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. We show here that multi-solitons are smooth, depending on the regularity of the nonlinearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case.

1. I 1.1. Generalities on the non-linear Schrödinger equations. We consider non-linear Schrödinger equations in R which admit traveling solitary waves (solitons). More precisely, we focus on

= Δ + (| | 2 ) , (NLS) 
where : × R → C, ⊂ R is a time interval, and : [0, +∞) → R is an 1 -subcritical non-linearity.

For ≤ 3 and for particular functions , equation (NLS) arises in the mathematical description of many physical phenomena; it is used mainly to model non-linear wave dynamics. For instance, it is fundamental in the description of the dynamic of particles moving in electromagnetic fields [START_REF] Malomed | Nonlinear Schrödinger Equations[END_REF] and quantum systems like Bose-Einstein condensates [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. With particular non-linearities obtained by linear combinations of quadratic, cubic, and quintic terms it appears also when one tries to describe the propagation of laser beams in some mediums [START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF] or of more general ultrashort optical pulses (see for example [START_REF] Kumar De | Few-cycle optical solitary waves in cascaded-quadratic-cubic-quintic nonlinear media[END_REF] for the study of some solutions of these equations), with applications in medical imaging, material processing and optical communications (we refer to [START_REF] Felice | A study of a nonlinear Schrödinger equation for optical fibers[END_REF] for further details concerning the applications of (NLS) to fiber optics for example).

( ) = -1 2 , 1 < < 1 + 4 ( -2) + , ≥ 0. (1.1) (If = 1 or 2, the condition is > 1 and if ≥ 3, the condition is 1 < < 1 + 4 -2
). We will give results on general non-linearities in paragraph 1.3. [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF] proved that (NLS) is locally well-posed in 1 (R ): for all 0 ∈ 1 (R ), there exist > 0 and a unique maximal solution ∈ C ([0, ), 1 (R )) of (NLS) such that (0) = 0 . For any such 1 solution, the following quantities are conserved for all ∈ [0, ):

Ginibre and Velo

• the 2 mass ∫ R | ( , )| 2 .
• the energy

∫ R 1 2 |∇ ( , )| 2 - 1 + 1 | ( , )| +1 .
• the momentum Im ∫ R ∇ ( , ) ( , ) .

Furthermore, for all ∈ N \ {0, 1}, if

: ↦ → (| | 2 ) = | | -1 is C on C as an R-differentiable function (that
is if > or is an odd integer), and in case where < 2 , if in addition < 1 + 4 -2 , then (NLS) is locally well-posed in (R ) according to Kato [START_REF] Kato | On nonlinear Schrödinger equations. II, solutions and unconditional well-posedness[END_REF]Theorem 4.1]. Also (NLS) is invariant under properties of space-time translation, phase, and galilean invariances: if 0 ∈ R, ∈ R , 0 ∈ R , ∈ R, and is a solution to (NLS), then (1.2) ( , ) ↦ → ( -0 , -0 -)

1 2 • -| | 2 4 +
is also a solution to (NLS). What is more, (NLS) with a pure power non-linearity (1.1) is scaling invariant: if > 0 and is a solution to (NLS), then

(1.3) ( , ) ↦ → 1 1/( -1)
, 1/2 is still a solution to (NLS).

Let us introduce now some particular solutions of (NLS) which are essential in the theory and on which our paper is based. Given > 0, Berestycki and Lions [START_REF] Berestycki | Non linear scalar field equations, I. Existence of a ground state[END_REF] proved the existence of a (non-vanishing) positive radial solution ∈ 1 (R ) to the following elliptic problem (1.4) Δ + ( 2 ) = , > 0 (By scaling, it suffices to prove the existence for = 1). A solution to (1.4) is called a ground state (and if one relaxes the sign condition, we speak of bound state). Using a Pohozaev identity [START_REF] Stanislas | Eigenfunctions of the equation Δ + ( ) = 0[END_REF], one can show that (1.4) has no solution in 1 (R ) for ≥ 1 + 4 ( -2) + . Moreover, for ∈ N * and if is C on [0, +∞), then is C +2 on R and one has exponential decay (see [1, ( , ) ↦ → ( ) is a solution to (NLS). Using the invariances (1.2) of the equation, one obtains a whole family of solutions of (NLS) known as solitons.

Dynamical properties of solitons have been extensively studied. One important result is related to their orbital stability: solitons are orbitally stable if < 1 + 4 and unstable if ≥ 1 + 4 . Recall that the case = 1 + 4 corresponds to the 2 -critical exponent: in this particular case, the 2 norm of a solution is invariant by scaling (1.3).

In this article, we are interested in qualitative properties of multi-solitons, that is solutions of (NLS) which behave as a sum of decoupled solitary waves for large times.

Let us begin with the definition of some further notations. Fix ∈ N \ {0, 1} and for all = 1, . . . , , let > 0, ∈ R, 0 ∈ R , and ∈ R such that for all ≠ ′ , ≠ ′ .

For all = 1, . . . , , we consider ( , ) = ( -0 -)

1 2 • + - | | 2 4 + ,
which is a soliton of (NLS) moving on the line = 0 + . We denote also

:= =1 .
In general, is obviously not a solution to (NLS) because of the non-linearity. A multi-soliton is a solution of (NLS) defined on [ 0 , +∞) for some 0 ∈ R and such that (1.7) lim →+∞ ( ) -( ) 1 = 0.

Multi-solitons were explicitly constructed in the integrable case, that is with ( ) = and = 1, using the inverse scattering method (see Zakharov and Shabat [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[END_REF]).

The first construction in a non-integrable context is due to Merle [START_REF] Merle | Construction of solutions with exactly blow-up points for the Schrödinger equation with critical nonlinearity[END_REF], in the critical case = 1 + 4 . Later, following closely the ideas of Martel in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] for the construction of multi-solitons for the Korteweg-de Vries equations, Martel and Merle [START_REF] Martel | Multisolitary waves for nonlinear Schrödinger equations[END_REF] constructed multi-solitons of (NLS), in the 2 -subcritical case 1 < < 1 + 4 . This result was extended to 2 -supercritical exponent by Côte, Martel and Merle [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF]. Let us recall the results. Theorem 1.1 (Merle [33], Martel and Merle [START_REF] Martel | Multisolitary waves for nonlinear Schrödinger equations[END_REF], Côte, Martel and Merle [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF]). There exist > 0 (depending on , for 1 ≤ ≤ ), 0 ≥ 0, and a solution ∈ C ([ 0 , +∞), 1 (R )) of (NLS) such that (1.8)

∀ ≥ 0 , ( ) -( ) 1 ≤ -2 .
Let us also mention the works by Le Coz and Tsai [START_REF] Le | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF] and Le Coz, Li and Tsai [START_REF] Le Coz | Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations[END_REF] where infinite trains of solitons are constructed, in the context of (NLS). The construction of multi-solitons in 1 was done for many other non-linear dispersive models (besides the generalized Korteweg-de Vries equations) such as the non-linear Klein-Gordon equation [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF], the Hartree equation [START_REF] Krieger | Two-soliton solutions to the three-dimensional gravitational Hartree equation[END_REF], the water-waves system [START_REF] Ming | Multi-solitons and related solutions for the water-waves system[END_REF], and in both stable and unstable contexts, which means assuming that all are stable or not. Even though solutions of (NLS) behaving as a sum of decoupled general bound states (that is, solutions to (1.4) which change sign) have been studied in the last years (see for example [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF] on (NLS) or [START_REF] Côte | Multi-travelling waves for the nonlinear Klein-Gordon equation[END_REF] on non-linear Klein-Gordon equation), in the present paper we concentrate only on multi-solitons based on ground states. Our goal here is to study uniqueness and smoothness issues.

To our knowledge, the only work where multi-solitons are shown to be more regular than 1 is for the generalized Korteweg-de Vries equation (which is one-dimensional), with monomial nonlinearity, by Martel [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], where the exponential convergence (1.8) is shown to hold in (R) for all ∈ N (with a constant depending on in front of the exponential term and a convergence rate independent of ): see Proposition 5 and its proof for the 2 -subcritical and critical cases; the 2 -supercritical case can be treated likewise, as it is mentioned in [8, Remark 1]).

A natural question is thus to understand for (NLS) whether the multi-soliton in Theorem 1.1 is smoother than 1 : for example, does it belong to C ([ 0 , +∞), (R )) for > 1 and does it hold ( ) -( ) → 0 as → +∞? Another natural question is the uniqueness or the classification of multi-solitons. Again, to our knowledge, the only complete study of the question was done for the generalized Korteweg-de Vries equations: multi-solitons were proved to be unique in the 2 -subcritical and critical cases by Martel [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], and were classified in the 2 -supercritical case by Combet [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] (there is a -parameter family of -solitons, each instability direction yielding a free parameter). Actually, smoothness of the multi-solitons constructed in Theorem 1.1 is an important ingredient in the proof of uniqueness (or classification) in dimension ≥ 2.

1.2. Main results. Our first result concerns the construction of a multi-soliton in (R ), where the regularity index > 1 depends on the regularity of the function . We prove in particular that the convergence occurs with an exponential rate in (R ). The result is stated here for pure power non-linearities, and we will discuss general non-linearities in the next paragraph. Theorem 1.2 (Smoothness of multi-solitons). Assume that ≥ 3. Let > 0 be defined as in Theorem 1.1 and 0 = ⌊ -1⌋ ≥ 2, or 0 = +∞ if is an odd integer. There exist 1 > 0 and ∈ C ([ 1 , +∞), 0 (R )) a solution of (NLS) with pure power nonlinearity (1.1) such that for all non-negative integer ≤ 0 , there exists ≥ 1 such that

(1.9) ∀ ≥ 1 , ( ) -( ) ≤ -2 +1 .
Moreover, if is an odd integer, then for all integer ≥ 0,

(1.10) ∀ ≥ 1 , ( ) -( ) ≤ -.
Remark 1.3. Theorem 1.2 completes Theorem 1.1 by showing the existence of smooth multisolitons. Notice that its applications are limited to dimensions ≤ 3, since we consider the pure power case and due to the 1 -subcritical assumption < 1 + 4 ( -2) + which is required for the existence of solitons.

In particular, in dimension = 1 and = 2, multi-solitons belong to ∞ (R ) when is an odd integer, and in dimension = 3, multi-solitons are ∞ (R 3 ) when = 3 (which corresponds to the most physically relevant case).

The exponential decay rate 2 +1 does depend on (vanishing when is large), which could be a problem for some applications. Observe however that if one is willing to consider only regularity indices ≤ 0 2 (say), then a straightforward interpolation argument between the 1 and 0 bounds gives the convergence with uniform exponential decay rate :

∀ ≤ 0 2 , ∀ ≥ 1 , ( ) -( ) ≤ ′ -.
Our second goal is to obtain some kind of uniqueness result for (NLS). The simplest (and most satisfying) statement one could think of would be uniqueness in the class of solutions defined for large enough times and convergent to the profile :

( ) -( ) 1 → 0 as → +∞.
Such a uniqueness result, unconditional to any decay rate, was obtained for multi-solitons of the generalized Korteweg-de Vries equation in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. This seems currently out of reach for (NLS), but one can expect uniqueness in some smaller class, where it is assumed that ( ) -( ) 1 tends to 0 with sufficiently fast decay rate: for example, in the class of exponential convergence, as it was done in [START_REF] Le | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF][START_REF] Le Coz | Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations[END_REF] for fast spreading (NLS) multi-solitons (see also [START_REF] Ferriere | Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation[END_REF] for the case of gaussons of the logarithmic (NLS)).

In the following result, we prove uniqueness in the class of multi-solitons such that ( ) -( ) 1 decreases faster than a high power of 1 for large values of . This in particular breaks the barrier of the exponential class, in which multi-solitons naturally lie. More precisely, we state the following: Theorem 1.4 (Conditional uniqueness). Let ≤ 2 and 3 ≤ ≤ 1 + 4 . There exists ∈ N large such that there is a unique ∈ C ([ 1 , +∞), 1 (R )) solution to (NLS) such that

(1.11) ( ) -( ) 1 = O 1 , as → +∞.
In particular, the multi-solitons of Theorems 1.1 and 1.2 coincide (and one can take 0 = 1 ).

Remark 1.5. The crucial point in Theorem 1.4 is obviously the uniqueness part. For pure power non-linearities, Theorem 1.4 provides conditional uniqueness in the sense of (1.11), in the 2subcritical and critical cases with ≥ 3 in dimension 1, and in the 2 -critical case = 3 in dimension 2.

The requirement that the non-linearity be 2 -subcritical or 2 -critical is to be expected as no uniqueness holds in the 2 -supercritical case; see Côte and Le Coz [6] for example.

General non-linearities.

In order to consider general non-linearities, one must make a number of assumptions which we discuss in this paragraph.

Well-posedness in 1 (R ) is classically done under the hypothesis that : C → C is C 1 and satisfies (H1) (0) = 0 and there exists ∈ 1, 1

+ 4 ( -2) + such that ( ), ( ) = O(| | -1 ) as | | → +∞.
In order that the Cauchy problem for (NLS) be well-posed in for ∈ N \ {0, 1}, Kato [21, Theorem 4.1] requires furthermore that is C , and if ≤ 2 , one also needs:

(H2) if is a polynomial in and , its degree is deg < 1 + 4 -2 if is not a polynomial, there exists ∈ ⌈ ⌉, 1 + 4 -2 such that -( ) = O(| | -) as | | → +∞,
for all = 0, . . . , , with ⌈ ⌉ the smallest integer greater or equal to .

The existence of solitons with frequency > 0 is not as immediate as in the pure power case. Under the assumption that (1.12)

∃ ∈ R * + , ( ) > where 
( ) := ∫ 0 ( )
for ≥ 0, Berestycki and Lions [START_REF] Berestycki | Non linear scalar field equations, I. Existence of a ground state[END_REF] showed the existence of a positive radial ground state ∈ 1 (R ) to (1.4). Note that if there exist ˜ > 0, ′ > 0 and 0 > 0 such that

∀ ≥ 0 , ( ) ≥ ˜ ′ ,
then (1.12) holds for all > 0. If = 1, a necessary and sufficient condition for the existence of a positive solution (1.4) is that is such that

(1.13) 0 := inf > 0 ( ) =
exists and ( 0 ) > (see [START_REF] Berestycki | Non linear scalar field equations, I. Existence of a ground state[END_REF]). Let us denote by O a subset of (0, +∞) such that (1.14) for all ∈ O, there exists a solution to (1.4).

