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for the Flight and Maintenance Planning problem

Franco Peschiera1   · Robert Dell2 · Johannes Royset2 · Alain Haït1 · 
Nicolas Dupin3   · Olga Battaïa4

Abstract
This paper deals with the long-term Military Flight and Maintenance Planning prob-
lem. In order to solve this problem efficiently, we propose a new solution approach 
based on a new Mixed Integer Program and the use of both valid cuts generated on 
the basis of initial conditions and learned cuts based on the prediction of certain 
characteristics of optimal or near-optimal solutions. These learned cuts are gener-
ated by training a Machine Learning model on the input data and results of 5000 
instances. This approach helps to reduce the solution time with little losses in opti-
mality and feasibility in comparison with alternative matheuristic methods. The 
obtained experimental results show the benefit of a new way of adding learned cuts 
to problems based on predicting specific characteristics of solutions.

Keywords  Maintenance · Flight · Aircraft · Military · Mixed integer programming · 
Supervised learning

1  Introduction

Maintenance is expensive, and military maintenance is more so: the 2019 US 
Department of Defense investment in maintenance is around $ 78 billion (The Econ-
omist 2019). Reducing costs while increasing availability, reliability and sustainabil-
ity are often conflicting goals that need to be achieved by executing a good mainte-
nance plan. There are two main questions that need to be answered when making 
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good decisions concerning maintenance: when is the maintenance needed (predic-
tion) and when is the maintenance actually done (schedule).

Calculating maintenance needs by predictive maintenance involves the analysis 
of historical data to estimate windows of time when maintenance has to be done so 
as to guarantee a risk of failure under a certain threshold. According to the US Air-
Force tests on command-and-control planes, predictive maintenance could reduce 
unscheduled work by a third (The Economist 2019).

The savings will only materialize by following a suitable maintenance schedule. 
To achieve this, those time windows are taken together with resource capacities and 
future usage planning, among other information, in order to produce an actual main-
tenance schedule that is feasible and satisfies the needs of its planners.

Producing such a detailed plan for a sizable fleet while planning for a long-
term horizon and taking into account the multiple objectives inherent to long-term 
planning is not an easy task. In most air forces, a derivative of the “Sliding Scale 
Scheduling Method” (Department of the Army 2017) is used. It consists of a sim-
ple heuristic that attempts to distribute remaining flight hours among aircraft in a 
ladder-like distribution, i.e., there is a constant probability of finding an aircraft with 
any given amount of remaining flight hours.

Sometimes, the task of coming up with a good plan can become hard, even to 
solve using state-of-the-art software. In these cases, insights about the problem need 
to be extracted to help improve solution time.

This paper provides such insights. It presents a new and potentially powerful way 
to improve the performance of Mathematical Programming (MP) models by using 
Machine Learning (ML): we train a supervised learning method with a big database 
of past instances in order to predict characteristics of very good or optimal solutions 
before actually solving the problem. These characteristics can later be used to limit 
the solution space to a fraction of the original size and thus improve performance.

This article is structured as follows. Section 2 presents the problem at hand in 
detail. An analysis of the previous work on the Flight and Maintenance Planning 
(FMP) and ML applied to MP is given in Sect. 3. Section 4 enumerates all input 
parameters that constitute the definition of an instance of the problem. Section  5 
shows a new efficient Mixed Integer Program (MIP) formulation for the problem, 
together with a series of deterministic bounds to apply to instances of the problem, 
while Sect.  6 formulates novel learned bounds (pseudo-cuts) to instances of the 
problem. Section 7 explains our computational experiments, and Sect. 8 discusses 
the results. Lastly, Sect. 9 provides conclusions and pointers for further work.

2 � Problem statement

The problem consists of assigning an heterogeneous fleet of military aircraft i ∈ I  to 
a given set of scheduled missions j ∈ J  over a fixed time horizon while also plan-
ning when each aircraft will be conducting maintenance operations. Each aircraft 
has a set of defined capabilities that allow it to be assigned to missions. This prob-
lem was originally presented in Peschiera et al. (2020) and is inspired by the French 
Air Force requirements.
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A series of missions exists along a horizon divided into t ∈ T  periods. Each mis-
sion j requires a minimum number of aircraft ( Rj ) among the aircraft that can be 
assigned to it ( i ∈ Ij ) with each aircraft flying Hj hours for each period it is assigned 
to the mission. An aircraft assigned to a mission j must be assigned for at least 
MTmin

j
 and at most MTmax

j
 consecutive periods.

Each maintenance operation (henceforth called a check) has a fixed duration of M 
periods and cannot be interrupted: during this time the aircraft cannot be assigned to 
any mission. Let remaining calendar time express the maximum number of periods, 
starting at the beginning of a given time period, before an aircraft must undergo a 
check; and remaining flight time, the maximum number of flight hours an aircraft 
can be flown before requiring a check, at the end of a given time period. After a 
check, an aircraft restores its remaining calendar and flight time to their maximum 
values of Emax and Hmax , respectively. After completing a check, an aircraft cannot 
undergo another check for at least Emin periods. The number of simultaneous checks 
during each period cannot surpass the capacity Cmax without incurring a penalty, i.e., 
this constraint is elastic (can be violated at a cost per unit violation).

Some aircraft ( NInit
t

 ) are already in maintenance in period t at the beginning of 
the planning horizon. Other aircraft are conducting missions that started before the 
start of the planning horizon and their continued assignment extends into the plan-
ning horizon by AInit

ij
 (the fixed set of periods aircraft i extends assignment for mis-

sion j at the start of the planning horizon).
Let serviceability indicate if an aircraft is capable, at the beginning of a given 

time period, to perform a mission (i.e., is not undergoing a check) and let availability 
be the total number of periods for which an aircraft is serviceable. Lastly, let sus-
tainability be the number of total remaining flight hours for the fleet.

To guarantee both serviceability and sustainability at each time period, missions 
are grouped into clusters. Formally, a cluster is a set of missions such that each mis-
sion has exactly the same type, capabilities and, as a result, candidates. For each 
cluster, a minimal number of serviceable aircraft and a minimal sustainability are set 
as constraints for each period. These constraints are elastic. All serviceable aircraft 
have a minimum default usage for each period equal to Umin flight hours, which they 
are required to fly when not assigned to a mission or in a maintenance.

Finally, the main objective is to schedule the last check for all aircraft as late as 
possible and to minimize the deviations from all elastic constraints. A secondary 
objective is to balance the flying load among aircraft in the fleet so that the variance 
of the frequency of checks of each aircraft in the fleet is minimized.

2.1 � Assumptions

There are constraints that can be violated at a cost per unit of violation. For such 
elastic constraints, we bound the violation within intervals where the cost per unit of 
violation within the interval is constant. Multiple bounded intervals permit increas-
ing the cost per unit of violation.

Each mission is considered active only during a determined contiguous set of peri-
ods. Missions are assumed to require a constant amount of flight hours per period for 
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each aircraft and a constant amount of aircraft per period, when active. Each mission 
and each aircraft have one and only one type. We assume a capability to be a set of 
optional aircraft characteristics that may be required by a mission. An aircraft can 
have none or more capabilities, a mission can have at most one and if it does we call 
it a Special mission. An aircraft i is considered suitable for a mission j (i.e., a candi-
date) if it shares the same type and has the capability required by the mission.

We assume (realistically for our data) a maximum number of two checks for each 
aircraft and a minimum of one. Maintenance capacity is constant over the planning 
horizon. All checks have the same duration and frequency conditions.

