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ON SMOOTHNESS AND UNIQUENESS OF MULTI-SOLITONS OF THE
NON-LINEAR SCHRÖDINGER EQUATIONS

RAPHAËL CÔTE AND XAVIER FRIEDERICH

Abstract. In this paper, we study some properties of multi-solitons for the non-linear Schrödinger
equations inRd with general non-linearities. Multi-solitons have already been constructed in H1(Rd)
in [8, 27, 29]. We show here that multi-solitons are smooth, depending on the regularity of the non-
linearity. We obtain also a result of uniqueness in some class, either when the ground states are all
stable, or in the mass-critical case.

1. Introduction

1.1. Generalities on the non-linear Schrödinger equations. We consider non-linear Schrödin-
ger equations in Rd which admit traveling solitary waves (solitons). More precisely, we focus on

∂tu = i
(
∆u + f (|u|2)u

)
,(NLS)

where u : I × Rd → C, I ⊂ R is a time interval, and f : [0,+∞) → R is an H1-subcritical
non-linearity.

For d ≤ 3 and for particular functions f , equation (NLS) arises in the mathematical description
of many physical phenomena; it is used mainly to model non-linear wave dynamics. For instance,
it is fundamental in the description of the dynamic of particles moving in electromagnetic fields
[24] and quantum systems like Bose-Einstein condensates [31]. With particular non-linearities
obtained by linear combinations of quadratic, cubic, and quintic terms it appears also when one
tries to describe the propagation of laser beams in some mediums [2] or of more general ultrashort
optical pulses (see for example [11] for the study of some solutions of these equations), with appli-
cations in medical imaging, material processing and optical communications (we refer to [15] for
further details concerning the applications of (NLS) to fiber optics for example).

For the purpose of the exposition, we focus in this paragraph on pure power non-linearities

f (r) = r
p−1

2 , 1 < p < 1 +
4

d − 2
, r ≥ 0.(1.1)

(If d = 1 or 2, the condition is p > 1). We will give results on general non-linearities in paragraph
1.3.

Ginibre [17] proved that (NLS) is locally well-posed in H1(Rd): for all u0 ∈ H1(Rd), there exist
T > 0 and a unique maximal solution u ∈ C ([0,T),H1(Rd)) of (NLS) such that u(0) = u0. For any
such H1 solution, the following quantities are conserved for all t ∈ [0,T):

• the L2 mass

∫
Rd

|u(t, x)|2 dx.
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• the energy

∫
Rd

(
1

2
|∇u(t, x)|2 − 1

p + 1
|u(t, x)|p+1

)
dx.

• the momentum Im

∫
Rd

∇u(t, x)u(t, x) dx.

Furthermore, for all s ∈ N \ {0, 1}, if

g : z 7→ z f (|z |2) = z |z |p−1

is C s on C as an R-differentiable function (that is if p > s or p is an odd integer), and in case where
s < d

2 , if in addition p < 1 + 4
d−2s , then (NLS) is locally well-posed in Hs(Rd) according to Kato

[20, Theorem 4.1].

Also (NLS) is invariant under properties of space-time translation, phase, and galilean invari-
ances: if t0 ∈ R, v ∈ Rd, x0 ∈ Rd, γ ∈ R, and u is a solution to (NLS), then

(1.2) (t, x) 7→ u(t − t0, x − x0 − vt)ei
(

1
2 v ·x−

|v |2
4 t+γ

)
is also a solution to (NLS). What is more, (NLS) with a pure power non-linearity (1.1) is scaling
invariant: if λ > 0 and u is a solution to (NLS), then

(1.3) (t, x) 7→ 1

λ1/(p−1) u

(
t

λ
,

x

λ1/2

)

is still a solution to (NLS).

Let us introduce now some particular solutions of (NLS) which are essential in the theory and
on which our paper is based. Given ω > 0, Berestycki and Lions [1] proved the existence of a
(non-vanishing) positive radial solution Qω ∈ H1(Rd) to the following elliptic problem

(1.4) ∆Qω + f (Q2
ω)Qω = ωQω, Qω > 0

(By scaling, it suffices to prove the existence for ω = 1). A solution to (1.4) is called a ground state

(and if one relaxes the sign condition, we speak of bound state). Using a Pohozaev identity [32],
one can show that (1.4) has no solution in H1(Rd) for p ≥ 1 + 4

d−2 . Moreover, for s ∈ N∗ and if g
is C s on [0,+∞), then Qω is C s+2 on Rd and one has exponential decay (see [1, proof of Lemma
1]): there exists Cs > 0 such that for each multi-index δ ∈ Nd with |δ | ≤ s + 2,

(1.5) ∀ x ∈ Rd,
��∂δQω(x)

�� ≤ Cse
−

√
ω

2 |x |.

Then the function

(1.6) (t, x) 7→ Qω(x)eiωt

is a solution to (NLS). Using the invariances (1.2) of the equation, one obtains a whole family of
solutions of (NLS) known as solitons.

Dynamical properties of solitons have been extensively studied. One important result is related
to their orbital stability: solitons are orbitally stable if p < 1 + 4

d
and unstable if p ≥ 1 + 4

d
. Recall

that the case p = 1+ 4
d

corresponds to the L2-critical exponent: in this particular case, the L2 norm
of a solution is invariant by scaling (1.3).

In this article, we are interested in qualitative properties of multi-solitons, that is solutions of
(NLS) which behave as a sum of decoupled solitary waves for large times.
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Let us begin with the definition of some further notations. Fix K ∈ N \ {0, 1} and for all
k = 1, . . . ,K , let

ωk > 0, γk ∈ R, x0
k ∈ Rd, and vk ∈ Rd such that for all k , k ′, vk , vk′ .

For all k = 1, . . . ,K , we consider

Rk(t, x) = Qωk
(x − x0

k − vk t)ei
(

1
2 vk ·x+

(
ωk−

|vk |2
4

)
t+γk

)
,

which is a soliton of (NLS) moving on the line x = x0
k
+ vk t. We denote also

R :=
K∑
k=1

Rk .

In general, R is obviously not a solution to (NLS) because of the non-linearity. A multi-soliton is
a solution u of (NLS) defined on [T0,+∞) for some T0 ∈ R and such that

(1.7) lim
t→+∞

‖u(t) − R(t)‖H1 = 0.

Multi-solitons were explicitly constructed in the integrable case, that is with f (x) = x and d = 1,
using the inverse scattering method (see Zakharov and Shabat [36]).

The first construction in a non-integrable context is due to Merle [29], in the critical case p =

1+ 4
d

. Later, following closely the ideas of Martel in [26] for the construction of multi-solitons for
the Korteweg-de Vries equations, Martel and Merle [27] constructed multi-solitons of (NLS), in
the L2-subcritical case 1 < p < 1 + 4

d
. This result was extended to L2-supercritical exponent by

Côte, Martel and Merle [8]. Let us recall the results.

Theorem 1.1 (Merle [29], Martel and Merle [27], Côte, Martel and Merle [8]). There exist θ > 0
(depending on vk , ωk for 1 ≤ k ≤ K), T0 ≥ 0, and a solution u ∈ C ([T0,+∞),H1(Rd)) of (NLS)
such that

(1.8) ∀ t ≥ T0, ‖u(t) − R(t)‖H1 ≤ e−2θt .

The construction of multi-solitons in H1 was done for many other non-linear dispersive models
(besides the generalized Korteweg-de Vries equations) such as the non-linear Klein-Gordon equa-
tion [9], the Hartree equation [21], the water-waves system [30], and in both stable and unstable
contexts, which means assuming that all Qωk

are stable or not.
Even though solutions of (NLS) behaving as a sum of decoupled general bound states (that is,

solutions to (1.4) which change sign) have been studied in the last years (see for example [6] on
(NLS) or [7] on non-linear Klein-Gordon equation), in the present paper we concentrate only on
multi-solitons based on ground states. Our goal here is to study uniqueness and smoothness issues.

To our knowledge, the only work where multi-solitons are shown to be more regular than H1 is
for the generalized Korteweg-de Vries equation (which is one-dimensional), with monomial non-
linearity, by Martel [26], where the exponential convergence (1.8) is shown to hold in Hs(R) for
all s ∈ N (with a constant Cs depending on s in front of the exponential term and a convergence
rate θ independent of s): see Proposition 5 and its proof for the L2-subcritical and critical cases;
the L2-supercritical case can be treated likewise, as it is mentioned in [8, Remark 1]).

A natural question is thus to understand for (NLS) whether the multi-soliton u in Theorem 1.1 is
smoother than H1: for example, does it belong to C ([T0,+∞),Hs(Rd)) for s > 1 and does it hold
‖u(t) − R(t)‖H s → 0 as t → +∞?

Another natural question is the uniqueness or the classification of multi-solitons. Again, to our
knowledge, the only complete study of the question was done for the generalized Korteweg-de
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Vries equations: multi-solitons were proved to be unique in the L2-subcritical and critical cases by
Martel [26], and were classified in the L2-supercritical case by Combet [4] (there is a K-parameter
family of K-solitons, each instability direction yielding a free parameter). Actually, smoothness of
the multi-solitons constructed in Theorem 1.1 is an important ingredient in the proof of uniqueness
(or classification) in dimension d ≥ 2.

1.2. Main results. Our first result concerns the construction of a multi-soliton in Hs(Rd), where
the regularity index s > 1 depends on the regularity of the function g. We prove in particular that
the convergence occurs with an exponential rate in Hs(Rd). The result is stated here for pure power
non-linearities, and we will discuss general non-linearities in the next paragraph.

Theorem 1.2 (Smoothness of multi-solitons). Assume that p ≥ 3. Let θ > 0 be defined as in

Theorem 1.1 and s0 = ⌊p − 1⌋ ≥ 2, or s0 = +∞ if p is an odd integer. There exist T1 > 0 and

u ∈ C ([T1,+∞),Hs0(Rd)) a solution of (NLS) with pure power nonlinearity (1.1) such that for all

non-negative integer s ≤ s0, there exists Cs ≥ 1 such that

(1.9) ∀ t ≥ T1, ‖u(t) − R(t)‖H s ≤ Cse−
2θ
s+1 t .

Moreover, if p is an odd integer, then for all integer s ≥ 0,

(1.10) ∀ t ≥ T1, ‖u(t) − R(t)‖H s ≤
√

Cse
−θt .

Remark 1.3. Theorem 1.2 completes Theorem 1.1 by showing the existence of smooth multi-

solitons. Notice that its applications are limited to dimensions d ≤ 3, since we consider the pure

power case and due to the H1-subcritical assumption p < 1+ 4
d−2 which is required for the existence

of solitons.

In particular, in dimension d = 1 and d = 2, multi-solitons belong to H∞(Rd) when p is an odd

integer, and in dimension d = 3, multi-solitons are H∞(R3) when p = 3 (which corresponds to the

most physically relevant case).

The exponential decay rate 2θ
s+1 does depend on s (vanishing when s is large), which could be a

problem for some applications. Observe however that if one is willing to consider only regularity

indices s ≤ s0
2 (say), then a straightforward interpolation argument between the H1 and Hs0 bounds

gives the convergence with uniform exponential decay rate θ:

∀s ≤ s0

2
, ∀ t ≥ T1, ‖u(t) − R(t)‖H s ≤ C ′

se−θt .

Our second goal is to obtain some kind of uniqueness result for (NLS). We derive one for L2-
subcritical and critical (NLS), in the class of multi-solitons u such that ‖u(t) − R(t)‖H1 decreases
faster than a high power of 1

t
for large values of t. More precisely, we state the following:

Theorem 1.4 (Conditional uniqueness). Let d ≤ 2 and 3 ≤ p ≤ 1 + 4
d

. There exists N ∈ N large

such that there is a unique u ∈ C ([T1,+∞),H1(Rd)) solution to (NLS) such that

(1.11) ‖u(t) − R(t)‖H1 = O

(
1

tN

)
, as t → +∞.

In particular, the multi-solitons of Theorems 1.1 and 1.2 coincide (and one can take T0 = T1).

Remark 1.5. The crucial point in Theorem 1.4 is obviously the uniqueness part. For pure power

non-linearities, Theorem 1.4 provides conditional uniqueness in the sense of (1.11), in the L2-

subcritical and critical cases with p ≥ 3 in dimension 1, and in the L2-critical case p = 3 in

dimension 2.

The requirement that the non-linearity be L2-subcritical or L2-critical is to be expected as no

uniqueness holds in the L2-supercritical case; see Côte and Le Coz [6] for example.
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Of course, one would expect an unconditional uniqueness result, that is uniqueness in the class
of solution u defined for large enough times and convergence to the profile R without decay rate:

‖u(t) − R(t)‖H1 → 0 as t → +∞.
This seems out of reach with our method, but we would like to point out that Theorem 1.4 already
allows to break the class of exponential convergence, in which multi-solitons naturally lie.

1.3. General non-linearities. In order to consider general non-linearities, one must make a num-
ber of assumptions which we discuss in this paragraph.

Well-posedness in H1(Rd) is classically done under the hypothesis that g : C → C is C 1 and
satisfies

(H1) g(0) = 0 and there exists p ∈
(
1, 1 + 4

d−2

)
such that ∂g

∂x
(z), ∂g

∂y
(z) = O(|z |p−1) as |z | →

+∞.
In order that the Cauchy problem for (NLS) be well-posed in Hs for s ∈ N \ {0, 1}, Kato [20, The-
orem 4.1] requires furthermore that g is C s , and if s ≤ d

2 , one also needs:

(H2) if g is a polynomial in z and z, its degree is deg g < 1 + 4
d−2s

if g is not a polynomial, there exists p ∈
[
⌈s⌉, 1 + 4

d−2s

[
such that ∂sg

∂k
x∂

s−k
y

(z) = O(|z |p−s)
as |z | → +∞, for all k = 0, . . . , s, with ⌈s⌉ the smallest integer greater or equal to s.

The existence of solitons with frequency ω > 0 is not as immediate as in the pure power case.
Under the assumption that

(1.12) ∃ ξω ∈ R∗
+
, F(ξω) > ωξω where F(r) :=

∫ r

0
f (ρ) dρ

for r ≥ 0, Berestycki and Lions [1] showed the existence of a positive radial ground state Qω ∈
H1(Rd) to (1.4). Note that if there exist λ̃ > 0, p′ > 0 and r0 > 0 such that

∀ r ≥ r0, f (r) ≥ λ̃rp
′
,

then (1.12) holds for all ω > 0. If d = 1, a necessary and sufficient condition for the existence of a
positive solution (1.4) is that ω is such that

(1.13) r0 := inf
{
r > 0

��� F(r) = ωr
}

exists and f (r0) > ω (see [1]).
Let us denote by O a subset of (0,+∞) such that

(1.14) for all ω ∈ O, there exists a solution Qω to (1.4).

Recall that when it exists, a positive solution of (1.4) is radial (see [1, section 3] and also Gidas,
Ni and Nirenberg [16, Theorem 1’] for non-linearities f such that r 7→ r f (r2) is increasing). We
underline that it is not unique in general. Indeed, Dàvila, Pino and Guerra [14] showed the existence
of at least three positive H1 solutions of

∆u + up
+ λu2

= u

for some λ > 0 and p ∈ (1, 5) in dimension d = 3. See [14] for other counterexamples in dimension
3.
On the other side, Kwong [22] showed uniqueness of a positive radial ground state in the pure power
case, and one can extend this to more general non-linearities; we refer to Mc Leod and Serrin [23],
Serrin and Tang [33] and Jang [19] for full details. One of the most important statements may be
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found in Serrin and Tang [33]: a sufficient condition for uniqueness when d ≥ 3 is the existence of
α > 0 such that 


∀ x ∈ (0, α], f (x) ≤ 1, and ∀ x ∈ (α,+∞), f (x) > 1

x 7→ x f ′(x)
f (x) − 1

is not increasing on (α,+∞).

