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Abstract—The deployment of Artificial Intelligence (AI) hard-
ware accelerators in a variety of applications, including safety-
critical ones, requires assessing their inherent reliability to
hardware-level faults and developing cost-effective fault tolerance
techniques. This entails performing large-scale fault simula-
tion experiments. However, transistor-level fault simulation is
prohibitive and fault simulation should be carried out at a
higher abstraction level. In this work, we focus on spiking
neural networks (SNNs), and we follow a bottom-up approach
starting from transistor-level simulations for developing a neuron
behavioral-level fault model that can be readily employed for
performing behavioral-level fault simulation of deep SNNs.

I. INTRODUCTION

Artificial Intelligence (AI) has seen several breakthroughs
in recent years that paved the way for numerous applications
in a wide range of fields. In particular, Deep Neural Networks
(DNNs) have shown outstanding capability of solving high-
dimensional cognitive tasks autonomously and successfully,
in some cases surpassing human performance.

In parallel, there is intense activity in designing dedicated
AI hardware accelerators optimized for the computation, mem-
ory storage, and networking requirements demanded by AI
workloads. Beyond speeding up training and inference on
complex DNN models, there is also an incentive to design
AI hardware accelerators that can fit inside the resource-
constrained Internet of Things (IoT) edge devices, which is to
push the execution of AI algorithms from the cloud to the edge.
This is motivated by concerns of availability, latency, network
bandwidth, and privacy. AI hardware accelerators widely used
today include Field-Programmable Gate Arrays (FPGAs) and
Graphics Processing Units (GPUs), but efficiency gains of
several orders of magnitude can be achieved via Application-
Specific Integrated Circuit (ASIC) implementations.

The reliability aspects of AI hardware accelerator archi-
tectures need to be carefully addressed given that several
targeted applications are safety-critical and mission-critical. In
particular, AI hardware accelerators should meet the functional
safety standard regulated by the application domain, i.e. ISO
26262 for automotive and IEC 61508 for industrial systems.

An important step towards reliable design is assessing the
effect of hardware-level faults on the DNN performance.
Hardware-level faults include process variations, manufactur-
ing defects, aging phenomena, soft errors, etc. The assumption
that AI hardware accelerators are inherently fault-tolerant
since they are modeled after the architecture and operation
principles of biological neural networks has been proven false.
The over-provisioning, massive spatial redundancy and parallel
computing help the network learn around relatively high fault

densities; however, a fault occurring after training in the field
of application can have detrimental effect on the inference and
can seriously jeopardize the application.

The goal is to identify critical fault types and fault locations
in the DNN architecture and, subsequently, take action to ren-
der the design fault-tolerant. Fault-tolerance strategies can be
categorized into proactive strategies, i.e. assessing reliability
risks and adjusting the design with the aim to prevent or
mitigate those risks, and reactive strategies, i.e. dealing on-the-
fly with failures occurring in the field of application by relying
on on-chip self-test mechanisms to detect failures and on-chip
error correction mechanisms to recover from failures with low-
latency, preferably without interrupting the application.

Several fault injection experiments have been reported in the
literature for various DNN models running on different types
of AI hardware accelerators. Transistor-level fault simulations
can be performed only at neuron-level [1] or for small-size
networks [2]. In general, performing large-scale fault injection
experiments necessitates the use of a fault model of higher
abstraction in order to make simulation traceable. This also
enables a reliability analysis at higher-level independent of the
specific hardware implementation. To this end, fault injection
experiments have been performed using behavioral-level faults
at the synapse and neuron level [3], static and transient bit flips
in data-paths and memories [4]–[6], and stuck-at faults at gate-
level [7], at quantizing activations [8], or at the conductance
of memristors in memristor crossbars [9].

In this work, we focus on spiking neural networks (SNNs),
and in particular on the acceleration of fault simulation using
a behavioral-level fault model at the neuron level. Such a
behavioral-level fault model was proposed in [3]; however,
it was designed intuitively and does not originate from low-
level, i.e. transistor-level, fault simulations. Herein, we follow
a bottom-up approach for deriving a behavioral-level fault
model. We consider a transistor-level design of an Integrate-
and-Fire (I&F) spiking neuron and we perform Monte Carlo
simulation and structural defect simulation to analyze the
effect of process variations and defects, respectively, on the
neuron operation. We collect all types of possible faulty
behaviors and categorize them to constitute a behavioral-level
fault model. Finally, we show how the faulty behaviors can be
easily reproduced at behavioral-level.

