
HAL Id: hal-02873436
https://hal.science/hal-02873436

Submitted on 23 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel solution approach with ML-based pseudo-cuts
for the Flight and Maintenance Planning problem

Franco Peschiera, Robert Dell, Johannes Royset, Alain Haït, Nicolas Dupin,
Olga Battaïa

To cite this version:
Franco Peschiera, Robert Dell, Johannes Royset, Alain Haït, Nicolas Dupin, et al.. A novel solu-
tion approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem. OR
Spectrum, 2021, 43, p. 635-664. �10.1007/s00291-020-00591-z�. �hal-02873436�

https://hal.science/hal-02873436
https://hal.archives-ouvertes.fr

�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/26933

https://doi.org/10.1007/s00291-020-00591-z

Peschiera, Franco and Dell, Robert and Royset, Johannes and Haït, Alain and Dupin, Nicolas and Battaïa, Olga A

novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem. (2020) OR

Spectrum. ISSN 0171-6468

Vol.:(0123456789)

OR Spectrum

1 3

A novel solution approach with ML‑based pseudo‑cuts
for the Flight and Maintenance Planning problem

Franco Peschiera1  · Robert Dell2 · Johannes Royset2 · Alain Haït1 ·
Nicolas Dupin3  · Olga Battaïa4

Abstract
This paper deals with the long-term Military Flight and Maintenance Planning prob-
lem. In order to solve this problem efficiently, we propose a new solution approach
based on a new Mixed Integer Program and the use of both valid cuts generated on
the basis of initial conditions and learned cuts based on the prediction of certain
characteristics of optimal or near-optimal solutions. These learned cuts are gener-
ated by training a Machine Learning model on the input data and results of 5000
instances. This approach helps to reduce the solution time with little losses in opti-
mality and feasibility in comparison with alternative matheuristic methods. The
obtained experimental results show the benefit of a new way of adding learned cuts
to problems based on predicting specific characteristics of solutions.

Keywords  Maintenance · Flight · Aircraft · Military · Mixed integer programming ·
Supervised learning

1  Introduction

Maintenance is expensive, and military maintenance is more so: the 2019 US
Department of Defense investment in maintenance is around $ 78 billion (The Econ-
omist 2019). Reducing costs while increasing availability, reliability and sustainabil-
ity are often conflicting goals that need to be achieved by executing a good mainte-
nance plan. There are two main questions that need to be answered when making

 *	 Franco Peschiera
	 franco.peschiera@isae‑supaero.fr

1	 ISAE‑SUPAERO, Université de Toulouse, Toulouse, France
2	 Naval Postgraduate School, Monterey, CA, USA
3	 Laboratoire de Recherche en informatique (LRI), CNRS UMR 8623, Université Paris-Saclay,

Orsay, France
4	 KEDGE Business School, Talence, France

http://orcid.org/0000-0001-9011-8683
http://orcid.org/0000-0003-3775-5629
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-020-00591-z&domain=pdf

	 F. Peschiera et al.

1 3

good decisions concerning maintenance: when is the maintenance needed (predic-
tion) and when is the maintenance actually done (schedule).

Calculating maintenance needs by predictive maintenance involves the analysis
of historical data to estimate windows of time when maintenance has to be done so
as to guarantee a risk of failure under a certain threshold. According to the US Air-
Force tests on command-and-control planes, predictive maintenance could reduce
unscheduled work by a third (The Economist 2019).

The savings will only materialize by following a suitable maintenance schedule.
To achieve this, those time windows are taken together with resource capacities and
future usage planning, among other information, in order to produce an actual main-
tenance schedule that is feasible and satisfies the needs of its planners.

Producing such a detailed plan for a sizable fleet while planning for a long-
term horizon and taking into account the multiple objectives inherent to long-term
planning is not an easy task. In most air forces, a derivative of the “Sliding Scale
Scheduling Method” (Department of the Army 2017) is used. It consists of a sim-
ple heuristic that attempts to distribute remaining flight hours among aircraft in a
ladder-like distribution, i.e., there is a constant probability of finding an aircraft with
any given amount of remaining flight hours.

Sometimes, the task of coming up with a good plan can become hard, even to
solve using state-of-the-art software. In these cases, insights about the problem need
to be extracted to help improve solution time.

This paper provides such insights. It presents a new and potentially powerful way
to improve the performance of Mathematical Programming (MP) models by using
Machine Learning (ML): we train a supervised learning method with a big database
of past instances in order to predict characteristics of very good or optimal solutions
before actually solving the problem. These characteristics can later be used to limit
the solution space to a fraction of the original size and thus improve performance.

This article is structured as follows. Section 2 presents the problem at hand in
detail. An analysis of the previous work on the Flight and Maintenance Planning
(FMP) and ML applied to MP is given in Sect. 3. Section 4 enumerates all input
parameters that constitute the definition of an instance of the problem. Section 5
shows a new efficient Mixed Integer Program (MIP) formulation for the problem,
together with a series of deterministic bounds to apply to instances of the problem,
while Sect. 6 formulates novel learned bounds (pseudo-cuts) to instances of the
problem. Section 7 explains our computational experiments, and Sect. 8 discusses
the results. Lastly, Sect. 9 provides conclusions and pointers for further work.

2 � Problem statement

The problem consists of assigning an heterogeneous fleet of military aircraft i ∈ I to
a given set of scheduled missions j ∈ J over a fixed time horizon while also plan-
ning when each aircraft will be conducting maintenance operations. Each aircraft
has a set of defined capabilities that allow it to be assigned to missions. This prob-
lem was originally presented in Peschiera et al. (2020) and is inspired by the French
Air Force requirements.

1 3

A novel solution approach with ML-based pseudo-cuts for the…

A series of missions exists along a horizon divided into t ∈ T periods. Each mis-
sion j requires a minimum number of aircraft ( Rj ) among the aircraft that can be
assigned to it ( i ∈ Ij ) with each aircraft flying Hj hours for each period it is assigned
to the mission. An aircraft assigned to a mission j must be assigned for at least
MTmin

j
 and at most MTmax

j
 consecutive periods.

Each maintenance operation (henceforth called a check) has a fixed duration of M
periods and cannot be interrupted: during this time the aircraft cannot be assigned to
any mission. Let remaining calendar time express the maximum number of periods,
starting at the beginning of a given time period, before an aircraft must undergo a
check; and remaining flight time, the maximum number of flight hours an aircraft
can be flown before requiring a check, at the end of a given time period. After a
check, an aircraft restores its remaining calendar and flight time to their maximum
values of Emax and Hmax , respectively. After completing a check, an aircraft cannot
undergo another check for at least Emin periods. The number of simultaneous checks
during each period cannot surpass the capacity Cmax without incurring a penalty, i.e.,
this constraint is elastic (can be violated at a cost per unit violation).

Some aircraft ( NInit
t

 ) are already in maintenance in period t at the beginning of
the planning horizon. Other aircraft are conducting missions that started before the
start of the planning horizon and their continued assignment extends into the plan-
ning horizon by AInit

ij
 (the fixed set of periods aircraft i extends assignment for mis-

sion j at the start of the planning horizon).
Let serviceability indicate if an aircraft is capable, at the beginning of a given

time period, to perform a mission (i.e., is not undergoing a check) and let availability
be the total number of periods for which an aircraft is serviceable. Lastly, let sus-
tainability be the number of total remaining flight hours for the fleet.

To guarantee both serviceability and sustainability at each time period, missions
are grouped into clusters. Formally, a cluster is a set of missions such that each mis-
sion has exactly the same type, capabilities and, as a result, candidates. For each
cluster, a minimal number of serviceable aircraft and a minimal sustainability are set
as constraints for each period. These constraints are elastic. All serviceable aircraft
have a minimum default usage for each period equal to Umin flight hours, which they
are required to fly when not assigned to a mission or in a maintenance.

Finally, the main objective is to schedule the last check for all aircraft as late as
possible and to minimize the deviations from all elastic constraints. A secondary
objective is to balance the flying load among aircraft in the fleet so that the variance
of the frequency of checks of each aircraft in the fleet is minimized.

2.1 � Assumptions

There are constraints that can be violated at a cost per unit of violation. For such
elastic constraints, we bound the violation within intervals where the cost per unit of
violation within the interval is constant. Multiple bounded intervals permit increas-
ing the cost per unit of violation.

Each mission is considered active only during a determined contiguous set of peri-
ods. Missions are assumed to require a constant amount of flight hours per period for

	 F. Peschiera et al.

1 3

each aircraft and a constant amount of aircraft per period, when active. Each mission
and each aircraft have one and only one type. We assume a capability to be a set of
optional aircraft characteristics that may be required by a mission. An aircraft can
have none or more capabilities, a mission can have at most one and if it does we call
it a Special mission. An aircraft i is considered suitable for a mission j (i.e., a candi-
date) if it shares the same type and has the capability required by the mission.