In [19], a slightly more general condition (inspired by [33]) yields uniqueness for (1.4) in any
dimension d ≥ 2.

We will also need a number of assumptions on the linearized operators around solitons. Fix
ω ∈ O, and let

Lω : H1(Rd,C) → H1(Rd,C)
v = v1 + iv2 7→ −∆v + ωv − ( f (Q2

ω)v + 2Q2
ω f ′(Q2

ω)v1)

so that the linearized equation of (NLS) around eiωt (Q + v) is ∂tv = iLωv. We also define the
linearized energy around Qω , for any w = w1 + iw2 ∈ H1(Rd,C)

H(w) : =

∫
Rd

(
|∇w |2 + ω |w |2 −

(
f (Q2

ω)|w |2 + 2Q2
ω f ′(Q2

ω)w2
1

))
dx

= Re

∫
Rd

Lωww dx =

∫
Rd

L+,ωw1w1 dx +

∫
Rd

L−,ωw2w2 dx,

where

L+,ωw1 := −∆w1 + ωw1 −
(
f (Q2

ω) + 2Q2
ω f ′(Q2

ω)
)
w1

L−,ωw2 := −∆w2 + ωw2 − f (Q2
ω)w2.

We do two (mutually incompatible) coercivity assumptions, depending on whether Qω is stable
or not. They write as follows:

(H3) (Stable case) There exists µ+ > 0 such that for all w = w1 + iw2 ∈ H1(Rd,C)
(1.15)

H(w) ≥ µ+‖w‖2
H1−

1

µ+

((∫
Rd

w1Qω dx

)2

+

d∑
i=1

(∫
Rd

w1∂xiQω dx

)2

+

(∫
Rd

w2Qω dx

)2
)
.

(H4) (Unstable case) There exists an eigenfunction Yω = Y1 + iY2 ∈ H1(Rd,C) of iLω (with
eigenvalue e0 > 0) and µ+ > 0 such that for all w = w1 + iw2 ∈ H1(Rd,C),

(1.16) H(w) ≥ µ+‖w‖2
H1 −

1

µ+

(∫
Rd

w1Y2dx

)2

− 1

µ+

(
d∑
i=1

(∫
Rd

w1∂xiQω dx

)2

+

(∫
Rd

w2Y1 dx

)2

+

(∫
Rd

w2Qω dx

)2
)
.

Assumptions (H3) and (H4) are intimately related to the stability of Qω . Regarding the stable case,
we have the following result by Grillakis, Shatah and Strauss [18, p. 341-345] (see also the work
by Weinstein [34, 35] and by Maris [25, Lemma 2.4]).

Proposition 1.6. Assume that O is open and that the map ω 7→ Qω is of class C 1. Let ω0 ∈ O.

Under the non-degeneracy assumption that

(1.17) Ker(L+,ω0 ) = Span

{
∂Qω0

∂xi
, i = 1, . . . , d

}
,
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we have the following dichotomy:

• If
d

dω |ω=ω0

∫
Rd

Qω(x)2 dx > 0, then (1.15) holds, and as a consequence, Qω0 is orbitally

stable in H1(Rd).
• If

d

dω |ω=ω0

∫
Rd

Qω(x)2 dx < 0, then Qω0 is orbitally unstable in H1(Rd).

We also refer to Cazenave and Lions [3, Theorem II.2 and Remark II.3] for another approach to
H1 orbital stability of the solitons based on Qω0 .

For the pure power case, d
dω

∫
Rd

Qω(x)2 dx =
(

2
p−1 − d

2

)
ω

−p+3
p−1 − d

2
∫
Rd

Q1(x)2 dx so that it is

positive when 1 < p < 1+ 4
d

, that is in the L2-subcritical case (and in particular (H3) holds in that

case) and it is negative when 1 + 4
d
< p < d+2

d−2 , that is in the L2-supercritical case.

Regarding the unstable case, following the ideas of Duyckaerts and Merle [12], Duyckaerts and
Roudenko [13], and Côte, Martel and Merle [8], the coercivity result below holds.

Proposition 1.7 ((3.6) in [8]). Let ω ∈ O such that iLω admits a non zero eigenfunction Yω ∈
H1(Rd). Then (1.16) holds.

An important step is therefore the construction of an eigenfunction Yω: this can be done in the
L2-supercritical pure power case (p > 1 + 4

d
) for all ω > 0, and so (H4) holds in that case.

We are now in a position to state our results for general non-linearities. For smoothness, it reads
as follows.

Theorem 1.2′. Let s0 > d
2 . Assume that g satisfies (H1) and belongs to W

s0+1,∞
loc

(C). Assume

moreover that for all k = 1, . . . ,K , ωk belongs to O and Qωk
satisfies either (H3) or (H4).

Then the conclusions of Theorem 1.2 hold.

And below is about uniqueness.

Theorem 1.4′. Let d ≤ 3 and f be of class C 2, such that

(1.18) f ′′(r) = O
(
r

2
d
−2

)
, as r → +∞.

If f is not the pure power non-linearity, assume that for all k = 1, . . . ,K , ωk ∈ O and Qωk
satisfies

(H3), and in the case where d ∈ {2, 3}, assume moreover that g belongs to W
3,∞
loc

(C).
Then the conclusion of Theorem 1.4 holds.

Remark 1.8. Theorems 1.4 and 1.4′ are restricted to dimensions d ≤ 3. For d ≥ 4, a similar

uniqueness result can be proved (using the same method as that we develop in section 3), provided

a smaller class of multi-solitons u is considered, and for which a bound on ‖u(t) − R(t)‖L∞ is

furthermore assumed. This is the purpose of the next proposition.

Proposition 1.9. Let d ≥ 4, s0 :=
⌊
d
2

⌋
+ 1, and f be of class C 2, such that

f ′′(r) = O
(
r

2
d
−2

)
, as r → +∞.

Assume that g belongs to W
s0+1,∞
loc

(C). Assume moreover that for all k = 1, . . . ,K , ωk ∈ O and

Qωk
satisfies (H3).

Then for any α > 0, there exists N ∈ N∗ such that there exists a unique u ∈ C ([T1,+∞),H1(Rd) ∩
L∞(Rd)) solution to (NLS) such that

‖u(t) − R(t)‖H1 = O

(
1

tN

)
and

∫
+∞

t

‖u(s) − R(s)‖L∞ ds = O

(
1

tα

)
, as t → +∞.
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1.4. Outline of the paper and the proofs.

1.4.1. The main content. We will prove Theorems 1.2′ and 1.4′ which generalize Theorems 1.2
and 1.4 respectively when applied to pure power non-linearities.

Section 2 is devoted to the proof of our regularity result, that is Theorem 1.2′. We start from
a well-chosen sequence (un) of solutions satisfying uniform H1 estimates and which were con-
structed in [8] and [27] (we emphasize that we do not work with the already built multi-soliton in
H1(Rd) given in Theorem 1.1). Taking some inspiration from Martel [26, section 3] in the con-
text of the generalized Korteweg-de Vries equations, we prove Hs uniform estimates for (un) via
an induction on the index of regularity. We can combine both stable and unstable cases since we
start from the same uniform exponential H1 estimates obtained in [8] and [27]. From these Hs

estimates we deduce (by a usual compactness argument) the existence of a multi-soliton satisfying
the conclusions of Theorem 1.2′.

The induction argument relies on the study of a functional related to ‖un‖2
H s , suitably modified

so as to cancel ill-behaved terms; this functional takes the same form in all dimensions (see (2.11)
in subsection 2.2). In [26], for gKdV, from s = 3, all quantities of the type ‖un(t) − R(t)‖H s

introduced are shown to decrease exponentially in large time with the same rate. Our proof is more
technical, insofar as the algebra is not as favorable. In the context of (NLS), the terms involving real
and imaginary parts can not be treated in the same way at once, and in dimension d ≥ 2, derivative
can fall on terms in many various ways. As nonlinearities are not necessarily smooth (as it is the
case in [26]), we need to count carefully the number of times one can perform an integration by
parts. This explain why in the case of (NLS), the rate of the exponential decay on ‖un(t)−R(t)‖H s

is halved when passing from s to s + 1 (see (2.6) and Proposition 2.3). We then obtain the decay
rate of 1.9 by a simple interpolation argument.

Regarding the regularity assumption on the nonlinearity, recall that the H1 estimate in Theorem
1.1 holds when g : z 7→ z f (|z |2) is of class C 1. As fas as Hs0 regularity is concerned, Kato’s
well-posedness result [20] in Hs0(Rd) assumes g of class C s0 . In Theorem 1.2′, we require a bit
more regularity for g to prove an Hs0 estimate for s0 ≥ 2 for the multi-soliton. From a technical
point of view, many estimates rely indeed on the local boundedness of the derivatives (in the sense
of distributions) of the functions ∂sg

∂xs′∂ys−s′ , where s = 0, . . . , s0 and s′ = 0, . . . , s. The preceding

property is typically used at two levels. First, we need the local Lipschitz condition which is sat-
isfied by functions in W

1,∞
loc

: this is for example the case for (2.23) in subsection 2.2. In order to
obtain the desired Hs0 estimate, we need also to integrate by parts a particular term (at least one
time) which contains derivatives with respect to the space variable of maximal order s0 of both
un − R and g in order that un − R appears with a derivative of order s0 − 1, thus can be controlled
(see in particular (2.30) in subsection 2.2). For this, one shall ensure that the distributional deriv-
ative of xi 7→ ∂s0g

∂xs∂ys0−s (Rk(x)) belong to some Lebesgue space Lq; this is in fact the case if this
derivative is bounded on a certain segment [0, M]. Therefore, we assume that g is an element of
W

s0+1,∞
loc

(C). Notice that this condition is met when f is the pure power non-linearity (1.1) with
s0 = ⌊p − 1⌋ (and also in the particular case when p is an even integer).

Besides, we emphasize that assumption s0 >
d
2 in Theorems 1.2 and 1.2′ (which is automatically

satisfied for d ∈ {1, 2, 3}) seems to be needed to obtain the desired estimates, judging from (2.24).
In order to relax this, one should work out an argument involving Strichartz type estimates. But
to be effective, the dispersive estimates are to be done on the linearized equation around a sum of
solitons, that is a sum of potentials which are decoupled and smooth, but large and not decaying in
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time. Such estimates would actually be very useful for other purposes, for example the stability of
multi-solitons. To our knowledge, they are however not (yet) available.

Section 3 is devoted to the proof of the uniqueness result, which combines some ideas of [26]
and of [28]. We will consider a solution satisfying (1.11) and (1.18) and show that it is in fact the
multi-soliton constructed in the proof of Theorem 1.2′: we therefore study the difference of these
two solutions and show that it is 0. One main tool for this is a Weinstein type functional, which is
coercive provided we assume some adequate orthogonality properties. Depending on the stable or
L2-critical case considered, these orthogonality conditions differ. The coercivity result available

in the latter case (where f : r 7→ r
2
d ) is the object of Proposition 3.17. The fact that we do the

difference with an already constructed multi-soliton which is sufficiently regular is crucial, at least
up to dimension 2. In fact, what we truly need is the H2(Rd) decay for d ≥ 2, and also as several
times, that the constructed multi-soliton takes values in L∞(Rd).

Note also that, finding like us his inspiration in [26], Combet [5], in the one-dimensional pure
power unstable case, has already obtained estimates similar to those we develop in section 3 for
general f in the stable case. Last, the lack of (backward in time) monotonicity properties of (NLS)
explains somehow the difficulty to obtain unconditional uniqueness, that is to prove uniqueness
in the whole class of multi-solitons in the sense of (1.7) (without decay rate); see Remark 3.7 for
more details.

1.4.2. Some notations and writing practices used through the text. Solutions of (NLS) or functions
constructed with such solutions take values in C. As usual, the modulus of a complex number will
be denoted by |. |.
Our computations are generally done in all dimensions d. To that extent,

• for any vector u ∈ Rd, we denote by Re(u) (respectively Im(u)) the vector of Rd which
components are the real parts (respectively the imaginary parts) of the components of u.

• · denotes the euclidean scalar product in Rd and |. | denotes also the euclidean norm from
which it derives.

• we use the usual notation for multi-indices.

As usual, it is also convenient to denote by C some positive constant which can change from one
line to the next but which is always independent of the index of any sequence considered.

The main functional spaces we will work with are the Sobolev spaces Hs(Rd) for s ∈ N∗ en-
dowed with the usual norms defined by:

∀ w ∈ Hs(Rd), ‖w‖H s :=
©«
∑
|α | ≤s

‖∂αw‖2
L2

ª®¬
1
2

.

We consider also H∞(Rd) :=
⋂
s∈N∗

Hs(Rd) and the Sobolev spaces W
s,∞
loc

(C) (identified with W
s,∞
loc

(R2))

for s ∈ N∗.
Furthermore, many computations are presented formally for ease of reading but can be justified

by standard regularization arguments which often involve the local well-posedness of (NLS) in Hs

with continuous dependence on compact sets of time (see [10, Theorem 1.6]).

2. Existence of smooth multi-solitons of (NLS)

In this section, let us concentrate on the proof of Theorem 1.2′. Let s0 >
d
2 be an integer and

assume that g : z 7→ z f (|z |2) is in W
s0+1,∞
loc

(C) and satisfies (H1).
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2.1. Step 1: Uniform H1-estimate for a sequence of solutions. In order to prove Theorem 1.2,
we start from the following proposition, which applies to both stable and unstable cases, and which
has already been established in preceding papers. This proposition gives rise to some control in the
H1 norm on a constructed sequence of solutions of (NLS) which turns out to be relevant to achieve
our goal.

Proposition 2.1 (Martel and Merle [27], Côte, Martel and Merle [8]). There exist an increasing

sequence (Sn)n∈N of times such that Sn → +∞, a sequence (φn) ∈
(
Hs0(Rd)

)N
, and constants

θ > 0, C1 > 0, T0 > 0 with S0 > T0 such that for all n ∈ N:

• ‖φn‖H s0 ≤ C1e−2θSn

• the maximal solution un of (NLS) such that

un(Sn) = R(Sn) + φn
belongs to C ([T0, Sn],Hs0(Rd)) and satisfies

∀ t ∈ [T0, Sn], ‖un(t) − R(t)‖H1 ≤ C1e−2θt .

Remark 2.2. Note that the sequence (φn) can be chosen in the following form.

• For the stable case, we take φn = 0 for all n (see [27]).
• For the unstable case, we take φn = i

∑
k∈{1,...,K },±

b±n,kY±
k (Sn) for all n with Y±

k
defined by

(2.1) Y±
k : (t, x) 7→ Y±

ωk

(
x − vk t − x0

k

)
ei

(
1
2 vk ·x+

(
ωk−

|vk |2
4

)
t+γk

)
and with bn =

(
b±
n,k

)
k∈{1,...,K },± ∈ R2K well chosen (see [8] for full details) so that

(2.2) ∀ n ∈ N, |bn | ≤ e−2θSn .

Some particular estimates will be useful throughout the proof. Firstly we retain

(2.3) ‖un(Sn) − R(Sn)‖H s0 ≤ C1e−2θSn

(since (2.2) holds and the quantities ‖Y±
k
(t)‖H s are independent of t). We emphasize also that

(2.4) ∀ n ∈ N, ∀ t ∈ [T0, Sn], ‖un(t) − R(t)‖H1 ≤ C1e−2θt .