Recall that when it exists, a positive solution of (1.4) is radial (see [1, section 3] and also Gidas, Ni and Nirenberg [17, Theorem 1'] for non-linearities such that ↦ → ( 2 ) is increasing). We underline that it is not unique in general. Indeed, Dàvila, Pino and Guerra [START_REF] Dávila | Non-uniqueness of positive ground states of non-linear Schrödinger equations[END_REF] showed the existence of at least three positive 1 solutions of

Δ + + 2 =
for some > 0 and ∈ (1, 5) in dimension = 3. See [START_REF] Dávila | Non-uniqueness of positive ground states of non-linear Schrödinger equations[END_REF] for other counterexamples in dimension 3.

On the other side, Kwong [START_REF] Kwong | Uniqueness of positive solutions of Δ -+ = 0 in R[END_REF] showed uniqueness of a positive radial ground state in the pure power case, and one can extend this to more general non-linearities; we refer to Mc Leod and Serrin [START_REF] Mc | Uniqueness of positive radial solutions of Δ + ( ) = 0 in R[END_REF], Serrin and Tang [START_REF] Serrin | Uniqueness of ground states for quasilinear elliptic equations[END_REF] and Jang [START_REF] Jang | Uniqueness of positive radial solutions of Δ + ( ) = 0 in R , ≥ 2[END_REF] for full details. One of the most important statements may be found in Serrin and Tang [START_REF] Serrin | Uniqueness of ground states for quasilinear elliptic equations[END_REF]: a sufficient condition for uniqueness when ≥ 3 is the existence of

> 0 such that        ∀ ∈ (0, ], ( ) ≤ 1, and ∀ ∈ ( , +∞), ( ) > 1 ↦ → ′ ( ) ( ) -1 is not increasing on ( , +∞).
In [START_REF] Jang | Uniqueness of positive radial solutions of Δ + ( ) = 0 in R , ≥ 2[END_REF], a slightly more general condition (inspired by [START_REF] Serrin | Uniqueness of ground states for quasilinear elliptic equations[END_REF]) yields uniqueness for (1.4) in any dimension ≥ 2.

Let us point out that conditions for existence and uniquenes of a ground state have been discussed for specific non-linearities in the litterature. For example, Berestycki and Lions condition concerning existence and Serrin and Tang condition concerning uniqueness of a ground state apply to the (important) cubic-quintic non-linearity (corresponding to

( ) = | | 2 -| | 4 or ( ) = -2 ).
Killip, Oh, Pocovnicu and Visan studied more precisely the properties of ground states associated with this nonlinearity and showed in particular that existence and uniqueness of a positive radially symmetric solution to

Δ + 3 -5 =
hold if and only if ∈ O := 0, 3 16 ; see [22, Lemma 2.1 and Theorem 2.2].

Pursuing with general non-linearities, we will also need a number of assumptions on the linearized operators around solitons. Fix ∈ O, and let

L : 1 (R , C) → 1 (R , C) = 1 + 2 ↦ → -Δ + -( ( 2 ) + 2 2 ′ ( 2 ) 1 )
so that the linearized equation of (NLS) around ( + ) is = L . We also define the linearized energy around , for any

= 1 + 2 ∈ 1 (R , C) ( ) : = ∫ R |∇ | 2 + | | 2 -( 2 )| | 2 + 2 2 ′ ( 2 ) 2 1 = Re ∫ R L = ∫ R +, 1 1 + ∫ R -, 2 2 
, where +,

1 := -Δ 1 + 1 -( 2 ) + 2 2 ′ ( 2 ) 1 -, 2 := -Δ 2 + 2 -( 2 ) 2 .
We do two (mutually incompatible) coercivity assumptions, depending on whether is stable or not. They write as follows:

(H3) (Stable case) There exists + > 0 such that for all

= 1 + 2 ∈ 1 (R , C) (1.15) ( ) ≥ + 2 1 - 1 + ∫ R 1 2 + =1 ∫ R 1 2 + ∫ R 2 2 
.

(H4) (Unstable case) There exists an eigenfunction = 1 + 2 ∈ 1 (R , C) of L (with eigenvalue 0 > 0) and + > 0 such that for all = 1 + 2 ∈ 1 (R , C),

(1.16) ( ) ≥ + 2 1 - 1 + ∫ R 1 2 2 - 1 + =1 ∫ R 1 2 + ∫ R 2 1 2 + ∫ R 2 2 
.

Assumptions (H3) and (H4) are intimately related to the stability of . Regarding the stable case, we have the following result by Grillakis, Shatah and Strauss [19, p. 341-345] (see also the work by Weinstein [START_REF] Michael | Modulational stability of ground states of nonlinear dispersive Schrödinger equations[END_REF][START_REF] Michael | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] 

Ker( +, 0 ) = Span 0 , = 1, . . . , ,
we have the following dichotomy:

• If | = 0 ∫ R ( ) 2
> 0, then (1.15) holds, and as a consequence, 0 is orbitally stable in 1 (R ).

•

If | = 0 ∫ R ( ) 2
< 0, then 0 is orbitally unstable in 1 (R ). We also refer to Cazenave and Lions [3, Theorem II.2 and Remark II.3] for another approach to 1 orbital stability of the solitons based on 0 . For the pure power case,

∫ R ( ) 2 = 2 -1 -2 -+3 -1 -2 ∫ R 1 ( ) 2
so that it is positive when 1 < < 1 + 4 , that is in the 2 -subcritical case (and in particular (H3) holds in that case) and it is negative when 1 + 4 < < +2 -2 , that is in the 2 -supercritical case. Regarding the unstable case, following the ideas of Duyckaerts and Merle [START_REF] Duyckaerts | Dynamics of threshold solutions for energy-critical wave equation[END_REF], Duyckaerts and Roudenko [START_REF] Duyckaerts | Threshold solutions for the focusing 3D cubic Schrödinger equation[END_REF], and Côte, Martel and Merle [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF], the coercivity result below holds. Proposition 1.7 ((3.6) in [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF]). Let ∈ O such that L admits a non zero eigenfunction ∈ 1 (R ). Then (1.16) holds.

An important step is therefore the construction of an eigenfunction : this can be done in the 2 -supercritical pure power case ( > 1 + 4 ) for all > 0, and so (H4) holds in that case.

We are now in a position to state our results for general non-linearities. For smoothness, it reads as follows.

Theorem 1.2 ′ . Let 0 > 2 . Assume that satisfies (H1) and belongs to 0 +1,∞ (C). Assume moreover that for all = 1, . . . , , belongs to O and satisfies either (H3) or (H4). Then the conclusions of Theorem 1.2 hold.

And below is about uniqueness. Theorem 1.4 ′ . Let ≤ 3 and ˜ : ↦ → (| | 2 ) be of class C 2 on C (as an R-differentiable function), such that its second differential satisfies

(1.18) 2 ˜ = O | | 4 -2 , as | | → +∞.
If is not the pure power non-linearity, assume that for all = 1, . . . , , ∈ O and satisfies (H3), and in the case where ≥ 2, assume moreover that belongs to 0 +1,∞ (C), where

0 := ⌊ 2 ⌋ + 1.
Then the conclusion of Theorem 1.4 holds. Remark 1.8. Theorems 1.4 and 1.4 ′ are restricted to dimensions ≤ 6. For ≥ 7, a similar uniqueness result can be proved (using the same method as that we develop in section 3), provided a smaller class of multi-solitons is considered, and for which a bound on ( ) -( ) ∞ is furthermore assumed. This is the purpose of the next proposition. Proposition 1.9. Let ≥ 4, 0 := 2 + 1, and ˜ : ↦ → (| | 2 ) be of class C 2 on C (as an R-differentiable function), such that its second differential satisfies

(1.19) 2 ˜ = O | | 4 -2 , as | | → +∞.
Assume that belongs to 0 +1,∞ (C). Assume moreover that for all = 1, . . . , , ∈ O and satisfies (H3). Then for any > 0, there exists ∈ N * such that there exists a unique

∈ C ([ 1 , +∞), 1 (R ) ∩ ∞ (R )) solution to (NLS) such that ( ) -( ) 1 = O 1 and ∫ +∞ ( ) -( ) ∞ = O 1 , as → +∞.
1.4. Outline of the paper and the proofs.

1.4.1. The main content. We will prove Theorems 1.2 ′ and 1.4 ′ which generalize Theorems 1.2 and 1.4 respectively when applied to pure power non-linearities. Section 2 is devoted to the proof of our regularity result, that is Theorem 1.2 ′ . We start from a well-chosen sequence ( ) of solutions satisfying uniform 1 estimates and which were constructed in [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF] and [START_REF] Martel | Multisolitary waves for nonlinear Schrödinger equations[END_REF] (we emphasize that we do not work with the already built multi-soliton in 1 (R ) given in Theorem 1.1). Taking some inspiration from Martel [29, section 3] in the context of the generalized Korteweg-de Vries equations, we prove uniform estimates for ( ) via an induction on the index of regularity. We can combine both stable and unstable cases since we start from the same uniform exponential 1 estimates obtained in [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF] and [START_REF] Martel | Multisolitary waves for nonlinear Schrödinger equations[END_REF]. From these estimates we deduce (by a usual compactness argument) the existence of a multi-soliton satisfying the conclusions of Theorem 1.2 ′ .

The induction argument relies on the study of a functional related to 2 , suitably modified so as to cancel ill-behaved terms; this functional takes the same form in all dimensions (see (2.11) in subsection 2.2). In [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], for gKdV, from = 3, all quantities of the type ( ) -( ) introduced are shown to decrease exponentially in large time with the same rate. Our proof is more technical, insofar as the algebra is not as favorable. In the context of (NLS), the terms involving real and imaginary parts can not be treated in the same way at once, and in dimension ≥ 2, derivative can fall on terms in many various ways. As nonlinearities are not necessarily smooth (as it is the case in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]), we need to count carefully the number of times one can perform an integration by parts. This explains why in the case of (NLS), the rate of the exponential decay on ( ) -( ) is halved when passing from to + 1 (see (2.6) and Proposition 2.3). We then obtain the decay rate of (1.9) by a simple interpolation argument.

Regarding the regularity assumption on the nonlinearity, recall that the 1 estimate in Theorem 1.1 holds when

: ↦ → (| | 2 ) is of class C 1 .
As fas as 0 regularity is concerned, Kato's well-posedness result [START_REF] Kato | On nonlinear Schrödinger equations. II, solutions and unconditional well-posedness[END_REF] in 0 (R ) assumes of class C 0 . In Theorem 1.2 ′ , we require a bit more regularity for to prove an 0 estimate for 0 ≥ 2 for the multi-soliton. From a technical point of view, many estimates rely indeed on the local boundedness of the derivatives (in the sense of distributions) of the functions ′ -′ , where = 0, . . . , 0 and ′ = 0, . . . , . The preceding property is typically used at two levels. First, we need the local Lipschitz condition which is satisfied by functions in 1,∞ : this is for example the case for (2.23) in subsection 2.2. In order to obtain the desired 0 estimate, we need also to integrate by parts a particular term (at least one time) which contains derivatives with respect to the space variable of maximal order 0 of both and in order thatappears with a derivative of order 0 -1, thus can be controlled (see in particular (2.30) in subsection 2.2). For this, one shall ensure that the distributional derivative of ↦ → 0 0 -( ( )) belong to some Lebesgue space ; this is in fact the case if the derivative of ↦ → 0 0 -is bounded on a certain disk centered at the origin. Therefore, we assume that is an element of 0 +1,∞ (C). Notice that this condition is met when is the pure power non-linearity (1.1) with 0 = ⌊ -1⌋ (and also in the particular case when is an even integer).

Besides, we emphasize that assumption 0 > 2 in Theorems 1.2 and 1.2 ′ (which is automatically satisfied for ∈ {1, 2, 3}) seems to be needed to obtain the desired estimates, judging from (2.24). In order to relax this, one should work out an argument involving Strichartz type estimates. But to be effective, the dispersive estimates are to be done on the linearized equation around a sum of solitons, that is a sum of potentials which are decoupled and smooth, but large and not decaying in time. Such estimates would actually be very useful for other purposes, for example the stability of multi-solitons. To our knowledge, they are however not (yet) available. Section 3 is devoted to the proof of the uniqueness result, which combines some ideas of [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] and of [START_REF] Martel | Stability in 1 of the sum of solitary waves for some nonlinear Schrödinger equations[END_REF].We will consider a solution satisfying (1.11) and (1. [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]) and show that it is in fact the multi-soliton constructed in the proof of Theorem 1.2 ′ : we therefore study the difference of these two solutions and show that it is 0. One main tool for this is a Weinstein type functional, which is coercive provided we assume some adequate orthogonality properties. Depending on the stable or 2 -critical case considered, these orthogonality conditions differ. The coercivity result available in the latter case (where : ↦ →

2 ) is the object of Proposition 3.16. The fact that we do the difference with an already constructed multi-soliton which is sufficiently regular is crucial, at least up to dimension 2. In fact, what we truly need is the 2 (R ) decay for ≥ 2, and also at several times, that the constructed multi-soliton takes values in ∞ (R ).

Note also that, finding like us his inspiration in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], Combet [START_REF] Combet | Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension[END_REF], in the one-dimensional pure power unstable case, has already obtained estimates similar to those we develop in section 3 for general in the stable case. Last, the lack of (backward in time) monotonicity properties of (NLS) explains somehow the difficulty to obtain unconditional uniqueness, that is to prove uniqueness in the whole class of multi-solitons in the sense of (1.7) (without decay rate); see Remark 3.6 for more details. 1.4.2. Some notations and writing practices used through the text. Solutions of (NLS) or functions constructed with such solutions take values in C. As usual, the modulus of a complex number will be denoted by |.|. Our computations are generally done in all dimensions . To that extent,

• for any vector ∈ R , we denote by Re( ) (respectively Im( )) the vector of R which components are the real parts (respectively the imaginary parts) of the components of .

• • denotes the euclidean scalar product in R and |.| denotes also the euclidean norm from which it derives. • we use the usual notation for multi-indices. As usual, it is also convenient to denote by some positive constant which can change from one line to the next but which is always independent of the index of any sequence considered.

The main functional spaces we will work with are the Sobolev spaces (R ) for ∈ N * endowed with the usual norms defined by:

∀ ∈ (R ), := | | ≤ 2 2 1 2
.