We assume a certain number of aircraft to be pre-assigned to missions at the start 
of the planning horizon. Also, we assume a certain number of aircraft in mainte-
nance at the start of the planning horizon.

3 � State of the art

The Military Flight and Maintenance Planning (MFMP) problem is a variant of the 
better known Civil Flight and Maintenance Planning (FMP) problem where all air-
craft return to the base after each flight and fleet availability is prioritized over cost 
reduction. Initial work on the military variant was done by Sgaslik (1994) and since 
then different planning horizons have been studied: short term [e.g., Marlow and 
Dell (2017), Cho (2011), Vojvodić et al. (2010)], medium term [e.g., Seif and Yu 
(2018), Verhoeff et al. (2015), Kozanidis (2008), Hahn and Newman (2008), Pippin 
(1998)] and long term [e.g., Peschiera et al. (2020)].

Each planning horizon of the problem has differences that influence the way 
the problem is modeled and solved. These differences can be classified in three: 
(1) maintenance rules (calendar frequency, flight hour frequency, duration, hetero-
geneous capacity, capacity usage, etc.); (2) mission rules (continuous flight hours, 
discrete assignment, heterogeneous fleet, default usage, etc.); and (3) aircraft rules 
(initial state, availability, serviceability and sustainability guarantees). For more 
information on these differences, see Peschiera et al. (2020).

The medium term planning problem addresses the B and C checks in a planning 
horizon divided into 6 to 12 periods of one month each. Each check requires a cer-
tain number of worker-hours and is scheduled every 200–400 flight hours. A Mixed-
Integer Linear Programming (MILP) model was formulated in Kozanidis (2008) to 
solve simulated instances of 6-month horizons and a fleet of up to 30 aircraft. This 
model was applied in Gavranis and Kozanidis (2015) within an efficient solving 
method for a particular objective function case (maximizing overall sustainability), 
and Seif and Yu (2018) expanded this work to apply it for multiple check types and 
stations and a heterogeneous fleet.

The long-term planning problem addresses exclusively the D checks in a plan-
ning horizon of up to ten years divided into periods of one month. Each check lasts 
several months and is scheduled every 5 years or every 1000–1200 flight hours. The 
long-term planning of military aircraft was first introduced in Sgaslik (1994). More 
recently it was studied in its current form in De Chastellux (2016). Lastly, Peschiera 
et  al. (2020) proved this problem NP-Complete and built a MILP model to solve 
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instances of 90-month horizons and a fleet of up to 60 aircraft. Several experiments 
were designed and run on simulated instances to determine performance for input 
parameters changes.

Previous work on the MFMP has been centered on using Mathematical Program-
ming (MP) models to solve it. When using MP to solve large instances of Combina-
torial Optimization (CO) problems, the node exploration of the branch and bound 
phase often becomes too large to be handled in a reasonable time. In the case of the 
MFMP, a combination of heuristics and MP (matheuristics) is often applied [see 
Marlow and Dell (2017), Cho (2011), Kozanidis (2008), Peschiera et al. (2020)].

When using MP, several techniques are used to help prune branches of the tree 
in order to improve performance. Exact methods, such as preprocessing and valid 
cuts, can achieve reductions of the solution space without taking out any feasible 
integer solution (i.e., without loss of optimality). Also, most solvers use a number 
of primal heuristics to efficiently find new integer solutions through the use of the 
Linear Programming (LP) relaxation of the problem and incumbents solutions [e.g., 
RINS, Diving Heuristics, Local Branching, Feasibility Pump, see Achterberg et al. 
(2005),Savelsbergh (1994), Cochran et  al. (2011), Fischetti et  al. (2005) for more 
details]. In Diving Heuristics, a subset of variables is fixed (usually inspired by the 
LP relaxation), see Dupin and Talbi (2018); Aghezzaf and Najid (2008) for exam-
ples of this. Finally, “a priori” heuristic decisions can be incorporated to guide the 
whole solution process. These heuristics are guided by external information about 
the problem and correspond to the fixing of variables and the incorporation of heu-
ristic-cuts [also known as pseudo-cuts, see Lazić et  al. (2010)] more generally. In 
this paper, valid cuts and heuristic cuts are implemented and applied to the MFMP. 
The latter are generated by training a Machine Learning (ML) model on a database 
of similar randomly generated instances.

The application of ML is a recent complement to existing techniques for solv-
ing large-scale CO problems, such as matheuristics and metaheuristics (Adamo 
et al. 2017a, b; Talbi 2016). ML models are an heterogeneous group of techniques 
that were previously known for predicting results based on past information. More 
recently, though, the surge in popularity of Reinforcement Learning (RL) has made 
more explicit the link between the CO and ML worlds (Bello et al. 2016). In Ben-
gio et  al. (2018), several definitions and classifications of the implementations of 
ML are provided that can be applied to the CO domain. In terms of ML techniques 
applied to CO the two most common frameworks are supervised learning and rein-
forcement learning. With respect to the goal on the application of ML, (Bengio et al. 
2018) cites three scenarios: end to end learning, learning meaningful properties of 
optimization problems and machine learning alongside optimization algorithms. An 
overview of hybrid algorithms by combining metaheuristics, MP and ML is pre-
sented in Talbi (2016). More related to our case, there exists some previous work 
on applications of ML on MIP formulations. Following Bengio et al. (2018), these 
techniques fall under the category “Learning meaningful properties of optimiza-
tion problems” by using “demonstration” (or “imitation learning”). In other words, 
supervised learning models are trained with the help of a set of several instances 
solved (offline) up to or near to optimality by some exact method. This method is 
sometimes called oracle and usually consists of the original mathematical model 



	 F. Peschiera et al.

1 3

solved over a long time and/or over small instances. The objective is to gain insights 
on the possible solution of a new unseen problem. This information can be used 
directly to guide decision making (as in Fischetti and Fraccaro (2019)) or can be 
used to increase the performance of the existing model (as in Larsen et al. (2018); 
Xavier et al.Xavier et al. (2019); Lodi et al. (2019)).

In order to predict characteristics of solutions, certain care needs to be taken when 
dealing with the possible error in prediction. Most supervised learning methods use a 
least-squares-minimization technique (or similar) to calculate the expected value of a 
function. These techniques give no information about the distribution of the variance, 
and they can be specially susceptible to outliers. A more robust technique to pre-
dict bounds of dependent variables is to use “superquantiles” or quantile regressions, 
which are based in the Conditional Value at Risk (CVaR). The term conditional value 
at risk in optimization was first introduced in Rockafellar and Uryasev (2000) and 
work in Rockafellar and Royset (2010); Tyrrell Rockafellar and Royset (2015); Rock-
afellar and Royset (2015) further developed the idea, coining the name “superquan-
tiles,” and applying it to engineering and reliability decision making.