II. THE SPIKING NEURON

A. Behavioral Model

The I&F model is nowadays one of the most dominant
and widely used for describing spiking neurons [10]. It offers
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Fig. 1: Neuron circuit.

enough complexity to capture the characteristics of biological
neural processing, while being simple enough for analysis and
intuitive understanding of its dynamics.

The I&F model explains the dynamics of a neuron through
its membrane potential, Vm:

Cm · dVm
dt

= Isyn + Iinj , (1)

where Cm is the membrane capacitance, Isyn is the post-
synaptic current fed to the neuron, and Iinj is the current
injected into the neuron either externally or through a positive
feedback path.

The simplicity of the I&F model comes from the separation
of the sub-threshold integration dynamics from the spike
generation mechanism. Since a spike is a momentary surge
in voltage whose form holds no information, the shape of the
spike is not formally stated in the model. Instead, the spike
generation behavior is characterized by a firing time tf and a
threshold criterion, i.e., the neuron produces a spike at time
tf when Vm reaches the threshold value, Vref :

tf : Vm(tf ) = Vref . (2)
As soon as the neuron fires, the membrane potential is reset
to a value Vreset < Vref :

lim
t→tf ;t>tf

Vm(t) = Vreset. (3)

For t > tf , the neuron dynamics again follow Eq. (1) until
the next time Vm reaches Vref .

B. Transistor-Level Design

Fig. 1 shows the transistor-level design of the I&F neuron
used in this work. It is designed in the ams 0.35µm technol-
ogy, and was originally part of a neuromorphic cortical-layer
processing chip for spike-based processing systems [11].

The neuron takes the input current spikes Isyn coming from
the synapses, integrates them on capacitor Cm, and fires a
spike at the output Vspike when the capacitor voltage Vm
reaches a certain threshold Vref . The circuit has an extra
set of input/output nodes, namely the Ack and Rqst nodes,
which are used by the Address Event Representation (AER)
communication protocol.

The main blocks are a comparator and a set of inverters
that control the signal flow. During the charging time of the
capacitor the circuit is inactive, transistors Mp1 and Mn4

are off, and transistor Mp2 is on. Since the comparator is
constantly following Vm and comparing it to Vref , its bias
current is kept low through transistor Mn1 to minimize power
consumption. As Vm increases towards Vref , node n1 starts

changing state and switches on two transistors: (i) transistor
Mp1, which slowly introduces a positive feedback current that
accelerates the charging of the capacitor, and (ii) transistor
Mn3 through node n2, which offers a brief surge in the
comparator bias current. Combined, these actions speed up
the transition time of the comparator output.

Once the transition is complete, i.e. node n1 is low and node
n2 is high, node n3 goes low and an output request signal is
sent to the AER communication block by pulling up line Rqst.
After a few nanoseconds, the AER block acknowledges back
the request and the Ack input pulls node n4 up and turns on
transistor Mp3 which produces the output spike of the neuron.
Node n4 has three main effects on the neuron circuit: (i) it
turns transistor Mn2 on to keep the comparator bias current
high during the back transitioning, (ii) it turns off transistor
Mp2 which cuts off the positive feedback path to the capacitor,
and (iii) it turns transistor Mn4 on to reset Vm to Vreset so
the capacitor is able to charge again.

III. FAULT SIMULATION

A. Fault Simulation Framework

To build a taxonomy of neuron faulty behaviors we perform:
(a) Monte Carlo simulation with 1000 runs using the technol-
ogy Process Design Kit (PDK), considering both global and
local process variations; (b) structural defect simulation in an
automated workflow using the mixed-signal defect simulator
Tessent®DefectSim by Mentor®, A Siemens Business [12].