We consider also

∞ (R ) := ∈N * (R ) and the Sobolev spaces ,∞ (C) (identified with ,∞ (R 2 )) for ∈ N * .
Furthermore, many computations are presented formally for ease of reading but can be justified by standard regularization arguments which often involve the local well-posedness of (NLS) in with continuous dependence on compact sets of time (see [START_REF] Dai | Continuous dependence of Cauchy problem for nonlinear Schrödinger equation in[END_REF]Theorem 1.6]).

1.4.3. Acknowledgment. We would like to thank Rémi Carles for his remarks which improved the quality of the manuscript.

E -(NLS)

In this section, let us concentrate on the proof of Theorem 1.2 ′ . Let 0 > 2 be an integer and assume that : ↦ → (| | 2 ) is in 0 +1,∞ (C) and satisfies (H1).

2.1.

Step 1: Uniform 1 -estimate for a sequence of solutions. In order to prove Theorem 1.2, we start from the following proposition, which applies to both stable and unstable cases, and which has already been established in preceding papers. This proposition gives rise to some control in the 1 norm on a constructed sequence of solutions of (NLS) which turns out to be relevant to achieve our goal. Proposition 2.1 (Martel and Merle [START_REF] Martel | Multisolitary waves for nonlinear Schrödinger equations[END_REF], Côte, Martel and Merle [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF]). There exist an increasing sequence ( ) ∈N of times such that → +∞, a sequence ( ) ∈ 0 (R ) N , and constants > 0, 1 > 0, 0 > 0 with 0 > 0 such that for all ∈ N:

• 0 ≤ 1 -2
• the maximal solution of (NLS) such that

( ) = ( ) + belongs to C ([ 0 , ], 0 (R )) and satisfies ∀ ∈ [ 0 , ], ( ) -( ) 1 ≤ 1 -2 .
Remark 2.2. Note that the sequence ( ) can be chosen in the following form.

• For the stable case, we take = 0 for all (see [START_REF] Martel | Multisolitary waves for nonlinear Schrödinger equations[END_REF]). • For the unstable case, we take = ∈ {1,..., },± ± , ± ( ) for all with ± defined by

(2.1) ± : ( , ) ↦ → ± - -0 1 2 • + - | | 2 4
+ and with = ± , ∈ {1,..., },± ∈ R 2 well chosen (see [START_REF] Côte | Construction of multi-soliton solutions for the 2 -supercritical gKdV and NLS equations[END_REF] for full details) so that

(2.2) ∀ ∈ N, | | ≤ -2 .
Some particular estimates will be useful throughout the proof. Firstly we retain

(2.3) ( ) -( ) 0 ≤ 1 -2
(since (2.2) holds and the quantities ± ( ) are independent of ). We emphasize also that

(2.4) ∀ ∈ N, ∀ ∈ [ 0 , ], ( ) -( ) 1 ≤ 1 -2 .
In addition, the exponential decay property (1.5) of the ground states and their derivatives lead to the following assertion, which is also crucial to establish many estimates: (2.5)

∀ ∈ [ 0 , +∞), ∀ ≠ ′ , ∀ | 1 |, | 2 | ∈ {0, . . . , 0 + 2}, ∫ R 1 . 2 ′ ( ) ≤ -2 .

2.2.

Step 2: Proof of uniform -estimates for -, = 1, . . . , 0 . From now on, let := -.

2.2.1.

Step 2.1: Performance of preliminary uniform -estimates. Define 0 := 2 , 1 := , and for all ≥ 2, (

:= min -1 2 , 2 + 1 , so that = 2 -2 ( +1) for all ≥ 2. 2.6) 
We prove the following statement, which is the core of our main existence result.

Proposition 2.3.

There exists 1 ≥ 0 such that for all ∈ {1, . . . , 0 }, there exists ≥ 0 such that for all ∈ N, if

≥ 1 then (2.7) ∀ ∈ [ 1 , ], ( ) ≤ - .
To prove Proposition 2.3, we resort to a "bootstrap" argument. Recall that for all ∈ N * , there exists ≥ 0 such that

(2.8) ∀ ∈ R, ± ( ) ≤ .
For all , set

* := inf ≥ 0 | ∀ ∈ [ , ], ( ) 0 ≤ 0 , for some constant 0 > 2 0 . Note that * indeed exists since ( ) = =1 ± , ± ( ).
Hence for all ∈ N, we have

∀ ∈ ( * , ], ( ) 0 ≤ 0 . Due to the continuity of : [ 0 , ] → 0 (R )
in * , we also have for all ∈ N: (2.9)

∀ ∈ [ * , ], ( ) 0 ≤ 0 . We will show that * can be chosen independently of and improve the preceding estimate by showing first: Proof. We argue by induction. The existence of 1 ≥ 0 such that for all ∈ N,

∀ ∈ [ * , ], ( ) 1 ≤ 1 -
is already known. Assume that for some ∈ {2, . . . , 0 }, for all ′ ∈ {1, . . . , -1}, there exists ′ ≥ 0 such that for all ∈ N, (2.10)

∀ ∈ [ * , ], ( ) ′ ≤ ′ -′ . We aim at showing that the same estimate is valid for ′ = . For this purpose, let us consider for all ∈ N the functional (2.11) , :

↦ → ∫ R        | |= | | 2 - | |= -1 -1 Re 2 2 ′ (| | 2 )        ( ) .
More precisely we prove, in what follows, how to obtain the following statement, which is essential in the proof of estimate (2.10) corresponding to ′ = .

Lemma 2.5. For all ∈ N, and for all ∈ [ * , ], we have

(2.12) | , ( ) -, ( )| ≤ -min{ -1 , 4 +1 } ,
for some constant independent of , and 0 .

Remark 2.6. The fundamental reason why it is worth introducing the functional , is that no quadratic term involving for | | = appears in its first derivative and no term ′ with | ′ | > appears either. Thus we manage to control ′ , ( ). Nevertheless, we do not claim that the functional

, is the only one that can be used to prove (2.10).

Proof of Lemma 2.5. We will work on the derivative of , and show in fact that

(2.13) ′ , ( ) ≤ -min{ -1 , 4 +1 } .
The computations and estimates are established rather in terms of the function instead of ; by this means, they are considerably less burdensome. Besides, in accordance with Remark 2.7 below, the calculations indicate that (2.13) would still be true for more generalized functions which satisfy Im = Re .

Let us introduce also some further notations. For ease of reading, we will write instead of or ( ) and instead of , . In addition, we denote by 1 the real part of and by 2 its imaginary part. Moreover, for all ∈ {1, . . . , }, we specify as the -tuple (0, . . . , 1, . . . , 0) for which all components except the -th one are zero.

We divide the proof of Lemma 2.5 into three steps.

Step 1: Computation of the derivative of .

First of all, observe that for all ( , ) ∈ R 2

(2.14) ( , ) = 2 ( + ) ′ ( 2 + 2 ) + ( 2 + 2 ) ( , ) = 2 ( + ) ′ ( 2 + 2 ) + ( 2 + 2 ), so that + ( ) = 2 2 ′ (| | 2 ).
In particular, can be rewritten in terms of as follows:

( ) = ∫ R        | |= | | 2 - 1 2 | |= -1 -1 Re ( ) + ( ) 2        ( ) . Let = ( 1 , . . . , ) ∈ N be such that | | = .
There exists ( ) ∈ {1, . . . , } such that ( ) ≥ 1. Then, using the fact that satisfies (NLS), the following holds true:

(2.15)

∫ R | | 2 = -2 Im ∫ R =1 2 + ( ( )) = -2 Im ∫ R ( ( )) = -2 Im ∫ R ( )Re ( ) + ( )Im ( ) + = -2 ∫ R Im 2 ( ) 2 ′ (| | 2 ) + , where = -2 Im ∫ R -( ) ( ( )) ( ) 1 + -( ) ( ) ( ) 2
.

Due to Faà di Bruno formula, is also a linear combination of the following terms:

(2.16) , , , ˜ 1 ,..., ˜ ( ) := ∫ R ˜ 1 1 . . . ˜ Im -( ) ,
where ∈ {2, . . . , }, ∈ {0, . . . , }, =1 | ˜ | = , and for all ∈ {1, . . . , }, ˜ ≥ 1 and ∈ {1, 2}.

Similarly, we have for each multi-index such that | | = -1:

(2.17)

∫ R 1 2 Re ( ) + ( ) 2 = Im ∫ R ( ) + ( ) =1 +2 + ( ( )) + 1, = - =1 Im ∫ R ( ) + ( ) + 2 + 1, + 2, + 3, = -2 =1 ∫ R Im 2 ( + ) 2 ′ (| | 2 ) + 1, + 2, + 3, ,
where we denote

1, = 1 2 ∫ R Re 2 2 ( ) 1 + 2 ( ) 2 + 2 ( ) 1 + 2 2 ( ) 2 2 2, = =1 Im ∫ R ( ) + ( ) + 3, =Im ∫ R ( ) + ( ) ( ( )) .
We observe that (2.18)

| |= ( ) 2 - | |= -1 -1 =1 + 2 = 0.
Thus, 

(2.19) ′ ( ) = | |= - | |= -1 -1 1, + 2, + 3 
| | = , 2 Im ( )Re ( ) + ( )Im ( ) = Im ( ) + ( ) ( ) 2 .
Step 2: Control of the derivative of .

Take ∈ N such that | | = . Let , , and ˜ 1 , . . . , ˜ be as in (2.16), and denote by , , , ˜ 1 ,..., ˜ ( ) the integral defined exactly as in (2.16) by replacing by the soliton , for all = 1, . . . , . Then we have

(2.20) , , , ˜ 1 ,..., ˜ ( ) - =1 , , , ˜ 1 ,..., ˜ ( ) ≤ -min{ -1 , 4 +1 } ,
for some constant independent of . In order to prove (2.20), one proceeds by decomposition of , , , ˜ 1 ,..., ˜ ( ) as follows. The basic idea is to make terms in (which provide the expected exponential term at the right-hand side of (2.20)) appear. Let us explicit this decomposition:

, , , ˜ 1 ,..., ˜ ( ) = ∫ R ˜ 1 1 . . . ˜ Im -( ) - -( ) ( ,1 ) + ∫ R ˜ 1 1 ˜ 2 2 . . . ˜ Im -( ) ( ,2 ) + ∫ R ˜ 1 1 ˜ 2 2 ˜ 3 3 . . . ˜ Im -( ) ( ,3 ) + . . . ( ,... ) + ∫ R ˜ 1 1 ˜ 2 2 . . . ˜ -1 -1 ˜ Im -( ) ( , +1 ) + ∫ R ˜ 1 1 . . . ˜ Im -( ) ( , +2 ) + ∫ R ˜ 1 1 . . . ˜ Im -( ) ( , +3 )
Now, we control each preceding term ,1 , . . . , , +3 occurring in the preceding decomposition by means of the induction assumption and some classical tools in functional analysis, namely Hölder inequality, Sobolev embeddings, and Gagliardo-Nirenberg inequalities.

Let us notice that

(2.21) sup ∈R ( ) ∞ < +∞.
Considering that 0 > 2 , we deduce then from (2.9) and the Sobolev embedding ⌊ 2 ⌋+1 (R ) ↩→ ∞ (R ) that there exists ≥ 0 such that for all , 

(2.22) ∀ ∈ [ * , ], ( ) ∞ ≤ . Since -is 1,∞ on C (
| ,1 | ≤ ∫ R | || || ˜ 1 | . . . | ˜ | .
We now estimate the integral

∫ R | || || ˜ 1 | . . . | ˜ |
by means of Hölder inequality. For this, we have to be careful concerning the choice of the involved Lebesgue spaces (or in other words the Hölder exponents) considering that ˜ ∈ 0 -| ˜ | . We define

I := ∈ {1, . . . , } | 0 -| ˜ | < 2 , J := ∈ {1, . . . , } | 0 -| ˜ | > 2 , and :=        2 -2( 0 -| ˜ |) if ∈ I ∞ if ∈ J .
For ∈ {1, . . . , } \ (I ∪ J ), we take ∈ (0, +∞) large enough so that

=1 1 < 1 2 ,
which is possible since (2.24)

1 2 - ∈I 1 + ∈ J 1 = 1 2 - ∈I 1 = 1 2 - ∈I -2( 0 -| ˜ |) 2 ≥ 1 2 - 1 2 - 0 -≥ (1 -) 1 2 - 0 > 0.
due to our assumption on 0 and the fact that > 1. Then, we observe that for all = 1, . . . , ,

˜ ∈ 0 -| ˜ | (R ) ↩→ ( 
R ) by the classical Sobolev embedding theorem. Using Hölder inequality, we obtain

(2.25) | ,1 | ≤ 2 =2 ˜ ≤ .
where ≥ 2, and 1 = 1 2 -=1 1 ≥ ( -1) 0 -1 2 > 0 by definition of the , = 1, . . . , . The following Gagliardo-Nirenberg inequality (2.26)

≤ ′ 0 1- 2 , with ′ 0 := ⌊ 2 ⌋ + 1 ≤ +1 2 and := ′ 0 1 2 -1 (which implies 1 -≥ 1 ′ 0 , since 2 ′ 0 -≥ 1) leads finally to (2.27) | ,1 | ≤ 1- 2 ≤ -2 ′ 0 ≤ -4 +1 .
To estimate ,2 , . . . , , +1 , one proceeds as before. For instance, let us explain how to deal with ,2 ; the same would be done for the other integrals. We choose

′ 1 such that 1 -1-| ˜ 1 | ↩→ ′ 1 (R ) and 1 2 -1 ′ 1 -=2 1 > 0.
Then, again due to Hölder inequality, we have:

(2.28) | ,2 | ≤ 2 ˜ 1 ′ 1 =1 ˜ -( ) ∞ ≤ -1 ≤ --1 .
Similarly, we check that

(2.29) ∀ ∈ {3, . . . , + 1}, | , | ≤ --1 .
Now, let us deal with , +2 . By (2.5) and the fact that -∈ 1,∞ (C), we have:

, +2 = =1 ∫ R ˜ 1 , 1 . . . ˜ , Im -( ) + -2 .
Again by assumption, each partial derivative of

-( ) is bounded, thus the integral ∫ R - ˜ 1 , 1 . . . ˜ , -( )
makes sense and one can integrate once by parts to obtain (2.30)

∫ R ˜ 1 , 1 . . . ˜ , Im -( ) = Im ∫ R - ˜ 1 , 1 . . . ˜ , -( ) ≤ ( ) -1 ≤ --1 .
Thus,

(2.31) | , +2 | ≤ --1 .
Finally, by (2.5) and using once more that -is in The expressions 1, , 2, , 3, (given before) consist of terms that can be controlled in a similar manner. Let us denote by , ( ) the same integral as , where replaces for all = 1, 2, 3 and for all = 1, . . . , . One can check that

(2.33) 1, - =1 1, ( ) ≤ -min{ -1 , 4 +1 } ; (2.34) 2, - =1 2, ( ) ≤ -min{ -1 , 4 +1 } ; (2.35) 3, - =1 3, ( ) ≤ --1 .
Step 3: Related functional involving .