4 � Input data

4.1 � Basic sets [cardinality]

i ∈ I Aircraft [15, 60]
t ∈ T Time periods included in the planning horizon. We use t = 0 for 

starting conditions and t = T  for the last period
[90, 120]

j ∈ J Missions [8, 80]

4.2 � Auxiliary sets [cardinality]

y ∈ Y Type of aircraft [1, 4]
k ∈ K Cluster of aircraft that share the same functionality [1, 10]
s ∈ S Interval for constraint violation [3]
c ∈ C Capabilities for missions [0, |J|]

4.3 � Mission parameters [units]

Hj Flight hours required per period and aircraft for mission j [hours]
Rj Number of aircraft required per period for mission j [aircraft]
MTmin

j
Minimum number of consecutive periods required for an aircraft to be assigned to 

mission j
[periods]
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MTmax
j

Maximum number of consecutive periods an aircraft can be assigned to mission j [periods]
Umin Flight hours required per period and aircraft when not assigned to any mission nor 

in maintenance
[hours]

Qj Optional capability required for mission j [capability]

4.4 � Maintenance parameters [units]

M Number of periods for a check [periods]
Cmax Maximum number of simultaneous aircraft checks [aircraft]
Emin Minimum number of periods between two consecutive checks for each aircraft [periods]
Emax Maximum number of periods between two consecutive checks for each aircraft [periods]
Hmax Remaining flight hours for an aircraft after completing a check [hours]

4.5 � Fleet parameters [units]

NInit
t

Number of aircraft pre-assigned to a maintenance check at the start of period t [aircraft]

NClust
kt

Number of aircraft in cluster k pre-assigned to a maintenance check at the start of 
period t

[aircraft]

AClust
kt

Maximum number of cluster k aircraft that can be simultaneously in maintenance at 
start of period t

[aircraft]

HClust
kt

Required remaining flight hours for cluster k at end of period t [hours]

RftInit
i

Remaining flight time for aircraft i from the start of the planning horizon [hours]

RctInit
i

Remaining calendar time until aircraft i reaches Emax from the start of the planning 
horizon

[periods]

4.6 � Interval deviation and objective function parameters

PAs Penalty cost for violating serviceability constraint in interval s [ penalty

aircraft−period
]

PHs Penalty cost for violating sustainability constraint in interval s [ penalty

hour−period
]

PCs Penalty cost for violating capacity constraint in interval s [ penalty

aircraft−period
]

P2M Reward per period for the start of the second check [ penalty

aircraft−period
]

UAs Maximum deviation for violating the serviceability limit in interval s [aircraft]
UHs Maximum deviation for violating the sustainability limit in interval s [hours]
UCs Maximum deviation for violating the maintenance capacity limit in interval s [aircraft]
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4.7 � Index sets

i ∈ Iy Aircraft i ∈ I  belonging to type y. One aircraft can belong to only one type
j ∈ Jy Missions j ∈ J  belonging to type y. One mission can belong to only one type
c ∈ Ci Capabilities c ∈ C belonging to aircraft i
j ∈ Ji Missions j ∈ J  where aircraft i is suitable
i ∈ Ij Aircraft i ∈ I  suitable for mission j
t ∈ T j Time periods t ∈ T  when mission j is active
j ∈ Jt Missions j ∈ J  that are active in period t
i ∈ Ik Aircraft i ∈ I  belonging to cluster k. One aircraft can belong to more than one cluster

i ∈ AInit
ij

Periods t ∈ T  where aircraft i is pre-assigned to mission j

Note Ji and Ij are calculated based on Iy , Jy , Ci and Qj . For an aircraft i to be able 
to be assigned to a mission j it needs to share the same type y as the mission and 
have the required capability ( Qj ∈ Ci).

4.8 � Time‑related index sets

We define several sets based on the input data to simplify constraint formula-
tion. The equations related to these sets, together with an example, are given in 
“Appendix A.” 

t ∈ T
MInit

i
Time period options t ∈ T  for aircraft i to start its first check

t ∈ T s
t�

Time periods t ∈ T  required for a check that ends in t′

t ∈ T M
t�

Time periods t < T  permitted for a second check to start, given the first check started 
in t′ and excluding the need for a third check

t ∈ T M+
t�

Time periods permitted for a second check to start, including the possibility t = T  
for not doing a second maintenance

(t1, t2) ∈ T T Tt Pairs of time periods t1 ∈ T , t2 ∈ T M
t1

 when a first and second check can start and 
the aircraft is in maintenance in period t

(t, t�) ∈ T T j Set of all possible start t and finish t′ combinations for assignment of mission
(t1, t2) ∈ T TJjt Allowed assignments for mission j that start (end) at period t1 ( t2 ) and contain period t
(j, t, t�) ∈ JT Tit1 t2 Allowed assignments that start (end) at period t ( t′ ) for each aircraft i and for each 

mission j ∈ Ji between checks starting at t1 and t2

4.9 � Aggregated flight hour parameters

To condense notation, we define parameters that aggregate flight hour usage. U′
tt′

 
is the flight hour usage for each aircraft between t and t′ without taking into con-
sideration any mission or check assignment. H′

jtt′
 is the additional flight hour 

usage for each aircraft when assigned to mission j between periods t and t′.
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5 � Mathematical formulation

This section presents the base model: the decision variables, constraints and 
objective function. With respect to previous models (Peschiera et  al. 2020), it 
models both mission and maintenance assignments as start-stop assignments.

5.1 � Variables

The following binary decision variables prescribe the assignment of missions and 
checks to aircraft. 

aijtt′ Has value one if aircraft i starts an assignment to mission j at the beginning of period t and finishes 
at the end of period t′ , zero otherwise

mitt′ Has value one if aircraft i starts a check at the beginning of period t and then starts the next check 
at the beginning of period t′ or does not have a second check ( t� = T  ), zero otherwise

The following continuous auxiliary variables prescribe the status of each air-
craft or group of aircraft. 

rftit Remaining flight time for aircraft i ∈ I at the end of period t ∈ T

eA
kts

Deviation in serviceability for cluster k at end of t in interval s

eH
kts

Deviation in sustainability for cluster k at end of t in interval s

eC
ts

Deviation in maintenance capacity at end of t in interval s

5.2 � Objective function and constraints

The main objective function (1) expresses the difference between the total devia-
tion from all goals on serviceability, sustainability and maintenance capacity and 
the mean starting time of the second maintenance. The secondary objective func-
tion is not included in this formulation and will be handled in Sect. 6.

U�
tt�
= Umin

(
t� − t + 1

)

H�
jtt�

= (Hj − Umin)
(
t� − t + 1

)
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Constraints (2) limit the number of unpenalized simultaneous checks. Constraints 
(3) enforce aircraft mission requirements. Constraints (4) restrict each aircraft to at 
most one assignment each period.

Suppose aircraft i starts the first check in period t1 ∈ T
MInit

i
 and the second check in 

period t2 ∈ T M+
t1

 . The left-hand side of constraints (5) represents the total flight 

(1)

Min
∑

k ∈ K,

t ∈ T ,

s ∈ S

PAs × eA
kts

+
∑

k ∈ K,

t ∈ T ,

s ∈ S

PHs × eH
kts

+
∑

t∈T ,s∈S

PCs × eC
ts

− P2M
∑

i ∈ I,

t ∈ T
MInit

i
,

t� ∈ T M+
t

mitt� × t�

(2)

∑

i ∈ I,

(t1, t2) ∈ T T T t

mit1t2
+ NInit

t
≤ Cmax +

∑

s∈S

eC
ts

t ∈ T

(3)

∑

i ∈ Ij,

(t1, t2) ∈ T T Jjt

aijt1t2 ≥ Rj j ∈ J, t ∈ T j

(4)

∑

(t1, t2) ∈

T T T t

mit1t2
+

∑

j ∈

Jt ∩ Ji

∑

(t1, t2) ∈

T T Jjt

aijt1t2 ≤ 1 t ∈ T , i ∈ I

(5)

∑

(j,t,t�)∈JT T it1 t2

aijtt�H
�
jtt�

+ U�
t1t2

≤ Hmax + Hmax(1 − mit1t2
)

i ∈ I, t1 ∈ T
MInit

i
, t2 ∈ T M+

t1

(6)

∑

(j,t,t�)∈JT T i1t1

aijtt�H
�
jtt�

+ U�
1t1

≤ RftInit
i

+ Hmax(1 − mit1t2
)

i ∈ I, t1 ∈ T
MInit

i
, t2 ∈ T M+

t1

(7)

∑

(j,t,t�)∈JT T it2T

aijtt�H
�
jtt�

+ U�
t2T

≤ Hmax + Hmax(1 − mit1t2
)

i ∈ I, t1 ∈ T
MInit

i
, t2 ∈ T M+

t1
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hours between those two periods, and the right side represents an upper limit ( Hmax ) 
on those flight hours. In case aircraft i does not have a maintenance cycle in those 
two periods, the upper bound becomes large enough ( 2Hmax ) not to limit the total 
flight hours.