We assume (realistically for our data) a maximum number of two checks for each
aircraft and a minimum of one. Maintenance capacity is constant over the planning
horizon. All checks have the same duration and frequency conditions.

We assume a certain number of aircraft to be pre-assigned to missions at the start
of the planning horizon. Also, we assume a certain number of aircraft in mainte-
nance at the start of the planning horizon.

3 � State of the art

The Military Flight and Maintenance Planning (MFMP) problem is a variant of the
better known Civil Flight and Maintenance Planning (FMP) problem where all air-
craft return to the base after each flight and fleet availability is prioritized over cost
reduction. Initial work on the military variant was done by Sgaslik (1994) and since
then different planning horizons have been studied: short term [e.g., Marlow and
Dell (2017), Cho (2011), Vojvodić et al. (2010)], medium term [e.g., Seif and Yu
(2018), Verhoeff et al. (2015), Kozanidis (2008), Hahn and Newman (2008), Pippin
(1998)] and long term [e.g., Peschiera et al. (2020)].

Each planning horizon of the problem has differences that influence the way
the problem is modeled and solved. These differences can be classified in three:
(1) maintenance rules (calendar frequency, flight hour frequency, duration, hetero-
geneous capacity, capacity usage, etc.); (2) mission rules (continuous flight hours,
discrete assignment, heterogeneous fleet, default usage, etc.); and (3) aircraft rules
(initial state, availability, serviceability and sustainability guarantees). For more
information on these differences, see Peschiera et al. (2020).

The medium term planning problem addresses the B and C checks in a planning
horizon divided into 6 to 12 periods of one month each. Each check requires a cer-
tain number of worker-hours and is scheduled every 200–400 flight hours. A Mixed-
Integer Linear Programming (MILP) model was formulated in Kozanidis (2008) to
solve simulated instances of 6-month horizons and a fleet of up to 30 aircraft. This
model was applied in Gavranis and Kozanidis (2015) within an efficient solving
method for a particular objective function case (maximizing overall sustainability),
and Seif and Yu (2018) expanded this work to apply it for multiple check types and
stations and a heterogeneous fleet.

The long-term planning problem addresses exclusively the D checks in a plan-
ning horizon of up to ten years divided into periods of one month. Each check lasts
several months and is scheduled every 5 years or every 1000–1200 flight hours. The
long-term planning of military aircraft was first introduced in Sgaslik (1994). More
recently it was studied in its current form in De Chastellux (2016). Lastly, Peschiera
et al. (2020) proved this problem NP-Complete and built a MILP model to solve

1 3

A novel solution approach with ML-based pseudo-cuts for the…

instances of 90-month horizons and a fleet of up to 60 aircraft. Several experiments
were designed and run on simulated instances to determine performance for input
parameters changes.

Previous work on the MFMP has been centered on using Mathematical Program-
ming (MP) models to solve it. When using MP to solve large instances of Combina-
torial Optimization (CO) problems, the node exploration of the branch and bound
phase often becomes too large to be handled in a reasonable time. In the case of the
MFMP, a combination of heuristics and MP (matheuristics) is often applied [see
Marlow and Dell (2017), Cho (2011), Kozanidis (2008), Peschiera et al. (2020)].

When using MP, several techniques are used to help prune branches of the tree
in order to improve performance. Exact methods, such as preprocessing and valid
cuts, can achieve reductions of the solution space without taking out any feasible
integer solution (i.e., without loss of optimality). Also, most solvers use a number
of primal heuristics to efficiently find new integer solutions through the use of the
Linear Programming (LP) relaxation of the problem and incumbents solutions [e.g.,
RINS, Diving Heuristics, Local Branching, Feasibility Pump, see Achterberg et al.
(2005),Savelsbergh (1994), Cochran et al. (2011), Fischetti et al. (2005) for more
details]. In Diving Heuristics, a subset of variables is fixed (usually inspired by the
LP relaxation), see Dupin and Talbi (2018); Aghezzaf and Najid (2008) for exam-
ples of this. Finally, “a priori” heuristic decisions can be incorporated to guide the
whole solution process. These heuristics are guided by external information about
the problem and correspond to the fixing of variables and the incorporation of heu-
ristic-cuts [also known as pseudo-cuts, see Lazić et al. (2010)] more generally. In
this paper, valid cuts and heuristic cuts are implemented and applied to the MFMP.
The latter are generated by training a Machine Learning (ML) model on a database
of similar randomly generated instances.

The application of ML is a recent complement to existing techniques for solv-
ing large-scale CO problems, such as matheuristics and metaheuristics (Adamo
et al. 2017a, b; Talbi 2016). ML models are an heterogeneous group of techniques
that were previously known for predicting results based on past information. More
recently, though, the surge in popularity of Reinforcement Learning (RL) has made
more explicit the link between the CO and ML worlds (Bello et al. 2016). In Ben-
gio et al. (2018), several definitions and classifications of the implementations of
ML are provided that can be applied to the CO domain. In terms of ML techniques
applied to CO the two most common frameworks are supervised learning and rein-
forcement learning. With respect to the goal on the application of ML, (Bengio et al.
2018) cites three scenarios: end to end learning, learning meaningful properties of
optimization problems and machine learning alongside optimization algorithms. An
overview of hybrid algorithms by combining metaheuristics, MP and ML is pre-
sented in Talbi (2016). More related to our case, there exists some previous work
on applications of ML on MIP formulations. Following Bengio et al. (2018), these
techniques fall under the category “Learning meaningful properties of optimiza-
tion problems” by using “demonstration” (or “imitation learning”). In other words,
supervised learning models are trained with the help of a set of several instances
solved (offline) up to or near to optimality by some exact method. This method is
sometimes called oracle and usually consists of the original mathematical model

	 F. Peschiera et al.

1 3

solved over a long time and/or over small instances. The objective is to gain insights
on the possible solution of a new unseen problem. This information can be used
directly to guide decision making (as in Fischetti and Fraccaro (2019)) or can be
used to increase the performance of the existing model (as in Larsen et al. (2018);
Xavier et al.Xavier et al. (2019); Lodi et al. (2019)).

In order to predict characteristics of solutions, certain care needs to be taken when
dealing with the possible error in prediction. Most supervised learning methods use a
least-squares-minimization technique (or similar) to calculate the expected value of a
function. These techniques give no information about the distribution of the variance,
and they can be specially susceptible to outliers. A more robust technique to pre-
dict bounds of dependent variables is to use “superquantiles” or quantile regressions,
which are based in the Conditional Value at Risk (CVaR). The term conditional value
at risk in optimization was first introduced in Rockafellar and Uryasev (2000) and
work in Rockafellar and Royset (2010); Tyrrell Rockafellar and Royset (2015); Rock-
afellar and Royset (2015) further developed the idea, coining the name “superquan-
tiles,” and applying it to engineering and reliability decision making.

4 � Input data

4.1 � Basic sets [cardinality]

i ∈ I Aircraft [15, 60]
t ∈ T Time periods included in the planning horizon. We use t = 0 for

starting conditions and t = T for the last period
[90, 120]

j ∈ J Missions [8, 80]

4.2 � Auxiliary sets [cardinality]

y ∈ Y Type of aircraft [1, 4]
k ∈ K Cluster of aircraft that share the same functionality [1, 10]
s ∈ S Interval for constraint violation [3]
c ∈ C Capabilities for missions [0, |J|]

4.3 � Mission parameters [units]

Hj Flight hours required per period and aircraft for mission j [hours]
Rj Number of aircraft required per period for mission j [aircraft]
MTmin

j
Minimum number of consecutive periods required for an aircraft to be assigned to

mission j
[periods]

1 3

A novel solution approach with ML-based pseudo-cuts for the…

MTmax
j

Maximum number of consecutive periods an aircraft can be assigned to mission j [periods]
Umin Flight hours required per period and aircraft when not assigned to any mission nor

in maintenance
[hours]

Qj Optional capability required for mission j [capability]

4.4 � Maintenance parameters [units]

M Number of periods for a check [periods]
Cmax Maximum number of simultaneous aircraft checks [aircraft]
Emin Minimum number of periods between two consecutive checks for each aircraft [periods]
Emax Maximum number of periods between two consecutive checks for each aircraft [periods]
Hmax Remaining flight hours for an aircraft after completing a check [hours]

4.5 � Fleet parameters [units]

NInit
t

Number of aircraft pre-assigned to a maintenance check at the start of period t [aircraft]

NClust
kt

Number of aircraft in cluster k pre-assigned to a maintenance check at the start of
period t

[aircraft]

AClust
kt

Maximum number of cluster k aircraft that can be simultaneously in maintenance at
start of period t

[aircraft]

HClust
kt

Required remaining flight hours for cluster k at end of period t [hours]

RftInit
i

Remaining flight time for aircraft i from the start of the planning horizon [hours]

RctInit
i

Remaining calendar time until aircraft i reaches Emax from the start of the planning
horizon