Let ∈ {1, . . . , }. An immediate induction argument shows that for all multi-index ∈ N such that | | = , for all multi-index ′ , there exists ′ ∈ C such that

( , ) = ′ ′ ′ ( -0 - ) 1 2 • + - | | 2 4 + . Therefore ∫ R | | 2 ( ) = ∫ R ′ ′ ′ ( -0 - ) 2 = ∫ R ′ ′ ′ ( ) 2 , so that (2.36) ∫ R | | 2 = 0.
Furthermore for all multi-index such that

| | = -1, 2 2 ( , ) = 2 ( -0 - ) ′ ′ ′ ( -0 - ) 2 ,
from which we infer also

(2.37) ∫ R Re 2 2 ′ (| | 2 ) = 0.
Hence, gathering (2.36) and (2.37),

(2.38)

0 = ∫ R        | |= | | 2 - | |= -1 -1 Re 2 2 ′ (| | 2 )        .
Considering that this last quantity can be written as exactly the same linear combination of terms as Let us now conclude the proof of Proposition 2.4.

We observe that, for all ∈ [ * , ], (2.40)

| |= ∫ R | ( )| 2 = , ( ) -, ( ) + 2 | |= Re ∫ R -( ) ( ) + ( ) ( ) + | |= ∫ R | ( )| 2 - ∫ R | ( )| 2 + | |= -1 -1 ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) - ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) + | |= -1 -1 ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) - ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) + | |= ∫ R | ( )| 2 -2 | |= Re ∫ R -( ) ( ) + ( ) ( ) .
Then, by means of (2.3), (2.36), and (2.37), we infer (2.41)

| |= ∫ R | ( )| 2 ≤ , ( ) -, ( ) + -1 + -2 + ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) - ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) .
Now, from (2.5), (2.12), (2.38), and from the inequality

(2.42) ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) - ∫ R Re 2 ( ) 2 ′ (| | 2 ) ( ) ≤ ( ) -1 ,
resulting from the local boundedness of the distributional derivative of ↦ →

1 2 + ( ) = 2 ′ (| | 2 ), we deduce the existence of ≥ 0 such that for all ∈ N, (2.43) ∀ ∈ [ * , ], ( ) 2 ≤ 2 -min{ -1 , 4
+1 } . This is rewritten as follows:

(2.44) ∀ ∈ [ * , ], ( ) ≤ - ,
which is exactly the expected result. Thus the induction argument implies that for all ∈ N,

(2.45) ∀ ∈ [ * , ], ( ) 0 ≤ 0 -0 .
This puts an end to the proof of Proposition 2.4. Now we explain how to deduce from Proposition 2.4 that * can be chosen independently of , and by this means, we finish the proof of Proposition 2.3. We pick up 1 ≥ 0 such that 0 -0 1 < 0 . Let ∈ N be such that ≥ 1 , and assume by contradiction that * > 1 . Then by continuity of in * (and by definition of * as infimum), we have ( * ) 0 = 0 . On the other hand, (2.46)

( * ) 0 ≤ 0 -0 * ≤ 0 -0 1 < 0 ,
which yields a contradiction. Thus * ≤ 1 . Hence, for all ∈ N such that ≥ 1 , we have

∀ ∈ [ 1 , ], ( ) 0 ≤ 0 -0 .
If necessary we drop the first terms of the sequence ( ) and re-index it in order to obtain:

(2.47) ∀ ∈ N, ∀ ∈ [ 1 , ], ( ) 0 ≤ 0 -0 .
Hence, Proposition 2.3 is established.

2.2.2.

Step 2.2: Independence of 1 with respect to . Now, we justify that 1 can be chosen independent of > 2 , which is useful to obtain

(2.48) ∀ ∈ N * , ∃ ≥ 0, ∀ ∈ [ 1 , ], ( ) ≤ - , in the case where 0 = ∞. If is C ∞ on C as an R-differentiable function, it is in particular of class C ⌊ 2 ⌋+2
, so that we can apply the previous result: there exists 1 ≥ 0 such that for all ∈ N,

(2.49) ∀ ∈ [ 1 , ], ( ) ⌊ 2 ⌋+1 ≤ ⌊ 2 ⌋+1 -⌊ 2 ⌋+1 .
Let ≥ 2 + 2 and assume that for all ′ ∈ {⌊ 2 ⌋ + 2, . . . , },

∀ ∈ [ 1 , ], ( ) ′ -1 ≤ ′ -1 -′ -1 .
Then define *

, := inf{ ≥ 1 | ∀ ∈ [ , ], ( ) ≤ },
for some constant > max{2 , 1} to be determined. We show exactly as before (that is considering the functionals , ) the existence of ˜ > 0 independent of , , and such that

(2.50) ∀ ∈ [ * , , ], ( ) 2 ≤ ˜ 2 -2
, or also

(2.51) ∀ ∈ [ * , , ], ( ) ≤ ˜ 1 2 -
.

Indeed, the constant in (2.22) does not depend on and ≥ 1 so that we have for example as in (2.25) and then (2.27):

| ,1 | ≤ -4 +1 ,
with independent of . Choosing > ˜ 2 -2 1 and arguing as in (2.46), we conclude that * , = 1 . Hence, 1 is uniform with respect to .

Step 2.3: Looking for optimal exponential decay rates in the uniform

-estimates. The next result uses and improves that of Proposition 2.3. Proposition 2.8. For all ∈ {1, . . . , 0 }, there exists ˜ ≥ 0 such that for all ∈ [ 1 , ],

(2.52) ( ) ≤ ˜ -2 +1 .
Proof. Let ′ ∈ {1, . . . , }. By (2.4), (2.7), and the following interpolation inequality

( ) ′ ≤ ( ) 2 ( ) 1-, with = -′ , we have for all ∈ [ 1 , ], ( ) ′ ≤ -2 -′ . Now, set * := inf{ ≥ 1 | ∀ ∈ [ , ],
( ) ≤ ˜ -}, for some ∈ (0, 2 ) and for some ˜ ≥ 1 to be determined later. Let belong to [ * , ]. Then by the proof set up before,

( ) 2 ≤ ( ) -1 + -2 .
In addition, we obtain once again by interpolation

( ) -1 ≤ ( ) 1 2 ( ) -1 ≤ 
˜ 1-1 -2 --1 .
Since ≤ 2 , we have 2 + ( -1) ≤ 2 , and so there exists ˜ ≥ 0 (independent of ˜ ) such that

(2.53) ( ) 2 ≤ ˜ ˜ 1-1 -2 --1 . Now, choose := 2 + 1 and ˜ > ˜ +1 .
By a similar argument as that set up to prove Proposition 2.3, we see that * = 1 . Indeed, if we had * > 1 , then by the definition of * and by continuity of in * , we would obtain

˜ 2 -2 * = ( * ) 2 ≤ ˜ ˜ 1-1 -2 * --1 * , thus, by the choice of , ˜ 2 ≤ ˜ ˜ 1-1
, which is a contradiction. Consequently, estimate (2.52) does indeed hold. Lemma 2.9. There exist ∈ 0 (R ) and a subsequence ( ( 1 )) of ( ( 1)) such that

( 1 ) - 0 -→ →+∞ 0.
Note that the main ingredients to show this lemma are:

• the uniform 0 -estimate obtained in Step 2.

• the following 2 -compactness assertion: for all > 0, there exists K a compact subset of R such that ∀ ∈ N,

∫ K | ( 1 , )| 2 ≤ .
Then by local well-posedness of (NLS) in 0 (R ) with continuous dependence on compact sets of time [10, Theorem 1.6], the solution of (NLS) such that ( 1 ) = is defined in 0 (R ) and for all ≥ 1 , ( ) -( ) 0 → 0 as → +∞. Thus turns out to be the desired multisoliton. Besides, the quantities ( ) -( ) decrease exponentially; this result is obtained by passing to the limit as tends to +∞ in the -uniform estimates given by Proposition 2.8, that is for all = 1, . . . , 0 , for large enough:

( ) -( ) ≤ -2 +1 .
This yields precisely (1.9).

Note that in the case where is C ∞ (for example when we consider the pure power non-linearity with an odd integer), we obtain (1.10) as a consequence of (1.9), by interpolating the corresponding -estimates, and by the independence of 1 with respect to proved in Step 2.2.

C -(NLS)

In this section, we prove the uniqueness result stated in Theorem 1.4 ′ , that is for ≤ 3. The strategy developed here would also work to prove Proposition 1.9 under the corresponding stronger assumptions.

Our uniqueness result holds due to the coercivity properties of the linearized operators around ground states, namely assumption (H3) when is not the 2 -critical non-linearity and (3.70) in Proposition 3.16 in the 2 -critical pure power non-linearity case. The proof follows essentially the same lines in these two cases; the differences are only rooted in the use of the appropriate coercivity result.

We first develop the proof in the stable case, assuming ˜ : ↦ → (| | 2 ) of class C 2 satisfying (1. [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). This covers in particular the 2 -subcritical assumption with 3 ≤ < 1 + 4 and = 1 in Theorem 1.4. In subsection 3.4, we explain how to modify the calculations in order to perform the proof in the 2 -critical case, that is assuming = 1 + 4 and : ↦ → -1 2 , which will extend the uniqueness result as stated in Theorems 1.4 and 1.4 ′ .

Let us denote the multi-soliton of (NLS) constructed in Theorem 1.1 for = 1 and in Theorem 1.2 ′ for ≥ 2 (which is possible to consider by hypothesis). Set := 2 3 , where is defined in Theorem 1.1 and let 1 > 0 such that belongs to C ([ 1 , +∞), 1 (R)) and

(3.1) ∀ ≥ 1 , ( ) -( ) 1 ≤ - for = 1, and such that belongs to C ([ 1 , +∞), 0 (R )) and (3.2) ∀ ≥ 1 , ( ) -( ) 0 ≤ - for ≥ 2 (where 0 = ⌊ 2 ⌋ + 1.) In particular, due to the Sobolev embedding ⌊ 2 ⌋+1 (R ) ↩→ ∞ (R ) for ( ≥ 1), we emphasize that, for all ≥ 1, ∈ C ([ 1 , +∞[, ∞ (R )) and (3.3) ∀ ≥ 1 , ( ) -( ) ∞ ≤ -.
Now, let us take in the class of multi-solitons satisfying (1.11) and define := -the difference of the two multi-solitons so that

(3.4) = Δ + | + | 2 + | + | 2 - | | 2 , and (3.5) ( ) 1 = O 1 , as → +∞,
for some integer ≥ 1 to be determined later.

We will show that = 0. The idea is to practice some kind of modulation of the variable in order to ensure some orthogonality relations, needed to make use of the coercivity properties mentioned before. In other words, we obtain a new function (denoted by ˜ ) which seems to be adapted to the proof; this is the aim of subsection 3.1. Then, the control of the modulation parameters allows us to obtain an estimate of ( ) 1 in terms of ˜ ( ) 1 ; this combined with the estimate of the derivative of some kind of Weinstein functional ˜ (that we introduce in paragraph 3.2.1) enables us finally to see that ˜ = 0.

3.1. Change of function to ensure a coercivity property in the stable case.

Introduction of a new variable.

We introduce a new function ˜ on [ , +∞) × R for sufficiently large by

(3.6) ∀ ( , ) ∈ [ , +∞) × R , ˜ ( , ) := ( , ) + =1 ( ( ) ( , ) + ( ) • ∇ ( , )) ,
where ( ) ∈ R and ( ) ∈ R are chosen so that

(3.7) ∀ ∈ {1, . . . , }, ∀ ∈ {1, . . . , },            Im ∫ R ˜ = 0 Re ∫ R ˜ = 0.
Existence of ( ) and ( ) for large enough follows from: Lemma 3.1. For large enough, and for all = 1, . . . , , ( ) and ( ) are uniquely determined. Moreover, ↦ → ( ) and ↦ → ( ) are differentiable in the sense of distributions and

(3.8) | ( )|, | ( )| ≤ ( ) 2 , (3.9) | ′ ( )|, | ′ ( )| ≤ ( ) 1.
Proof of Lemma 3.1. Let us introduce the symmetric block matrix

( ) :=          0,0 ( ) 1,1 ( ) • • • 1, ( ) 1,1 ( ) 1,1 ( ) • • • 1, ( ) . . . . . . . . . . . . 1, ( ) ,1 ( ) • • • , ( )         
, where , ( ) and 1, ( ) are × -matrices with real entries defined by

0,0 = Re ∫ R ( , ) , ∀ ( , ) ∈ {1, . . . , } 2 , , = Re ∫ R ( , ) , ∀ ∈ {1, . . . , }, 1, = Im ∫ R ( , )
.

Set also ( ) = 1 , . . . , , 1,1 , . . . , ,1 , . . . , 1, , . . . , , and ( ) = -[ 0 , 1 , . . . , ] , where

0 = Im ∫ R 1 , . . . , Im ∫ R and for all = 1, . . . , , = Re ∫ R 1 , . . . , Re ∫ R .
Then relations (3.7) rewrite clearly ( ) ( ) = ( ). Consequently, we have to show that det ( ) ≠ 0 for large enough to ensure existence and uniqueness of ( ) and ( ) for those values of . To do this, observe that

Re ∫ R ( ) ( ) =        ∫ R 2 if = O - if ≠ , Re ∫ R ( ) ( ) =        ∫ R + , , 4 
2 if = O - if ≠ , Im ∫ R ( ) ( ) =        , 2 ∫ R 2 if = O - if ≠ .
Let us now compute det( ( )). For all = 1, . . . , , let denote the -th line of the block matrix

0,0 ( ) 1,1 ( ) • • • 1, ( ) .
For all = 1, . . . , , and for all = 1, . . . , , replacing the -th line , of the block matrix

1, ( ) ,1 ( ) • • • , ( ) by , -,

2

, we obtain det( ( )) = det( ( )) where

( ) :=          0,0 ( ) 1,1 ( ) • • • 1, ( ) 1 ( ) 1,1 ( ) • • • 1, ( ) . . . . . . . . . . . . ( ) ,1 ( ) • • • , ( )         
and ( ) has entries zero on the diagonal and ( -) everywhere else and , has entries ∫ R on the diagonal and ( -) everywhere else. Thus

(3.10) det( ( )) = =1 ∫ R 2 ( ) det( ( )) + O( -),
where ( ) is the sub-matrix of ( ) with block matrices , ( ).