Similarly, constraints (6) and (7) limit the total flight hours of each aircraft before t1 
and after t2 , respectively.

Constraints (8) limit the number of unpenalized aircraft from cluster k simultane-
ously undergoing a check in period t. This measures serviceability. Constraints (9) 
record any deviation from the remaining flight hour requirement for each cluster k 
and each period t.

Constraints (10)–(12) define the remaining flight time for each aircraft i and each 
period t resulting from planned mission and maintenance assignments. Constraints 
(10) initialize the remaining flight time at the beginning of the first period. Con-
straints (11) consist of a balance of flow for the remaining flight time of aircraft i at 
the end of period t with respect to the end of the previous period; they are inactive 
in case aircraft i is assigned a check in period t. Finally, constraints (12) enforce the 
remaining flight time to be equal to Hmax in case aircraft i is assigned a check.

(8)

∑

i ∈ Ik,

(t1, t2) ∈ T T Tt

mit1t2
+ NClust

kt
≤ AClust

kt
+
∑

s∈S

eA
kts

k ∈ K, t ∈ T

(9)
∑

i∈Ik

rftit ≥ HClust
kt

−
∑

s∈S

eH
kts

k ∈ K, t ∈ T

(10)rftit = RftInit
i

t = 0, i ∈ I

(11)

rftit ≤ rfti(t−1) + Hmax
∑

(t1, t2) ∈

T T Tt

mit1t2

− Umin −
∑

j ∈ Jt ∩ Ji,

(t1, t2) ∈ T T Jjt

aijt1t2 (Hj − Umin) t ∈ {1,… , T}, i ∈ I

(12)
rftit ≥ Hmax

∑

(t1, t2) ∈

T T Tt

mit1t2
t ∈ T , i ∈ I
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Constraints (13) require maintenance assignments for each aircraft. Each aircraft is 
assigned one (if t� = T  ) or two checks over the whole planning horizon.

Constraints (14) require aircraft to comply with pre-assigned tasks during periods in 
AInit

ij
.

Constraints (15)–(20) declare all the decision variables’ bounds and domains.

5.3 � Deterministic bounds and valid cuts

For each period t, and using the aircraft initial states in terms of remaining flight time 
and calendar time, we calculate the minimum and maximum number of checks that an 
aircraft could have already started and ended at the start of the period. This leads to 
cuts that limit the number of checks over the planning horizon, at the aircraft level. We 
then combine this information with the possible mission assignments at the start of the 
horizon, and we formulate cuts that limit those mission assignments.

Later, we aggregate initial states to the aircraft type level to obtain cuts on the maxi-
mum number of maintenances until a given period for the group of aircraft.

(13)

∑

t ∈ T
MInit

i
,

t� ∈ T M+
t

mitt� = 1 i ∈ I

(14)
∑

(t1,t2)∈T T Jjt

aijt1t2 ≥ 1 i ∈ I, j ∈ Ji, t ∈ AInit
ij

(15)aijtt� ∈ � i ∈ I, j ∈ Ji, (t, t
�) ∈ T Tj

(16)mitt� ∈ � i ∈ I, t ∈ T
MInit

i
, t� ∈ T M+

t

(17)rftit ∈ [0,Hmax] t ∈ {0,… , T}, i ∈ I

(18)eA
kts

∈ [0,UAs] k ∈ K, t ∈ T , s ∈ S

(19)eH
kts

∈ [0,UHs] k ∈ K, t ∈ T , s ∈ S

(20)eC
ts
∈ [0,UCs] t ∈ T , s ∈ S
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Cuts (21) limit the starts of checks of aircraft of type y in order to have the number 
of finished checks to fall between the YMAccFb

yt
 bounds.

Finally, using the maintenance capacity together with these bounds, we generate 
an overall bound on the total number of maintenances per period.

Cuts (22) limit the starts of checks of all aircraft in order to have the total number of 
finished checks to fall between the TMAccFb

t
 bounds.

6 � Learning bounds and constraints

Learned bounds, as we present them, are similar to deterministic bounds in terms of 
implementation: they can be both represented by an additional set of constraints or 
a reduction in the set of decision variables. The main difference is that the latter (as 
presented in Sect. 5.3) are guaranteed not to remove valid solutions from the solu-
tion space, while the former can, and often do, remove valid solutions. The reason 
for this is that learned bounds do not focus in the feasible solution space itself but in 
the statistical distribution of the optimal or near-optimal solution in that space. This, 
in turn, permits learned bounds to drastically reduce the solution space even if there 
is a chance of removing an optimal solution.

Whenever relevant, we use notation similar to that used in Larsen et al. (2018). 
Let a particular instance of our problem be represented by the input vector x and 
the optimal solution to our problem by y∗(x) ∶≡ arg miny∈Y(x) C(x, y) , where 
C(x, y) and Y(x) are the cost function and the solution space, respectively. Finally, 
let gn(y) ∀n ∈ {1,… ,N} represent N features from the solution y, which we name 
“responses.” Our goal is, then, to predict gn(y∗) for each response n ∈ {1,… ,N} by 
means of the input vector x and a function ĝn(x) learned from matching features on 
both input and output data.

Each response n of an instance’s optimal solution generates one or more pseudo-
cuts that reduce the solution space Y(x) . This reduction removes valid solutions from 

(21)

QMnum
tt1t2

=

⎧
⎪
⎨
⎪
⎩

0 t < t1 +M

1 t1 +M ≤ t < t2 +M

2 t ≥ t2 +M

YMAccFmin
yt

≤
�

i ∈ Iy,

t1 ∈ T
MInit

i
,

t2 ∈ T M+
t1

mit1t2
× QMnum

tt1t2
≤ YMAccFmax

yt
t ∈ T , y ∈ Y

(22)

TMAccFmin
t

≤
∑

i ∈ I,

t1 ∈ T
MInit

i
,

t2 ∈ T M+
t1

mit1t2
× QMnum

tt1t2
≤ TMAccFmax

t
t ∈ T
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the solution space and can potentially remove optimal solutions. Following notation in 
Lodi et al. (2019), we refer to these pseudo-cuts as “learned constraints.” The result of 
applying all learned constraints thus creates a new solution space Y�(x) . Let ŷ∗(x) be the 
optimal solution for this new problem, i.e., ŷ∗(x) = arg miny∈Y�(x) C(x, y).

It would be desirable that the following holds:

In other words, we allow an invalid reduction in the original solution space as long 
as the optimal objective function value of the reduced solution space Y�(x) is not too 
far from the optimal objective function value of the original solution space.