In addition, the exponential decay property (1.5) of the ground states Qωk
and their derivatives

lead to the following assertion, which is also crucial to establish many estimates:
(2.5)

∀ t ∈ [T0,+∞), ∀ k , k ′, ∀ |α1 |, |α2 | ∈ {0, . . . , s0 + 2},
∫
Rd

��∂α1 Rk .∂
α2 Rk′

��(t) dx ≤ Ce−2θt .

2.2. Step 2: Proof of uniform Hs-estimates for un − R, s = 1, . . . , s0. From now on, let

vn := un − R.

2.2.1. Step 2.1: Performance of preliminary uniform Hs-estimates. Define θ0 := 2θ, θ1 := θ, and
for all s ≥ 2,

(2.6) θs := min

{
θs−1

2
,

2θ

d + 1

}
,

so that θs =
θ

2s−2(d+1) for all s ≥ 2. We prove the following statement, which is the core of our
main existence result.
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Proposition 2.3. There exists T1 ≥ T0 such that for all s ∈ {1, . . . , s0}, there exists Cs ≥ 0 such

that for all n ∈ N, if Sn ≥ T1 then

(2.7) ∀ t ∈ [T1, Sn], ‖vn(t)‖H s ≤ Cse
−θs t .

To prove Proposition 2.3, we resort to a "bootstrap" argument. Recall that for all s ∈ N∗, there
exists µs ≥ 0 such that

(2.8) ∀ t ∈ R, ‖Y±
k (t)‖H s ≤ µs .

For all n, set
S∗
n := inf

{
t ≥ T0 | ∀ τ ∈ [t, Sn], ‖vn(τ)‖H s0 ≤ As0

}
,

for some constant As0 > 2Kµs0 . Note that S∗
n indeed exists since vn(Sn) = i

K∑
k=1

b±n,kY±
k (Sn). Hence

for all n ∈ N, we have
∀ t ∈ (S∗

n, Sn], ‖vn(t)‖H s0 ≤ As0 .

Due to the continuity of vn : [T0, Sn] → Hs0(Rd) in S∗
n, we also have for all n ∈ N:

(2.9) ∀ t ∈ [S∗
n, Sn], ‖vn(t)‖H s0 ≤ As0 .

We will show that S∗
n can be chosen independently of n and improve the preceding estimate by

showing first:

Proposition 2.4. For all n ∈ N, for all s ∈ {1, . . . , s0}, for all t ∈ [S∗
n, Sn],

‖vn(t)‖H s ≤ Ce−θs t .

Proof. We argue by induction. The existence of C1 ≥ 0 such that for all n ∈ N,

∀ t ∈ [S∗
n, Sn], ‖vn(t)‖H1 ≤ C1e−θt

is already known. Assume that for some s ∈ {2, . . . , s0}, for all s′ ∈ {1, . . . , s − 1}, there exists
Cs′ ≥ 0 such that for all n ∈ N,

(2.10) ∀ t ∈ [S∗
n, Sn], ‖vn(t)‖H s′ ≤ Cs′e

−θs′ t .

We aim at showing that the same estimate is valid for s′ = s. For this purpose, let us consider for
all n ∈ N the functional

(2.11) Gn,s : t 7→
∫
Rd




∑
|α |=s

(
s

α

)
|∂αun |2 −

∑
|β |=s−1

(
s − 1

β

)
Re

(
u2
n

(
∂βun

)2
)

f ′(|un |2)


(t) dx.

More precisely we prove, in what follows, how to obtain the following statement, which is es-
sential in the proof of estimate (2.10) corresponding to s′ = s.

Lemma 2.5. For all n ∈ N, and for all t ∈ [S∗
n, Sn], we have

(2.12) |Gn,s(t) − Gn,s(Sn)| ≤ Ce−min{θs−1,
4θ
d+1 }t,

for some constant C independent of n, t and As0 .

Remark 2.6. The fundamental reason why it is worth introducing the functional Gn,s is that no

quadratic term involving ∂αun for |α | = s appears in its first derivative and no term ∂α
′
un with

|α′| > s appears either. Thus we manage to control G′
n,s(t). Nevertheless, we do not claim that the

functional Gn,s is the only one that can be used to prove (2.10).
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Proof of Lemma 2.5. We will work on the derivative of Gn,s and show in fact that

(2.13)
��G′

n,s(t)
�� ≤ Ce−min{θs−1,

4θ
d+1}t .

The computations and estimates are established rather in terms of the function g instead of f ;
by this means, they are considerably less burdensome. Besides, in accordance with Remark 2.7
below, the calculations indicate that (2.13) would still be true for more generalized functions g

which satisfy Im ∂xg = Re ∂yg.

Let us introduce also some further notations. For ease of reading, we will write u instead of
un or un(t) and Gs instead of Gn,s . In addition, we denote by u1 the real part of u and by u2 its
imaginary part.
Moreover, for all j ∈ {1, . . . , d}, we specify as ej the d-tuple (0, . . . , 1, . . . , 0) for which all com-
ponents except the j-th one are zero.

We divide the proof of Lemma 2.5 into three steps.

Step 1: Computation of the derivative of Gs.

First of all, observe that for all (x, y) ∈ R2

(2.14)
∂xg(x, y) = 2x(x + iy) f ′(x2

+ y
2) + f (x2

+ y
2)

∂yg(x, y) = 2y(x + iy) f ′(x2
+ y

2) + i f (x2
+ y

2),

so that
(
∂xg + i∂yg

)
(z) = 2z2 f ′(|z |2). In particular, Gs can be rewritten in terms of g as follows:

Gs(t) =
∫
Rd




∑
|α |=s

(
s

α

)
|∂αu|2 − 1

2

∑
|β |=s−1

(
s − 1

β

)
Re

( (
∂xg(u) + i∂yg(u)

) (
∂βu

)2
)

(t) dx.

Let α = (α1, . . . , αd) ∈ Nd be such that |α | = s. There exists l(α) ∈ {1, . . . , d} such that
αl(α) ≥ 1. Then, using the fact that u satisfies (NLS), the following holds true:

(2.15)

d

dt

∫
Rd

|∂αu|2 dx = − 2 Im

∫
Rd

[
d∑
i=1

∂2
xi
∂αu + ∂α (g(u))

]
∂αu dx

= − 2 Im

∫
Rd

∂α (g(u)) ∂αu dx

= − 2 Im

∫
Rd

(
∂xg(u)Re (∂αu) + ∂yg(u)Im (∂αu)

)
∂αu dx + Iα

= − 2

∫
Rd

Im
(
u2(∂αu)2

)
f ′(|u|2) dx + Iα,

where

Iα = −2 Im

∫
Rd

(
∂α−el(α) (∂xg(u)) ∂el(α)u1 + ∂

α−el(α)
(
∂yg(u)

)
∂el(α)u2

)
∂αu dx.

Due to Faà di Bruno formula, Iα is also a linear combination of the following terms:

(2.16) Iα,q,r,α̃1,...,α̃q
(u) :=

∫
Rd

∂α̃1uj1 . . . ∂
α̃qujq Im

(
∂qg

∂rx∂
q−r
y

(u)∂αu

)
dx,



ON SMOOTHNESS AND UNIQUENESS OF NLS MULTI-SOLITONS 13

where q ∈ {2, . . . , s}, r ∈ {0, . . . , q}, ∑q

i=1 |α̃i | = s, and for all i ∈ {1, . . . , q}, α̃i ≥ 1 and
ji ∈ {1, 2}.

Similarly, we have for each multi-index β such that |β | = s − 1:

(2.17)

d

dt

∫
Rd

1

2
Re

((
∂xg(u) + i∂yg(u)

)
∂βu2

)
dx

= Im

∫
Rd

(
∂xg(u) + i∂yg(u)

) ©«
d∑
j=1

∂β+2e j u + ∂β(g(u))ª®¬
∂βu dx + J1,β

= −
d∑
j=1

Im

∫
Rd

(
∂xg(u) + i∂yg(u)

) (
∂β+e j u

)2
dx + J1,β + J2,β + J3,β

= − 2
d∑
j=1

∫
Rd

Im
(
u2(∂β+e j u)2

)
f ′(|u|2) dx + J1,β + J2,β + J3,β,

where we denote

J1,β =
1

2

∫
Rd

Re

[(
∂2
g

∂x2
(u)∂tu1 +

∂2
g

∂x∂y
(u)∂tu2 + i

∂2
g

∂x∂y
(u)∂tu1 + i

∂2
g

∂y2
(u)∂tu2

) (
∂βu

)2
]

dx

J2,β =

d∑
j=1

Im

∫
Rd

∂x j

(
∂g

∂x
(u) + i

∂g

∂y
(u)

)
∂β+e j u∂βu dx

J3,β =Im

∫
Rd

(
∂xg(u) + i∂yg(u)

)
∂β(g(u))∂βu.

We observe that

(2.18)
∑
|α |=s

(
s

α

)
(∂αu)2 −

∑
|β |=s−1

(
s − 1

β

) d∑
j=1

(
∂β+e j u

)2
= 0.

Thus,

(2.19) G′
s(t) =

∑
|α |=s

(
s

α

)
Iα −

∑
|β |=s−1

(
s − 1

β

) (
J1,β + J2,β + J3,β

)
.

Remark 2.7. Note that, considering (2.15), (2.17), and (2.18), the property that allows us to obtain

(2.19) is in fact Im ∂xg = Re ∂yg. Indeed, this assumption suffices to have: for all α ∈ Nd with

|α | = s,

2 Im
[ (
∂xg(u)Re (∂αu) + ∂yg(u)Im (∂αu)

)
∂αu

]
= Im

[ (
∂xg(u) + i∂yg(u)

)
(∂αu)2

]
.

Step 2: Control of the derivative of Gs.

Take α ∈ Nd such that |α | = s. Let q, r, and α̃1, . . . , α̃q be as in (2.16), and denote by
Iα,q,r,α̃1,...,α̃q

(Rk) the integral defined exactly as in (2.16) by replacing u by the soliton Rk , for
all k = 1, . . . ,K . Then we have

(2.20)

�����Iα,q,r,α̃1,...,α̃q
(u) −

K∑
k=1

Iα,q,r,α̃1,...,α̃q
(Rk)

����� ≤ Ce−min{θs−1,
4θ
d+1}t,

for some constant C independent of As.
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In order to prove (2.20), one proceeds by decomposition of Iα,q,r,α̃1,...,α̃q
(u) as follows. The

basic idea is to make terms in v (which provide the expected exponential term at the right-hand
side of (2.20)) appear. Let us explicit this decomposition:

Iα,q,r,α̃1,...,α̃q
(u) =

∫
Rd

∂α̃1 uj1 . . . ∂
α̃qujq Im

((
∂qg

∂rx∂
q−r
y

(u) − ∂qg

∂rx∂
q−r
y

(R)
)
∂αu

)
dx (Iα,1)

+

∫
Rd

∂α̃1vj1∂
α̃2 uj2 . . . ∂

α̃qujq Im

(
∂qg

∂rx∂
q−r
y

(R)∂αu

)
dx (Iα,2)

+

∫
Rd

∂α̃1 Rj1∂
α̃2vj2∂

α̃3vj3 . . . ∂
α̃qujq Im

(
∂qg

∂rx∂
q−r
y

(R)∂αu

)
dx (Iα,3)

+ . . . (Iα,...)

+

∫
Rd

∂α̃1 Rj1∂
α̃2 Rj2 . . . ∂

α̃q−1 Rjq−1∂
α̃q vjq Im

(
∂qg

∂rx∂
q−r
y

(R)∂αu

)
dx (Iα,q+1)

+

∫
Rd

∂α̃1 Rj1 . . . ∂
α̃q Rjq Im

(
∂qg

∂rx∂
q−r
y

(R)∂αv
)

dx (Iα,q+2)

+

∫
Rd

∂α̃1 Rj1 . . . ∂
α̃q Rjq Im

(
∂qg

∂rx∂
q−r
y

(R)∂αR

)
dx (Iα,q+3)

Now, we control each preceding term Iα,1, . . . , Iα,q+3 occurring in the preceding decomposi-
tion by means of the induction assumption and some classical tools in functional analysis, namely
Hölder inequality, Sobolev embeddings, and Gagliardo-Nirenberg inequalities.

Let us notice that

(2.21) sup
t∈R

‖R(t)‖L∞ < +∞.

Considering that s0 >
d
2 , we deduce then from (2.9) and the Sobolev embedding H ⌊ d

2 ⌋+1(Rd) →֒
L∞(Rd) that there exists A ≥ 0 such that for all n,

(2.22) ∀ t ∈ [S∗
n, Sn], ‖un(t)‖L∞ ≤ A.

Since ∂qg

∂r
x∂

q−r
y

is W
1,∞
loc

on C (or in other words locally Lipschitz on C), it results from (2.21) and

(2.22) that

(2.23) |Iα,1 | ≤ C

∫
Rd

|v | |∂αu| |∂α̃1u| . . . |∂α̃qu| dx.

Define I :=
{
i ∈ {1, . . . , q} | s0 − |α̃i | < d

2

}
, J :=

{
i ∈ {1, . . . , q} | s0 − |α̃i | > d

2

}
, and

mi :=




2d

d − 2(s0 − |α̃i |)
if i ∈ I

∞ if i ∈ J .

For i ∈ {1, . . . , q} \ I ∪ J , we take mi large enough so that
q∑
j=1

1

mi

<
1

2
,
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which is possible since

(2.24)

1

2
−

(∑
i∈I

1

mi

+

∑
i∈J

1

mi

)
=

1

2
−

∑
i∈I

1

mi

=

1

2
−

∑
i∈I

d − 2(s0 − |α̃i |)
2d

≥ 1

2
− q

(
1

2
− s0

d

)
− s

d
≥ (1 − q)

(
1

2
− s0

d

)
> 0.

due to our assumption on s0 and the fact that q > 1. Then, we observe that for all i = 1, . . . , q,
∂α̃i u ∈ Hs0−|α̃i |(Rd) →֒ Lmi (Rd) by the classical Sobolev embedding theorem. Using Hölder
inequality, we obtain

(2.25) |Iα,1 | ≤ C‖∂αu‖L2

q∏
i=1

‖∂α̃i u‖Lmi ‖v‖Lm ≤ C‖v‖Lm .

where m ≥ 2, and 1
m
=

1
2 − ∑q

i=1
1
mi

≥ (q − 1)
(
s0
d
− 1

2

)
> 0 by definition of the mi, i = 1, . . . , q.

The following Gagliardo-Nirenberg inequality

(2.26) ‖v‖Lm ≤ C‖v‖σ
H

s′
0
‖v‖1−σ

L2 ,

with s′0 := ⌊ d2 ⌋ + 1 ≤ d+1
2 and σ := d

s′0

(
1
2 − 1

m

)
(which implies 1 − σ ≥ 1

s′0
, since 2s′0 − d ≥ 1)

leads finally to

(2.27) |Iα,1 | ≤ C‖v‖1−σ
L2 ≤ Ce

− 2θ
s′
0
t
≤ Ce−

4θ
d+1 t .

To estimate Iα,2, . . . , Iα,q+1, one proceeds as before. For instance, let us explain how to deal with
Iα,2; the same would be done for the other integrals.
We choose m′

1 such that Hs1−1−|α̃1 | →֒ Lm′
1(Rd) and 1

2 − 1
m′

1
− ∑q

i=2
1
mi

> 0. Then, again due to

Hölder inequality, we have:

(2.28)
|Iα,2 | ≤ ‖∂αu‖L2 ‖∂α̃1v‖

L
m′

1

q∏
i=1

‖∂α̃i u‖Lmi

 ∂qg

∂rx∂
q−r
y

(R)

L∞

≤ C‖v‖H s−1 ≤ Ce−θs−1t .