We observe that ( ) admits a limit as → +∞ which we denote by (∞) and which corresponds to the block matrix

       1,1 (∞) • • • 1, (∞) . . . . . . . . . ,1 (∞) • • • , (∞)       
where , (∞) is a diagonal matrix with entries ∫ R . Due to the continuity of the determinant, det( ( )) → det (∞) as → +∞. Thus, (3.11) det ( )

→ =1 ∫ R 2 ( ) det( (∞)), as → +∞.
Moreover for all = ( , ) ∈ R different from 0, we have

(∞) = , =1 =1 ∫ R , , = =1 ∫ R =1 , 2
which is a positive quantity for large values of since for all , the functions , = 1, . . . , are linearly independent (this can be seen using that is radial but it is in fact also related to a more general result corresponding to Proposition 3.22 in Appendix). Hence, det( ∞)) > 0 and also det( ( )) > 0 for large values of by (3.11). In particular, ( ) is invertible for large values of . Applying Cramer's formula, we obtain an explicit expression of ( ) and ( ) in terms of ( ), from which we derive the content of Lemma 3.1. Let us justify it. The entries of ( ) are bounded functions of so that the transpose of the comatrix of ( ) is bounded too (with respect to ). In addition, we have proved the existence of > 0 such that for large, det ( ) > . Hence, there exists 0 > 0 such that for all sufficiently large,

| ( )| ≤ 0 | ( )|.
This immediately implies (3.8). We moreover observe that the entries of ( ) are C 1 functions of (by (1.5) and Lebesgue's dominated convergence theorem); in particular ↦ → det ( ) is C 1 . Then, the differentiability of ( ) and ( ) and estimate (3.9) follow from the differentiability in the sense of distributions (and the expressions of the differentials) of ↦ → Im ∫ R ( ) ( ) and ↦ → Re ∫ R ( ) ( ) for ∈ {1, . . . , } and ∈ {1, . . . , }. Let us explain how to show the differentiability of ↦ → ∫ R ( , ) ( , ) . This is essentially due to a density argument and the local well-posedness of (3.4) with continuous dependence on compact sets of time (as for (NLS)). Let us consider a C 1 function defined for large values of and with compact support, say included in

[ 0 , 1 ]. Since ( 0 ) ∈ 1 (R ), there exists ( ( 0 )) ∈ C ∞ (R ) converging to ( 0 ) in the sense of the 1 -norm.
The solution of (3.4) with initial data ( 0 ) in time 0 is defined on [ 0 , 1 ]) for large, belongs to C [ 0 , 1 ], S (R ) , and satisfies (3.12) sup

∈ [ 0 , 1 ] ( ) -( ) 1 → 0, as → +∞.
Now, by Fubini theorem and the differentiability of ↦ → ( , ) ( , ) for all ∈ R , we obtain

∫ 1 0 ∫ R ( , ) ( , ) ′ ( ) = ∫ R ∫ 1 0 ( , ) ( , ) ′ ( ) = - ∫ R ∫ 1 0 ((Δ + ( + ) -( )) + ) ( , ) ( ) = - ∫ 1 0 ( ) ∫ R ((Δ + ( + ) -( )) + ) ( , ) = - ∫ 1 0 ( ) ∫ R (∇ • + ( ( + ) -( )) + ) ( , ) . 
(We recall that ( ) = (| | 2 ) for ∈ C.) Passing to the limit as → +∞ by using (3.12) leads to (3.13)

∫ 1 0 ∫ R ( , ) ( , ) ′ ( ) = - ∫ 1 0 ( ) ∫ R (∇ • + ( + ) -( ) + ) ( , ) . 
Thus ↦ → ∫ R ( , ) is differentiable in the sense of distributions; its differential is ↦ → ∫ R (∇ • + ( ( + ) -( )) + ) ( , )
and is thus bounded by ( ) 1 . This finishes proving the lemma.

Even if it means taking a larger 1 , we can suppose that the preceding lemma holds on [ 1 , +∞). Then it results also immediately that

(3.14) ∀ ≥ 1 , ( ) 1 ≤ ˜ ( ) 1 + =1 | ( )| + | ( )| . and (3.15) ∀ ≥ 1 , ˜ ( ) 1 ≤ ( ) 1 .

The statement of a coercivity property in terms of the new variable.

In this paragraph, we come to some crucial inequality, on which the proof is essentially based. First of all, let us define some notations, and particularly well-chosen cut-off functions. By a classical argument given in [30, Claim 1], we can assume (without loss of generality) that

(3.16) 1,1 < 2,1 < • • • < ,1 . Now let 0 ∈ 0, 1 2 min ∈ {2,..., } { ,1 --1,1 } and define : R → R ↦ →                1 if < -0 ∫ 0 -0 - 2 0 2 0 -2 -1 ∫ 0 - 2 0 2 0 -2 if -0 ≤ ≤ 0 0 if > 0 ,
which is obviously a smooth bounded non-increasing function.

Proposition 3.3.

There exists > 0 such that

(3.22) ∀ ≥ 1 , ˜ ( ) 2 1 - 1 =1 Re ∫ R ˜ ( ) ( ) 2 ≤ ( ).
Proof. This result follows from our assumption (H3), from (3.7), and an immediate adaptation to all dimensions of the proof given for the one-dimensional case in [31, appendix B] which consists in localizing in some sense each version of (H3) for all = 1, . . . , .

3.2.

Proof of some needed estimates. This subsection, which is probably the most technical one, precises the tools and estimates which will allow us to make use of Proposition 3.3 and actually to conclude the proof of uniqueness in subsection 3.3. It consists in giving some controls of ( ), of the scalar products

Re ∫ R ˜ ( ) ( ) ,
and also of the modulation parameters ( ) and ( ).

Control of .

We typically improve the a priori control of by O ˜ 2 1 by differentiation of the functional. Actually, for the sake of simplification, we will compute the derivative of the following related functional ˜ : .12).) The next proposition, which compares and ˜ , justifies that it suffices to control ˜ in order to obtain a similar estimate for . Proposition 3.4. We have

[ 1 , +∞) → R defined by ∀ ≥ 1 , (3.23) ˜ ( ) = =1 ∫ R |∇ ˜ | 2 -(| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) (| | 2 ) + + | | 2 4 | ˜ | 2 -• Im ∇ ˜ ˜ ( , ) . (Recall that ( ) = ∫ 0 ( ) (1 
(3.24) ( ) = ˜ ( ) + O ˜ ( ) 3 1 + -˜ ( ) 2 1 .
Proof. Let us first observe that ˜ :

↦ → (| | 2 ) is C 3 on C. Indeed, since ˜ is C 2 on C, the function is C 2 on (0, +∞) and thus, ˜ is C 3 on C \ {0}.
Moreover, for all = (Re( ), Im( )) = ( , ) ∈ C \ {0}, we obtain by differentiation of ˜ and ˜ :

˜ ( ) = 2 (| | 2 ) = 2 ˜ ( ) ˜ ( ) = 2 (| | 2 ) = 2 ˜ ( ) ˜ ( ) = 2 (| | 2 ) + 4 2 ′ (| | 2 ) = 2 ˜ ( ) + 2 ˜ ( ) ˜ ( ) = 4 ′ (| | 2 ) = 2 ˜ ( ) ˜ ( ) = 2 (| | 2 ) + 4 2 ′ (| | 2 ) = 2 ˜ ( ) + 2 ˜ ( ) ˜ ( ) = 4 ˜ ( ) + 2 ˜ ( ) ˜ ( ) = 2 ˜ ( ) ˜ ( ) = 2 ˜ ( ) ˜ ( ) = 4 ˜ ( ) + 2 ˜ ( ).
Since ˜ is C 2 , the partial differentials of ˜ up to order 3 admit limits as ( , ) → (0, 0) in R 2 , from which we deduce that ˜ is C 3 . Then we have the following Taylor expansion: for ≥ 1 and ∈ R ,

(3.25) ˜ ( ˜ + ) -˜ ( ) -Re( ˜ ) ˜ ( ) -Im( ˜ ) ˜ ( ) ( , ) = 1 2 (Re˜ ) 2 ˜ + 2Re˜ Im ˜ ˜ + (Im˜ ) 2 ˜ ( , ) + ( , ),
where

| ( , )| ≤ 1 6 | ˜ | 3 sup ∈ [ ( , ),( ˜ + ) ( , ) ] 3 ˜ ≤ | ˜ | 3 sup ∈ [ ( , ),( ˜ + ) ( , ) ] ˜ + | ˜ | 2 ˜ ≤ | ˜ | 3 1 + ˜ | 4 -1
by assumption (1.19). We then note that the preceding Taylor expansion rewrites

(3.26) (| ˜ + | 2 )-(| | 2 )-2Re( ˜ ) (| | 2 ) = | ˜ | 2 (| | 2 )+2Re( ˜ ) 2 ′ (| | 2 )+O(| ˜ | 3 +| ˜ | 4 +2 ),
uniformly with respect to both variables and . Let us underline that, for ≥ 2, one can not claim whether ( ) or ˜ ( ) belong to ∞ (R ) and even less whether or

˜ belong to ∞ [ 1 , +∞), ∞ (R ) , which prevents us from simplifying O | ˜ | 3 + | ˜ | 4 +2 by O | ˜ | 3 .
Moreover, we have noticed that

| ˜ | 2 (| | 2 ) + 2Re( ˜ ) 2 ′ (| | 2 ) = 1 2 2 ˜ ( ˜ , ˜ ) so that =1 ∫ R | ˜ | 2 | | 2 + 2Re( ˜ ) 2 ′ | | 2 = =1 ∫ R 2 ˜ ( ˜ , ˜ ) .
We now observe that for all = 1, . . . , ,

∫ R 2 ˜ ( ˜ , ˜ ) -2 ˜ ( ˜ , ˜ ) ≤ ∫ R |( -) || ˜ | 2 sup ∈ [ , ] 3 ˜ ≤ ∫ R |( -) || ˜ | 2 sup ∈ [ , ] 3 ˜ + ≠ ∫ R | || ˜ | 2 sup ∈ [ , ] 3 ˜ . 
We note that sup ∈ [ , ] 3 ˜ is bounded by a constant independent of and because , belong to ∞ ([ 1 , +∞), ∞ (R )) and ↦ → 3 ˜ is continuous on C. Then (3.2) and (3.17) lead to

(3.27) =1 ∫ R | ˜ | 2 | | 2 + 2Re( ˜ ) 2 ′ | | 2 = =1 ∫ R | ˜ | 2 | | 2 + 2Re( ˜ ) 2 ′ | | 2 + O -˜ 2 1 .
We finally obtain (3.24) as a direct consequence of (3.26), (3.27), the Sobolev embeddings 1 (R ) ↩→ 3 (R ) (indeed available for ≤ 3) and 1 (R ) ↩→ 4 +2 (R ), and the fact that 4 ≥ 1. Now, we state and prove the crucial Proposition 3.5. The derivative of ˜ is given by

(3.28) ˜ ( ) = Main( ) + O -˜ ( ) 1 ( ) 1 + ˜ ( ) 1 ( ) 2 1 , as → +∞.
where Main(

) := =1 + | | 2 4 ∫ R | ˜ | 2 + 2 ∫ R Im( 1 ˜ ˜ ) 1 - =1 ,1 2 ∫ R |∇ ˜ | 2 1 - 1 2 ∫ R | ˜ | 2 3 1 - =1 • ∫ R Im ∇ ˜ ˜ = O 1 ˜ ( ) 2 1 .
Remark 3.6. The bound O 1 ˜ ( ) 2 1 in above is the one which constrains us to prove uniqueness in the class satisfying (1.11). In order to prove unconditionnal uniqueness, one would need to improve this bound to O ( ) ˜ ( ) 2 1 , where ( ) is integrable in time (in the KdV context, [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] proves it with ( ) = -for some > 0).

Let us begin with some preliminaries (Lemma 3.7 and Lemma 3.8 below), which are needed to obtain Proposition 3.5.

Lemma 3.7.

There exists > 0 such that:

(| + | 2 ) -(| | 2 ) ≤ | | 4 + | | (| + | 2 ) -(| | 2 ) -2Re( ) ′ (| | 2 ) ≤ | | 2 + | | 4 .
Proof. By the mean value theorem applied to ˜ ,

˜ ( + ) -˜ ( ) ( , ) ≤ | ( , )| sup ∈ [ ( , ),( + ) ( , ) ] ˜ By (1.19
) and the boundedness of with respect to and , it results

˜ ( + ) -˜ ( ) ( , ) ≤ | ( , )| + | ( , )| 4 .
Similarly, the second estimate stated in Lemma 3.7 is obtained by direct application of Taylor formula for ˜ at order 2 and by using sup

∈ [ ( , ),( + ) ( , ) ] 2 ˜ ≤ (1 + | ˜ | 4 -2 ).
Lemma 3.8 (Expression of ˜ ). We have

(3.29) ˜ = Δ˜ + (| + | 2 ) + (| + | 2 ) -(| | 2 ) + =1 (| | 2 ) + • ∇ (| | 2 ) ) + =1 ′ + ′ • ∇ = Δ˜ + (| | 2 ) ˜ + (| ˜ + | 2 ) -(| | 2 ) + =1 ′ + ′ • ∇ + ,
where is a function of and such that

(3.30) ∫ R | | | ˜ | + |∇ ˜ | + ∫ R Δ˜ ≤ - 1 ˜ 1 + 2 1 ˜ 1 .
Proof. The first equality concerning ˜ is quite immediate. Let us precise how to obtain the second equality. Decomposing

(| + | 2 ) = (| | 2 ) + (| + | 2 ) -(| | 2 ) ,
and using the expression of in terms of ˜ and the and , = 1, . . . , given by (3.6), we have that (3.31)

(| + | 2 ) + =1 (| | 2 ) + • ∇ (| | 2 ) ) = (| | 2 ) ˜ + =1 (| | 2 ) -(| | 2 ) + • ∇ (| | 2 ) -(| | 2 ) + =1 • ∇( (| | 2 )) + (| + | 2 ) -(| | 2 )
Moreover, using the second estimate obtained in Lemma 3.7, (

(| + | 2 ) -(| | 2 ) = (| ˜ + | 2 ) -(| | 2 ) -2Re ( ˜ -) ′ (| | 2 ) + O(| | 2 + | | 4 ) = (| ˜ + | 2 ) -(| | 2 ) -2 =1 Re • ∇ ′ (| | 2 ) + ℎ + O(| | 2 + | | 4 ) = (| ˜ + | 2 ) -(| | 2 ) - =1 • ∇ (| | 2 + h, 3.32) 
where ℎ and h satisfy the same property (3.30) as due to (3.2) and (3.17). Lemma 3.8 is now a consequence of (3.31), (3.32), and the fact that 4 + 1 ≥ 2 (for ≤ 3).