In what is left of this section, we first explain the general case of constraining 
maintenance cycles in 6.1 and we then present gn(y) and the method to calculate 
ĝn(x) using a supervised learning algorithm in 6.2.

6.1 � Constraining maintenance cycles

We seek to limit the combinations of possible maintenance cycles (check patterns) 
for each aircraft in the fleet. This decision is motivated by: (1) having a check fre-
quency as homogeneous as possible among similar aircraft, presented as a second 
objective in Sect. 2; (2) improving solution time, by reducing the number of deci-
sion variables; and (3) providing the planner with information about the optimal 
solution of a given instance without having to solve it.

Let H be the set of constraints to add as learning constraints and D the set of variables 
mitt′ . For each h ∈ H , let Ah be a parameter with dimension |D| and bh a scalar parameter. 
Finally, let Dh

⊂ D be a selected subset of variables used in constraint h ∈ H.
Equation (23) shows the generic formulation of every possible learning constraint 

h ∈ H.

This formulation includes stronger constraints H′
⊂ H of the type seen in Eq. (24).

Other special case where Ah ∈ � creates cover-cut-like constraints H′′
⊂ H of the 

type seen in Eq. (25).

6.2 � Predicting maintenance cycle constraints

One key difference among the check patterns for a given aircraft is the distance 
between the two checks. We define the distance between two checks as the number 
of periods that take place between the end of the first check and the beginning of 

C(x, ŷ∗(x)) ≈ C(x, y∗(x))

(23)
∑

m∈Dh

Ah
m
× m ≥ bh h ∈ H

(24)m = 0 h ∈ H�,m ∈ Dh

(25)
∑

m∈Dh

m ≤ bh h ∈ H��
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the second check. The minimum (maximum) distance between two checks is Emin 
( Emax ) periods (see Sect. 4.4).

Because the objective function encourages the model to plan the second check 
as late as possible [see Eq. (1)], the model rewards making the two checks far apart 
from each other, avoiding the second check altogether in certain cases.

In fact, instances where the demand in flight hours is low (e.g., the sum of all 
flight hours along the horizon is low), typically have only one check for each air-
craft. Contrary to this, instances with a high demand for flight hours have more 
checks and the second check is typically done sooner. A similar relationship can 
be expected from the initial status of the fleet. If a given fleet is in good status (e.g., 
aircraft at the beginning of the planning horizon haven’t flown that many hours since 
their last check), one would expect less checks overall and farther apart. Both the 
total demand of flight hours and the initial status of the fleet are known parameters.

This intuition can be formalized via a supervised ML model where a response n 
is a function gn(y∗) on the optimal maintenance cycle distribution (e.g., in Fig. 1 the 
response is the total number of checks) and the input features are a function on the 
mission flight hours demand and the fleet initial status distributions (e.g., in Fig. 1 
the input feature is the average flight hour demand).

The method consists of the following. First, we choose a set of candidate 
responses to predict. Then, we calculate several input features that we suspect can 
predict those responses. Finally, after validating the ML model on said responses 
and input features, we obtain, for each response, the subset of input features that best 
predict the chosen responses and the function that minimizes the loss function: ĝn(x)
.

Fig. 1   As a motivating example, the number of checks (vertical axis) and the average flight hours per 
period (horizontal axis) are shown for some instances solved to optimality or close to optimality. The 
three vertical facets split the dataset into three equally-sized groups according to the sum of remain-
ing flight hours of the fleet at the beginning of the planning horizon. “Init: 1/3” refers to the third of 
instances where the sum of remaining flight hours is the lowest
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For our problem, we choose the following responses: 

NM Total number of checks
�T−t� Average distance between the second check and 

the end of the horizon over fleet
�t�−t Average distance between two checks over the fleet

With the following equations:

After validating the ML model, we obtain the following input features: 

�C Average consumption per period
Init Sum of fleet flight hours remaining before first period
Spec Sum of all special mission flight hours
�WC Period that splits total consumption in two equal 

parts. Can be fractional
�
2
C

Variance of consumption per period
maxC Max consumption per period

Let the consumption in period t be represented by the following:

And let JQ represent the set of special missions, i.e., that have a capability or where 
Qj ≠ ∅.

Then the equations for those input features are:

NM =
∑

(i,t,t�)∈D|t�<T

mitt� + |I|

𝜇T−t� =
1

|I|

∑

(i,t,t�)∈D

mitt� × (T − t�)

𝜇t�−t =
1

|I|

∑

(i,t,t�)∈D

mitt� × (t� − t −M)

Ct =
∑

j∈JTt

HjRj t ∈ T

�C =
1

�T �

�

t∈T

Ct

Init =
�

i∈I

RftInit
i

Spec =
�

j∈JQ

HjRj�TJj�

�WC =

∑
t∈T Ct × t
∑

t∈T Ct

�
2
C
=

1

�T �

�

t∈T

(Ct − �C)
2

max
C

= max
i∈T

{Ct}



1 3

A novel solution approach with ML-based pseudo-cuts for the…

7 � Experimentation

Five thousand small (15 aircraft) instances are randomly generated following the 
method found in Peschiera et al. (2020), which simulates French Air Force needs. 
The sources of randomness are the missions, i.e., the quantity, hour needs, resource 
quantities, minimum durations, special requirements; and the initial fleet status, i.e., 
remaining calendar time, remaining flight time, special capabilities for each aircraft 
at the start of the planning horizon. These instances are used as an input to obtain 
learned constraints.

Figure  2 shows the distribution on the average distance between checks for all 
solved instances.

3 additional sets of 1000 instances each are randomly generated to test the imple-
mentation of these learned constraints. Each set corresponds to a particular size of 
fleet: 30, 45 and 60 aircraft.

In what is left of this section, we first explain mathematical model implementa-
tion and execution in 7.1. We then present the statistical model implementation in 
7.2. Finally, all tested mathematical models are explained in 7.3.

7.1 � Mathematical model implementation

Mathematical models are generated using python 3.7 and the PuLP library.
All instances are solved until optimality with a time limit of 1 hour and a tol-

erance (absolute gap) of 10. We use CPLEX 12.8 running on single thread Win-
dows 7 with 72 2.3GHz processors and 128 GB RAM workstation. Up to 70 
experiments are run in parallel. CPLEX parameters are optimized for the problem 
using the CPLEX Tuner tool.

7.2 � Implementation of learned constraints

The 5000 solved instances are split into two groups: training (70%) and testing 
(30%). The training set is used to train a statistical model. The testing set is used 

Fig. 2   Distribution of the average distance between checks in the 4667 successfully solved instances. The 
minimum (maximum) distance allowed for each aircraft in each instance is 30 (60) periods
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for the feature selection process. Around 1000 instances are discarded in order to 
build the prediction model because of having violated soft constraints or having 
an absolute gap too large (bigger than 100). So the resulting dataset used to build 
the model consisted of 4084 instances.

For forecasting, we test and compare several methods: Linear Regression (LR), 
Decision Tree Regression (DTR), Multi-layer Perceptron regression (MLPR), 
Support Vector Regression (SVR), Quantile Regression (QR) and Gradient 
Boosted Regression Trees (GBRT).