Similarly, we check that

(2.29) ∀ i ∈ {3, . . . , q + 1}, |Iα,i | ≤ Ce−θs−1t .

Now, let us deal with Iα,q+2. By (2.5) and the fact that ∂qg

∂r
x∂

q−r
y

∈ W
1,∞
loc

(C), we have:

Iα,q+2 =

K∑
k=1

∫
Rd

∂α̃1 Rk, j1 . . . ∂
α̃q Rk, jq Im

(
∂qg

∂rx∂
q−r
y

(Rk)∂αv
)

dx + Ce−2θt ‖v‖H s .

Again by assumption, the distributional derivative of ∂qg

∂xr∂yq−r (Rk) is bounded on
[
0, supt∈R ‖Rk(t)‖L∞

]
,

thus the integral ∫
Rd

∂α−el v∂el

(
∂α̃1 Rk, j1 . . . ∂

α̃q Rk, jq

∂qg

∂rx∂
q−r
y

(Rk)
)

dx
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makes sense and one can integrate once by parts to obtain

(2.30)

�����
∫
Rd

∂α̃1 Rk, j1 . . . ∂
α̃q Rk, jq Im

(
∂qg

∂rx∂
q−r
y

(Rk)∂αv
)

dx

�����
=

�����Im
∫
Rd

∂α−el v∂el

(
∂α̃1 Rk, j1 . . . ∂

α̃q Rk, jq

∂qg

∂rx∂
q−r
y

(Rk)
)

dx

�����
≤ C‖v(t)‖H s−1 ≤ Ce−θs−1t .

Thus,

(2.31) |Iα,q+2 | ≤ Ce−θs−1t .

Finally, by (2.5) and using once more that ∂qg

∂r
x∂

q−r
y

is in W
1,∞
loc

(C),

(2.32)

�����Iα,q+3 −
K∑
k=1

Iα,q,r,α̃1,...,α̃q
(Rk)

����� ≤ Ce−2θt .

Hence, we conclude from (2.27), (2.28), (2.29), (2.31), and (2.32) that (2.20) holds true.

The expressions J1,β, J2,β, J3,β (given before) consist of terms that can be controlled in a similar
manner. Let us denote by Ji,β(Rk) the same integral as Ji,β where Rk replaces u for all i = 1, 2, 3
and for all k = 1, . . . ,K . One can check that

(2.33)

�����J1,β −
K∑
k=1

J1,β(Rk)
����� ≤ Ce−min{θs−1,

4θ
d+1 }t ;

(2.34)

�����J2,β −
K∑
k=1

J2,β(Rk)
����� ≤ Ce−min{θs−1,

4θ
d+1 }t ;

(2.35)

�����J3,β −
K∑
k=1

J3,β(Rk)
����� ≤ Ce−θs−1t .

Step 3: Related functional involving Rk .

Let k ∈ {1, . . . ,K}. An immediate induction argument shows that for all multi-index α ∈ Nd

such that |α | = s, for all multi-index α′ � α, there exists zα′ ∈ C such that

∂αRk(t, x) =
∑
α′�α

zα′∂α
′
Qωk

(x − x0
k
− vk t)e

i

(
1
2 vk ·x+

(
ωk−

|vk |2
4

)
t+γk

)
.

Therefore∫
Rd

|∂αRk |2 (t) dx =

∫
Rd

�����
∑
α′�α

zα′∂α
′
Qωk

(x − x0
k − vk t)

�����
2

dx =

∫
Rd

�����
∑
α′�α

zα′∂α
′
Qωk

(x)
�����
2

dx,

so that

(2.36)
d

dt

∫
Rd

|∂αRk |2 dx = 0.
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Furthermore for all multi-index β such that |β | = s − 1,

R2
k

(
∂βRk

)2
(t, x) = Q2

ωk
(x − x0

k − vk t)
( ∑
β′�β

zβ′∂
β′Qωk

(x − x0
k − vk t)

)2

,

from which we infer also

(2.37)
d

dt

∫
Rd

Re
(
R2
k

(
∂βRk

) )2
f ′(|Rk |2) dx = 0.

Hence, gathering (2.36) and (2.37),

(2.38) 0 =
d

dt

∫
Rd




∑
|α |=s

(
s

α

)
|∂αRk |2 −

∑
|β |=s−1

(
s − 1

β

)
Re

(
R2
k

(
∂βRk

)2
)

f ′(|Rk |2)



dx.

Considering that this last quantity can be written as exactly the same linear combination of terms
as G′

n,s (we refer to (2.19)) where we replace just u by Rk , we conclude from (2.20), (2.33), (2.34),
(2.35), and (2.38) that

(2.39) ∀ t ∈ [S∗
n, Sn], |G′

n,s(t)| ≤ Ce−min{θs−1,
4θ
d+1}t .

Integrating the preceding inequality between t and Sn yields directly Lemma 2.5. �

Let us now conclude the proof of Proposition 2.4.

We observe that, for all t ∈ [S∗
n, Sn],

(2.40)∑
|α |=s

(
s

α

) ∫
Rd

|∂αvn(t)|2 dx

=

(
Gn,s(t) − Gn,s(Sn)

)
+ 2

∑
|α |=s

(
s

α

)
Re

∫
Rd

∂α−el(α)vn(t)∂α+el(α) R(t) dx

+

∑
|α |=s

(
s

α

) (∫
Rd

|∂αR(Sn)|2 dx −
∫
Rd

|∂αR(t)|2 dx

)

+

∑
|β |=s−1

(
s − 1

β

) (∫
Rd

Re
(
u2
n(∂βun)2

)
f ′(|un |2)(t) dx −

∫
Rd

Re
(
R2(∂βR)2

)
f ′(|R|2)(t) dx

)

+

∑
|β |=s−1

(
s − 1

β

) (∫
Rd

Re
(
R2(∂βR)2

)
f ′(|R|2)(t) dx −

∫
Rd

Re
(
R2(∂βR)2

)
f ′(|R|2)(Sn) dx

)

+

∑
|α |=s

(
s

α

) ∫
Rd

|∂αvn(Sn)|2 − 2
∑
|α |=s

(
s

α

)
Re

∫
R

∂α−el(α)vn(Sn)∂α+el(α) R(Sn) dx.

Then, by means of (2.3), (2.36), and (2.37), we infer

(2.41)

������
∑
|α |=s

(
s

α

) ∫
Rd

|∂αvn(t)|2 dx

������ ≤
��Gn,s(t) − Gn,s(Sn)

�� + C‖vn‖H s−1 + Ce−2θt

+ C

����
∫
Rd

Re
(
u2
n(∂βun)2

)
f ′(|un |2)(t) dx −

∫
Rd

Re
(
R2(∂βR)2

)
f ′(|R|2)(t) dx

���� .
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Now, from (2.5), (2.12), (2.38), and from the inequality

(2.42)

����
∫
Rd

Re
(
u2
n(∂βun)2

)
f ′(|un |2)(t) dx −

∫
Rd

Re
(
R2(∂βR)2

)
f ′(|R|2)(t) dx

���� ≤ C‖vn(t)‖H s−1,

resulting from the local boundedness of the distributional derivative of z 7→ 1
2

(
∂xg + i∂yg

)
(z) =

z2 f ′(|z |2), we deduce the existence of Cs ≥ 0 such that for all n ∈ N,

(2.43) ∀ t ∈ [S∗
n, Sn], ‖vn(t)‖2

H s ≤ C2
s e−min{θs−1,

4θ
d+1}t .

This is rewritten as follows:

(2.44) ∀ t ∈ [S∗
n, Sn], ‖vn(t)‖H s ≤ Cse

−θs t,

which is exactly the expected result. Thus the induction argument implies that for all n ∈ N,

(2.45) ∀ t ∈ [S∗
n, Sn], ‖vn(t)‖H s0 ≤ Cs0e−θs0 t .

This puts an end to the proof of Proposition 2.4. �

Now we explain how to deduce from Proposition 2.4 that S∗
n can be chosen independently of n,

and by this means, we finish the proof of Proposition 2.3. We pick up T1 ≥ T0 such that Cs0 e−θs0T1 <

As0 . Let n ∈ N be such that Sn ≥ T1, and assume by contradiction that S∗
n > T1. Then by continuity

of vn in S∗
n (and by definition of S∗

n as infimum), we have ‖vn(S∗
n)‖H s0 = As0 . On the other hand,

(2.46) ‖vn(S∗
n)‖H s0 ≤ Cs0e−θs0

S∗
n ≤ Cs0 e−θs0

T1 < As0,

which yields a contradiction. Thus S∗
n ≤ T1. Hence, for all n ∈ N such that Sn ≥ T1, we have

∀ t ∈ [T1, Sn], ‖vn(t)‖H s0 ≤ Cs0e−θs0
t .

If necessary we drop the first terms of the sequence (Sn) and re-index it in order to obtain:

(2.47) ∀ n ∈ N, ∀ t ∈ [T1, Sn], ‖vn(t)‖H s0 ≤ Cs0 e−θs0 t .

Hence, Proposition 2.3 is established.

2.2.2. Step 2.2: Independence of T1 with respect to s. Now, we justify that T1 can be chosen inde-

pendent of s > d
2 , which is useful to obtain

(2.48) ∀ s ∈ N∗, ∃ Cs ≥ 0, ∀ t ∈ [T1, Sn], ‖vn(t)‖H s ≤ Cse
−θs t,

in the case where s0 = ∞.

If g is C∞ on C as an R-differentiable function, it is in particular of class C ⌊ d
2 ⌋+2, so that we

can apply the previous result: there exists T1 ≥ T0 such that for all n ∈ N,

(2.49) ∀ t ∈ [T1, Sn], ‖vn(t)‖
H

⌊ d2 ⌋+1 ≤ C⌊ d
2 ⌋+1e

−θ⌊ d2 ⌋+1
t
.

Let s ≥
⌊
d
2

⌋
+ 2 and assume that for all s′ ∈ {⌊ d2 ⌋ + 2, . . . , s},

∀ t ∈ [T1, Sn], ‖vn(t)‖H s′−1 ≤ Cs′−1e−θs′−1t .

Then define
S∗
n,s := inf{t ≥ T1 | ∀ τ ∈ [t, Sn], ‖vn(τ)‖H s ≤ As},

for some constant As > max{2Kµs, 1} to be determined. We show exactly as before (that is con-
sidering the functionals Gn,s) the existence of C̃s > 0 independent of n, t, and As such that

(2.50) ∀ t ∈ [S∗
n,s, Sn], ‖vn(t)‖2

H s ≤ C̃2
s Ase−2θs t,
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or also

(2.51) ∀ t ∈ [S∗
n,s, Sn], ‖vn(t)‖H s ≤ C̃sA

1
2
s e−θs t .

Indeed, the constant A in (2.22) does not depend on s and As ≥ 1 so that we have for example as
in (2.25) and then (2.27):

|Iα,1 | ≤ C Ase
− 4θ

d+1 t,

with C independent of As.
Choosing As > C̃2

s e−2θsT1 and arguing as in (2.46), we conclude that S∗
n,s = T1. Hence, T1 is

uniform with respect to s.

2.2.3. Step 2.3: Looking for optimal exponential decay rates in the uniform Hs-estimates. The
next result uses and improves that of Proposition 2.3.

Proposition 2.8. For all s ∈ {1, . . . , s0}, there exists Ãs ≥ 0 such that for all t ∈ [T1, Sn],

(2.52) ‖vn(t)‖H s ≤ Ãse−
2θ
s+1 t .

Proof. Let s′ ∈ {1, . . . , s}. By (2.4), (2.7), and the following interpolation inequality

‖vn(t)‖H s′ ≤ ‖vn(t)‖γL2 ‖vn(t)‖
1−γ
H s ,

with γ = s−s′
s

, we have for all t ∈ [T1, Sn],

‖vn(t)‖H s′ ≤ Ce−2θ s−s′
s

t .

Now, set
T∗
n := inf{t ≥ T1 | ∀ τ ∈ [t, Sn], ‖vn(τ)‖H s ≤ Ãse−µτ},

for some µ ∈ (0, 2θ) and for some Ãs ≥ 1 to be determined later.
Let t belong to [T∗

n, Sn]. Then by the proof set up before,

‖vn(t)‖2
H s ≤ C

(
‖vn(t)‖H s−1 + e−2θt

)
.

In addition, we obtain once again by interpolation

‖vn(t)‖H s−1 ≤ ‖vn(t)‖
1
s

L2 ‖vn(t)‖
s−1
s

H s ≤ C Ã
1− 1

s
s e−

2θ
s
te−µ

s−1
s

t .

Since µ ≤ 2θ, we have 2θ+µ(s−1)
s

≤ 2θ, and so there exists C̃ ≥ 0 (independent of Ãs) such that

(2.53) ‖vn(t)‖2
H s ≤ C̃ Ã

1− 1
s

s e−
2θ
s
te−µ

s−1
s

t .

Now, choose

µ :=
2θ

s + 1
and Ãs > C̃

s
s+1 .

By a similar argument as that set up to prove Proposition 2.3, we see that T∗
n = T1. Indeed, if we

had T∗
n > T1, then by the definition of T∗

n and by continuity of vn in T∗
n , we would obtain

Ã2
se−2µT ∗

n = ‖vn(T∗
n )‖2

H s ≤ C̃ Ã
1− 1

s
s e−

2θ
s
T ∗
ne−µ

s−1
s
T ∗
n,

thus, by the choice of µ,

Ã2
s ≤ C̃ Ã

1− 1
s

s ,

which is a contradiction. Consequently, estimate (2.52) does indeed hold. �
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2.3. Step 3: Conclusion of the proof of Theorem 1.2′. We construct now the multi-soliton u

using the same arguments as those of Martel [26, paragraph 2, Step 2] and Martel and Merle [27,
Paragraph 2]. The crucial point is the following lemma, obtained by a compactness argument.

Lemma 2.9. There exist ϕ ∈ Hs0(Rd) and a subsequence (unk
(T1))k of (un(T1))n such that

‖unk
(T1) − ϕ‖H s0 −→

k→+∞
0.

Note that the main ingredients to show this lemma are:

• the uniform Hs0-estimate obtained in Step 2.
• the following L2-compactness assertion: for all ǫ > 0, there exists K a compact subset of
R
d such that

∀ n ∈ N,
∫
K
|un(T1, x)|2 dx ≤ ǫ.

Then by local well-posedness of (NLS) in Hs0(Rd) with continuous dependence on compact sets of
time [10, Theorem 1.6], the solution u of (NLS) such that u(T1) = ϕ is defined in Hs0(Rd) and for
all t ≥ T1,

unk
(t) − ϕ(t)


H s0

→ 0 as k → +∞. Thus ϕ turns out to be the desired multi-soliton.
Besides, the quantities ‖u(t) − R(t)‖H s decrease exponentially; this result is obtained by passing
to the limit as k tends to +∞ in the Hs-uniform estimates given by Proposition 2.8, that is for all
s = 1, . . . , s0, for k large enough:

‖unk
(t) − R(t)‖H s ≤ Cse

− 2θ
s+1 t .

This yields precisely (1.9).

Note that in the case where g is C∞ (for example when we consider the pure power non-linearity
with p an odd integer), we obtain (1.10) as a consequence of (1.9), by interpolating the correspond-
ing Hs-estimates, and by the independence of T1 with respect to s proved in Step 2.2.