We are now in a position to prove (3.28).

Proof of Proposition 3.5. The proof decomposes essentially into two parts. We first differentiate successively each term constituting ˜ by means of Lemma 3.8. For this, integrations by parts are sometimes necessary in order not to keep terms carrying second spatial derivatives for . Then we put together suitable terms in the expression of ˜ in order to get better estimates than the a priori control by O ˜ ( ) 2 1 . Besides, we put annotations for the different terms we have to work on for ease of reading; terms associated with the same letter A, B, or C are to be gathered.

Step 1: Differentiation of ˜

• Using Lemma 3.8, one computes ∫ R |∇ ˜ | 2 = 2 Re ∫ R ∇ ˜ • ∇ ˜ = 2 Im ∫ R (| | 2 ) ˜ Δ˜ + 2 Im ∫ R (| ˜ + | 2 ) -(| | 2 ) Δ˜ -2 Re ∫ R =1 ′ + ′ • ∇ Δ˜ + O ( -+ 1 ) 1 ˜ 1 .

Similarly one obtains directly ∫

R (| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) (| | 2 ) = 2 Re ∫ R (| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) ′ (| | 2 ) + 2 Re ∫ R ˜ ˜ (| ˜ + | 2 ) + 2 Re ∫ R ( ˜ + ˜ ) (| ˜ + | 2 ) -(| | 2 ) = -2 Im ∫ R Δ˜ ˜ (| ˜ + | 2 ) -2 Im ∫ R Δ (| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) ′ (| | 2 ) -2 Im ∫ R (| ˜ + | 2 ) -(| | 2 ) ˜ ( (| ˜ + | 2 ) -2 Im ∫ R Δ˜ (| ˜ + | 2 ) -(| | 2 ) -2 Im ∫ R Δ + (| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) -2 Im ∫ R (| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) + 2 Re ∫ R =1 ′ + ′ • ∇ ˜ (| ˜ + | 2 ) + (| ˜ + | 2 ) -(| | 2 ) + O ( -+ 1 ) 1 ˜ 1 . Thus, we have at this point ∫ R |∇ ˜ | 2 -(| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) (| | 2 ) = 2 Im ∫ R Δ (| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) ′ (| | 2 ) ( 1 ) + 2 Im ∫ R Δ + (| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) ( 1 ) -2 Re ∫ R =1 ′ + ′ • ∇ Δ˜ + ˜ (| ˜ + | 2 ) ( 1 ) -2 Re =1 ∫ R ′ • ∇ (| ˜ + | 2 ) -(| | 2 ) ( 2 ) + O -+ 1 1 ˜ 1 .
• We differentiate then the next term appearing in the expression of ˜ . For all = 1, . . . , ,

+ | | 2 4 ∫ R | ˜ | 2 = + | | 2 4 ∫ R | ˜ | 2 + 2 + | | 2 4 ∫ R Im 1 ˜ ˜ 1 ( 1, ) -2 + | | 2 4 ∫ R Im( ˜ ) ( ( ˜ + | 2 ) -(| | 2 )) ( 2, ) + 2 + | | 2 4 Re ∫ R ′ + ′ • ∇ ˜ ( 3, ) + O ( -+ 1 ) 1 ˜ 1 .
• To finish with, using integrations by parts and (3.20), we obtain for all = 1, . . . , ,

∫ R Im( • ∇ ˜ ˜ ) = -2 • Im ∫ R ˜ ∇ ˜ -• Im ∫ R ˜ ˜ ∇ + • Im ∫ R ∇ ˜ ˜ = 2 ,1 ∫ R |∇ ˜ | 2 1 - ,1 2 ∫ R | ˜ | 2 3 1 + • ∫ R Im ∇ ˜ ˜ ( 2, ) + 2 • ∫ R Re ∇ ˜ ) (| ˜ + | 2 ) -(| | 2 ) ( 3, ) + • ∫ R ∇( (| | 2 ))| ˜ | 2 ( 2, ) -2 • Re ∫ R ∇ ˜ (| ˜ + | 2 ) -(| | 2 ) ( 3, ) -2 • Im ∫ R ′ + ′ • ∇ ∇ ˜ ( 4, ) + O ( -+ 1 ) 1 ˜ 1 .
We now continue the proof by showing how the corresponding terms put together can yield estimation (3.28).

Step 2: Estimate concerning ˜ ′ We first deal with the terms 1 , 2, , and 3, ( = 1, . . . , ). We see that (3.33)

1 -2 =1 Im ∫ R Δ + (| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) ≤ 2 ∫ R Δ( -) ˜ (| ˜ + | 2 ) -(| | 2 ) + ∫ R (| | 2 ) -(| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) + ∫ R (| | 2 ) ( -) ˜ (| ˜ + | 2 ) -(| | 2 ) + =1 ∫ R (| | 2 ) -(| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) .
As for the proof of Lemma 3.7, by the mean value theorem, we observe also that

(3.34)            (| | 2 ) -(| | 2 ) ≤ | -| 4 + | -| (| | 2 ) -(| | 2 ) ≤ ≠ | |.
Moreover, we deduce from Lemma 3.7 that

(3.35) ∫ R Δ( -) ˜ (| ˜ + | 2 ) -(| | 2 ) ≤ - ˜ 4 +1 1 + ˜ 2 1 ≤ - ˜ 2 1 .
Let us establish the preceding inequality in each dimension = 1, 2, 3.

• For = 1, we firstly make use of one integration by parts:

∫ R Δ( -) ˜ (| ˜ + | 2 ) -(| | 2 ) = - ∫ R ∇( -) • ∇ ˜ (| ˜ + | 2 ) -(| | 2 ) - ∫ R ∇( -) • ∇ (| ˜ + | 2 ) -(| | 2 ) ˜ .
We thus obtain by Lemma 3.7:

(3.36) ∫ R Δ( -) ˜ (| ˜ + | 2 ) -(| | 2 ) ≤ ∫ R |∇( -)||∇ ˜ |(| | + | | 4 ) + ∫ R |∇( -)||∇ |(| | + | | 4 ) .
Then we note that for all ∈ 1 (R ), (by the embedding

1 (R) ↩→ ∞ (R)) ∫ R |∇ ||∇ ˜ || ˜ | ≤ ∇ ˜ 2 ∇ 2 ˜ ∞ ≤ ˜ 2 1 1 , ∫ R |∇ ˜ ||∇ || ˜ | 4 ≤ ˜ 4 1 ∇ ˜ 2 ∇ 2 ≤ ˜ 4 +1 1 1 , ∫ R |∇ ||∇ || ˜ | 4 ≤ ˜ 4 1 ∇ 2 ∇ 2 ≤ ˜ 4 1 1
1 .

• For = 2: for all ∈ 2 (R ), (by the embeddings

1 (R 2 ) ↩→ (R 2 ) for each ∈ [2, +∞)) ∫ R |∇ ||∇ ˜ || ˜ | ≤ ∇ ˜ 2 ∇ 4 ˜ 4 ≤ ˜ 2 1 2 , ∫ R |∇ ||∇ ˜ || ˜ | 4 ≤ ∇ ˜ 2 ˜ 4 16 ∇ 4 ≤ ˜ 4 +1 1 2 ∫ R |∇ ||∇ || ˜ | 4 ≤ ˜ 4 8 ∇ 4 ∇ 4 ≤ ˜ 4 1 2 
2 .

• For = 3, | | + | | 4 ≤ | | + | | 4 3 ≤ 2(| | + | | 2 ).
We have for all ∈ 2 (R ), (by the embedding

1 (R 3 ) ↩→ 6 (R 3 )) ∫ R |∇ ||∇ ˜ || ˜ | ≤ ∇ ˜ 2 ∇ 4 ˜ 4 ≤ ˜ 2 1 2 , ∫ R |∇ ||∇ ˜ || ˜ | 2 ≤ ∇ ˜ 2 ˜ 2 6 ∇ 6 ≤ ˜ 3 1 2 ∫ R |∇ ||∇ || ˜ | 2 ≤ ∇ 2 ˜ 3 6 ∇ 6 ≤ ˜ 2 1 2 2 .
Hence, gathering (3.33), (3.34), and(3.35), using (3.2) and the fact that 4 + 1 ≥ 2, it results

(3.37) 1 -2 =1 Im ∫ R Δ + (| | 2 ) ˜ (| ˜ + | 2 ) -(| | 2 ) ≤ - ˜ 2 1 .
In a similar way, for all = 1, . . . , ,

2, + 2 + | | 2 4 ∫ R Im( ˜ ) (| ˜ + | 2 ) -(| | 2 ) ≤ 2 + | | 2 4 ∫ R ( -) ˜ (| ˜ + | 2 ) -(| | 2 ) + 2 + | | 2 4 ≠ ∫ R ˜ (| ˜ + | 2 ) -(| | 2 ) ≤ ∫ R - | ˜ | 4 +1 + | ˜ | 2 + ≠ ∫ R | ˜ | 4 +1 + | ˜ | 2 ≤ - ˜ 2 1 . (3.38) 
We have then for all = 1, . . . , , (3.39)

3, -2 • ∫ R Re(∇ ˜ ) (| ˜ + | 2 ) -(| | 2 ) ≤ ∫ R |∇( -)| | ˜ | + | ˜ | 2 + ≠ ∫ R ∇ | ˜ | 4 +1 + | ˜ | 2 ≤ - ˜ 2 1 .
Let us gather (3.37), (3.38), and (3.39). Observing that

(3.40)          = -• ∇ + + | | 2 4 = Δ + (| | 2 ) ,
we notice that

Im (Δ + (| | 2 ) ) ˜ - + | | 2 4 Im ˜ -•Re ∇ ˜ = -Re (1 -) ˜ .
As a consequence of (3.18), we obtain a control of

∫ R 2Im (Δ + (| | 2 ) ) ˜ -2 + | | 2 4 Im ˜ -2 • Re ∇ ˜ (| ˜ + | 2 ) -(| | 2 ) by -˜ 2 1 . Finally, (3.41) 1 + =1 2, -3, ≤ - ˜ 2 1 .
Let us focus now on the terms identified by the letter . We observe that

(3.42) 2, = -• ∫ R (| ˜ + | 2 )∇(| ˜ | 2 ) + O ( -+ 1 ) 1 ˜ 1 .
Then, we obtain (3.43)

2, + 3, = -• Re ∫ R ∇ | ˜ + | 2 (| ˜ + | 2 ) + • Re ∫ R ∇ | | 2 (| ˜ + | 2 ) + 2 • Re ∫ R ∇( ˜ ) (| | 2 ) + O ( -+ 1 ) 1 ˜ 1 .

Notice next that

• Re ∇ = Im Δ , which allows us to rewrite

1 -2 =1 • Re ∫ R ∇ (| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) ′ (| | 2 )
as a sum of quantities in which the differences between and or the products ∇ for ≠ appear. Use moreover (1) on the one hand, the second estimate proven in Lemma 3.7

(2) on the other, the following inequalities:

• for = 1: for all ∈ 1 (R ), ∫ R |∇ ||∇ ˜ || ˜ | ≤ ∇ ˜ 2 ∇ 2 ˜ ∞ ≤ ˜ 2 1 1 , ∫ R |∇ | 2 | ˜ | 2 ≤ ˜ 2 1 ∇ 2 2 ≤ ˜ 2 1 2 1 , ∫ R |∇ ||∇ || ˜ | 4 ≤ ˜ 4 1 ∇ 2 ∇ 2 ≤ ˜ 4 1 1 1 , • for ∈ {2, 3}: for all ∈ 2 (R ), ∫ R |∇ ||∇ ˜ || ˜ | ≤ ∇ ˜ 2 ∇ 4 ˜ 4 ≤ ˜ 2 1 2 , ∫ R |∇ | 2 | ˜ | 2 ≤ ˜ 2 4 ∇ 2 4 ≤ ˜ 2 1 2 2 , ∫ R |∇ ||∇ || ˜ | 4 ≤ ˜ 4 6 ∇ 6 ∇ 6 ≤ ˜ 4 1 2 2 .
Remark 3.9. Regarding the higher dimensions in order to prove Proposition 1.9, one would make use of the following inequality, valid for ≥ 3:

for all ∈ ⌊ 2 ⌋+1 (R ), for all ˜ ∈ 1 (R ), ∫ R |∇ ||∇ ˜ || ˜ | ≤ ˜ 2 -2 ∇ ˜ 2 ∇ ≤ ˜ 1 ˜ 2 ⌊ 2 ⌋+1 .
Then we conclude that

(3.44) 1 -2 =1 • Re ∫ R ∇ (| ˜ + | 2 ) -(| | 2 ) -2Re( ˜ ) ′ (| | 2 ) ≤ - ˜ 4 +1 1 + ˜ 2 1 ≤ - ˜ 2 1 .
Thus, from (3.43) and (3.44), we deduce that:

1 - =1 2, + 3, (3.45) ≤ - ˜ 2 1 + ( -+ 1 ) 1 ˜ 1 + =1 • Re ∫ R ∇ | | 2 -| | 2 (| ˜ + | 2 ) + =1 -• ∫ R ∇ | | 2 (| | 2 ) + • Re ∫ R ∇(| ˜ + | 2 ) (| ˜ + | 2 ) ≤ -+ 1 1 ˜ 1 . (3.46)
Notice that we have used (3.15),