Robust predictions involve predicting bounds, or quantiles. Only two imple-
mentations offered the possibility of predicting quantiles: QR and GBRT. Both 
techniques are found to have similar effectiveness in predicting the 10% and 90% 
quantiles. At the end, the former is chosen because it returned scalar coefficients 
for every regressor and so is more intuitive to validate. To build the QR models, 
python 3.7 is used together with the statsmodels library. Figure 3 shows the upper 
bound for one of the variables ( 𝜇̂ub

t�−t
).

After preliminary tests, only cuts where we assume each aircraft has a maxi-
mum deviation (tol) with respect to the mean distance between checks ( 𝜇̂t�−t ) are 
found to have a positive influence in solution times:

7.3 � Model experimentation

We call “base” the model described in Sect.  5, “old” the one formulated in 
Peschiera et al. (2020) and “base_*” (“old_*”) the various derivatives from each 
model. The model “base_determ” refers to the “base” model with deterministic 
cuts added as described in Sect. 5.3.

Each learned cuts model involves the combination of two configuration param-
eters, corresponding to two steps during the pattern production. In the first step, we 
control the maximum deviation (tol) we allow each individual maintenance pattern 
to be from the mean distance between maintenances prediction bounds [see Eqs. 
(26) and (27)]. In the second step, we control how many of the previously rejected 
maintenance patterns should we incorporate nonetheless to the model, randomly, as 
a percentage (recyc) of the already reduced number of patterns. The “base” model 
(tol = ∞ ) has no added cuts. The most aggressive model (tol = −∞ ) assumes all air-
craft should have the same distance between checks, equal to the predicted average.

The notation for the learned cuts models is shown in Table 1, and they are con-
sistent between the “base” model and the “old” model.

(26)mitt� = 0 t� − t < 𝜇̂
lb
t�−t

− tol

(27)mitt� = 0 t� − t > 𝜇̂
ub
t�−t

+ tol
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Three additional matheuristics are tested to compare the performance gains 
offered by the previously presented learned cuts. The matheuristics are described 
below:

base_flp. The linear relaxation of the “base” model is solved. Only maintenance 
patterns with a non-zero value in the relaxed optimal solution are kept for a second 
run of the “base” model.

base_flp2. The linear relaxation of the “base” model is solved. Only maintenance 
patterns that are similar to a pattern with a non-zero assignment (i.e., both patterns 
share the same aircraft and at least one date of the two checks) are kept for a second 
run of the “base” model.

Fig. 3   The average distance between checks in the vertical axis ( �
t�−t ) vs. the sum of remaining flight 

hours of the fleet at the beginning of the planning horizon (Init) in the horizontal axis for the over 
4000 instances solved to optimality or close to optimality. In black are the real values from the solved 
instances, and in blue the predicted upper bound at percentile 90. The instances have been split in 3 equal 
parts, two times, according to two features: �

WC
 in column facets and �

C
 in row facets. “1/” corresponds 

to the 33% of instances that have the lowest value for that given feature

Table 1   All learned cuts models that are based on the 
“base” model

Each consists of a particular combination 
of the tolerance for creating patterns (tol) 
and the percentage of random extra pat-
terns (recyc). Reducing tol reduces the 
number of patterns created, and increas-
ing recyc increases the number of patterns 
recycled (included)

Model tol recyc

base ∞ 0
base_a1 2 0
base_a2 0 0
base_a3 −∞ 0
base_a2r 0 0.2
base_a3r −∞ 0.2
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base_flp3. The linear relaxation of the “base” model is solved. Let tf
i
 ( tl

i
 ) be the 

soonest (latest) check for aircraft i with a non-zero value in the optimal relaxed solu-
tion. Only maintenance patterns that have the first maintenance after a tf

i
 and the 

second maintenance before tl
i
 are used in the second run.

8 � Results

All comparisons presented in this section, with the exception of the summary tables 
at the end, are done using the medium size dataset ( |I| = 30).

This section is structured as follows. First, Sect. 8.1 briefly analyses the “base” 
and “old” models in terms of their performance; Sect.  8.2 presents the results of 
learned cuts applied on both models; Sect. 8.3 compares the learned cuts with other 
more traditional matheuristic techniques; finally, Sect. 8.4 shows a complete com-
parison including larger dataset sizes and alternative variants on the learned cuts.

8.1 � Comparison between models and deterministic cuts

We compare the “base,” “old” and “base_determ” models with respect to solution 
time. This performance is expressed as the number of nodes that are visited in the 
branch and bound phase before proving optimality, the quality of the LP relaxation 
(before and after the cuts phase), the capacity to obtain feasible solutions and the 
time it takes to prove an optimal solution.

Table  2 shows statistics on the status of the solutions returned by each model. 
The “old” model is considerably better at obtaining feasible solutions in less than 
1 h. Table 3 shows the quality of the relaxation and the number of nodes needed to 
obtain an optimal solution. The “base” model is considerably better at obtaining a 
good initial LP relaxation while also needing considerably less nodes to prove opti-
mality. With respect to solution times to obtain an optimal solution, they present a 
similar performance. The deterministic “base_determ” model offers slight improve-
ments on the “base” model.

8.2 � Comparison of learned cuts

In order to assess the merits of the learning constraints, we use several indicators 
that measure three main concepts: quality degradation, performance gains and feasi-
bility sensibility.

Figures 4 and 5 show a summary of the proportion and changes of the status of 
the solution for both models, “base” and “old,” respectively, when applied learned 
cuts. The number of solutions with an “Optimal” status increases in both cases. 
With respect to finding feasible solutions, the “base” model sees an improvement on 
the number of instances without a solution (“IntegerInfeasible” status) when adding 
learned cuts, while the “old” model sees a regression in this respect. Note that the 
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number of infeasible solutions remains almost the same with the given configuration 
regardless of the model used.

When adding learning constraints, we eliminate valid solutions from the pool 
(i.e., these are invalid cuts or pseudo cuts). This implies there is a risk of taking out 
the actual optimal solution. In order to measure the effect of these cuts on the value 
of the optimal solution, we measure quality degradation as the distance (in % with 
respect to the “base”) between the objective functions in the cases when all models 
return an optimal status. Figure 6 compares the distribution of such degradations for 
each case. The degradations of the learned cuts are almost entirely lower than 5% 
from the “base” optimal. The “old” model is expected to have a degradation of 0% 
or close to 0%, which it does.

We measure the performance of each method by comparing the solution time. 
Figure 7 shows the distribution of solution times for each model for all instances. It 
is possible to see how adding the cuts increases performance and the greatest perfor-
mance gains are obtained in the “base” model.

Another consequence of these pseudo-cuts is eliminating the complete solution 
space for an instance. We quantify infeasible solutions in the following way: the 
number of new infeasible instances obtained and the increase on the number of soft 

Table 2   Comparison of the 
number of instances per status 
returned in each model: “base”, 
“old” and “base_determ”

Each status is exclusive one from the other (i.e., they sum the totality 
of correctly generated instances). Infeasible: problem proven infeasi-
ble. IntegerFeasible: an integer solution is found but not proven opti-
mal before time limit. IntegerInfeasible: no integer solution is found 
before time limit. Optimal: difference between relaxation and best 
integer solution is less than the absolute gap

Indicator base base_determ old

Infeasible 41 44 40
IntegerFeasible 277 289 640
IntegerInfeasible 384 368 29
Optimal 279 280 272
Total 981 981 981

Table 3   Comparison of the 
quality of the linear relaxation 
in each model: “base”, "old" and 
“base_determ”

“nodes” refers to the average number of nodes needed to prove 
optimality, in cases where both models obtain an optimal solu-
tion. “time” is the average solution time to obtain an optimal solu-
tion. “LP_first” is the average distance (in % from the optimal solu-
tion) between the initial relaxed solution and the optimal solution. 
“LP_cuts” is the average distance (in % from the optimal solution) 
between the relaxed solution after the root node cuts and the optimal 
solution

Indicator base base_determ old

LP_cuts 0.39 0.54 0.48
LP_first 4.93 4.91 22.04
nodes 705.32 692.60 3234.61
time 1031.48 1054.36 996.36
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constrains violations. Table 4 shows the number of additional infeasible instances is 
almost non-existent, and there is very little additional instances with soft constraints 
violations in both models. All new infeasible instances are instances that are not 
proven feasible (“IntegerInfeasible → Infeasible”) and could potentially be indeed 
infeasible.