[periods]

4.6 � Interval deviation and objective function parameters

PAs Penalty cost for violating serviceability constraint in interval s [penalty

aircraft−period
]

PHs Penalty cost for violating sustainability constraint in interval s [penalty

hour−period
]

PCs Penalty cost for violating capacity constraint in interval s [penalty

aircraft−period
]

P2M Reward per period for the start of the second check [penalty

aircraft−period
]

UAs Maximum deviation for violating the serviceability limit in interval s [aircraft]
UHs Maximum deviation for violating the sustainability limit in interval s [hours]
UCs Maximum deviation for violating the maintenance capacity limit in interval s [aircraft]

	 F. Peschiera et al.

1 3

4.7 � Index sets

i ∈ Iy Aircraft i ∈ I belonging to type y. One aircraft can belong to only one type
j ∈ Jy Missions j ∈ J belonging to type y. One mission can belong to only one type
c ∈ Ci Capabilities c ∈ C belonging to aircraft i
j ∈ Ji Missions j ∈ J where aircraft i is suitable
i ∈ Ij Aircraft i ∈ I suitable for mission j
t ∈ T j Time periods t ∈ T when mission j is active
j ∈ Jt Missions j ∈ J that are active in period t
i ∈ Ik Aircraft i ∈ I belonging to cluster k. One aircraft can belong to more than one cluster

i ∈ AInit
ij

Periods t ∈ T where aircraft i is pre-assigned to mission j

Note Ji and Ij are calculated based on Iy , Jy , Ci and Qj . For an aircraft i to be able
to be assigned to a mission j it needs to share the same type y as the mission and
have the required capability ( Qj ∈ Ci).

4.8 � Time‑related index sets

We define several sets based on the input data to simplify constraint formula-
tion. The equations related to these sets, together with an example, are given in
“Appendix A.”

t ∈ T
MInit

i
Time period options t ∈ T for aircraft i to start its first check

t ∈ T s
t�

Time periods t ∈ T required for a check that ends in t′

t ∈ T M
t�

Time periods t < T permitted for a second check to start, given the first check started
in t′ and excluding the need for a third check

t ∈ T M+
t�

Time periods permitted for a second check to start, including the possibility t = T
for not doing a second maintenance

(t1, t2) ∈ T T Tt Pairs of time periods t1 ∈ T , t2 ∈ T M
t1

 when a first and second check can start and
the aircraft is in maintenance in period t

(t, t�) ∈ T T j Set of all possible start t and finish t′ combinations for assignment of mission
(t1, t2) ∈ T TJjt Allowed assignments for mission j that start (end) at period t1 ( t2 ) and contain period t
(j, t, t�) ∈ JT Tit1 t2 Allowed assignments that start (end) at period t ( t′ ) for each aircraft i and for each

mission j ∈ Ji between checks starting at t1 and t2

4.9 � Aggregated flight hour parameters

To condense notation, we define parameters that aggregate flight hour usage. U′
tt′

is the flight hour usage for each aircraft between t and t′ without taking into con-
sideration any mission or check assignment. H′

jtt′
 is the additional flight hour

usage for each aircraft when assigned to mission j between periods t and t′.

1 3

A novel solution approach with ML-based pseudo-cuts for the…

5 � Mathematical formulation

This section presents the base model: the decision variables, constraints and
objective function. With respect to previous models (Peschiera et al. 2020), it
models both mission and maintenance assignments as start-stop assignments.

5.1 � Variables

The following binary decision variables prescribe the assignment of missions and
checks to aircraft.

aijtt′ Has value one if aircraft i starts an assignment to mission j at the beginning of period t and finishes
at the end of period t′ , zero otherwise

mitt′ Has value one if aircraft i starts a check at the beginning of period t and then starts the next check
at the beginning of period t′ or does not have a second check ( t� = T  ), zero otherwise

The following continuous auxiliary variables prescribe the status of each air-
craft or group of aircraft.

rftit Remaining flight time for aircraft i ∈ I at the end of period t ∈ T

eA
kts

Deviation in serviceability for cluster k at end of t in interval s

eH
kts

Deviation in sustainability for cluster k at end of t in interval s

eC
ts

Deviation in maintenance capacity at end of t in interval s

5.2 � Objective function and constraints

The main objective function (1) expresses the difference between the total devia-
tion from all goals on serviceability, sustainability and maintenance capacity and
the mean starting time of the second maintenance. The secondary objective func-
tion is not included in this formulation and will be handled in Sect. 6.

U�
tt�
= Umin

(
t� − t + 1

)

H�
jtt�

= (Hj − Umin)
(
t� − t + 1

)

	 F. Peschiera et al.

1 3

Constraints (2) limit the number of unpenalized simultaneous checks. Constraints
(3) enforce aircraft mission requirements. Constraints (4) restrict each aircraft to at
most one assignment each period.

Suppose aircraft i starts the first check in period t1 ∈ T
MInit

i
 and the second check in

period t2 ∈ T M+
t1

 . The left-hand side of constraints (5) represents the total flight

(1)

Min
∑

k ∈ K,

t ∈ T ,

s ∈ S

PAs × eA
kts

+
∑

k ∈ K,

t ∈ T ,

s ∈ S

PHs × eH
kts

+
∑

t∈T ,s∈S

PCs × eC
ts

− P2M
∑

i ∈ I,

t ∈ T
MInit

i
,

t� ∈ T M+
t

mitt� × t�

(2)

∑

i ∈ I,

(t1, t2) ∈ T T T t

mit1t2
+ NInit

t
≤ Cmax +

∑

s∈S

eC
ts

t ∈ T

(3)

∑

i ∈ Ij,

(t1, t2) ∈ T T Jjt

aijt1t2 ≥ Rj j ∈ J, t ∈ T j

(4)

∑

(t1, t2) ∈

T T T t

mit1t2
+

∑

j ∈

Jt ∩ Ji

∑

(t1, t2) ∈

T T Jjt

aijt1t2 ≤ 1 t ∈ T , i ∈ I

(5)

∑

(j,t,t�)∈JT T it1 t2

aijtt�H
�
jtt�

+ U�
t1t2

≤ Hmax + Hmax(1 − mit1t2
)

i ∈ I, t1 ∈ T
MInit

i
, t2 ∈ T M+

t1

(6)

∑

(j,t,t�)∈JT T i1t1

aijtt�H
�
jtt�

+ U�
1t1

≤ RftInit
i

+ Hmax(1 − mit1t2
)

i ∈ I, t1 ∈ T
MInit

i
, t2 ∈ T M+

t1

(7)

∑

(j,t,t�)∈JT T it2T

aijtt�H
�
jtt�

+ U�
t2T

≤ Hmax + Hmax(1 − mit1t2
)

i ∈ I, t1 ∈ T
MInit

i
, t2 ∈ T M+

t1

1 3

A novel solution approach with ML-based pseudo-cuts for the…

hours between those two periods, and the right side represents an upper limit ( Hmax )
on those flight hours. In case aircraft i does not have a maintenance cycle in those
two periods, the upper bound becomes large enough ( 2Hmax ) not to limit the total
flight hours.

Similarly, constraints (6) and (7) limit the total flight hours of each aircraft before t1
and after t2 , respectively.

Constraints (8) limit the number of unpenalized aircraft from cluster k simultane-
ously undergoing a check in period t. This measures serviceability. Constraints (9)
record any deviation from the remaining flight hour requirement for each cluster k
and each period t.

Constraints (10)–(12) define the remaining flight time for each aircraft i and each
period t resulting from planned mission and maintenance assignments. Constraints
(10) initialize the remaining flight time at the beginning of the first period. Con-
straints (11) consist of a balance of flow for the remaining flight time of aircraft i at
the end of period t with respect to the end of the previous period; they are inactive
in case aircraft i is assigned a check in period t. Finally, constraints (12) enforce the
remaining flight time to be equal to Hmax in case aircraft i is assigned a check.

(8)

∑

i ∈ Ik,

(t1, t2) ∈ T T Tt

mit1t2
+ NClust

kt
≤ AClust

kt
+
∑

s∈S

eA
kts

k ∈ K, t ∈ T

(9)
∑

i∈Ik

rftit ≥ HClust
kt

−
∑

s∈S

eH
kts

k ∈ K, t ∈ T

(10)rftit = RftInit
i

t = 0, i ∈ I

(11)

rftit ≤ rfti(t−1) + Hmax
∑

(t1, t2) ∈

T T Tt

mit1t2

− Umin −
∑

j ∈ Jt ∩ Ji,

(t1, t2) ∈ T T Jjt

aijt1t2 (Hj − Umin) t ∈ {1,… , T}, i ∈ I

(12)
rftit ≥ Hmax

∑

(t1, t2) ∈

T T Tt

mit1t2
t ∈ T , i ∈ I

	 F. Peschiera et al.

1 3

Constraints (13) require maintenance assignments for each aircraft. Each aircraft is
assigned one (if t� = T  ) or two checks over the whole planning horizon.