3. Conditional uniqueness for multi-solitons of (NLS)

In this section, we prove the uniqueness result stated in Theorem 1.4′, that is for d ≤ 3. The
strategy developed here would also work to prove Proposition 1.9 under the corresponding stronger
assumptions.

Our uniqueness result holds due to the coercivity properties of the linearized operators around
ground states, namely assumption (H3) when f is not the L2-critical non-linearity and (3.65) in
Proposition 3.17 in the L2-critical pure power non-linearity case. The proof follows essentially the
same lines in these two cases; the differences are only rooted in the use of the appropriate coercivity
result.

We first develop the proof in the stable case, assuming d ≤ 3, and f of class C 2 satisfying
(1.18). This covers in particular the L2-subcritical assumption with 3 ≤ p < 1 + 4

d
and d = 1 in

Theorem 1.4. In subsection 3.4, we explain how to modify the calculations in order to perform the

proof in the L2-critical case, that is assuming p = 1 + 4
d

and f : r 7→ r
p−1

2 , which will extend the
uniqueness result as stated in Theorems 1.4 and 1.4′.

Let us denote ϕ the multi-soliton of (NLS) constructed in Theorem 1.1 for d = 1 and in Theorem
1.2′ for d ∈ {2, 3} (which is possible to consider by hypothesis). Set γ := 2θ

3 , where θ is defined
in Theorem 1.1 and let T1 > 0 such that ϕ belongs to C ([T1,+∞),H1(R)) and

(3.1) ∀ t ≥ T1, ‖ϕ(t) − R(t)‖H1 ≤ Ce−γt
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for d = 1, and such that ϕ belongs to C ([T1,+∞),H2(Rd)) and

(3.2) ∀ t ≥ T1, ‖ϕ(t) − R(t)‖H2 ≤ Ce−γt

for d ∈ {2, 3}. In particular, due to the Sobolev embedding theorem, we emphasize that, for all
d ∈ {1, 2, 3}, ϕ ∈ C ([T1,+∞[, L∞(Rd)) and

(3.3) ∀ t ≥ T1, ‖ϕ(t) − R(t)‖L∞ ≤ Ce−γt .

Remark 3.1. Concerning the proof of Proposition 1.9, we have similarly the existence of a multi-

soliton ϕ to (NLS) and of T1 > 0 such that ϕ belongs to C ([T1,+∞),Hs0(Rd)) and

(3.4) ∀ t ≥ T1, ‖ϕ(t) − R(t)‖
H ⌊ d

2 ⌋+1 ≤ Ce−γt,

with γ := 2θ
⌊ d

2 ⌋+2
. Besides ϕ ∈ C ([T1,+∞[, L∞(Rd)) and (3.4) holds also for ‖ϕ(t) − R(t)‖L∞ due

to the Sobolev embedding H ⌊ d
2 ⌋+1(Rd) →֒ L∞(Rd).

Now, let us take u in the class of multi-solitons satisfying (1.11) and define z := u − ϕ the
difference of the two multi-solitons so that

(3.5) ∂t z = i
(
∆z + f

(
|z + ϕ|2

)
z +

(
f
(
|z + ϕ|2

)
− f

(
|ϕ|2

))
ϕ
)
,

and

(3.6) ‖z(t)‖H1 = O

(
1

tN

)
, as t → +∞,

for some integer N ≥ 1 to be determined later.

We will show that z = 0. The idea is to practice some kind of modulation of the variable z in order
to ensure some orthogonality relations, needed to make use of the coercivity properties mentioned
before. In other words, we obtain a new function (denoted by z̃) which seems to be adapted to the
proof; this is the aim of subsection 3.1. Then, the control of the modulation parameters allows
us to obtain an estimate of ‖z(t)‖H1 in terms of ‖ z̃(t)‖H1 ; this combined with the estimate of the
derivative of some kind of Weinstein functional Fz̃ (that we introduce in paragraph 3.2.1) enables
us finally to see that z̃ = 0.

3.1. Change of function to ensure a coercivity property in the stable case.

3.1.1. Introduction of a new variable. We introduce a new function z̃ on [T,+∞) × Rd for T suf-
ficiently large by

(3.7) ∀ (t, x) ∈ [T,+∞) × Rd, z̃(t, x) := z(t, x) +
K∑
k=1

(iak(t)Rk(t, x) + bk(t) · ∇Rk(t, x)) ,

where ak(t) ∈ R and bk(t) ∈ Rd are chosen so that

(3.8) ∀ k ∈ {1, . . . ,K}, ∀ i ∈ {1, . . . , d},




Im

∫
Rd

z̃Rk dx = 0

Re

∫
Rd

z̃∂xi Rk dx = 0.

Existence of ak(t) and bk(t) for t large enough follows from:
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Lemma 3.2. For t large enough, and for all k = 1, . . . ,K , ak(t) and bk(t) are uniquely determined.

Moreover, t 7→ ak(t) and t 7→ bk(t) are differentiable in the sense of distributions and

(3.9) |ak(t)|, |bk(t)| ≤ C‖z(t)‖L2,

(3.10) |a′
k(t)|, |b

′
k(t)| ≤ C‖z(t)‖H1 .

Proof of Lemma 3.2. Let us introduce the symmetric block matrix

M(t) :=



A0,0(t) B1,1(t) · · · B1,d(t)
tB1,1(t) A1,1(t) · · · A1,d(t)

...
...

. . .
...

tB1,d(t) Ad,1(t) · · · Ad,d(t)


,

where Ai, j (t) and B1, j(t) are K × K-matrices with real entries defined by

A0,0 =

[
Re

∫
Rd

RkRl dx

]
(k,l)

,

∀ (i, j) ∈ {1, . . . , d}2, Ai, j =

[
Re

∫
Rd

∂xi Rk∂x j
Rl dx

]
(k,l)

,

∀ j ∈ {1, . . . , d}, B1, j =

[
Im

∫
Rd

∂x j
RkRl dx

]
(k,l)

.

Set also
x(t) =t

[
a1, . . . , aK, b1,1, . . . , bK,1, . . . , b1,d, . . . , bK,d

]
and

y(t) = −t [y0, y1, . . . , yd] ,
where

y0 =

[
Im

∫
Rd

zR1 dx, . . . , Im

∫
Rd

zRK dx

]
and for all i = 1, . . . , d,

yi =

[
Re

∫
Rd

z∂xi R1 dx, . . . ,Re

∫
Rd

z∂xi RK dx

]
.

Then relations (3.8) rewrite clearly
M(t)x(t) = y(t).

Consequently, we have to show that det M(t) , 0 for t large enough to ensure existence and unique-
ness of ak(t) and bk(t) for those values of t. To do this, observe that

Re

∫
Rd

Rk(t)Rl(t) dx =




∫
Rd

Q2
ωk

dx if k = l

O
(
e−γt

)
if k , l,

Re

∫
Rd

∂xi Rk(t)∂x j
Rl(t) dx =




∫
Rd

{
∂xiQωk

∂x j
Qωk

+

vi,kvj,k

4
Q2

ωk

}
dx if k = l

O
(
e−γt

)
if k , l,

Im

∫
Rd

∂xi Rk(t)Rl(t) dx =



vi,k

2

∫
Rd

Q2
ωk

dx if k = l

O
(
e−γt

)
if k , l.
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Let us now compute det(M(t)). For all k = 1, . . . ,K , let Lk denote the k-th line of the block
matrix [

A0,0(t) B1,1(t) · · · B1,d(t)
]
.

For all i = 1, . . . , d, and for all k = 1, . . . ,K , replacing the k-th line Li,k of the block matrix[
tB1,i(t) Ai,1(t) · · · Ai,d(t)

]
by Li,k − vi,k

2 Lk , we obtain det(M(t)) = det(N(t)) where

N(t) :=



A0,0(t) B1,1(t) · · · B1,d(t)
C1(t) D1,1(t) · · · D1,d(t)
...

...
. . .

...

Cd(t) Dd,1(t) · · · Dd,d(t)


and Ci(t) has entries zero on the diagonal and O(e−γt ) everywhere else and Di, j has entries∫

Rd

∂xiQωk
∂x j

Qωk
dx

on the diagonal and O(e−γt ) everywhere else.
Thus

(3.11) det(M(t)) =
(

K∏
k=1

∫
Rd

Q2
ωk

(x) dx

)
det(D(t)) + O(e−γt ),

where D(t) is the sub-matrix of N(t) with block matrices Di, j (t).
Moreover for all Y = (yi,k ) ∈ RdK different from 0, we have

tY D(t)Y =
d∑

i, j=1

K∑
k=1

(∫
Rd

∂xiQωk
∂x j

Qωk
dx

)
yi,k yj,k + O(e−γt )

=

K∑
k=1

∫
Rd

(
d∑
i=1

yi,k∂xiQωk

)2

dx + O(e−γt )

which is a positive quantity for large values of t since for all k, the d vectors ∂xiQωk
, i = 1, . . . , d

are linearly independent (this can be seen using that Qωk
is radial but it is in fact also related to a

more general result corresponding to Proposition 3.23 in Appendix).
Hence, for all t large enough, det(D(t)) > 0, and also det(M(t)) > 0 by (3.11). In particular, M(t)
is invertible. Applying Cramer’s formula, we obtain an explicit expression of ak(t) and bk(t) in
terms of z(t), from which we derive the content of Lemma 3.2. �

Even if it means taking a larger T1, we can suppose that the preceding lemma holds on [T1,+∞).
Then it results also immediately that

(3.12) ∀ t ≥ T1, ‖z(t)‖H1 ≤ ‖ z̃(t)‖H1 + C

K∑
k=1

(
|ak(t)| + |bk(t)|

)
.

and

(3.13) ∀ t ≥ T1, ‖ z̃(t)‖H1 ≤ C‖z(t)‖H1 .
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3.1.2. The statement of a coercivity property in terms of the new variable. In this paragraph, we
come to some crucial inequality, on which the proof is essentially based. First of all, let us define
some notations, and particularly well-chosen cut-off functions.

By a classical argument given in [27, Claim 1], we can assume (without loss of generality) that

(3.14) v1,1 < v2,1 < · · · < vK,1.

Now let A0 ∈
]
0, 1

2 mink∈{2,...,K }{vk,1 − vk−1,1}
[

and define

ψ : R → R

x 7→




1 if x < −A0

©«
∫ A0

−A0

e
−

A2
0

A2
0
−y2

dy
ª®¬
−1 ∫ A0

x

e
−

A2
0

A2
0
−y2

dy if − A0 ≤ x ≤ A0

0 if x > A0,

which is obviously a smooth bounded non-increasing function.

For all k ∈ {1, . . . ,K − 1}, let σk := 1
2

(
vk,1 + vk+1,1

)
and ξk := 1

2

(
x0
k,1 + x0

k+1,1

)
. Then define on

R × Rd
ψ0 : (t, x) 7→ 0

ψk : (t, x) 7→ ψ
( x1 − ξk − σkt

t

)
for k ∈ {1, . . . ,K − 1}

ψK : (t, x) 7→ 1

and also K functions on R × Rd by

∀ k ∈ {1, . . . ,K}, φk := ψk − ψk−1.

We can check that, for large values of t, φk(t, ·) has a smooth profile localized at the "neighbor-
hood" of the k-th solitary wave; more precisely we have

φ1(t, x) =
{
1 if x1 < ξ1 + (σ1 − A0)t
0 if x1 > ξ1 + (σ1 + A0)t,

for all k = 2, . . . ,K − 1:

φk(t, x) =
{
1 if ξk−1 + (σk−1 + A0)t < x1 < ξk + (σk − A0)t
0 if x1 < ξk−1 + (σk−1 − A0)t or x1 > ξk + (σk + A0)t,

and

φK (t, x) =
{
1 if ξK−1 + (σK−1 + A0)t < x1

0 if x1 < ξK−1 + (σK−1 − A0)t.
Besides, for large values of t, the following inequalities hold owing to the decay properties of Rk

and the support properties of φ j and its derivatives.

Lemma 3.3. Even if it means reducing γ > 0 so that

γ < min

{√
ωk

4

(
vj,1 − vj−1,1

2
− A0

)
, k = 1, . . . ,K, j = 2, . . . ,K

}
,

we have:

∀ j , k,
(
|Rk(t, x)| + |∂x1 Rk(t, x)|

)
|φ j(t, x)| ≤ Ce−γte−

√
ωk
4 |x−vk t |(3.15)

∀ j,
(
|Rj(t, x)| + |∂x1 Rj(t, x)| + |∂tRj(t, x)|

)
|φ j(t, x) − 1| ≤ Ce−γte−

√
ω j

4 |x−v j t |(3.16)
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∀ j, |∂x1φ j(t, x)| + |∂3
x1
φ j(t, x)| + |∂tφ j(t, x)| ≤ C

t
.(3.17)

∀ j, k,
(
|Rk(t, x)| + |∂x1 Rk(t, x)|

) ��∂x1φ j(t, x)
�� ≤ Ce−γte−

√
ωk
4 |x−vk t | .(3.18)

Proof. The proof, postponed in Appendix, is similar to that of Combet [5, Proof of Lemma 3.9,
Appendix A]. �

Let us introduce the following Weinstein energy functional which is inspired from Martel, Merle
and Tsai [28] for dimensions 1 to 3:

(3.19) H(t) :=
K∑
k=1

∫
Rd

{
|∇z̃ |2 −

(
f
(
|Rk |2

)
| z̃ |2 + 2Re(Rk z̃)2 f ′

(
|Rk |2

))

+

(
ωk +

|vk |2
4

)
| z̃ |2 − vk · Im

(
∇z̃ z̃

)}
φk(t, x) dx.

One of the main features concerning H is the following coercivity property, which turns out to be
a key ingredient in our matter.

Proposition 3.4. There exists C > 0 such that

(3.20) ∀ t ≥ T1, C‖ z̃(t)‖2
H1 −

1

C

K∑
k=1

(
Re

∫
Rd

z̃(t)Rk(t) dx

)2

≤ H(t).

Proof. This result follows from our assumption (H3), from (3.8), and an immediate adaptation to
all dimensions of the proof given for the one-dimensional case in [28, appendix B] which consists
in localizing in some sense each version of (H3) for all k = 1, . . . ,K . �

3.2. Proof of some needed estimates. This subsection, which is probably the most technical one,
precises the tools and estimates which will allow us to make use of Proposition 3.4 and actually to
conclude the proof of uniqueness in subsection 3.3. It consists in giving some controls of H(t), of
the scalar products Re

∫
Rd

z̃(t)Rk(t) dx, and also of the modulation parameters ak(t) and bk(t).

3.2.1. Control of H. We typically improve the a priori control of H by O
(
‖ z̃‖2

H1

)
by derivation

of the functional. Actually, for the sake of simplification, we will compute the derivative of the
following related functional H̃ : [T1,+∞) → R defined by ∀ t ≥ T1,

(3.21) H̃(t) =
K∑
k=1

∫
Rd

{
|∇z̃ |2 −

(
F(| z̃ + ϕ|2) − F(|ϕ|2) − 2Re(z̃ϕ) f (|ϕ|2)

)

+

(
ωk +

|vk |2
4

)
| z̃ |2 − vk · Im

(
∇z̃ z̃

)}
φk(t, x) dx.

(Recall that F(r) =
∫ r

0
f (ρ) dρ (1.12).)

The next proposition, which compares H and H̃, justifies that it suffices to control H̃ in order to
obtain a similar estimate for H.