As stated previously, the uniform usage of the fleet is also a factor to take into 
account when choosing a correct maintenance planning. Given that the pattern 
selection is oriented towards constraining the check patterns that are too far from 
the predicted mean distance between checks, it is expected for the variance of this 
measure to decline. For the cases when there is more than one fleet type (i.e., for 
larger instances), the variances of each fleet type are calculated individually and 
summed into one single indicator. Figure  8 shows how the variance is greatly 

Fig. 4   Number of instances per status returned in “base” model and the changes of status when applying 
learned cuts. Each status is exclusive one from the other (i.e., they sum the totality of correctly generated 
instances). Infeasible: problem proven infeasible. IntegerFeasible: an integer solution is found but not 
proven optimal before time limit. IntegerInfeasible: no integer solution is found before time limit. Opti-
mal: difference between relaxation and best integer solution is less than the absolute gap

Fig. 5   Number of instances per status returned in “old” model and the changes of status when applying 
learned cuts. Each status is exclusive one from the other (i.e., they sum the totality of correctly generated 
instances). Infeasible: problem proven infeasible. IntegerFeasible: an integer solution is found but not 
proven optimal before time limit. IntegerInfeasible: no integer solution is found before time limit. Opti-
mal: difference between relaxation and best integer solution is less than the absolute gap
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reduced in most of the cases, to around half, which results in a more stable and 
balanced planning.

Fig. 6   Relative difference between the objective function value for each model, compared with the 
“base.” Only instances where all models return an optimal status are used. The right and left side tails 
representing 10% of the sample are removed for better display

Fig. 7   The distribution of solution times of each method for all instances. The x-axis represents the per-
centile of instances in % from 0 to 100 and the y-axis the time it takes to solve the slowest instance in 
that percentile

Table 4   New infeasible 
instances per learned cuts model 
and per status in the “base” 
model

“IntegerInfeasible → Infeasible” is the number of additional new 
infeasible instances which had this status in the “base” modelz. 
“errors_mean” is the average of new soft constraints violations, and 
“errors_new” is the percentage of new instances with at least one 
soft constraint violation, among optimal solutions

Indicator base_a2r old old_a2r

IntegerInfeasible → 
Infeasible

5.00 0 2.00

errors_mean 0.06 0 0.06
errors_new 2.42 0 4.35
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8.3 � Comparison with other matheuristics

Table 5 shows the extra infeasible instances for each method with respect to the 
“base” model status. One can see that some previously “Optimal” and “Inte-
gerFeasible” solutions in the “base” model become now “Infeasible,” in contrast 
with the “base_a2r” model. Also, these matheuristics introduce many more new 
soft constraints violations. Figure  9 shows the solution time for each method 
compared to the base model and to the learned cuts model: only the most aggres-
sive of the matheuristics beats the previously shown learned cuts.

These two results highlight the advantage of using learned cuts over other more 
standard matheuristics: they offer a good combination of less degradation in new 
infeasible solutions and better performance in solution times.

8.4 � Summary

Tables  6, 7, and 8 show a summary for each dataset of the gains and costs of 
applying different degrees of cuts in models “base” and “old.” Each statistic 
(“Stat”) is a comparison between the named model and the “base” model. As a 

Fig. 8   The percentage difference in variance for the distance between checks in alternative models with 
respect to the base model

Table 5   New infeasible instances per method and per status in the “base” model

e.g., 3 “Optimal” solutions in the “base” case result in “Infeasible” in “base_flp” “errors_mean” is the 
average of new soft constraints violations, and “errors_new” is the percentage of new instances with at 
least one soft constraint violation, among optimal solutions

Indicator base_a2r base_flp base_flp2 base_flp3

IntegerFeasible → Infeasible 0.00 10.00 8.00 8.00
IntegerInfeasible → Infeasible 5.00 76.00 12.00 10.00
Optimal → Infeasible 0.00 3.00 3.00 3.00
errors_mean 0.05 1.97 1.00 1.05
errors_new 2.31 31.54 23.85 24.23
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reference, the “old” model results are also shown and compared accordingly. It is 
important to note that the “old” model is similar in feasibility ( E� , E% and Infeas), 
quality degradation ( Q� , Qm and Q95 ) and variance ( V� ) as the “base” model, 
since both share the same solution space. Thus, the gains in performance ( T� and 
Feas), and variance reduction ( V� ) offered by the learned cuts models need to be 
weighted against trade-offs on the former indicators.  

Fig. 9   The distribution of solution times for each method for all 994 instances solved. In the x-axis is the 
percentile of instances in % from 0 to 100. In the y-axis is the time it took to solve the slowest instance in 
that percentile

Table 6   Summary table comparing the performance of several options of cuts in scenario of size |I| = 30

All comparisons are done against the “base” model for each option dataset size. E� and E
%
 refer to the 

percentage difference in average number of soft constraint violations per instance and the proportion of 
new instances with at least one violation, among optimal solutions. Feas (Infeas) refer to the average 
additional number of feasible (infeasible) instances obtained as a percentage of total instances (1000). 
Q� , Qm

 and Q
95

 are the average, median and 95-percentile difference in the objective function when com-
paring optimal solutions (as a percentage of the “base”). T� is the difference in average solution times (as 
a percentage of the “base”) for all instances. V� is the difference (as a percentage of the “base”) in the 
variance of the distance between checks along the fleet for all instances
The best result for each row is shown in bold

Stat base_a1 base_a2r base_a3r old old_a1 old_a2r old_a3r

E� 0.16 0.07 2.28 − 0.01 2.27 0.07 2.65
E% 1.02 2.54 10.66 0 10.66 4.57 13.2
Feas 25.96 32.5 33.1 36.22 32.5 35.01 35.11
Infeas 1.21 0.61 1.51 − 0.1 1.41 0.21 1.61
Q� 12.97 9.86 27.65 − 0.18 56.58 6.3 14.4
Qm 2.8 3.65 8.08 0.02 6.36 2.67 5.48
Q95 4.82 7.83 11.17 0.92 9.93 4.14 7.81
T� − 16.16 − 29.5 − 49.53 0.54 − 14.17 − 5.2 − 30.39
V� − 41.31 − 42.56 − 60.19 − 1.83 − 93.2 − 48.77 − 68.45
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Regarding optimality degradation (Q), solutions with cuts tend to be 5–6% 
away from the real optimal (or the best known solution). By recycling some 
excluded patterns, the gap can be reduced to less than 4%.

Regarding performance, all learned cuts increase the number of instances 
where a feasible solution is found in the “base” model: Feas improves by an aver-
age difference of 20% to 50% (measured in % of total instances). This is not so 
in the case of the “old” model, where performance is lost in this sense. Gains 
in solution times are also substantial. The average time ( T� ) usually improves 
between 10 and 30%.