Constraints (14) require aircraft to comply with pre-assigned tasks during periods in
AInit

ij
.

Constraints (15)–(20) declare all the decision variables’ bounds and domains.

5.3 � Deterministic bounds and valid cuts

For each period t, and using the aircraft initial states in terms of remaining flight time
and calendar time, we calculate the minimum and maximum number of checks that an
aircraft could have already started and ended at the start of the period. This leads to
cuts that limit the number of checks over the planning horizon, at the aircraft level. We
then combine this information with the possible mission assignments at the start of the
horizon, and we formulate cuts that limit those mission assignments.

Later, we aggregate initial states to the aircraft type level to obtain cuts on the maxi-
mum number of maintenances until a given period for the group of aircraft.

(13)

∑

t ∈ T
MInit

i
,

t� ∈ T M+
t

mitt� = 1 i ∈ I

(14)
∑

(t1,t2)∈T T Jjt

aijt1t2 ≥ 1 i ∈ I, j ∈ Ji, t ∈ AInit
ij

(15)aijtt� ∈ � i ∈ I, j ∈ Ji, (t, t
�) ∈ T Tj

(16)mitt� ∈ � i ∈ I, t ∈ T
MInit

i
, t� ∈ T M+

t

(17)rftit ∈ [0,Hmax] t ∈ {0,… , T}, i ∈ I

(18)eA
kts

∈ [0,UAs] k ∈ K, t ∈ T , s ∈ S

(19)eH
kts

∈ [0,UHs] k ∈ K, t ∈ T , s ∈ S

(20)eC
ts
∈ [0,UCs] t ∈ T , s ∈ S

1 3

A novel solution approach with ML-based pseudo-cuts for the…

Cuts (21) limit the starts of checks of aircraft of type y in order to have the number
of finished checks to fall between the YMAccFb

yt
 bounds.

Finally, using the maintenance capacity together with these bounds, we generate
an overall bound on the total number of maintenances per period.

Cuts (22) limit the starts of checks of all aircraft in order to have the total number of
finished checks to fall between the TMAccFb

t
 bounds.

6 � Learning bounds and constraints

Learned bounds, as we present them, are similar to deterministic bounds in terms of
implementation: they can be both represented by an additional set of constraints or
a reduction in the set of decision variables. The main difference is that the latter (as
presented in Sect. 5.3) are guaranteed not to remove valid solutions from the solu-
tion space, while the former can, and often do, remove valid solutions. The reason
for this is that learned bounds do not focus in the feasible solution space itself but in
the statistical distribution of the optimal or near-optimal solution in that space. This,
in turn, permits learned bounds to drastically reduce the solution space even if there
is a chance of removing an optimal solution.

Whenever relevant, we use notation similar to that used in Larsen et al. (2018).
Let a particular instance of our problem be represented by the input vector x and
the optimal solution to our problem by y∗(x) ∶≡ arg miny∈Y(x) C(x, y) , where
C(x, y) and Y(x) are the cost function and the solution space, respectively. Finally,
let gn(y) ∀n ∈ {1,… ,N} represent N features from the solution y, which we name
“responses.” Our goal is, then, to predict gn(y∗) for each response n ∈ {1,… ,N} by
means of the input vector x and a function ĝn(x) learned from matching features on
both input and output data.

Each response n of an instance’s optimal solution generates one or more pseudo-
cuts that reduce the solution space Y(x) . This reduction removes valid solutions from

(21)

QMnum
tt1t2

=

⎧
⎪
⎨
⎪
⎩

0 t < t1 +M

1 t1 +M ≤ t < t2 +M

2 t ≥ t2 +M

YMAccFmin
yt

≤
�

i ∈ Iy,

t1 ∈ T
MInit

i
,

t2 ∈ T M+
t1

mit1t2
× QMnum

tt1t2
≤ YMAccFmax

yt
t ∈ T , y ∈ Y

(22)

TMAccFmin
t

≤
∑

i ∈ I,

t1 ∈ T
MInit

i
,

t2 ∈ T M+
t1

mit1t2
× QMnum

tt1t2
≤ TMAccFmax

t
t ∈ T

	 F. Peschiera et al.

1 3

the solution space and can potentially remove optimal solutions. Following notation in
Lodi et al. (2019), we refer to these pseudo-cuts as “learned constraints.” The result of
applying all learned constraints thus creates a new solution space Y�(x) . Let ŷ∗(x) be the
optimal solution for this new problem, i.e., ŷ∗(x) = arg miny∈Y�(x) C(x, y).

It would be desirable that the following holds:

In other words, we allow an invalid reduction in the original solution space as long
as the optimal objective function value of the reduced solution space Y�(x) is not too
far from the optimal objective function value of the original solution space.

In what is left of this section, we first explain the general case of constraining
maintenance cycles in 6.1 and we then present gn(y) and the method to calculate
ĝn(x) using a supervised learning algorithm in 6.2.

6.1 � Constraining maintenance cycles

We seek to limit the combinations of possible maintenance cycles (check patterns)
for each aircraft in the fleet. This decision is motivated by: (1) having a check fre-
quency as homogeneous as possible among similar aircraft, presented as a second
objective in Sect. 2; (2) improving solution time, by reducing the number of deci-
sion variables; and (3) providing the planner with information about the optimal
solution of a given instance without having to solve it.

Let H be the set of constraints to add as learning constraints and D the set of variables
mitt′ . For each h ∈ H , let Ah be a parameter with dimension |D| and bh a scalar parameter.
Finally, let Dh

⊂ D be a selected subset of variables used in constraint h ∈ H.
Equation (23) shows the generic formulation of every possible learning constraint

h ∈ H.

This formulation includes stronger constraints H′
⊂ H of the type seen in Eq. (24).

Other special case where Ah ∈ � creates cover-cut-like constraints H′′
⊂ H of the

type seen in Eq. (25).

6.2 � Predicting maintenance cycle constraints

One key difference among the check patterns for a given aircraft is the distance
between the two checks. We define the distance between two checks as the number
of periods that take place between the end of the first check and the beginning of

C(x, ŷ∗(x)) ≈ C(x, y∗(x))

(23)
∑

m∈Dh

Ah
m
× m ≥ bh h ∈ H

(24)m = 0 h ∈ H�,m ∈ Dh

(25)
∑

m∈Dh

m ≤ bh h ∈ H��

1 3

A novel solution approach with ML-based pseudo-cuts for the…

the second check. The minimum (maximum) distance between two checks is Emin
( Emax ) periods (see Sect. 4.4).

Because the objective function encourages the model to plan the second check
as late as possible [see Eq. (1)], the model rewards making the two checks far apart
from each other, avoiding the second check altogether in certain cases.

In fact, instances where the demand in flight hours is low (e.g., the sum of all
flight hours along the horizon is low), typically have only one check for each air-
craft. Contrary to this, instances with a high demand for flight hours have more
checks and the second check is typically done sooner. A similar relationship can
be expected from the initial status of the fleet. If a given fleet is in good status (e.g.,
aircraft at the beginning of the planning horizon haven’t flown that many hours since
their last check), one would expect less checks overall and farther apart. Both the
total demand of flight hours and the initial status of the fleet are known parameters.

This intuition can be formalized via a supervised ML model where a response n
is a function gn(y∗) on the optimal maintenance cycle distribution (e.g., in Fig. 1 the
response is the total number of checks) and the input features are a function on the
mission flight hours demand and the fleet initial status distributions (e.g., in Fig. 1
the input feature is the average flight hour demand).

The method consists of the following. First, we choose a set of candidate
responses to predict. Then, we calculate several input features that we suspect can
predict those responses. Finally, after validating the ML model on said responses
and input features, we obtain, for each response, the subset of input features that best
predict the chosen responses and the function that minimizes the loss function: ĝn(x)
.

Fig. 1   As a motivating example, the number of checks (vertical axis) and the average flight hours per
period (horizontal axis) are shown for some instances solved to optimality or close to optimality. The
three vertical facets split the dataset into three equally-sized groups according to the sum of remain-
ing flight hours of the fleet at the beginning of the planning horizon. “Init: 1/3” refers to the third of
instances where the sum of remaining flight hours is the lowest

	 F. Peschiera et al.

1 3

For our problem, we choose the following responses:

NM Total number of checks
�T−t� Average distance between the second check and

the end of the horizon over fleet
�t�−t Average distance between two checks over the fleet

With the following equations:

After validating the ML model, we obtain the following input features:

�C Average consumption per period
Init Sum of fleet flight hours remaining before first period
Spec Sum of all special mission flight hours
�WC Period that splits total consumption in two equal

parts. Can be fractional
�
2
C

Variance of consumption per period
maxC Max consumption per period

Let the consumption in period t be represented by the following:

And let JQ represent the set of special missions, i.e., that have a capability or where
Qj ≠ ∅.