∫ R ∇ | | 2 (| | 2 ) = 0, and ∫ R ∇ | ˜ + | 2 (| ˜ + | 2 ) = 0.
To finish with, we have to obtain estimates for the terms with the letter involving ′ and ′ . Due to (3.9), (3.18), and (3.40), we compute (3.47)

-2 =1 ′ ∫ R Re Δ˜ + Re ˜ - + | | 2 4 Re ˜ -• Im ∇ ˜ = 2 =1 ′ Im ∫ R ˜ Δ + | | 2 - + | | 2 4 - • ∇ + O -˜ 1 1 = O -˜ 1 1 .
On the other hand, (3.48)

-2 =1 ′ • ∫ R Re(∇ Δ˜ ) + Re(∇ ˜ (| ˜ + | 2 )) + Re ∇ (| ˜ + | 2 ) -(| | 2 ) - + | | 2 4 Re ∇ ˜ -Im • ∇ ˜ = 2 =1 ′ • Re ∫ R ∇ ˜ Δ + | | 2 - + | | 2 4 - • ∇ + 2 =1 ′ • ∫ R Re ˜ ∇ | | 2 -Re ∇ | ˜ + | 2 - | | 2 + O ( -+ ˜ 1 ) ˜ 1 1 = O ( -+ ˜ 1 ) ˜ 1 1 ,
again due to (3.9), (3.18) 

(3.50) Re ∫ R ˜ ( ) ( ) ≤ - ( ) 1 + ( ) 2 1 .
Proof. We notice that (3.51)

Re ∫ R ˜ = Re ∫ R + =1 Re ∫ R + =1 Re ∫ R • ∇ = Re ∫ R + Re ∫ R | | 2 + • Re ∫ R ∇ + ( ) = Re ∫ R + ( ),
where is a complex-valued function defined on a neighborhood of +∞, differentiable in the sense of distributions, and such that ′ ( ) = O ( - ( ) 1 ). Moreover,

(3.52) Re ∫ R = Re ∫ R Δ + | + | 2 + | + | 2 - | | 2 + Re ∫ R -Δ + | | 2 = Re ∫ R | | 2 - | | 2 + Re ∫ R | + | 2 - | | 2 + O ( ) 2 1 ,
where we have used ≥ 2 and ∫

R Δ = ∫ R Δ and (| + | 2 ) -(| | 2 ) ≤ (| | + | | 4 ).
By means of

(| | 2 ) -(| | 2 ) ≤ | -| 2 + | -| + ≠ | |
(which is consequence of the application of the mean value theorem, as for the proof of Lemma 3.7), and by means of (2.5) and (3.2), we see that

(3.53) Re ∫ R (| | 2 ) -(| | 2 ) ≤ - ( ) 2 .
Similarly by Lemma 3.7, and noting in addition that Re = Re (( -) + ( -)) ,

we have also

(3.54) Re ∫ R (| + | 2 ) -(| | 2 ) ≤ - ( ) 1 .
To put it in a nutshell, Lemma 3.10 is now a direct consequence of ( 

′ ( )| + | ′ ( )| ≤ - ( ) 1 + ( ) 2 1 + 4 1 + ˜ ( ) 2 . Proof. Due to                        Δ˜ = Δ + =1 Δ + • ∇(Δ ) ˜ = + =1 ′ + ′ • ∇ + =1 + • ∇ = Δ + (| + | 2 ) + (| + | 2 ) -(| | 2 ) ,
differentiation with respect to of equality Im ∫ R ˜ = 0 (3.7) implies:

0 = Im ∫ R ˜ + Im ∫ R ˜ = Re ∫ R Δ + (| + | 2 ) + (| + | 2 ) -(| | 2 ) + =1 Im ′ ∫ R + ′ • ∫ R ∇ + ∫ R + • ∫ R ∇ -Re ∫ R + =1 + • ∇ Δ + (| | 2 ) ,
or equivalently (3.57)

0 = O ( ) 2 1 + Re ∫ R (| | 2 ) -(| | 2 ) + Re ∫ R (| + | 2 ) -(| | 2 ) + =1 ′ Re ∫ R + ′ • Im ∫ R ∇ + =1 -Im ∫ R Δ + (| | 2 ) + • Re ∫ R Δ + (| | 2 ) ∇ - =1 -Im ∫ R Δ + (| | 2 ) + • Re ∫ R ∇ Δ + (| | 2 ) = ∫ R (| + | 2 ) -(| | 2 ) | | 2 + ′ ∫ R 2 + 1 2 ′ • ∫ R 2 + O ( ) 2 1 + - ( ) 1 .
Similarly, exploiting the -dimensional equality Re ∫ R ˜ ∇ = 0 (3.7), we see that

0 = Im ∫ R Δ˜ - =1 Δ - =1 • ∇Δ ∇ + O ( ) 2 2 -Im ∫ R (| | 2 ) ˜ - =1 - =1 • ∇ ∇ -Im ∫ R (| + | 2 ) -(| | 2 ) ∇ + =1 ′ Im ∫ R ∇ + ′ • Re ∫ R ∇ ∇ - =1 Re ∫ R Δ ∇ - =1 Re ∫ R (| | 2 ) ∇ - =1 • Im ∫ R ∇(Δ )∇ - =1 • Im ∫ R ∇ (| | 2 ) ∇ + Im ∫ R ˜ ∇(Δ ) + ∇ (| | 2 ) , or equivalently, using ∫ R ∇ ( 2 ) 2 = - =1 ∫ R ( 2 ) ( 2 ) = 0, (3.58 
) 0 = O ( ) 2 1 + - ( ) 1 + ∫ R (| + | 2 ) -(| | 2 ) Im ∇ + Im ∫ R ˜ ∇( (| | 2 )) + ′ 2 ∫ R 2 + Re ∫ R ∇ ∇ × ′ = O ( ) 2 1 + - ( ) 1 + ∫ R (| + | 2 ) -(| | 2 ) Im ∇ + Im ∫ R ˜ ∇ (| | 2 ) + ′ 2 ∫ R 2 + ∫ R ∇ ∇ + 1 4 2 × ′ ,
Using Lemma 3.7 and (2.5), we obtain ∫

R (| + |) 2 -(| | 2 ) Im ∇ = 2 ∫ R Re( ) ′ (| | 2 )Im ∇ + O 2 1 + 4 1 = 2 ∫ R Re( ) ′ (| | 2 )Im ∇ + O - 1 + 2 1 + 4 1 .
Recalling the definition of ˜ (3.6), this reads also as follows: ∫ Let us begin with a control of 1 in terms of ˜ 1 which relies on the integrability of ↦ → ( ) 1 + ( ) 4 -1 1 in the neighborhood of +∞ (provided is chosen sufficiently large); once more, we observe here that the condition ≤ 3 is important. Proposition 3.13. For large enough,

R (| + |) 2 -(| | 2 ) Im ∇ = 2 ∫ R Re ˜ ′ (| | 2 )Im ∇ + O - 1 + 2 1 = O ˜ 2 + - 1 + 2 1 + 4 
(3.59) ( ) 1 ≤ sup ≥ ˜ ( ) 1 + ∫ +∞ ˜ ( ) 1 .
Proof. Recall that we have already seen (3.14):

1 ≤ ˜ 1 + =1 | | + | |
Therefore, using the control of the modulation parameters obtained before, that is (3.56),

(3.60) ( ) 1 ≤ ˜ ( ) 1 + ∫ +∞ ˜ ( ) 1 + ∫ +∞ ( ) 2 1 + ( ) 4 1 + ∫ +∞ - ( ) 1 . Since ↦ → ( ) 1 + ( ) 4 -1
1 is integrable in the neighborhood of +∞, we have for large enough:

(3.61) ∫ +∞ ( ) 2 1 + ( ) 4 1 ≤ ∫ +∞ ( ) 1 + ( ) 4 -1 1 sup ≥ ( ) 1 .
Similarly we have

(3.62) ∫ +∞ - ( ) 1 ≤ - sup ≥ ( ) 1 .
It follows from (3.60), (3.61), and (3.62) that for large enough,

(3.63) sup ≥ ( ) 1 ≤ sup ≥ ˜ ( ) 1 + ∫ +∞ ˜ ( ) 1 + ∫ +∞ ( ) 1 + ( ) 4 -1 1 + -sup ≥ ( ) 1 .
Hence, for large enough,

(3.64) sup ≥ ( ) 1 ≤ sup ≥ ˜ ( ) 1 + ∫ +∞ ˜ ( ) 1 ,
which ends the proof of Proposition 3.13. Now, we deduce the following Lemma 3.14. There exists > 0 such that for all ≥ , ˜ ( ) = 0.

Proof. By means of (3.22), (3.28), and (3.55), we can write for large enough

(3.65) ˜ ( ) 2 1 ≤ ∫ +∞ 1 ˜ ( ) 2 1 + - ( ) 1 ˜ ( ) 1 + ( ) 2 1 ˜ ( ) 1 ≤ ∫ +∞ 1 ˜ ( ) 1 + - ( ) 1 + ( ) 2 1 sup ≥ ˜ ( ) 1 .
We deduce from the preceding line that for large enough

(3.66) ˜ ( ) 1 ≤ ∫ +∞ 1 ˜ ( ) 1 + - ( ) 1 + ( ) 2 1 .
Using (3.61), (3.62), and (3.64), this leads to the fact that for large enough

˜ ( ) 1 ≤ ∫ +∞ 1 ˜ ( ) 1 + -+ ∫ +∞ ( ) 1 sup ≥ ˜ ( ) 1 + ∫ +∞ ˜ ( ) 1 .
Thus, for large values of , (3.67)

˜ ( ) 1 ≤ ∫ +∞ 1 ˜ ( ) 1 + -+ ∫ +∞ ( ) 1 ∫ +∞ ˜ ( ) 1 .
Since by assumption ( ) 1 = O 1 with > 2 and since -≤ 1 -1 for large enough, there exist ˜ ≥ 0 and ≥ 1 such that for all ≥ , where , , and are well defined on [ 1 , +∞) (even if it means taking a larger 1 ) with values respectively in R, R , and R such that

(3.68) ˜ ( ) 1 ≤ ˜ ∫ +∞ 1 ˜ ( ) 1 + 1 -1 ∫ +∞ ˜ ( )
(3.71) ∀ ≥ 1 ,                      Im ∫ R ˜ ( ) ( ) = 0 Re ∫ R ˜ ( )∇ ( ) = 0 Re ∫ R ˜ ( ) 2 + • ∇ - 2 • ( ) = 0.
As for the stable case, we can prove that ( ), ( ), and ( ), = 1, . . . , , are uniquely determined by the preceding orthogonality conditions. This time, we have to show indeed that the following block matrix is invertible: 

˜ ( ) :=            0,0 ( ) 1,1 ( ) • • • 1, ( ) 0 ( ) 1,1 ( )
0 ( ) 1 ( ) • • • ( ) ( )           
, where 0,0 , , , 1, are defined in paragraph 3. 

˜ = Δ˜ + (| | 2 ) ˜ + (| ˜ + | 2 ) -(| | 2 ) + =1 ′ + ′ • ∇ + =1 ′ 2 + • ∇ - 2 • ( , ) + =1 -2 • ∇ + 2 | | 2 -2 Δ -| | 2 ′ (| | 2 ) + 1 .
Finally, we conclude by means of

(3.79) | | 2 ′ (| | 2 ) = 2 (| | 2 )
(which indeed holds in the 2 -critical case as mentioned in Remark 3.17 Proof. Take again the proof of Proposition 3.5. Concerning the expression of the derivative of ˜ , observe that everything is kept unchanged in the present context except that we have to take care of the additional terms involving the parameters ( ) and ′ ( ), for all = 1, . . . , .

Let us define the C-linear endomorphism L of It remains us to obtain the term associated with ′ in ˜ . This term corresponds to I 1, -I 2, , where

I 1, = 2 Re ∫ R 2 + • ∇ - 2 • ( , ) L ( ˜ )
and

I 2, = 2 Re ∫ R 2 + • ∇ (| ˜ + | 2 ) -(| | 2 ) .
Let us concentrate first on I 1, . By (3.80),

I 1, = 2 Re ∫ R L 2 + • ∇ - 2 • ( , ) ˜ + O -˜ 1 .
Moreover, Thus, adapting the proof of Lemma 3.14, we deduce the following estimate in which ˜ is the only variable that appears: for large enough, and for some > 4,

Re ∫ R ˜ L 2 = 0; Re ∫ R ˜ L ( • ∇ ) = Re ∫ R ˜ -• ∇(Δ ) -2Δ -Re ∫ R ˜ (| | 2 ) • ∇ + Re ∫ R ˜ • ∇( • ∇ ) + Re ∫ R ˜ + | | 2 4 • ∇ = Re ∫ R ∇ ˜ • + ˜ Δ -2 Re ∫ R Δ + Re ∫ R ∇ ˜ • + ˜ (| | 2 ) + Re ∫ R ˜ • ∇( (| | 2 )) -Re ∫ R ∇ ˜ • • ∇ -( -1)Re ∫ R ˜ • ∇ -Re ∫ R ∇ ˜ • + ˜ + | | 2 4 + O -˜ 2 = -2 Re ∫ R ˜ Δ + Re ∫ R ˜ • ∇ + 2 Re ∫ R ˜ ′ (| |
(3.89) ˜ ( ) 1 ≤ ∫ +∞ 1 ˜ ( ) 1 + 1 -2 ∫ +∞ ∫ +∞ ˜ ( ) 1
(with independent of for the same reasons as those mentioned in Remark 3.15). It results then ˜ ( ) = 0 in the neighborhood of +∞. Note that one requires here ( ) 1 = O 1 , with > 4, to hold. Consequently, uniqueness of a multi-soliton associated with the , = 1, . . . , in the sense of (1.11) is proved also in the 2 -critical case.

A Linear independence of ∈ {1,..., } . Proposition 3.22. Let ∈ 1 (R ) be such that there exists ∈ R \ {0} such that ∀ ∈ R ,

• ∇ ( ) = 0.

Then = 0.
Proof. Even if it means completing | | in an orthonormal basis of R and considering the passage matrix between the canonical basis and this new basis, we can always assume that is the last vector of the canonical basis of R . In that case, our assumption in Proposition 3. 

  proof of Lemma 1]): there exists > 0 such that for each multi-index ∈ N with | | ≤ + 2,

Proposition 2 . 4 .