We consider a standard defect model for the transistors that
includes stuck-on and stuck-off behaviors. Stuck-on is mod-
eled with a short-circuit across the drain and short terminals
implemented with a default small resistance of 10Ω. Stuck-off
is modeled with an open-circuit in the gate terminal. Since
the simulator cannot handle ideal opens and since a very
high series-resistance would have no effect, a gate open is
implemented with a weak pull-up or pull-down gate voltage.
In particular the gate-to-source voltage is controlled by the
drain-to-source voltage with a gain coefficient set to a default
value of 0.5 [13]. Finally, for passive elements, i.e., resistors
and capacitors, the defect model includes large variations of
±50%. For our neuron, the defect model size is Ndefects = 46.
B. Spiking Neuron Faulty Behaviors

To stimulate the neuron, an input current pulse of 10µs
width was used, shown in Fig. 2a. In a fault-free scenario, the
neuron should start spiking at regular intervals after the input
stimulus begins and stop spiking once the input stimulus is
over, as shown in Fig. 2b.

Simulation experiments revealed different types of faulty
behaviours ranging from catastrophic, i.e. the neuron is clearly
non-functional, to parametric, i.e. the neuron still produces
an output spike train but it shows variations in timing pa-
rameters with respect to the nominal response. Catastrophic
faulty behaviors were observed in 31 defect simulations, while
parametric faulty behaviors were observed across the 1000
Monte Carlo runs and in the rest 15 defect simulations.

The catastrophic faulty behaviors observed are listed next,
along with an example of a root-cause defect. Table I provides
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(a) Post-synaptic input current stimulus.
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(b) Nominal neuron output.
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(c) Saturated output caused by a stuck-on Mp1 transistor.
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(d) Dead (or stuck-at-0) output caused by a stuck-on Mn4 transistor
and stuck-at-X output caused by a stuck-off Mp3 transistor.
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(e) Stuck-at-1 output caused by a stuck-on Mn6 transistor (without
requiring input stimulus) and by a stuck-off Mn5 transistor (triggered
with input stimulus).
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(f) Output with ghost spikes caused by a stuck-off Mp4 transistor.
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(g) Long-duration spikes caused by a stuck-off Mp5 transistor.

Fig. 2: Examples of catastrophic faulty behaviors.

a summary of catastrophic faulty behaviors and shows the
number of defects that produce them.

1) Saturated output: A state where the neuron is constantly
firing regardless of the presence of an input stimulus. Fig. 2c
shows a saturated output caused by a stuck-on transistor Mp1.
This defect triggers a constant high feedback current to the
capacitor, so the capacitor is always charging even without a
current from the synapse.

2) Dead output: A state where the neuron output is stuck-
at-0 when it should be spiking. The red curve in Fig. 2d
shows a dead output caused by a stuck-on transistor Mn4.
The capacitor cannot charge since it is constantly held at its

TABLE I: Catastrophic faulty behaviors resulting from defect
simulation.

Catastrophic
faulty

behavior

Number of defect
simulations producing it

(Ndefects = 46)

Example
neuron

response
Saturated 5 Fig. 2c

Dead 12 Fig. 2d
Stuck-at-X 1 Fig. 2d
Stuck-at-1 10 Fig. 2e

Ghost-spike firing 1 Fig. 2f
Long-duration spike firing 2 Fig. 2g

reset value and, thereby, the neuron is incapable of spiking.
3) Stuck-at-X output: A state where the neuron output gets

stuck at an arbitrary DC value between the supply voltage Vdd
and ground. The blue curve in Fig. 2d shows such a faulty
behavior caused by a stuck-off transistor Mp3. This defect
isolates the neuron output from the Ack signal and, in the case
of an ideal stuck-off, it turns the output node into a floating
node which can settle to any DC value. Given our modeling of
stuck-off transistor, the neuron node ends up settling at 1.1V.

4) Stuck-at-1 output: A state where the neuron output gets
stuck at Vdd. The dotted red curve in Fig. 2e shows this faulty
behavior for a stuck-on transistor Mn6. In this case, the output
gets stuck-at-1 at start-up without requiring an input stimulus.
This defect forces node n1 to be permanently low and, thereby,
node n2 to be permanently high. At start-up, Ack is high, thus
n3 enables the Rqst signal and Ack goes low. When Ack goes
low, node n3 is floating but retains its low value, thus Ack
is permanently set low and the output gets stuck-at-1. The
blue curve in Fig. 2e shows another example of a stuck-at-1
behavior caused by a stuck-off transistor Mn5, but this time
the faulty behavior is triggered only when an input stimulus
comes along. This defect cuts off Vref from the comparator
input. According to our modeling of stuck-off transistor, the
gate voltage of Mn5, VG,Mn5

, follows the sum of its drain and
source voltages. In the beginning, the capacitor keeps charging
and at some point Vm exceeds VG,Mn5

and the neuron output
goes high. At the time of spiking, VG,Mn5

is lower than Vreset,
thus node n1 gets permanently stuck at a low value and the
output gets stuck-at-1, as explained above for the stuck-on
transistor Mn6.