Then the equations for those input features are:

NM =
∑

(i,t,t�)∈D|t�<T

mitt� + |I|

𝜇T−t� =
1

|I|

∑

(i,t,t�)∈D

mitt� × (T − t�)

𝜇t�−t =
1

|I|

∑

(i,t,t�)∈D

mitt� × (t� − t −M)

Ct =
∑

j∈JTt

HjRj t ∈ T

�C =
1

�T �

�

t∈T

Ct

Init =
�

i∈I

RftInit
i

Spec =
�

j∈JQ

HjRj�TJj�

�WC =

∑
t∈T Ct × t
∑

t∈T Ct

�
2
C
=

1

�T �

�

t∈T

(Ct − �C)
2

max
C

= max
i∈T

{Ct}

1 3

A novel solution approach with ML-based pseudo-cuts for the…

7 � Experimentation

Five thousand small (15 aircraft) instances are randomly generated following the
method found in Peschiera et al. (2020), which simulates French Air Force needs.
The sources of randomness are the missions, i.e., the quantity, hour needs, resource
quantities, minimum durations, special requirements; and the initial fleet status, i.e.,
remaining calendar time, remaining flight time, special capabilities for each aircraft
at the start of the planning horizon. These instances are used as an input to obtain
learned constraints.

Figure 2 shows the distribution on the average distance between checks for all
solved instances.

3 additional sets of 1000 instances each are randomly generated to test the imple-
mentation of these learned constraints. Each set corresponds to a particular size of
fleet: 30, 45 and 60 aircraft.

In what is left of this section, we first explain mathematical model implementa-
tion and execution in 7.1. We then present the statistical model implementation in
7.2. Finally, all tested mathematical models are explained in 7.3.

7.1 � Mathematical model implementation

Mathematical models are generated using python 3.7 and the PuLP library.
All instances are solved until optimality with a time limit of 1 hour and a tol-

erance (absolute gap) of 10. We use CPLEX 12.8 running on single thread Win-
dows 7 with 72 2.3GHz processors and 128 GB RAM workstation. Up to 70
experiments are run in parallel. CPLEX parameters are optimized for the problem
using the CPLEX Tuner tool.

7.2 � Implementation of learned constraints

The 5000 solved instances are split into two groups: training (70%) and testing
(30%). The training set is used to train a statistical model. The testing set is used

Fig. 2   Distribution of the average distance between checks in the 4667 successfully solved instances. The
minimum (maximum) distance allowed for each aircraft in each instance is 30 (60) periods

	 F. Peschiera et al.

1 3

for the feature selection process. Around 1000 instances are discarded in order to
build the prediction model because of having violated soft constraints or having
an absolute gap too large (bigger than 100). So the resulting dataset used to build
the model consisted of 4084 instances.

For forecasting, we test and compare several methods: Linear Regression (LR),
Decision Tree Regression (DTR), Multi-layer Perceptron regression (MLPR),
Support Vector Regression (SVR), Quantile Regression (QR) and Gradient
Boosted Regression Trees (GBRT).

Robust predictions involve predicting bounds, or quantiles. Only two imple-
mentations offered the possibility of predicting quantiles: QR and GBRT. Both
techniques are found to have similar effectiveness in predicting the 10% and 90%
quantiles. At the end, the former is chosen because it returned scalar coefficients
for every regressor and so is more intuitive to validate. To build the QR models,
python 3.7 is used together with the statsmodels library. Figure 3 shows the upper
bound for one of the variables ( 𝜇̂ub

t�−t
).

After preliminary tests, only cuts where we assume each aircraft has a maxi-
mum deviation (tol) with respect to the mean distance between checks ( 𝜇̂t�−t ) are
found to have a positive influence in solution times:

7.3 � Model experimentation

We call “base” the model described in Sect. 5, “old” the one formulated in
Peschiera et al. (2020) and “base_*” (“old_*”) the various derivatives from each
model. The model “base_determ” refers to the “base” model with deterministic
cuts added as described in Sect. 5.3.

Each learned cuts model involves the combination of two configuration param-
eters, corresponding to two steps during the pattern production. In the first step, we
control the maximum deviation (tol) we allow each individual maintenance pattern
to be from the mean distance between maintenances prediction bounds [see Eqs.
(26) and (27)]. In the second step, we control how many of the previously rejected
maintenance patterns should we incorporate nonetheless to the model, randomly, as
a percentage (recyc) of the already reduced number of patterns. The “base” model
(tol = ∞ ) has no added cuts. The most aggressive model (tol = −∞ ) assumes all air-
craft should have the same distance between checks, equal to the predicted average.

The notation for the learned cuts models is shown in Table 1, and they are con-
sistent between the “base” model and the “old” model.

(26)mitt� = 0 t� − t < 𝜇̂
lb
t�−t

− tol

(27)mitt� = 0 t� − t > 𝜇̂
ub
t�−t

+ tol

1 3

A novel solution approach with ML-based pseudo-cuts for the…

Three additional matheuristics are tested to compare the performance gains
offered by the previously presented learned cuts. The matheuristics are described
below:

base_flp. The linear relaxation of the “base” model is solved. Only maintenance
patterns with a non-zero value in the relaxed optimal solution are kept for a second
run of the “base” model.

base_flp2. The linear relaxation of the “base” model is solved. Only maintenance
patterns that are similar to a pattern with a non-zero assignment (i.e., both patterns
share the same aircraft and at least one date of the two checks) are kept for a second
run of the “base” model.

Fig. 3   The average distance between checks in the vertical axis ( �
t�−t ) vs. the sum of remaining flight

hours of the fleet at the beginning of the planning horizon (Init) in the horizontal axis for the over
4000 instances solved to optimality or close to optimality. In black are the real values from the solved
instances, and in blue the predicted upper bound at percentile 90. The instances have been split in 3 equal
parts, two times, according to two features: �

WC
 in column facets and �

C
 in row facets. “1/” corresponds

to the 33% of instances that have the lowest value for that given feature

Table 1   All learned cuts models that are based on the
“base” model

Each consists of a particular combination
of the tolerance for creating patterns (tol)
and the percentage of random extra pat-
terns (recyc). Reducing tol reduces the
number of patterns created, and increas-
ing recyc increases the number of patterns
recycled (included)

Model tol recyc

base ∞ 0
base_a1 2 0
base_a2 0 0
base_a3 −∞ 0
base_a2r 0 0.2
base_a3r −∞ 0.2

	 F. Peschiera et al.

1 3

base_flp3. The linear relaxation of the “base” model is solved. Let tf
i
 ( tl

i
 ) be the

soonest (latest) check for aircraft i with a non-zero value in the optimal relaxed solu-
tion. Only maintenance patterns that have the first maintenance after a tf

i
 and the

second maintenance before tl
i
 are used in the second run.

8 � Results

All comparisons presented in this section, with the exception of the summary tables
at the end, are done using the medium size dataset ( |I| = 30).

This section is structured as follows. First, Sect. 8.1 briefly analyses the “base”
and “old” models in terms of their performance; Sect. 8.2 presents the results of
learned cuts applied on both models; Sect. 8.3 compares the learned cuts with other
more traditional matheuristic techniques; finally, Sect. 8.4 shows a complete com-
parison including larger dataset sizes and alternative variants on the learned cuts.

8.1 � Comparison between models and deterministic cuts

We compare the “base,” “old” and “base_determ” models with respect to solution
time. This performance is expressed as the number of nodes that are visited in the
branch and bound phase before proving optimality, the quality of the LP relaxation
(before and after the cuts phase), the capacity to obtain feasible solutions and the
time it takes to prove an optimal solution.

Table 2 shows statistics on the status of the solutions returned by each model.
The “old” model is considerably better at obtaining feasible solutions in less than
1 h. Table 3 shows the quality of the relaxation and the number of nodes needed to
obtain an optimal solution. The “base” model is considerably better at obtaining a
good initial LP relaxation while also needing considerably less nodes to prove opti-
mality. With respect to solution times to obtain an optimal solution, they present a
similar performance. The deterministic “base_determ” model offers slight improve-
ments on the “base” model.

8.2 � Comparison of learned cuts

In order to assess the merits of the learning constraints, we use several indicators
that measure three main concepts: quality degradation, performance gains and feasi-
bility sensibility.

Figures 4 and 5 show a summary of the proportion and changes of the status of
the solution for both models, “base” and “old,” respectively, when applied learned
cuts. The number of solutions with an “Optimal” status increases in both cases.
With respect to finding feasible solutions, the “base” model sees an improvement on
the number of instances without a solution (“IntegerInfeasible” status) when adding
learned cuts, while the “old” model sees a regression in this respect. Note that the

1 3

A novel solution approach with ML-based pseudo-cuts for the…

number of infeasible solutions remains almost the same with the given configuration
regardless of the model used.