Additional infeasible solutions and soft constraints violations (Infeas and E) 
increase with the aggressiveness of the cuts and depending on whether we allow 
the possibility of recycling or not. In the cases of less aggressive cuts, most new 
infeasible instances are not proven feasible by the “base” model. The impact of 
recycling in reducing the number of infeasible instances while keeping most of 
the performance is to be noted.

Table 7   Summary table comparing the performance of several options of cuts in scenario of size |I| = 45

The best result for each row is shown in bold

Stat base_a1 base_a2r base_a3r old old_a1 old_a2r old_a3r

E� 0 0.05 1.49 0 0.68 0.14 2.11
E% 0 2.7 10.81 0 2.7 8.11 10.81
Feas 37.01 48.55 54.56 60.58 49.55 55.07 58.48
Infeas 2 0.8 2.3 0 2.4 0.1 1.6
Q� 3.14 4.54 15.68 0.37 7.39 3.73 6.48
Qm 2.8 3.77 9.2 0 7.42 2.69 5.69
Q95 6.69 10.21 24.39 1.79 11.49 9.74 15.31
T� − 8.9 − 15.48 − 31.64 0.64 − 6.62 − 1.6 − 10.65
V� − 41.62 − 45.04 − 62.71 − 2.48 − 95.29 − 48.84 − 68.16

Table 8   Summary table comparing the performance of several options of cuts in scenario of size |I| = 60

The best result for each row is shown in bold

Stat base_a2 base_a2r base_a3r old old_a1 old_a2r old_a3r

E� 0 0 0 0 1.92 0 3.92
E% 0 0 0 0 7.69 0 15.38
Feas 32.59 36.02 43.18 53.88 37.23 44.7 49.44
Infeas 5.76 1.22 3.44 0.11 3.54 0.61 2.33
Q� 4.57 3.97 7.74 0.63 7.13 2.54 5.28
Qm 3.97 3.15 7.47 0 6.29 2.58 5.3
Q95 8.38 7.81 13.66 3.42 14.05 4.33 9.5
T� − 10.19 − 8.26 − 18.54 0.74 − 4.48 − 0.44 − 5.67
V� − 50.9 − 43.28 − 61.98 1.13 − 94.89 − 47.54 − 66.8
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Finally, variance reduction (V) between 40 and 60% is usually obtained with most 
cut strategies, although recycling reduces slightly the strength of the reduction. The 
more aggressive a cut, the most the gain in variance reduction.

Larger instances allow for more aggressive cuts without losing too much feasibil-
ity or quality, as can be seen by comparing the impact of “base_a3r” across different 
sizes of instance. The cuts in the “base” model have greater reductions in solution 
time than those in the “old” model, while the cuts in the latter have slightly lower 
feasibility and quality degradation and slightly greater variance reductions. This 
can be explained as the nature of the cuts differs in each formulation: in the “base” 
model it consists of reducing the number of variables, while in the “old” model it 
consists of adding constraints.

The best compromise seems to be reached when adding recycling to aggressive 
cutting (“base_a2r” or “base_a3r”) depending on the size of the instance. In most of 
the cases, a low or very low optimality degradation can be seen together with a low 
feasibility change, compared to both the “base” and “old” models. The performance 
gains can be seen in both time to reach an optimal solution and the reduction of the 
variance of the usage of the fleet. Finally, compared to the “base” model, the amount 
of feasible solutions is increased.

These results encourage the design of more sophisticated ways of predicting pat-
terns in solutions. Ideally, a function that returns a probability distribution of pat-
terns for each instance could be trained and then used to sample promising patterns. 
Our learned cuts model is a special case where we give a very high priority (a prob-
ability of 1) to patterns in the range of tolerance for the distance between checks and 
a very low probability (dependent on the recycling parameter and the total amount 
of available patterns) to the rest of the patterns.

9 � Conclusions

This paper presents an alternative MIP formulation for the long-term Military Flight 
and Maintenance Planning problem. The performance is compared with previous 
formulations using cases inspired by the French Air Force. Valid bounds are for-
mulated and tested. A forecasting model is designed to predict characteristics of 
optimal solutions based on the input data and used to create pseudo-cuts. For com-
parison, several matheuristic that use the LP relaxation are also applied to reduce the 
solution space of the problem.

The study shows that predicting characteristics of the optimal solution is a power-
ful method to obtain very good solutions that are close to the optimal, in less time 
and with very little loss of feasibility. In addition, the prediction also allows con-
sideration of a second objective without hindering performance. The performance 
gains of these pseudo-cuts will depend heavily on the implementation, i.e., on the 
mathematical model employed and the way the pseudo-cuts are added to the model.

A comparison with more classical matheuristic techniques highlights the 
potential benefits of doing a good trade-off between optimality and infeasibility 
degradation in the search for performance.
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Further work includes, first of all, researching better ways to predicting the 
optimal patterns in a solution. Secondly, the application of this technique into 
problems where pattern can potentially be used, such as workforce scheduling 
and cutting stock problems. Furthermore, this technique can be generalized into 
a random sampling of patterns where each pattern is picked with a probability 
equal to the potential it has to appear in the optimal solution.

Funding  This paper was written as part of a PhD Thesis partially financed by the French Defense Pro-
curement Agency of the French Ministry of Defense (DGA).

Appendix A: Time‑related index sets

Consider a small example where M = 2,RctInit
1

= 5,Emax
= 7,Emin

= 4,

MT
min

1
= 3,MT

max

1
= 4, T = 15, T 1 = {4,… , 10},J

i=1 = {1} ; then, the example 
solution in Fig. 10 should comply with the following:

T
MInit

i
=
{

t ∈
{
max {0,RctInit

i
− Emax + Emin},… ,RctInit

i

}}

.

T s
t�
=
{

t ∈
{
max {1, t� −M + 1},… , t�

}}

.

TM
t�
=
{
t ∈ {t� +M + Emin − 1,… , t� +M + Emax − 1} ∩ {T − Emax + 1,… , T − 1}

}
.

TM+
t�

=

{
TM

t�
. t� +M > T ∨ t� +M + Emax − 1 < T

TM
t�
∪ {T}. t� +M ≤ T ≤ t� +M + Emax − 1

T T T t = {(t1, t2) ∣ t1 ∈ T s
t
∨ t2 ∈ T s

t
}.

T T j = {t, t� ∈ T j ∣ t +MTmin
j

− 1 ≤ t� ≤ t +MTmax
j

− 1}.

T TJjt = {t1, t2 ∈ T T j ∣ t1 ≤ t ≤ t2}.

JTT it1t2
= {(j, t, t�)|j ∈ Ji ∧ (t, t�) ∈ T T j ∧ t ≥ t1 +M ∧ t� < t2}.

Fig. 10   The figure shows an example solution that complies with the time-related indexed sets. Air-
craft 1 has a first check in period 2 ∈ T

MInit

1
 . A second check is done in period 9 ∈ TM

2
 . Also, since 

(2, 9) ∈ T T T 3 , aircraft 1 is considered in maintenance in period 3. The aircraft has an assignment to 
mission 1 in periods (5, 8) ∈ T T 1 . Since (5, 8) ∈ T TJ15 , aircraft 1 is considered assigned to mission 1 
during period 5. Finally, since maintenances are done in periods (2, 9), all possible mission assignments 
in between (e.g., (1, 5, 8)) should be in JTT 129
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