5) Ghost-spike firing: A state where the neuron generates
extra spike(s) that is(are) not a result of the membrane poten-
tial exceeding the reference voltage. We refer to these spikes as
“ghost” spikes. Fig. 2f shows such a faulty behavior caused
by a stuck-off transistor Mp4. When the neuron spikes, the
path from node n3 to ground gets cut-off. Node n3 is floating
since the defect isolates node n3 from node n2. Because of
our defect model, node n3 will eventually be weakly pulled
up to Vdd. Simulations show that it first gets weakly pulled
up to Vdd stopping spiking and then again it is weakly pulled
down to ground producing a second ghost spike before it is
finally stabilized bringing the neuron to its resting state.

6) Long-duration spike firing: A state where the neuron
produces spikes of longer duration. Fig. 2g shows such a faulty
behavior caused by a stuck-off transistor Mp5. When signal
Ack goes low and the neuron spikes, node n4 does not go
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Fig. 3: Histograms of timing variations.

immediately high to instantaneously reset the membrane po-
tential and restart the integration. Instead, node n4 is initially
weakly pulled up to Vdd and gradually increases. As a result,
the capacitor starts resetting but at a slow rate, thus extending
the duration of the output spike.

As for the parametric faulty behaviors, we consider two
types of timing parameters, namely the time-to-first-spike and
the firing rate. It should be noticed that such timing variations
may not be problematic at network-level, i.e. they may be
accommodated during training.

Fig. 3 shows the histograms of the timing parameters
observed across the 1000 Monte Carlo runs and the 15
defect simulations. As evident from the histograms, the timing
parameters are sensitive to process variations. We observe
also that certain defects cause significant timing variations,
while others have a barely noticeable effect. Two defects that
clearly have a significant effect on timing parameters are the
±50% variations in Cm. Other defect examples are stuck-
off transistors Mn2 and Mn3. As explained in Section II-B,
these transistors form a dynamic biasing circuit to control the
comparator transition rate, thus a stuck-off in these transistors
ends up significantly altering the timing parameters of the
neuron. An example of a defect that has negligible effect on
timing parameters is a stuck-off transistor Mp2. It comes into
play as Vm approaches Vref , increasing the resistance of the
positive feedback path and slowing down the acceleration of
the capacitor charging. However, this does not seem to affect
the spike train timing. In addition, when the neuron spikes, this
defect withholds n4 from immediately cutting-off the positive
feedback, although this happens quickly anyways since node
n1 transitions back right away.

IV. BEHAVIORAL-LEVEL FAULT MODEL

The behavioral-level fault model for I&F neurons includes
the faulty behaviors observed in Section III-B, i.e., the catas-
trophic faulty behaviors listed in Table I and the variations in
the two timing parameters in Fig. 3.

These faulty behaviors can be easily reproduced at
behavioral-level. Timing variations can be emulated by directly
changing model parameters described in Section II-A, i.e., Cm,
Vref or Vreset. The dead, stuck-at-X, and stuck-at-1 outputs
can be simulated by simply forcing the neuron output to take
the respective value. A saturated output is obtained by forcing
a high constant input current applied from the start. Long-
duration spikes can be produced by delaying the resetting
mechanism. Finally, the ghost-spike firing can be recreated
by superimposing ghost spikes to the nominal spike train.

V. CONCLUSIONS

We performed Monte Carlo analysis and defect simula-
tion for an I&F neuron, then we observed and categorized
faulty behaviors to form a behavioral-level fault model. This
behavioral-level fault model can be readily used to enable
accelerated fault-simulation of deep SNNs, in order to assess
reliability properties and develop cost-effective fault-tolerance
strategies.
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