When adding learning constraints, we eliminate valid solutions from the pool
(i.e., these are invalid cuts or pseudo cuts). This implies there is a risk of taking out
the actual optimal solution. In order to measure the effect of these cuts on the value
of the optimal solution, we measure quality degradation as the distance (in % with
respect to the “base”) between the objective functions in the cases when all models
return an optimal status. Figure 6 compares the distribution of such degradations for
each case. The degradations of the learned cuts are almost entirely lower than 5%
from the “base” optimal. The “old” model is expected to have a degradation of 0%
or close to 0%, which it does.

We measure the performance of each method by comparing the solution time.
Figure 7 shows the distribution of solution times for each model for all instances. It
is possible to see how adding the cuts increases performance and the greatest perfor-
mance gains are obtained in the “base” model.

Another consequence of these pseudo-cuts is eliminating the complete solution
space for an instance. We quantify infeasible solutions in the following way: the
number of new infeasible instances obtained and the increase on the number of soft

Table 2   Comparison of the
number of instances per status
returned in each model: “base”,
“old” and “base_determ”

Each status is exclusive one from the other (i.e., they sum the totality
of correctly generated instances). Infeasible: problem proven infeasi-
ble. IntegerFeasible: an integer solution is found but not proven opti-
mal before time limit. IntegerInfeasible: no integer solution is found
before time limit. Optimal: difference between relaxation and best
integer solution is less than the absolute gap

Indicator base base_determ old

Infeasible 41 44 40
IntegerFeasible 277 289 640
IntegerInfeasible 384 368 29
Optimal 279 280 272
Total 981 981 981

Table 3   Comparison of the
quality of the linear relaxation
in each model: “base”, "old" and
“base_determ”

“nodes” refers to the average number of nodes needed to prove
optimality, in cases where both models obtain an optimal solu-
tion. “time” is the average solution time to obtain an optimal solu-
tion. “LP_first” is the average distance (in % from the optimal solu-
tion) between the initial relaxed solution and the optimal solution.
“LP_cuts” is the average distance (in % from the optimal solution)
between the relaxed solution after the root node cuts and the optimal
solution

Indicator base base_determ old

LP_cuts 0.39 0.54 0.48
LP_first 4.93 4.91 22.04
nodes 705.32 692.60 3234.61
time 1031.48 1054.36 996.36

	 F. Peschiera et al.

1 3

constrains violations. Table 4 shows the number of additional infeasible instances is
almost non-existent, and there is very little additional instances with soft constraints
violations in both models. All new infeasible instances are instances that are not
proven feasible (“IntegerInfeasible → Infeasible”) and could potentially be indeed
infeasible.

As stated previously, the uniform usage of the fleet is also a factor to take into
account when choosing a correct maintenance planning. Given that the pattern
selection is oriented towards constraining the check patterns that are too far from
the predicted mean distance between checks, it is expected for the variance of this
measure to decline. For the cases when there is more than one fleet type (i.e., for
larger instances), the variances of each fleet type are calculated individually and
summed into one single indicator. Figure 8 shows how the variance is greatly

Fig. 4   Number of instances per status returned in “base” model and the changes of status when applying
learned cuts. Each status is exclusive one from the other (i.e., they sum the totality of correctly generated
instances). Infeasible: problem proven infeasible. IntegerFeasible: an integer solution is found but not
proven optimal before time limit. IntegerInfeasible: no integer solution is found before time limit. Opti-
mal: difference between relaxation and best integer solution is less than the absolute gap

Fig. 5   Number of instances per status returned in “old” model and the changes of status when applying
learned cuts. Each status is exclusive one from the other (i.e., they sum the totality of correctly generated
instances). Infeasible: problem proven infeasible. IntegerFeasible: an integer solution is found but not
proven optimal before time limit. IntegerInfeasible: no integer solution is found before time limit. Opti-
mal: difference between relaxation and best integer solution is less than the absolute gap

1 3

A novel solution approach with ML-based pseudo-cuts for the…

reduced in most of the cases, to around half, which results in a more stable and
balanced planning.

Fig. 6   Relative difference between the objective function value for each model, compared with the
“base.” Only instances where all models return an optimal status are used. The right and left side tails
representing 10% of the sample are removed for better display

Fig. 7   The distribution of solution times of each method for all instances. The x-axis represents the per-
centile of instances in % from 0 to 100 and the y-axis the time it takes to solve the slowest instance in
that percentile

Table 4   New infeasible
instances per learned cuts model
and per status in the “base”
model

“IntegerInfeasible → Infeasible” is the number of additional new
infeasible instances which had this status in the “base” modelz.
“errors_mean” is the average of new soft constraints violations, and
“errors_new” is the percentage of new instances with at least one
soft constraint violation, among optimal solutions

Indicator base_a2r old old_a2r

IntegerInfeasible →
Infeasible

5.00 0 2.00

errors_mean 0.06 0 0.06
errors_new 2.42 0 4.35

	 F. Peschiera et al.

1 3

8.3 � Comparison with other matheuristics

Table 5 shows the extra infeasible instances for each method with respect to the
“base” model status. One can see that some previously “Optimal” and “Inte-
gerFeasible” solutions in the “base” model become now “Infeasible,” in contrast
with the “base_a2r” model. Also, these matheuristics introduce many more new
soft constraints violations. Figure 9 shows the solution time for each method
compared to the base model and to the learned cuts model: only the most aggres-
sive of the matheuristics beats the previously shown learned cuts.

These two results highlight the advantage of using learned cuts over other more
standard matheuristics: they offer a good combination of less degradation in new
infeasible solutions and better performance in solution times.

8.4 � Summary

Tables 6, 7, and 8 show a summary for each dataset of the gains and costs of
applying different degrees of cuts in models “base” and “old.” Each statistic
(“Stat”) is a comparison between the named model and the “base” model. As a

Fig. 8   The percentage difference in variance for the distance between checks in alternative models with
respect to the base model

Table 5   New infeasible instances per method and per status in the “base” model

e.g., 3 “Optimal” solutions in the “base” case result in “Infeasible” in “base_flp” “errors_mean” is the
average of new soft constraints violations, and “errors_new” is the percentage of new instances with at
least one soft constraint violation, among optimal solutions

Indicator base_a2r base_flp base_flp2 base_flp3

IntegerFeasible → Infeasible 0.00 10.00 8.00 8.00
IntegerInfeasible → Infeasible 5.00 76.00 12.00 10.00
Optimal → Infeasible 0.00 3.00 3.00 3.00
errors_mean 0.05 1.97 1.00 1.05
errors_new 2.31 31.54 23.85 24.23

1 3

A novel solution approach with ML-based pseudo-cuts for the…

reference, the “old” model results are also shown and compared accordingly. It is
important to note that the “old” model is similar in feasibility ( E� , E% and Infeas),
quality degradation ( Q� , Qm and Q95 ) and variance ( V� ) as the “base” model,
since both share the same solution space. Thus, the gains in performance ( T� and
Feas), and variance reduction ( V� ) offered by the learned cuts models need to be
weighted against trade-offs on the former indicators.

Fig. 9   The distribution of solution times for each method for all 994 instances solved. In the x-axis is the
percentile of instances in % from 0 to 100. In the y-axis is the time it took to solve the slowest instance in
that percentile

Table 6   Summary table comparing the performance of several options of cuts in scenario of size |I| = 30

All comparisons are done against the “base” model for each option dataset size. E� and E
%
 refer to the

percentage difference in average number of soft constraint violations per instance and the proportion of
new instances with at least one violation, among optimal solutions. Feas (Infeas) refer to the average
additional number of feasible (infeasible) instances obtained as a percentage of total instances (1000).
Q� , Qm

 and Q
95

 are the average, median and 95-percentile difference in the objective function when com-
paring optimal solutions (as a percentage of the “base”). T� is the difference in average solution times (as
a percentage of the “base”) for all instances. V� is the difference (as a percentage of the “base”) in the
variance of the distance between checks along the fleet for all instances
The best result for each row is shown in bold

Stat base_a1 base_a2r base_a3r old old_a1 old_a2r old_a3r

E� 0.16 0.07 2.28 − 0.01 2.27 0.07 2.65
E% 1.02 2.54 10.66 0 10.66 4.57 13.2
Feas 25.96 32.5 33.1 36.22 32.5 35.01 35.11
Infeas 1.21 0.61 1.51 − 0.1 1.41 0.21 1.61
Q� 12.97 9.86 27.65 − 0.18 56.58 6.3 14.4
Qm 2.8 3.65 8.08 0.02 6.36 2.67 5.48
Q95 4.82 7.83 11.17 0.92 9.93 4.14 7.81
T� − 16.16 − 29.5 − 49.53 0.54 − 14.17 − 5.2 − 30.39
V� − 41.31 − 42.56 − 60.19 − 1.83 − 93.2 − 48.77 − 68.45

	 F. Peschiera et al.

1 3

Regarding optimality degradation (Q), solutions with cuts tend to be 5–6%
away from the real optimal (or the best known solution). By recycling some
excluded patterns, the gap can be reduced to less than 4%.