Proposition 3.5. We have

(3.22) H(t) = H̃(t) + O
(
‖ z̃(t)‖3

H1

)
.
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Proof. Since F is C 3, we have the following Taylor expansion

(3.23) F(| z̃ + ϕ|2) − F(|ϕ|2) − 2Re(z̃ϕ) f (|ϕ|2) = | z̃ |2 f (|ϕ|2) + 2Re(z̃ϕ)2 f ′(|ϕ|2) +O(| z̃ |3 + | z̃ |6),

uniformly with respect to both variables t and x. Let us underline that, for d ≥ 2, one can not
claim at this stage whether z(t) or z̃(t) belong to L∞(Rd) and even less whether z or z̃ belong to
L∞ (

[T1,+∞), L∞(Rd)
)
, which prevents us from simplifying O

(
| z̃ |3 + | z̃ |4 + | z̃ |5 + | z̃ |6

)
by O

(
| z̃ |3

)
.

Moreover (3.4), (3.15), and (3.16) lead to

(3.24)

∫
Rd

{
| z̃ |2 f

(
|ϕ|2

)
+ 2Re(z̃ϕ)2 f ′

(
|ϕ|2

)}
dx

=

∫
Rd

{
K∑
k=1

(
| z̃ |2 f

(
|ϕ|2

)
+ 2Re(z̃ϕ)2 f ′

(
|ϕ|2

))
φk

}
dx

=

∫
Rd

{
K∑
k=1

(
| z̃ |2 f

(
|Rk |2

)
+ 2Re

(
z̃Rk

)2
f ′

(
|Rk |2

))
φk

}
dx + O

(
e−γt ‖ z̃‖2

H1

)

=

∫
Rd

{
K∑
k=1

(
| z̃ |2 f

(
|Rk |2

)
+ 2Re

(
z̃Rk

)2
f ′

(
|Rk |2

))}
dx + O(e−γt ‖ z̃‖2

H1).

We obtain (3.22) as a direct consequence of (3.23), (3.24), the embeddings H1(Rd) →֒ L3(Rd) and
H1(Rd) →֒ L6(Rd) which are indeed available for d ≤ 3, and (3.13). �

Now, we state and prove the crucial

Proposition 3.6. The derivative of H̃ is given by

(3.25)
d

dt
H̃(t) = Main(t) + O

(
e−γt ‖ z̃(t)‖H1 ‖z(t)‖H1 + ‖ z̃(t)‖H1 ‖z(t)‖2

H1

)
, as t → +∞.

where

Main(t) :=
K∑
k=1

(
ωk +

|vk |2
4

) (∫
Rd

| z̃ |2∂tφk dx + 2

∫
Rd

Im(∂x1 z̃ z̃)∂x1φk dx

)

−
K∑
k=1

vk,1

(
2

∫
Rd

|∇z̃ |2∂x1φk dx − 1

2

∫
Rd

| z̃ |2∂3
x1
φk dx

)

−
K∑
k=1

vk ·
∫
Rd

Im
(
∇z̃ z̃

)
∂tφk dx

= O

(
1

t
‖ z̃(t)‖2

H1

)
.

Remark 3.7. The bound O
(

1
t
‖ z̃(t)‖2

H1

)
in above is the one which constrains us to prove uniqueness

in the class satisfying (1.11). In order to prove unconditionnal uniqueness, one would need to

improve this bound to O
(
α(t)‖ z̃(t)‖2

H1

)
, where α(t) is integrable in time (in the KdV context, [26]

proves it with α(t) = e−γt for some γ > 0).

Let us begin with some preliminaries (Lemma 3.8 and Lemma 3.9 below), which are needed to
obtain Proposition 3.6.
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Lemma 3.8 (Expression of ∂t z̃). We have

(3.26)

∂t z̃ = i
(
∆z̃ + f (|z + ϕ|2)z +

(
f (|z + ϕ|2) − f (|ϕ|2)

)
ϕ
)

+ i

K∑
k=1

{
iak f (|Rk |2)Rk + bk · ∇

(
f (|Rk |2)Rk)

)}
+

K∑
k=1

{
ia′

k Rk + b′k · ∇Rk

}

= i
(
∆z̃ + f (|ϕ|2)z̃ +

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕ
)
+

K∑
k=1

{
ia′

k Rk + b′k · ∇Rk

}
+ g,

where g is a function of t and x such that

(3.27)

∫
Rd

|g |
(
| z̃ | + |∇z̃ | + |∆z̃ |

)
dx ≤ C

(
e−γt ‖z‖H1 ‖ z̃‖H1 + ‖z‖2

H1 ‖ z̃‖H1

)
.

Proof. The first equality concerning ∂t z̃ is quite immediate. Let us precise how to obtain the second
equality. Decomposing

f (|z + ϕ|2)z = f (|ϕ|2)z +
(
f (|z + ϕ|2) − f (|ϕ|2)

)
z,

and using the expression of z in terms of z̃ and the ak and bk , k = 1, . . . ,K given by (3.7), we have
that

(3.28)

f (|z + ϕ|2)z +
K∑
k=1

{
iak f (|Rk |2)Rk + bk · ∇

(
f (|Rk |2)Rk)

)}

= f (|ϕ|2)z̃ +
K∑
k=1

{
iak

(
f (|Rk |2) − f (|ϕ|2)

)
Rk + bk · ∇Rk

(
f (|Rk |2) − f (|ϕ|2)

)}

+

K∑
k=1

bk · ∇( f (|Rk |2))Rk +
(
f (|z + ϕ|2) − f (|ϕ|2)

)
z

Moreover,
(3.29)
f (|z + ϕ|2) − f (|ϕ|2) = f (| z̃ + ϕ|2) − f (|ϕ|2) − 2Re

(
(z̃ − z)ϕ

)
f ′(|ϕ|2) + O(|z |2 + |z |4)

= f (| z̃ + ϕ|2) − f (|ϕ|2) − 2
K∑
k=1

Re
(
bk · ∇RkRk

)
f ′(|Rk |2) + h + O(|z |2 + |z |4)

= f (| z̃ + ϕ|2) − f (|ϕ|2) −
K∑
k=1

bk · ∇
(
f (|Rk |2

)
+ h̃,

where h and h̃ satisfy the same property (3.27) as g due to (3.4) and (3.15). Lemma 3.8 is now a
consequence of (3.28) and (3.29). �

The following lemma holds also under our hypotheses.

Lemma 3.9. There exists C > 0 such that:�� f (|z + ϕ|2) − f (|ϕ|2)
�� + �� f ′(|z + ϕ|2) − f ′(|ϕ|2)

�� ≤ C
(
|z |2 + |z |

)
.

Proof. First, notice that for dimension one, one can make use of the Sobolev embedding H1(R) →֒
L∞(R) and the locally Lipschitz property of f and f ′, which immediately implies the desired in-
equalities.
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We concentrate now on d ≥ 2. In that case, 1 +
4

d
≤ 3, thus p ≤ 3 and by (1.18),

∀ s ≥ 1, | f ′(s)| ≤ Cs
p−3

2 ≤ C.

Similarly,

∀ s ≥ 1, | f ′′(s)| ≤ Cs
p−5

2 ≤ C.

Since f ′ and f ′′ are continuous on [0, 1], it follows that

∀ s ≥ 0, | f ′(s)| + | f ′′(s)| ≤ C

(by possibly taking a larger C). Now, Lemma 3.9 follows from the application of the mean value
theorem to s 7→ f ′(s2), between |ϕ|(t, x) and |z + ϕ|(t, x) and from the fact that |z + ϕ|2 − |ϕ|2 =
|z |2 + 2Re(zϕ). �

We are now in a position to prove (3.25).

Proof of Proposition 3.6. The proof decomposes essentially into two parts. We first derive suc-
cessively each term constituting H̃ by means of Lemma 3.8. For this, integrations by parts are
sometimes necessary in order not to keep terms carrying second spatial derivatives for z. Then we
put together suitable terms in the expression of d

dt
H̃ in order to get better estimates than the a priori

control by O
(
‖ z̃(t)‖2

H1

)
. Besides, we put annotations for the different terms we have to work on

for ease of reading; terms associated with the same letter A, B, or C are to be gathered.

Step 1: Derivation of H̃

• Using Lemma 3.8, one computes

d

dt

∫
Rd

|∇z̃ |2 dx = 2 Re

∫
Rd

∇z̃t · ∇z̃ dx

= 2 Im

∫
Rd

f (|ϕ|2)z̃∆z̃ dx + 2 Im

∫
Rd

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕ∆z̃ dx

− 2 Re

∫
Rd

K∑
k=1

{
ia′

k Rk + b′k · ∇Rk

}
∆z̃ dx + O

(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)
.

Similarly one obtains directly

d

dt

∫
Rd

{
F(| z̃ + ϕ|2) − F(|ϕ|2) − 2Re(z̃ϕ) f (|ϕ|2)

}
dx

= 2 Re

∫
Rd

ϕtϕ
(
f (| z̃ + ϕ|2) − f (|ϕ|2) − 2Re(z̃ϕ) f ′(|ϕ|2)

)
dx

+ 2 Re

∫
Rd

z̃t z̃ f (| z̃ + ϕ|2) dx + 2 Re

∫
Rd

(ϕt z̃ + z̃tϕ)
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

= − 2 Im

∫
Rd

∆z̃ z̃ f (| z̃ + ϕ|2) dx

− 2 Im

∫
Rd

∆ϕϕ
(
f (| z̃ + ϕ|2) − f (|ϕ|2) − 2Re(z̃ϕ) f ′(|ϕ|2)

)
dx

− 2 Im

∫
Rd

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕz̃( f (| z̃ + ϕ|2) dx
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− 2 Im

∫
Rd

∆z̃ϕ
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

− 2 Im

∫
Rd

(
∆ϕ + f (|ϕ|2)ϕ

)
z̃
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

− 2 Im

∫
Rd

f (|ϕ|2)z̃ϕ
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

+ 2 Re

∫
Rd

K∑
k=1

(
ia′

kRk + b′k · ∇Rk

) (
z̃ f (| z̃ + ϕ|2) + ϕ

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

) )
dx

+ O
(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)
.

Thus, we have at this point

d

dt

∫
Rd

{
|∇z̃ |2 −

(
F(| z̃ + ϕ|2) − F(|ϕ|2) − 2Re(z̃ϕ) f (|ϕ|2)

)}
dx

= 2 Im

∫
Rd

∆ϕϕ
(
f (| z̃ + ϕ|2) − f (|ϕ|2) − 2Re(z̃ϕ) f ′(|ϕ|2)

)
dx(B1)

+ 2 Im

∫
Rd

(
∆ϕ + f (|ϕ|2)ϕ

)
z̃
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx(A1)

− 2 Re

∫
Rd

K∑
k=1

(
ia′

k Rk + b′k · ∇Rk

) (
∆z̃ + z̃ f (| z̃ + ϕ|2)

)
dx(C1)

− 2 Re
K∑
k=1

∫
Rd

b′k · ∇RkRk

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx(C2)

+ O
( (

e−γt + ‖z‖H1

)
‖z‖H1 ‖ z̃‖H1

)
.

• We differentiate then the next term appearing in the expression of H̃. For all k = 1, . . . ,K ,(
ωk +

|vk |2
4

)
d

dt

∫
Rd

| z̃ |2φk dx

=

(
ωk +

|vk |2
4

) ∫
Rd

| z̃ |2∂tφk dx + 2

(
ωk +

|vk |2
4

) ∫
Rd

Im
(
∂x1 z̃ z̃

)
∂x1φk dx(Main1,k )

− 2

(
ωk +

|vk |2
4

) ∫
Rd

Im(ϕz̃)( f (z̃ + ϕ|2) − f (|ϕ|2))φk dx(A2,k)

+ 2

(
ωk +

|vk |2
4

)
Re

∫
Rd

(
ia′

k Rk + b′k · ∇Rk

)
z̃φk dx(C3,k)

+ O
(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)
.

• To finish with, using integrations by parts and (3.18), we obtain for all k = 1, . . . ,K ,

d

dt

∫
Rd

Im(vk · ∇z̃ z̃)φk dx

= − 2 vk · Im

∫
Rd

z̃t∇z̃φk dx − vk · Im

∫
Rd

z̃t z̃∇φk dx + vk · Im
∫
Rd

∇z̃ z̃∂tφk dx

= 2 vk,1

∫
Rd

|∇z̃ |2 ∂x1φk dx − vk,1

2

∫
Rd

| z̃ |2∂3
x1
φk dx + vk ·

∫
Rd

Im
(
∇z̃ z̃

)
∂tφk dx(Main2,k )
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+ 2 vk ·
∫
Rd

Re
(
∇ϕz̃)

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
φk dx(A3,k)

+ vk ·
∫
Rd

∇( f (|ϕ|2))| z̃ |2φk dx(B2,k)

− 2 vk · Re

∫
Rd

∇
(
ϕz̃

) (
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
φk dx(B3,k)

− 2 vk · Im

∫
Rd

(
ia′

k Rk + b′k · ∇Rk

)
∇z̃φk dx(C4,k)

+ O
(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)
.

We now continue the proof by showing how the corresponding terms put together can yield es-
timation (3.25).

Step 2: Estimate concerning H̃ ′

We first deal with the terms A1, A2,k , and A3,k (k = 1, . . . ,K). We see that

(3.30)

�����A1 − 2
K∑
k=1

Im

∫
Rd

(
∆Rk + f (|Rk |2)Rk

)
z̃
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

�����
≤ 2

����
∫
Rd

∆(ϕ − R)z̃
(

f (| z̃ + ϕ|2) − f (|ϕ|2)
)

dx

����
+

∫
Rd

�� f (|ϕ|2) − f (|R|2)| |ϕz̃
���� f (| z̃ + ϕ|2) − f (|ϕ|2)

�� dx

+

∫
Rd

�� f (|R|2)(ϕ − R)z̃
���� f (| z̃ + ϕ|2) − f (|ϕ|2)

�� dx

+

K∑
k=1

∫
Rd

�� ( f (|R|2) − f (|Rk |2)
)

Rk | | z̃
���� f (| z̃ + ϕ|2) − f (|ϕ|2)

�� dx.

As for the proof of Lemma 3.9, by the mean value theorem, we observe also that

(3.31)




�� f (|ϕ|2) − f (|R|2)
�� ≤ C

(
|ϕ − R|2 + |ϕ − R|

)
�� ( f (|R|2) − f (|Rk |2)

)
Rk

�� ≤ C
∑
j,k

|RjRk |.

Moreover, we deduce from Lemma 3.9 that

(3.32)

∫
Rd

��∆(ϕ − R)z̃
���� f (| z̃ + ϕ|2) − f (|ϕ|2)

�� dx ≤ Ce−γt
(
‖ z̃‖3

H1 + ‖ z̃‖2
H1

)
≤ Ce−γt ‖ z̃‖2

H1 .

Indeed, in order to establish the preceding inequality, note that :

• for d ∈ {2, 3}, we write∫
Rd

��∆(ϕ − R)z̃
���� f (| z̃ + ϕ|2) − f (|ϕ|2)

�� dx ≤ C

∫
Rd

��∆(ϕ − R)
��( | z̃ |3 + | z̃ |2

)
dx

≤ C‖∆(ϕ − R)‖L2

(
‖ z̃‖3

L6 + ‖ z̃‖2
L4

)
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and we use the embeddings H1(R2) →֒ Lq(R2) for each q ∈ [2,+∞), and H1(R3) →֒
L6(R3).

• for d = 1, we make use of one integration by parts (in order to have a control by ‖∇(ϕ −
R)‖L2 , hence by ‖ϕ − R‖H1) and of the embedding H1(R) →֒ L∞(R).

Hence, gathering (3.30), (3.31), (3.32), and using (3.4), it results

(3.33)

�����A1 − 2
K∑
k=1

Im

∫
Rd

(
∆Rk + f (|Rk |2)Rk

)
z̃
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

����� ≤ Ce−γt ‖ z̃‖2
H1 .