 24 For all ∈ N, for all ∈ {1, . . . , 0 }, for all ∈ [ * , ], ( ) ≤ -.

2. 3 .

 3 Step 3: Conclusion of the proof of Theorem 1.2 ′ . We construct now the multi-soliton using the same arguments as those of Martel [29, paragraph 2, Step 2] and Martel and Merle [30, Paragraph 2]. The crucial point is the following lemma, obtained by a compactness argument.

1 . 1 ,∇ 2 , = 1 ,. 1 . 2 + 1 = 2 ) + 1 .

 112112121 ( ) ( = 0, . . . , ) has entries zero on its diagonal and O( -) elsewhere, and ( ) possesses the coefficients ∫ R • . . . , on its diagonal and O( -) elsewhere. For the sake of completeness, let us justify how to determine the coefficients of ( ) ( = 1, . . . , ) which are the less obvious ones to compute. By the orthogonality condition Re ∫ R ˜ ( )∇ ( ) = 0, the coefficient ( , ) of located at line and column is equal to ( Thus for ≠ , we have ( , ) = O( -) by (2.5), and for = , we obtain: . . ˆ . . . = 0, since for all ∈ {1, . . . , }, ↦ → ( 1 , . . . , ) ( 1 , . . . , ) is an odd integrable function on R in view of the fact that is radial. Hence, we obtain that det ˜ ( ) = det ( ) O( -) is strictly positive for large enough (see (3.95) in Appendix). Moreover, for all ≥ 1 , (3.72) | ( )|, | ( )|, | ( )| ≤ ( ) 2 , and (3.78)(| + | 2 ) -(| | 2 ) = (| ˜ + | 2 ) -(| | 2 ) + 2Re ( -˜ ) ′ (| | 2 ) + (| ˜ + | 2 ) -(| | 2 )Inserting each equality (3.75), (3.76), (3.77), and (3.78) in (3.74) leads to

3 . 4 . 2 .Lemma 3 . 19 (+

 342319 ) and the two possibilities given in (3.40) to write . Control of ˜ and of the modulation parameters. Take again ˜ as defined at the end of paragraph 3.1.2 and consider still ( ) as in Proposition 3.5. Then we can state Control of the derivative of the Weinstein functional). The following assertion holds true: O -+ ( ) 1 ˜ ( ) 1 ( ) 1 .

1 .

 1 Observe that L ( ) = 0 and for all , ∈ 1 (R ), 18),(3.20), and (3.80), we deduce that for all ∈ 1 (R ):The term associated with ( ) in the expression of ˜ writes 81), it is thus bounded by -˜ 1 1 .

  22 reads:∀ ( 1 , . . . , ) ∈ R , ( 1 , . . . , ) = 0,or, in other words, for all 1 , . . . , -1 ∈ R, the application↦ → ( 1 , . . . , -1 , ) is constant, equal to ( 1 , . . . , -1 , 0). Since ∈ 2 (R ), for all 1 , . . . , -1 ∈ R, one must have that ∫ R | ( 1 , . . . , -1 , )| 2 = ∫ R | ( 1 , . . . , -1 , 0)| 2

  and by Maris[START_REF] Mihai | Existence of nonstationary bubbles in higher dimension[END_REF] Lemma 2.4]).

	Proposition 1.6. Assume that O is open and that the map ↦ → Under the non-degeneracy assumption that	is of class C 1 . Let 0 ∈ O.
	(1.17)	

  , .

	Remark 2.7. Note that, considering (2.15), (2.17), and (2.18), the property that allows us to obtain
	(2.19) is in fact Im	= Re	. Indeed, this assumption suffices to have: for all ∈ N with

  Control of the modulation parameters. At this point, recalling inequality (3.14), it remains us to obtain estimates for | ( )| and | ( )|. This is the object of the following result.

	Lemma 3.12. For all ≥ 1 ,
	(3.56)	|
		3.51), (3.52), (3.53), and
	(3.54).	
	As a consequence of the preceding lemma, we state:
	Corollary 3.11. For all ≥ 1 , ∫
	(3.55)	Re

R ˜ ( ) ( ) 2 ≤ -( ) 1 + ( ) 2 1 ˜ ( ) 1 .

3.2.3.

  End of the proof. We now conclude the proof of our uniqueness result, that is Theorem 1.4 ′ by gathering(3.22) and the different controls obtained in subsection 3.2.

	1 .
	Considering that Im ∇ ∫ R ∇ ∇ Since ∫ R ∇ ∇ invertible, so that inequality (3.56) holds for | ′ ( )|. Then we conclude that the same inequality is = | | 2 , we then deduce from (3.57) and (3.58) that × ′ = O ˜ 2 + -1 + 4 2 1 + 1 2 . is a positive definite symmetric matrix (by Proposition 3.22), it is true for | ′ ( )| by (3.57). 3.3.

  [START_REF] Berestycki | Non linear scalar field equations, I. Existence of a ground state[END_REF] . to(3.64), from (3.65) to (3.66), and from (3.67) to (3.68) (on condition that is once more sufficiently large, which depends on ). Thus one should read the following assertion:

	Remark 3.15. Note that in (3.68), ˜ seems to depend on (or equivalently on ) but in fact it does
	not (even if it means changing which does actually depend on ). Indeed, ˜ depends only on the
	constants appearing in (3.2), (3.14), (3.15), (3.22) (linked with the parameters used to define the
	solitons ), on the constants appearing in (3.24), (3.28), (3.55), (3.56) (linked with , with the
	parameters used to define the solitons, and with ( ) 1 which can be chosen less or equal to 1 provided is sufficiently large, depending on ), and also on universal constants which enable us
	to pass from (3.63)

there exists ˜ > 0 such that for all satisfying (3.4) and ( ) 1 = O 1 , there exists ( ) > 0 such that for all ≥ ( ), (3.68) holds.

  Conclusion of the proof of uniqueness in the critical case. Proposition 3.16 allows us to obtain the coercivity estimate in Proposition 3.3) so that by (3.55) (which follows also from Lemma 3.21) and (3.88), we obtain On the other hand, Proposition 3.13 and in fact (3.61), (3.62), and (3.64) are still available here in the critical case; this is guaranteed by Lemma 3.20.

	Next, it follows from (3.87) and Lemma 3.19 that	
	(3.88)			
	˜ ( ) ≤ +	∫ +∞ 1 ˜ ( ) 2 ∫ +∞ -( ) 1 + ( ) 2 1 + ( -+ ( ) 1 ) ˜ ( ) 1 ( ) 1 1 + ˜ ( ) 1 ∫ +∞ -	( ) 1 + ( ) 2	1	.
	3.4.3. ˜ ( ) 2 ≤ +	1 ∫ +∞ 1 ∫ +∞ -	˜ ( ) 2 ( ) 1 + ( ) 2 1 + ( -+ ( ) 1 ) ˜ ( ) 1 ( ) 1 1 + ˜ ( ) 1 ∫ +∞ -	( ) 1 + ( ) 2

2 ) • Re ∇ + O( -˜ 2 ); 1 .

For all ∈ {1, . . . , -1}, let := 1 2 ,1 + +1,1 and := 1 2 0 ,1 + 0 +1,1 . Then define on R × R 0 : ( , ) ↦ → 0 : ( , ) ↦ → 1 -for ∈ {1, . . . , -1} : ( , ) ↦ → 1 and also functions on R × R by ∀ ∈ {1, . . . , }, := --1 . We can check that, for large values of , ( , •) has a smooth profile localized at the "neighborhood" of the -th solitary wave; more precisely we have

, for all = 2, . . . , -1:

. Besides, for large values of , the following inequalities hold owing to the decay properties of and the support properties of and its derivatives. 

Proof. The proof, postponed in Appendix, is similar to that of Combet [5, Proof of Lemma 3.9, Appendix A].

Let us introduce the following Weinstein energy functional which is inspired from Martel, Merle and Tsai [START_REF] Martel | Stability in 1 of the sum of solitary waves for some nonlinear Schrödinger equations[END_REF] for dimensions 1 to 3:

One of the main features concerning is the following coercivity property, which turns out to be a key ingredient in our matter. Now take in (3.5) such that > 4 ˜ + 1 (in this way, does not depend on , as emphasized in Remark 3.15). Even if it means taking a larger , we can assume

Now, replacing by ˜ in (3.68), we obtain

Supposing ≠ 0 would lead to a contradiction because of the choice of . Consequently ∀ ≥ , ˜ ( ) 1 = 0.

We deduce from Proposition 3.13 and Lemma 3.14 that

The local well-posedness in 1 (R ) of (NLS) implies then = . Hence Theorem 1.4 is proved.

3.4. Uniqueness result for the critical pure-power case. In this paragraph, let ≥ 1 and : ↦ → 2 . Our proof of uniqueness in the class of multi-solitons such that ( )-( ) 1 = →+∞ O 1 (for some ∈ N * sufficiently large to be determined later) and in the 2 -critical case consists in exploiting the same ideas as for the subcritical case. Nevertheless it is this time based on Proposition 3.16, stated below and proved in Appendix. Proposition 3.16. Assume that ( ) = 2 and let > 0. There exists > 0 such that for all

.

In order not to be too redundant, we only explicit the main modifications of the proof given for the stable case.

3.4.1. Change of variable. We still consider , , and as defined at the beginning of Section 3.

In order to apply Proposition 3.16 (which states a coercivity property available in the critical case), one has to take into account a third family of directions indexed by = 1, . . . , . More precisely, let us introduce ( , ) := --0 ∈ R , for all = 1, . . . , , and

Remark 3.17. The consideration of ˜ turns out to be appropriate judging by the properties stated in Lemma 3. [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. Besides let us note that the particular non-linearity satisfies the ODE ′ ( ) = 2 ( ) in the 2 -critical case; this will be truly useful to control the third family of directions associated with the coefficients .

First of all, let us begin with the useful computation of the derivative of ˜ with respect to the time variable. Lemma 3.18. We have

where 1 is a function of and such that ∫

Proof. Note that ˜ decomposes like (3.74)

Now, we want to express given by (3.4) in terms of ˜ , as already made in Lemma 3.8. For this, let us observe that:

Note that to establish the three preceding equalities, we have used once again L ( ) = 0. Thus, gathering the preceding calculations, we infer (3.82)

1 . Now, let us focus on the second integral I 2, . On the one hand, by means of a Taylor expansion, by (2.5), (3.3), and (3.79), we obtain

On the other, we observe that (3.84)

. Thus, we deduce from (3.83), (3.84), and (??) that

From (3.82) and (3.85), we conclude that the term associated with ′ in ˜ is equal to

). This finishes the proof of Lemma 3.19.

Lemma 3.20 (Control of the modulation parameters).

We have for all = 1, . . . , :

Proof. This lemma follows from the preliminary computations

from (3.57), (3.58) (which still take the same form in the present context with the consideration of a third direction), and from the derivation with respect to of the third family of orthogonal conditions

We finish the proof of Lemma 3.20 with (3.95) in Appendix. Now, to exploit Lemma 3.19 in order to perform an estimate of ˜ ( ), we have to control the scalar products Re ∫ R ˜ , = 1, . . . , . In fact, we state and prove next the analogue of Lemma 3.10.

Lemma 3.21 (Control of the directions). We have

Proof. Note that (3.51) is still guaranteed here by observing moreover that

where ′ 2 ( ) = O ( - ( ) 1 ). Now, the rest of the proof of Lemma 3.10 is kept unchanged and thus we obtain Lemma 3.21.

We deduce from Lemma 3.20 and from Lemma 3.21 that

is a finite quantity by Fubini theorem. This is the case if and only if ( 1 , . . . , -1 , 0) = 0. Thus = 0.

Proof of Lemma 3.2. Assume that 1 ≤ < ≤ .

for large values of and thus, by (1.5), we have

for large values of and thus we have as before

Thus for all ≠ ,

and of course the same estimate is valid for | 1 ( , ) ( , )|. This proves (3.17). In a similar way, one proves (3.18). Now, let us show how to obtain (3.19). First, notice that it is sufficient to prove (3.19) with instead of . Then,

Hence,

∞ , and

which leads to (3.19).

To finish with, let us observe that 1 ( ,

). Thus, for ≠ , the proof of (3.20) is just a copy of that of (3.17). Moreover, if 1 ≤ -1 + ( -1 + 0 ) , then 1 < ,1 for large and thus, as before, we obtain

If 1 ≥ + ( -0 ) , then 1 > ,1 and one obtains again

Hence, using in addition (3.19), we deduce from what precedes that

In this manner, we obtain (3.20).

Proof of Proposition 3.16: coercivity property in the 2 -critical case. In the 2 -critical (pure power) case, we consider : ↦ → 2 so that the linearized operators around rewrite +, ( ) =

and -, ( ) = -Δ + -

4

. Let us prove Proposition 3.16, following the results and ideas of Weinstein [START_REF] Michael | Modulational stability of ground states of nonlinear dispersive Schrödinger equations[END_REF].

+, , = 0 so that we can set := inf ∈ +, , , where is the set of all ∈ 1 (R ) such that , = 0, for all = 1, . . . , , , = 0, • ∇ , = 0, and 1 = 1. We have obviously ≥ 0; we aim to show that > 0.

Assume by contradiction that = 0. Then for all ∈ N, there exists ∈ such that

In addition, ( 1 ) is uniformly bounded so that, up to extraction, ( ) converges in 1 (R ) for the weak topology, say to * ∈ 1 (R ). And so, we have .

By passing to the limit as tends to +∞, it results from (3.90) and (3.92) that

In particular, * ≠ 0. , .

Given that 1 , . . . , are linearly independent in 2 (R ), the × -matrix with entries , is invertible. Consequently, for all ∈ {1, . . . , }, = 0. Now, using

(which is specific to the critical case), and the symmetry of the bilinear form +, •, • , we deduce that

But we have

considering that this quantity is nothing but the square of the 2 norm of 2 + • ∇ (and 2 + • ∇ is obviously not zero). Hence = 0, and finally (3.94) reduces to +, * = . We claim now that ≠ 0: otherwise (using the well-known non-degeneracy condition (1.17) of +, in the present case) * would be a linear combination of the , = 1, . . . , , and then it would result * = 0 (since for all , * , = 0), which is not the case. Thus * = -2 2 + • ∇ and