Regarding performance, all learned cuts increase the number of instances
where a feasible solution is found in the “base” model: Feas improves by an aver-
age difference of 20% to 50% (measured in % of total instances). This is not so
in the case of the “old” model, where performance is lost in this sense. Gains
in solution times are also substantial. The average time ( T� ) usually improves
between 10 and 30%.

Additional infeasible solutions and soft constraints violations (Infeas and E)
increase with the aggressiveness of the cuts and depending on whether we allow
the possibility of recycling or not. In the cases of less aggressive cuts, most new
infeasible instances are not proven feasible by the “base” model. The impact of
recycling in reducing the number of infeasible instances while keeping most of
the performance is to be noted.

Table 7   Summary table comparing the performance of several options of cuts in scenario of size |I| = 45

The best result for each row is shown in bold

Stat base_a1 base_a2r base_a3r old old_a1 old_a2r old_a3r

E� 0 0.05 1.49 0 0.68 0.14 2.11
E% 0 2.7 10.81 0 2.7 8.11 10.81
Feas 37.01 48.55 54.56 60.58 49.55 55.07 58.48
Infeas 2 0.8 2.3 0 2.4 0.1 1.6
Q� 3.14 4.54 15.68 0.37 7.39 3.73 6.48
Qm 2.8 3.77 9.2 0 7.42 2.69 5.69
Q95 6.69 10.21 24.39 1.79 11.49 9.74 15.31
T� − 8.9 − 15.48 − 31.64 0.64 − 6.62 − 1.6 − 10.65
V� − 41.62 − 45.04 − 62.71 − 2.48 − 95.29 − 48.84 − 68.16

Table 8   Summary table comparing the performance of several options of cuts in scenario of size |I| = 60

The best result for each row is shown in bold

Stat base_a2 base_a2r base_a3r old old_a1 old_a2r old_a3r

E� 0 0 0 0 1.92 0 3.92
E% 0 0 0 0 7.69 0 15.38
Feas 32.59 36.02 43.18 53.88 37.23 44.7 49.44
Infeas 5.76 1.22 3.44 0.11 3.54 0.61 2.33
Q� 4.57 3.97 7.74 0.63 7.13 2.54 5.28
Qm 3.97 3.15 7.47 0 6.29 2.58 5.3
Q95 8.38 7.81 13.66 3.42 14.05 4.33 9.5
T� − 10.19 − 8.26 − 18.54 0.74 − 4.48 − 0.44 − 5.67
V� − 50.9 − 43.28 − 61.98 1.13 − 94.89 − 47.54 − 66.8

1 3

A novel solution approach with ML-based pseudo-cuts for the…

Finally, variance reduction (V) between 40 and 60% is usually obtained with most
cut strategies, although recycling reduces slightly the strength of the reduction. The
more aggressive a cut, the most the gain in variance reduction.

Larger instances allow for more aggressive cuts without losing too much feasibil-
ity or quality, as can be seen by comparing the impact of “base_a3r” across different
sizes of instance. The cuts in the “base” model have greater reductions in solution
time than those in the “old” model, while the cuts in the latter have slightly lower
feasibility and quality degradation and slightly greater variance reductions. This
can be explained as the nature of the cuts differs in each formulation: in the “base”
model it consists of reducing the number of variables, while in the “old” model it
consists of adding constraints.

The best compromise seems to be reached when adding recycling to aggressive
cutting (“base_a2r” or “base_a3r”) depending on the size of the instance. In most of
the cases, a low or very low optimality degradation can be seen together with a low
feasibility change, compared to both the “base” and “old” models. The performance
gains can be seen in both time to reach an optimal solution and the reduction of the
variance of the usage of the fleet. Finally, compared to the “base” model, the amount
of feasible solutions is increased.

These results encourage the design of more sophisticated ways of predicting pat-
terns in solutions. Ideally, a function that returns a probability distribution of pat-
terns for each instance could be trained and then used to sample promising patterns.
Our learned cuts model is a special case where we give a very high priority (a prob-
ability of 1) to patterns in the range of tolerance for the distance between checks and
a very low probability (dependent on the recycling parameter and the total amount
of available patterns) to the rest of the patterns.

9 � Conclusions

This paper presents an alternative MIP formulation for the long-term Military Flight
and Maintenance Planning problem. The performance is compared with previous
formulations using cases inspired by the French Air Force. Valid bounds are for-
mulated and tested. A forecasting model is designed to predict characteristics of
optimal solutions based on the input data and used to create pseudo-cuts. For com-
parison, several matheuristic that use the LP relaxation are also applied to reduce the
solution space of the problem.

The study shows that predicting characteristics of the optimal solution is a power-
ful method to obtain very good solutions that are close to the optimal, in less time
and with very little loss of feasibility. In addition, the prediction also allows con-
sideration of a second objective without hindering performance. The performance
gains of these pseudo-cuts will depend heavily on the implementation, i.e., on the
mathematical model employed and the way the pseudo-cuts are added to the model.

A comparison with more classical matheuristic techniques highlights the
potential benefits of doing a good trade-off between optimality and infeasibility
degradation in the search for performance.

	 F. Peschiera et al.

1 3

Further work includes, first of all, researching better ways to predicting the
optimal patterns in a solution. Secondly, the application of this technique into
problems where pattern can potentially be used, such as workforce scheduling
and cutting stock problems. Furthermore, this technique can be generalized into
a random sampling of patterns where each pattern is picked with a probability
equal to the potential it has to appear in the optimal solution.

Funding  This paper was written as part of a PhD Thesis partially financed by the French Defense Pro-
curement Agency of the French Ministry of Defense (DGA).

Appendix A: Time‑related index sets

Consider a small example where M = 2,RctInit
1

= 5,Emax
= 7,Emin

= 4,

MT
min

1
= 3,MT

max

1
= 4, T = 15, T 1 = {4,… , 10},J

i=1 = {1} ; then, the example
solution in Fig. 10 should comply with the following:

T
MInit

i
=
{

t ∈
{
max {0,RctInit

i
− Emax + Emin},… ,RctInit

i

}}

.

T s
t�
=
{

t ∈
{
max {1, t� −M + 1},… , t�

}}

.

TM
t�
=
{
t ∈ {t� +M + Emin − 1,… , t� +M + Emax − 1} ∩ {T − Emax + 1,… , T − 1}

}
.

TM+
t�

=

{
TM

t�
. t� +M > T ∨ t� +M + Emax − 1 < T

TM
t�
∪ {T}. t� +M ≤ T ≤ t� +M + Emax − 1

T T T t = {(t1, t2) ∣ t1 ∈ T s
t
∨ t2 ∈ T s

t
}.

T T j = {t, t� ∈ T j ∣ t +MTmin
j

− 1 ≤ t� ≤ t +MTmax
j

− 1}.

T TJjt = {t1, t2 ∈ T T j ∣ t1 ≤ t ≤ t2}.

JTT it1t2
= {(j, t, t�)|j ∈ Ji ∧ (t, t�) ∈ T T j ∧ t ≥ t1 +M ∧ t� < t2}.

Fig. 10   The figure shows an example solution that complies with the time-related indexed sets. Air-
craft 1 has a first check in period 2 ∈ T

MInit

1
 . A second check is done in period 9 ∈ TM

2
 . Also, since

(2, 9) ∈ T T T 3 , aircraft 1 is considered in maintenance in period 3. The aircraft has an assignment to
mission 1 in periods (5, 8) ∈ T T 1 . Since (5, 8) ∈ T TJ15 , aircraft 1 is considered assigned to mission 1
during period 5. Finally, since maintenances are done in periods (2, 9), all possible mission assignments
in between (e.g., (1, 5, 8)) should be in JTT 129

1 3

A novel solution approach with ML-based pseudo-cuts for the…

References

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper Res Lett 33(1):42–54. https​://doi.
org/10.1016/j.orl.2004.04.002

Adamo T, Ghiani G, Grieco A, Guerriero E, Manni E (2017) MIP neighborhood synthesis through
semantic feature extraction and automatic algorithm configuration. Comput Oper Res 83:106–119

Adamo T, Ghiani G, Guerriero E, Manni E (2017) Automatic instantiation of a variable neighborhood
descent from a mixed integer programming model. Oper Res Perspect 4:123–135

Aghezzaf EH, Najid NM (2008) Integrated production planning and preventive maintenance in deterio-
rating production systems. Int J Prod Econ. https​://doi.org/10.1016/j.ins.2008.05.007

Bello I, Pham H, Le QV, Norouzi M, Bengio S (2016) Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv​:1611.09940​

Bengio Y, Lodi A, Prouvost A (2018) Machine learning for combinatorial optimization: a methodological
tour d’Horizon. arXiv​:1811.06128​