In a similar way, for all k = 1, . . . ,K ,

(3.34)

����A2,k + 2

(
ωk +

|vk |2
4

) ∫
Rd

Im(Rk z̃)
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
φk dx

����
≤ 2

(
ωk +

|vk |2
4

) ∫
Rd

��(ϕ − R)z̃
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
φk

�� dx

+ 2

(
ωk +

|vk |2
4

) ∑
j,k

∫
Rd

��Rj z̃
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
φk

�� dx

≤ C

∫
Rd

��ϕ − R
��( | z̃ |3 + | z̃ |2

)
dx + C

∑
j,k

∫
Rd

��Rjφk
��( | z̃ |3 + | z̃ |2

)
dx

≤ Ce−γt ‖ z̃‖2
H1 .

We have then for all k = 1, . . . ,K ,

(3.35)

����A3,k − 2vk ·
∫
Rd

Re(∇Rk z̃)
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
φk dx

����
≤ C

∫
Rd

|∇(ϕ − R)|
(
| z̃ |3 + | z̃ |2

)
φk dx + C

∑
j,k

∫
Rd

��∇Rjφk
��( | z̃ |3 + | z̃ |2

)
dx

≤ Ce−γt ‖ z̃‖2
H1 .

Let us gather (3.33), (3.34), and (3.35). Observing that

(3.36)



∂tRk = −vk · ∇Rk + i

(
ωk +

|vk |2
4

)
Rk

∂tRk = i
(
∆Rk + f (|Rk |2)Rk

)
,

we notice that

Im
(
(∆Rk + f (|Rk |2)Rk)z̃

)
−

(
ωk +

|vk |2
4

)
Im

(
Rkφk z̃

)
−vk ·Re

(
∇Rkφk z̃

)
= −Re

(
∂tRk(1 − φk)z̃

)
.

As a consequence of (3.16), we obtain a control of∫
Rd

{
2Im

(
(∆Rk + f (|Rk |2)Rk)z̃

)
− 2

(
ωk +

|vk |2
4

)
Im

(
Rkφk z̃

)

− 2vk · Re
(
∇Rkφk z̃

) (
f (| z̃ + ϕ|2) − f (|ϕ|2)

)}
dx

by Ce−γt ‖ z̃‖2
H1 .
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Finally,

(3.37)

�����A1 +

K∑
k=1

{
A2,k − A3,k

}����� ≤ Ce−γt ‖ z̃‖2
H1 .

Let us focus now on the terms identified by the letter B. We observe that

(3.38) B2,k = −vk ·
∫
Rd

f (| z̃ + ϕ|2)∇(| z̃ |2)φk dx + O
(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)
.

Then, we obtain
(3.39)

B2,k + B3,k = − vk · Re

∫
Rd

∇
(
| z̃ + ϕ|2

)
f (| z̃ + ϕ|2)φk dx + vk · Re

∫
Rd

∇
(
|ϕ|2

)
f (| z̃ + ϕ|2)φk dx

+ 2vk · Re

∫
Rd

∇(ϕz̃) f (|ϕ|2)φk dx + O
(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)
.

Notice next that

vk · Re
(
∇RkRk

)
= Im

(
∆RkRk

)
,

which allows us to rewrite

B1 − 2
K∑
k=1

vk · Re

∫
Rd

∇RkRk

(
f (| z̃ + ϕ|2) − f (|ϕ|2) − 2Re(z̃ϕ) f ′(|ϕ|2)

)
dx

as a sum of quantities in which the differences between ϕ and R or the products ∇RkRj for j , k

appear. Use moreover

(1) on the one hand,

| z̃ + ϕ|2 − |ϕ|2 − 2Re(ϕz̃) = | z̃ |2,
and the following Taylor-Lagrange inequality�� f (| z̃ + ϕ|2) − f (|ϕ|2) − (| z̃ + ϕ|2 − |ϕ|2) f ′(|ϕ|2)

��(t, x)

≤ 1

2

(
| z̃(t, x) + ϕ(t, x)|2 − |ϕ(t, x)|2

)2
sup

[ |ϕ(t,x) |2, |z̃(t,x)+ϕ(t,x) |2]
| f ′′ |

which implies�� f (| z̃ + ϕ|2) − f (|ϕ|2) − (| z̃ + ϕ|2 − |ϕ|2) f ′(|ϕ|2)
��(t, x) ≤ C

(
| z̃(t, x)|4 + | z̃(t, x)|2)

because f ′′ is bounded due to (1.18),
(2) on the other, the following inequalities:

• for d = 1: for all ψ ∈ H1(Rd),∫
Rd

|∇ψ | |∇z̃ | | z̃ | dx ≤ ‖∇z̃‖L2 ‖∇ψ‖L2 ‖ z̃‖L∞ ≤ C‖ z̃‖2
H1 ‖ψ‖H1,∫

Rd

|∇ψ |2 | z̃ |2 dx ≤ ‖ z̃‖2
H1 ‖∇ψ‖2

L2 ≤ C‖ z̃‖2
H1 ‖ψ‖2

H1,∫
Rd

|∇ψ | |∇ϕ| | z̃|4 dx ≤ ‖ z̃‖4
H1 ‖∇ψ‖L2 ‖∇ϕ‖L2 ≤ C‖ z̃‖4

H1 ‖ψ‖H1 ‖ϕ‖H1,
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• for d ∈ {2, 3}: for all ψ ∈ H2(Rd),∫
Rd

|∇ψ | |∇z̃ | | z̃ | dx ≤ ‖∇z̃‖L2 ‖∇ψ‖L4 ‖ z̃‖L4 ≤ C‖ z̃‖2
H1 ‖ψ‖H2,∫

Rd

|∇ψ |2 | z̃ |2 dx ≤ ‖ z̃‖2
L4 ‖∇ψ‖2

L4 ≤ C‖ z̃‖2
H1 ‖ψ‖2

H2,∫
Rd

|∇ψ | |∇ϕ| | z̃|4 dx ≤ ‖ z̃‖
2
3

L6 ‖∇ψ‖
1
6

L6 ‖∇ϕ‖
1
6

L6 ≤ C‖ z̃‖4
H1 ‖ψ‖H2 ‖ϕ‖H2.

Remark 3.10. Regarding the higher dimensions in order to prove Proposition 1.9, one would make

use of the following inequality, valid for d ≥ 3: for all ψ ∈ H ⌊ d
2 ⌋+1(Rd), for all ψ̃ ∈ H1(Rd),∫

Rd

|∇ψ | |∇ψ̃ | | z̃ | dx ≤ ‖ z̃‖
L

2d
d−2

‖∇ψ̃‖L2 ‖∇ψ‖Ld ≤ C‖ z̃‖H1 ‖ψ̃‖H2 ‖ψ‖
H

⌊ d2 ⌋+1 .

Then we conclude that

(3.40)

�����B1 − 2
K∑
k=1

vk · Re

∫
Rd

∇RkRk

(
f (| z̃ + ϕ|2) − f (|ϕ|2) − 2Re(z̃ϕ) f ′(|ϕ|2)

)
dx

�����
≤ Ce−γt

(
‖ z̃‖4

H1 + ‖ z̃‖2
H1

)
≤ Ce−γt ‖ z̃‖2

H1 .

Thus, from (3.39) and (3.40), we deduce that:�����B1 −
K∑
k=1

(
B2,k + B3,k

)����� ≤ Ce−γt ‖ z̃‖2
H1 + C

(
(e−γt + ‖z‖H1)‖z‖H1 ‖ z̃‖H1

)

+

K∑
k=1

����vk · Re

∫
Rd

∇
(
|Rk |2 − |ϕ|2

)
f (| z̃ + ϕ|2)φk dx

����
+

K∑
k=1

����−vk ·
∫
Rd

∇
(
|ϕ|2

)
f (|ϕ|2) dx + vk · Re

∫
Rd

∇(| z̃ + ϕ|2) f (| z̃ + ϕ|2) dx

����
≤ C

(
e−γt + ‖z‖H1

)
‖z‖H1 ‖ z̃‖H1 .

(3.41)

Notice that we have used (3.13),∫
Rd

∇
(
|ϕ|2

)
f (|ϕ|2) dx = 0, and

∫
Rd

∇
(
| z̃ + ϕ|2

)
f (| z̃ + ϕ|2) dx = 0.

To finish with, we have to obtain estimates for the terms with the letter C involving a′
k

and b′
k
.

Due to (3.10), (3.16), and (3.36), we compute
(3.42)

− 2
K∑
k=1

a′
k

∫
Rd

{
Re

(
iRk∆z̃

)
+ Re

(
iRk z̃

)
−

(
ωk +

|vk |2
4

)
Re

(
iRk z̃φk

)
− vk · Im

(
iRk∇z̃φk

)}
dx

= 2
K∑
k=1

a′
k Im

∫
Rd

{
z̃

(
∆Rk + Rk f

(
|Rk |2

)
−

(
ωk +

|vk |2
4

)
Rkφk − ivk · ∇Rkφk

)}
dx

+ O
(
(e−γt + ‖ z̃‖H1)‖ z̃‖H1 ‖z‖H1

)
= O

( (
e−γt + ‖ z̃‖H1

)
‖ z̃‖H1 ‖z‖H1

)
.
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On the other hand,
(3.43)

− 2
K∑
k=1

b′k ·
∫
Rd

{
Re(∇Rk∆z̃) + Re(∇Rk z̃ f (| z̃ + ϕ|2)) + Re

(
∇RkRk

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

) )

−
(
ωk +

|vk |2
4

)
Re

(
∇Rk z̃φk

)
− Im

(
vk · Rk∇z̃φk

) }
dx

= 2
K∑
k=1

b′k · Re

∫
Rd

{
∇z̃

(
∆Rk + Rk f

(
|Rk |2

)
−

(
ωk +

|vk |2
4

)
Rkφk − ivk · ∇Rkφk

)}
dx

+ 2
K∑
k=1

b′k ·
∫
Rd

{
Re

(
Rk z̃∇

(
f
(
|Rk |2

)))
− Re

(
∇RkRk

) (
f
(
| z̃ + ϕ|2

)
− f

(
|ϕ|2

))}
dx

+ O
(
(e−γt + ‖ z̃‖H1)‖ z̃‖H1 ‖z‖H1

)
= O

(
(e−γt + ‖ z̃‖H1)‖ z̃‖H1 ‖z‖H1

)
,

again due to (3.10), (3.16), and (3.36). Consequently, (3.42) and (3.43) lead to

(3.44) C1 + C2 +

K∑
k=1

{C3,k − C4,k} = O
( (

e−γt + ‖ z̃‖H1

)
‖ z̃‖H1 ‖z‖H1

)
.

Proposition 3.6 follows from Step 1, from estimates (3.37), (3.41), and (3.44), and from the obser-
vation that

Main =

K∑
k=1

(
Main1,k − Main2,k

)
= O

(
1

t
‖ z̃(t)‖2

H1

)

by (3.17). �

3.2.2. Control of the Rk directions. We have the following estimate which expresses that the vari-
ation in time of the real scalar products Re

∫
Rd

z̃(t)Rk(t) dx (which appear in (3.20)) is essentially
of order two in z(t).

Lemma 3.11. For all t ≥ T1,

(3.45)

���� d

dt
Re

∫
Rd

z̃(t)Rk(t) dx

���� ≤ C
(
e−γt ‖z(t)‖H1 + ‖z(t)‖2

H1

)
.

Proof. We notice that

(3.46)

Re

∫
Rd

z̃Rk dx = Re

∫
Rd

zRk dx +

K∑
j=1

Re

∫
Rd

iaj RjRk dx +

K∑
j=1

Re

∫
Rd

bj · ∇RjRk dx

= Re

∫
Rd

zRk dx + akRe

∫
Rd

i |Rk |2 dx + bk · Re

∫
Rd

∇RkRk dx + η(t)

= Re

∫
Rd

zRk dx + η(t),



ON SMOOTHNESS AND UNIQUENESS OF NLS MULTI-SOLITONS 35

where η is a complex-valued function defined on a neighborhood of +∞, differentiable in the sense
of distributions, and such that η′(t) = O

(
e−γt ‖z(t)‖H1

)
. Moreover,

(3.47)

d

dt
Re

∫
Rd

zRk dx = Re

∫
Rd

i
(
∆z + f

(
|z + ϕ|2

)
z +

(
f
(
|z + ϕ|2

)
− f

(
|ϕ|2

))
ϕ
)

Rk dx

+ Re

∫
Rd

−iz
(
∆Rk + f

(
|Rk |2

)
Rk

)
dx

= Re

∫
Rd

i
(

f
(
|ϕ|2

)
− f

(
|Rk |2

))
zRk dx

+ Re

∫
Rd

i
(

f
(
|z + ϕ|2

)
− f

(
|ϕ|2

))
ϕRk dx + O

(
‖z(t)‖2

H1

)
,

where we have used∫
Rd

∆zRk dx =

∫
Rd

z∆Rk dx and
�� f (|z + ϕ|2) − f (|ϕ|2)

�� ≤ C(|z | + |z |2).

By means of �� f (|ϕ|2) − f (|Rk |2)
�� ≤ C

(
|ϕ − R|2 + |ϕ − R| +

∑
j,k

|RjRk |
)

(which is consequence of the boundedness of f ′ and the application of the mean value theorem, as
for the proof of Lemma 3.9), and by means of (2.5) and (3.2), we see that

(3.48)

����Re

∫
Rd

i
(

f (|ϕ|2) − f (|Rk |2)
)

zRk dx

���� ≤ Ce−γt ‖z(t)‖L2 .

Similarly, and noting in addition that

Re
(
iϕRk

)
= Re

(
i((ϕ − R) + (R − Rk))Rk

)
,

we have also

(3.49)

����Re

∫
Rd

i
(

f (|z + ϕ|2) − f (|ϕ|2)
)
ϕRk dx

���� ≤ Ce−γt ‖z(t)‖L2 .

To put it in a nutshell, Lemma 3.11 is now a direct consequence of (3.46), (3.47), (3.48), and
(3.49). �

As a consequence of the preceding lemma, we state:

Corollary 3.12. For all t ≥ T1,

(3.50)

����� d

dt

(
Re

∫
Rd

z̃(t)Rk(t) dx

)2
����� ≤ C

(
e−γt ‖z(t)‖H1 + ‖z(t)‖2

H1

)
‖ z̃(t)‖H1 .

3.2.3. Control of the modulation parameters. At this point, recalling inequality (3.12), it remains
us to obtain estimates for |ak(t)| and |bk(t)|. This is the object of the following result.

