, next to the symmetry plane, transition
due to T-S waves occurs at about 10% of the spheroid length, upward in respect of the experiments.
Indeed, experimentally, transition occurs along the isoline C f = 0.0025, which are denoted by the black
dots in Fig.(4). At about 10% of the spheroid length, we observe the upper side kink, which is less pro-
nounced with respect to the experimental results. This discontinuity is present because of the change on



the transition mechanism, from T-S to crossflow instabilities. However, on the windward side the model
does not predict any transition and the flow only transitions as it separates at the trailing edge, where the
skin friction lines converge. Also the topology of the skin friction lines is questionable, indeed, because
of the high angle of incidence, we were expecting the streamlines on the windward side to converge to
the primary separation line upward with respect to what is predicted by the present computations.
In Fig.(3c) and (4b) another scenario is visible for Tu = 0.5% and νt

ν = 250. It is evident the extreme
sensitivity of the model to the inlet parameters: an higher value of turbulence kinetic energy at the inlet
results in a faster transition. This is the reason why the flow transitions at about 5% of the length the
spheroid. The transition is due to a 2D mechanism, because neither in this case the crossflow criterion is
ever activated as it has mentioned before. Nonetheless, this kind of behavior was not expected accord-
ing to the experiments and it is allegedly due to a excessive numerical production of turbulence kinetic
energy inside the boundary layer related to the computation of the velocity derivative normal to the wall.

(a) Experimental Results from Grabe et al. (2016).

(b) Numerical results for νt
ν

= 21 and Tu = 0.0015 at the inlet.(c) Numerical results for νt
ν

= 250 and Tu = 0.005 at the inlet.

Fig. 3: Top views of experimental and numerical results of the crossflow transition around a spheroid for
α = 15◦. Skin-friction lines are added to computations.

(a) (b)

Fig. 4: Cf distribution in the x − φ plane for νt
ν = 21 and Tu = 0.0015 at the inlet (left) and for νt

ν = 250
and Tu = 0.005 at the inlet (right) vs experimental iso−C f−line C f = 0.0025 (black dots).

For what concerns the trigging of crossflow transition, we think that the problem relies on the calculation
in Eq.(10) of

−→
φ , i.e. the derivative of the vorticity vector, in the first layer of cells next to the wall.

An extremely accurate calculation of the second derivative of the velocity is here demanded in order to



activate the criterion and to trigger the crossflow transition.
The second derivative of the velocity is calculated through an Hessian function. Each entrance of the
Hessian matrix for a generic quantity Q is built through a least square 2nd order accurate interpolation.
Although this Hessian calculation has been demonstrated to be efficient far from the wall, it does not
ensure an accurate estimation of the second derivate in the first two layers from the wall where transition
is occurring.

4 Conclusion

The presented results made possible to discover some deficiencies of the only Galilean invariant model
that is at our disposal in literature, the γ model. All the issues that have been discussed in 2D are mainly
related to the implementation of the model. Among all, a not accurate calculation of the velocity deriva-
tive normal to the wall can result in an excessive production of turbulence kinetic energy inside the
boundary layer. This leads both to an over prediction of the skin friction (flat plate results) and to the not
accurate prediction of the transition position isoline, as it is the case for the spheroid on the leeward side.
It seems that the choice of the the turbulence model for the coupling (Menter (1994) vs Menter (2003))
does not affect the results, however further investigation should be done for the 3D case. Concerning the
crossflow implementation, the main issues are related to the calculation of the second derivative of the
velocity in the boundary layer. Extreme accuracy is demanded in the first two layers in order to trigger the
transition correlation. Nonetheless, it is necessary to estimate first the physical validity of the included
crossflow criterion, then, possibly, to find a new method for the calculation of the second derivatives.
In general, γ-model is extremely sensitive to the inlet parameters. The decay of turbulence kinetic energy
ahead of the body strongly affects the numerical results, thus a prior tuning of the input parameters is nec-
essary for a successful computation. Nonetheless, the use of non-physical inlet values, such as enormous
values of eddy viscosity ratio to control the turbulence decay, is a topic that is worthwhile to discuss.
In the next future, we are planning to implement the γ − Reθ model both for Tollmien-Schlichting and
crossflow transition.
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