Cho P (2011) Optimal scheduling of fighter aircraft maintenance. Ph.D. thesis, Massachusetts Institute of
Technology

Cochran JJ, Cox LA, Keskinocak P, Kharoufeh JP, Smith JC, Fischetti M, Lodi A (2011) Heuristics in
mixed integer programming. In: Wiley encyclopedia of operations research and management sci-
ence. Wiley, Hoboken. https​://doi.org/10.1002/97804​70400​531.eorms​0376

De Chastellux P (2016) Planification de la maintenance des avions de chasse. Master’s thesis, ENSTA
ParisTech

Department of the Army (2017) Headquarters: army aviation maintenance. Tech. rep. https​://rdl.train​
.army.mil/catal​og-ws/view/100.ATSC/574C5​86C-A989-425A-9F3C-C92C6​93D92​3F-15052​23206​
762/atp3_04x7.pdf. Accessed 18 Sept 2019

Dupin N, Talbi E (2018) Parallel matheuristics for the discrete unit commitment problem with min-stop
ramping constraints. Int Trans Oper Res 27(1):219–244. https​://doi.org/10.1111/itor.12557​

Fischetti M, Fraccaro M (2019) Machine learning meets mathematical optimization to predict the opti-
mal production of offshore wind parks. Comput Oper Res 106:289–297. https​://doi.org/10.1016/J.
COR.2018.04.006

Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program 104(1):91–104. https​://doi.
org/10.1007/s1010​7-004-0570-3

Gavranis A, Kozanidis G (2015) An exact solution algorithm for maximizing the fleet availability of a
unit of aircraft subject to flight and maintenance requirements. Eur J Oper Res 242(2):631–643

Hahn R, Newman AM (2008) Scheduling United States coast guard helicopter deployment and main-
tenance at clearwater air station, Florida. Comput Oper Res 35(6):1829–1843. https​://doi.
org/10.1016/J.COR.2006.09.015

T
MInit

1
= {2,… , 5}

T s
3
= {2, 3}

TM
2
= {7,… , 10}

TM
7
= {12,… , 14}

TM+
9

= {14, 15}

T T T 3 = {(2, 7),…(2, 10), (3, 8)… (3, 11)}

T T 1 = {(4, 6), (4, 7), (5, 7), (5, 8),… , (8, 10)}

T TJ15 = {(4, 6), (4, 7), (5, 7), (5, 8)}

JTT 129 = {(1, 4, 6), (1, 4, 7), (1, 5, 7), (1, 5, 8), (1, 6, 8)}

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/j.ins.2008.05.007
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1811.06128
https://doi.org/10.1002/9780470400531.eorms0376
https://rdl.train.army.mil/catalog-ws/view/100.ATSC/574C586C-A989-425A-9F3C-C92C693D923F-1505223206762/atp3_04x7.pdf
https://rdl.train.army.mil/catalog-ws/view/100.ATSC/574C586C-A989-425A-9F3C-C92C693D923F-1505223206762/atp3_04x7.pdf
https://rdl.train.army.mil/catalog-ws/view/100.ATSC/574C586C-A989-425A-9F3C-C92C693D923F-1505223206762/atp3_04x7.pdf
https://doi.org/10.1111/itor.12557
https://doi.org/10.1016/J.COR.2018.04.006
https://doi.org/10.1016/J.COR.2018.04.006
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1016/J.COR.2006.09.015
https://doi.org/10.1016/J.COR.2006.09.015

	 F. Peschiera et al.

1 3

Kozanidis G (2008) A multiobjective model for maximizing fleet availability under the presence of flight
and maintenance requirements. J Adv Transp 43(2):155–182

Larsen E, Lachapelle S, Bengio Y, Frejinger E, Lacoste-Julien S, Lodi A (2018) Predicting tactical solu-
tions to operational planning problems under imperfect information. arXiv​:1807.11876​

Lazić J, Hanafi S, Mladenović N, Urošević D (2010) Variable neighbourhood decomposition search
for 0–1 mixed integer programs. Comput Oper Res 37(6):1055–1067. https​://doi.org/10.1016/j.
cor.2009.09.010

Lodi A, Mossina L, Rachelson E (2019) Learning to handle parameter perturbations in combinatorial
optimization: an application to facility location. arXiv preprint arXiv​:1907.05765​

Marlow DO, Dell RF (2017) Optimal short-term military aircraft fleet planning. J Appl Oper Res 9(1):39
Peschiera F, Haït A, Dupin N, Battaïa O (2020) Long term planning of military aircraft flight and mainte-

nance operations. Tech. rep., ISAE-SUPAERO, Université de Toulouse, France. arXiv​:2001.09856​
Pippin B (1998) Allocating flight hours to army helicopters. Master’s thesis, Naval Postgraduate School,

Monterey, CA. https​://doi.org/10.1017/CBO97​81107​41532​4.004
Rockafellar RT, Royset JO (2010) On buffered failure probability in design and optimization of struc-

tures. Reliab Eng Syst Saf 95(5):499–510
Rockafellar RT, Royset JO (2015) Measures of residual risk with connections to regression, risk tracking,

surrogate models, and ambiguity. SIAM J Optim 25(2):1179–1208
Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–42
Savelsbergh MWP (1994) Preprocessing and probing techniques for mixed integer programming prob-

lems. ORSA J Comput 6(4):445–454. https​://doi.org/10.1287/ijoc.6.4.445
Seif J, Yu AJ (2018) An extensive operations and maintenance planning problem with an efficient solu-

tion method. Comput Oper Res 95:151–162. https​://doi.org/10.1016/j.cor.2018.03.010
Sgaslik A (1994) Planning German army helicopter maintenance and mission assignment. Master’s the-

sis, Naval Postgraduate School, Monterey, CA. https​://doi.org/10.1017/CBO97​81107​41532​4.004
Talbi EG (2016) Combining metaheuristics with mathematical programming, constraint programming

and machine learning. Ann Oper Res 240(1):171–215. https​://doi.org/10.1007/s1047​9-015-2034-y
The Economist (2019) Artificial intelligence is changing every aspect of war. The Economist. https​://

www.econo​mist.com/scien​ce-and-techn​ology​/2019/09/07/artif​icial​-intel​ligen​ce-is-chang​ing-every​
-aspec​t-of-war. Accessed 18 Sept 2019

Tyrrell Rockafellar R, Royset JO (2015) Engineering decisions under risk averseness. ASCE ASME J
Risk Uncertain Eng Syst Part A Civ Eng 1(2):04015003

Verhoeff M, Verhagen WJC, Curran R (2015) Maximizing operational readiness in military aviation
by optimizing flight and maintenance planning. Transp Res Proc 10(July):941–950. https​://doi.
org/10.1016/j.trpro​.2015.09.048

Vojvodić V, Domitrović A, Bubić M (2010) Planning of training aircraft flight hours. Croat Oper Res Rev
1(1):170–179

Xavier AS, Qiu F, Ahmed S (2019) Learning to solve large-scale security-constrained unit commitment
problems. arXiv​:1902.01697​

http://arxiv.org/abs/1807.11876
https://doi.org/10.1016/j.cor.2009.09.010
https://doi.org/10.1016/j.cor.2009.09.010
http://arxiv.org/abs/1907.05765
http://arxiv.org/abs/2001.09856
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.1016/j.cor.2018.03.010
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1007/s10479-015-2034-y
https://www.economist.com/science-and-technology/2019/09/07/artificial-intelligence-is-changing-every-aspect-of-war
https://www.economist.com/science-and-technology/2019/09/07/artificial-intelligence-is-changing-every-aspect-of-war
https://www.economist.com/science-and-technology/2019/09/07/artificial-intelligence-is-changing-every-aspect-of-war
https://doi.org/10.1016/j.trpro.2015.09.048
https://doi.org/10.1016/j.trpro.2015.09.048
http://arxiv.org/abs/1902.01697

	A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Assumptions

	3 State of the art
	4 Input data
	4.1 Basic sets [cardinality]
	4.2 Auxiliary sets [cardinality]
	4.3 Mission parameters [units]
	4.4 Maintenance parameters [units]
	4.5 Fleet parameters [units]
	4.6 Interval deviation and objective function parameters
	4.7 Index sets
	4.8 Time-related index sets
	4.9 Aggregated flight hour parameters

	5 Mathematical formulation
	5.1 Variables
	5.2 Objective function and constraints
	5.3 Deterministic bounds and valid cuts

	6 Learning bounds and constraints
	6.1 Constraining maintenance cycles
	6.2 Predicting maintenance cycle constraints

	7 Experimentation
	7.1 Mathematical model implementation
	7.2 Implementation of learned constraints
	7.3 Model experimentation

	8 Results
	8.1 Comparison between models and deterministic cuts
	8.2 Comparison of learned cuts
	8.3 Comparison with other matheuristics
	8.4 Summary

	9 Conclusions
	References