Lemma 3.13. For all t ≥ T1,

(3.51) |a′
k(t)| + |b′k(t)| ≤ C

(
e−γt ‖z(t)‖H1 + ‖z(t)‖2

H1 + ‖ z̃(t)‖L2

)
.
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Proof. Due to




∆z̃ = ∆z +

K∑
j=1

(
iaj∆Rj + bj · ∇(∆Rj)

)

∂t z̃ = ∂t z +

K∑
k=1

(
ia′

k Rk + b′k · ∇Rk

)
+

K∑
k=1

(
iak∂tRk + bk · ∇∂tRk

)
∂t z = i

(
∆z + f (|z + ϕ|2)z +

(
f (|z + ϕ|2) − f (|ϕ|2)

)
ϕ
)
,

derivation with respect to t of equality Im
∫
Rd

z̃Rk dx = 0 (3.8) implies:

0 = Im

∫
Rd

∂t z̃Rk dx + Im

∫
Rd

z̃∂tRk dx

= Re

∫
Rd

(
∆z + f (|z + ϕ|2)z +

(
f (|z + ϕ|2) − f (|ϕ|2)

)
ϕ
)
Rk dx

+

K∑
j=1

Im

(
ia′

j

∫
Rd

RjRk dx + b′j ·
∫
Rd

∇RjRk dx + iaj

∫
Rd

∂tRjRk dx + bj ·
∫
Rd

∇∂tRjRk dx

)

− Re

∫
Rd

©«
z +

K∑
j=1

(
iaj Rj + bj · ∇Rj

)ª®¬
(
∆Rk + f (|Rk |2)Rk

)
dx,

or equivalently
(3.52)

0 = O
(
‖z(t)‖2

H1

)
+ Re

∫
Rd

(
f (|ϕ|2) − f (|Rk |2)

)
zRk dx + Re

∫
Rd

(
f (|z + ϕ|2) − f (|ϕ|2)

)
ϕRk dx

+

K∑
j=1

(
a′
jRe

∫
Rd

RjRk dx + b′j · Im

∫
Rd

∇RjRk dx

)

+

K∑
j=1

(
−aj Im

∫
Rd

(
∆Rj + f (|Rj |2)Rj

)
Rk dx + bj · Re

∫
Rd

(
∆Rj + f (|Rj |2)Rj

)
∇Rk dx

)

−
K∑
j=1

(
−aj Im

∫
Rd

Rj

(
∆Rk + f (|Rk |2)Rk

)
dx + bj · Re

∫
Rd

∇Rj

(
∆Rk + f (|Rk |2)Rk

)
dx

)

=

∫
Rd

(
f (|z + ϕ|2) − f (|ϕ|2)

)
|Rk |2 dx + a′

k

∫
Rd

Q2
ωk

dx +
1

2
b′k · vk

∫
Rd

Q2
ωk

dx

+ O
(
‖z(t)‖2

H1 + e−γt ‖z(t)‖H1

)
.

Similarly, exploiting the d-dimensional equality Re
∫
Rd

z̃∇Rk dx = 0 (3.8), we see that

0 = Im

∫
Rd

©«
∆z̃ −

K∑
j=1

iaj∆Rj −
K∑
j=1

bj · ∇∆Rj
ª®¬
∇Rk dx + O

(
‖z(t)‖2

L2

)

− Im

∫
Rd

f (|ϕ|2) ©«
z̃ −

K∑
j=1

iaj Rj −
K∑
j=1

bj · ∇Rj
ª®¬
∇Rk dx
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− Im

∫
Rd

(
f (|z + ϕ|2) − f (|ϕ|2)

)
ϕ∇Rk dx

+

K∑
j=1

[
a′
j Im

∫
Rd

∇RkRj dx + b′j · Re

∫
Rd

∇Rj∇Rk

]

−
K∑
j=1

ajRe

∫
Rd

∆Rj∇Rk dx −
K∑
j=1

ajRe

∫
Rd

f (|Rj |2)Rj∇Rk dx

−
K∑
j=1

bj · Im
∫
Rd

∇(∆Rj )∇Rk dx −
K∑
j=1

bj · Im

∫
Rd

∇
(
f (|Rj |2)Rj

)
∇Rk dx

+ Im

∫
Rd

z̃
(
∇(∆Rk) + ∇

(
f (|Rk |2)Rk

) )
dx,

or equivalently, using∫
Rd

∇
(
f (Q2

ωk
)
)
Q2

ωk
dx = −

d∑
i=1

∫
Rd

f (Q2
ωk

)∂xi (Q2
ωk

) dx

= 0,

(3.53)

0 = O
(
‖z(t)‖2

H1 + e−γt ‖z(t)‖H1

)
+

∫
Rd

(
f (|z + ϕ|2) − f (|ϕ|2)

)
Im

(
∇RkRk

)
dx

+ Im

∫
Rd

z̃∇( f (|Rk |2))Rk dx +
a′
k

2
vk

∫
Rd

Q2
ωk

dx + Re

∫
Rd

[
∇Rk

t∇Rk

]
× b′k dx

= O
(
‖z(t)‖2

H1 + e−γt ‖z(t)‖H1

)
+

∫
Rd

(
f (|z + ϕ|2) − f (|ϕ|2)

)
Im

(
∇RkRk

)
dx

+ Im

∫
Rd

z̃∇
(

f (|Rk |2)
)

Rk dx +
a′
k

2
vk

∫
Rd

Q2
ωk

dx +

∫
Rd

[
∇Qωk

t∇Qωk
+

1

4
vk

t
vkQ2

ωk

]
× b′k dx,

Using a Taylor expansion, Lemma 3.9, and (2.5), we obtain∫
Rd

(
f (|z + ϕ|2 − f (|ϕ|2)

)
Im

(
∇RkRk

)
dx

=

∫
Rd

(
|z + ϕ|2 − |ϕ|2

)
f ′(|ϕ|2)Im

(
∇RkRk

)
dx + O

(
‖z‖2

H1

)

= 2

∫
Rd

Re(zϕ) f ′(|ϕ|2)Im
(
∇RkRk

)
dx + O

(
‖z‖2

H1

)

= 2

∫
Rd

Re(zRk) f ′(|Rk |2)Im
(
∇RkRk

)
dx + O

(
e−γt ‖z‖H1 + ‖z‖2

H1

)
.

Recalling the definition of z̃ (3.7), this reads also as follows:∫
Rd

(
f (|z + ϕ|2 − f (|ϕ|2)

)
Im

(
∇RkRk

)
dx

= 2

∫
Rd

Re
(
z̃Rk

)
f ′(|Rk |2)Im

(
∇RkRk

)
dx + O

(
e−γt ‖z‖H1 + ‖z‖2

H1

)
= O

(
‖ z̃‖L2 + e−γt ‖z‖H1 + ‖z‖2

H1

)
.
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Considering that Im
(
∇RkRk

)
= vk |Rk |2, we deduce then from (3.52) and (3.53) that∫

Rd

[
∇Qωk

t∇Qωk

]
dx × b′k = O

(
‖ z̃‖L2 + e−γt ‖z‖H1 + ‖z‖2

H1

)
vk

2
.

Since
∫
Rd

[
∇Qωk

t∇Qωk

]
dx is a positive definite symmetric matrix (by Proposition 3.23), it is

invertible, so that inequality (3.51) holds for |b′
k
(t)|. Then we conclude that the same inequality is

true for |a′
k
(t)| by (3.52). �

3.3. End of the proof. We now conclude the proof of our uniqueness result, that is Theorem 1.4′

by gathering (3.20) and the different controls obtained in subsection 3.2.
Let us begin with a control of ‖z‖H1 in terms of ‖ z̃‖H1 which relies on the integrability of

t 7→ ‖z(t)‖H1 in the neighborhood of +∞.

Proposition 3.14. For t large enough,

(3.54) ‖z(t)‖H1 ≤ C

(
sup
s≥t

‖ z̃(s)‖H1 +

∫
+∞

t

‖ z̃(u)‖H1 du

)
.

Proof. Recall that we have already seen (3.12):

‖z‖H1 ≤ C

(
‖ z̃‖H1 +

K∑
k=1

(
|ak | + |bk |

))

Therefore, using the control of the modulation parameters obtained before, that is (3.51),
(3.55)

‖z(t)‖H1 ≤ C

(
‖ z̃(t)‖H1 +

∫
+∞

t

‖ z̃(s)‖H1 ds +

∫
+∞

t

‖z(s)‖2
H1 ds +

∫
+∞

t

e−γs ‖z(s)‖H1 ds

)
.

Since t 7→ ‖z(t)‖H1 is integrable in the neighborhood of +∞, we have for t large enough:

(3.56)

∫
+∞

t

‖z(s)‖2
H1 ds ≤

(∫
+∞

t

‖z(s)‖H1 ds

)
sup
s≥t

‖z(s)‖H1 .

Similarly we have

(3.57)

∫
+∞

t

e−γs ‖z(s)‖H1 ds ≤ e−γt

γ
sup
s≥t

‖z(s)‖H1 .

It follows from (3.55), (3.56), and (3.57) that for t large enough,
(3.58)

sup
s≥t

‖z(s)‖H1 ≤ C

(
sup
s≥t

‖ z̃(s)‖H1 +

∫
+∞

t

‖ z̃(s)‖H1 ds +

(∫
+∞

t

‖z(s)‖H1 ds + e−γt
)

sup
s≥t

‖z(s)‖H1

)
.

Hence, for t large enough,

(3.59) sup
s≥t

‖z(s)‖H1 ≤ C

(
sup
s≥t

‖ z̃(s)‖H1 +

∫
+∞

t

‖ z̃(u)‖H1 du

)
,

which ends the proof of Proposition 3.14. �

Now, we deduce the following

Lemma 3.15. There exists T > 0 such that for all t ≥ T , z̃(t) = 0.
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Proof. By means of (3.20), (3.25), and (3.50), we can write for t large enough

(3.60)

‖ z̃(t)‖2
H1 ≤ C

∫
+∞

t

(
1

s
‖ z̃(s)‖2

H1 + e−γs ‖z(s)‖H1 ‖ z̃(s)‖H1 + ‖z(s)‖2
H1 ‖ z̃(s)‖H1

)
ds

≤ C

[∫
+∞

t

(
1

s
‖ z̃(s)‖H1 + e−γs ‖z(s)‖H1 + ‖z(s)‖2

H1

)
ds

]
sup
s≥t

‖ z̃(s)‖H1 .

We deduce from the preceding line that for t large enough

(3.61) ‖ z̃(t)‖H1 ≤ C

∫
+∞

t

(
1

s
‖ z̃(s)‖H1 + e−γs ‖z(s)‖H1 + ‖z(s)‖2

H1

)
ds.

Using (3.56), (3.57), and (3.59), this leads to the fact that for t large enough

‖ z̃(t)‖H1 ≤ C

[∫
+∞

t

1

s
‖ z̃(s)‖H1 ds +

(
e−γt +

∫
+∞

t

‖z(s)‖H1 ds

) (
sup
s≥t

‖ z̃(s)‖H1 +

∫
+∞

t

‖ z̃(u)‖H1 du

)]
.

Thus, for large values of t,

(3.62) ‖ z̃(t)‖H1 ≤ C

[∫
+∞

t

1

s
‖ z̃(s)‖H1 ds +

(
e−γt +

∫
+∞

t

‖z(s)‖H1 ds

) (∫
+∞

t

‖ z̃(u)‖H1 du

)]
.

Since by assumption ‖z(t)‖H1 = O
(

1
tα

)
with α > 2 and since e−γt ≤ 1

tα−1 for t large enough, there

exist C̃ ≥ 0 and T ≥ 1 such that for all t ≥ T ,

(3.63) ‖ z̃(t)‖H1 ≤ C̃

[∫
+∞

t

1

s
‖ z̃(s)‖H1 ds +

1

tα−1

(∫
+∞

t

‖ z̃(u)‖H1 du

)]
.

Remark 3.16. Note that in (3.63), C̃ seems to depend on z (or equivalently on u) but in fact it does

not (even if it means changing T which does actually depend on z). Indeed, C̃ depends only on the

constants appearing in (3.4), (3.12), (3.13), (3.20) (linked with the parameters used to define the

solitons Rk), on the constants appearing in (3.22), (3.25), (3.50), (3.51) (linked with f , with the

parameters used to define the solitons, and with ‖z(t)‖H1 which can be chosen less or equal to 1

provided t is sufficiently large, depending on z), and also on universal constants which enable us

to pass from (3.58) to (3.59), from (3.60) to (3.61), and from (3.62) to (3.63) (on condition that t is

once more sufficiently large, which depends on z). Thus one should read the following assertion:

there exists C̃ > 0 such that for all z satisfying (3.5) and ‖z(t)‖H1 = O
(

1
tα

)
, there exists T(z) > 0

such that for all t ≥ T(z), (3.63) holds.

Now take N in (3.6) such that N > 4C̃ + 1 (in this way, N does not depend on z, as emphasized
in Remark 3.16). Even if it means taking a larger T , we can assume

∃ c ≥ 0, ∀ t ≥ T, ‖ z̃(t)‖H1 ≤ c

tN
.

Then A := sup
t≥T

{tN ‖ z̃(t)‖H1} is well defined. Let us pick up T̃ ≥ T such that T̃N ‖ z̃(T̃ )‖H1 ≥ A
2 .

Now, replacing t by T̃ in (3.63), we obtain

(3.64)
A

2T̃N
≤ C̃A

(
1

NT̃N
+

1

(N − 1)T̃N+α−2

)
≤ 2C̃A

(N − 1)T̃N
.

Supposing A , 0 would lead to a contradiction because of the choice of N .
Consequently

∀ t ≥ T, ‖ z̃(t)‖H1 = 0. �
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We deduce from Proposition 3.14 and Lemma 3.15 that

∀ t ≥ T, ‖z(t)‖H1 = 0.

The local well-posedness in H1(Rd) of (NLS) implies then u = ϕ. Hence Theorem 1.4′ is proved.

3.4. Uniqueness result for the critical pure-power case. In this paragraph, let d ≥ 1 and f : r 7→
r

2
d . Our proof of uniqueness in the class of multi-solitons u such that ‖u(t)−R(t)‖H1 =

t→+∞
O

(
1
tN

)
(for some N ∈ N∗ sufficiently large to be determined later) and in the L2-critical case consists in
exploiting the same ideas as for the subcritical case. Nevertheless it is this time based on Proposition
3.17, stated below and proved in Appendix.

Proposition 3.17. Assume that f (r) = r
2
d and let ω > 0. There exists µ > 0 such that for all

w = w1 + iw2 ∈ H1(R,C),

(3.65) H(w) ≥ µ‖w‖2
H1 −

1

µ

(∫
Rd

w1Qωdx

)2

− 1

µ

(
d∑
i=1

(∫
Rd

w1∂xiQω dx

)2

+

(∫
Rd

w1 (x · ∇Qω)2 dx

)2

+

(∫
Rd

w2Qω dx

)2
)
.

In order not to be too redundant, we only explicit the main modifications of the proof given for the
stable case.

3.4.1. Change of variable. We still consider ϕ, u, and z as defined at the beginning of Section 3.
In order to apply Proposition 3.17 (which states a coercivity property available in the critical case),
one has to take into account a third family of directions indexed by k = 1, . . . ,K . More precisely,
let us introduce yk(t, x) := x − vk t − x0

k
∈ Rd, for all k = 1, . . . ,K , and

z̃(t, x) := z(t, x)+
K∑
k=1

{
iak(t)Rk(t, x) + bk(t) · ∇Rk(t, x) + ck(t)

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk

)
(t, x)

}
,

where ak , bk , and ck are well defined on [T1,+∞) (even if it means taking a larger T1) with values
respectively in R, Rd, and R such that

(3.66) ∀ t ≥ T1,




Im

∫
Rd

z̃(t)Rk(t) dx = 0

Re

∫
Rd

z̃(t)∇Rk(t) dx = 0

Re

∫
Rd

z̃(t)
(

d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk

)
(t) dx = 0.

As for the stable case, we can prove that ak(t), bk(t), and ck(t), k = 1, . . . ,K , are uniquely
determined by the preceding orthogonality conditions. This time, we have to show indeed that the
following block matrix is invertible:

M̃(t) :=



A0,0(t) B1,1(t) · · · B1,d(t) Z0(t)
tB1,1(t) A1,1(t) · · · A1,d(t) Z1(t)

...
...

. . .
...

...
tB1,d(t) Ad,1(t) · · · Ad,d(t) Zd(t)
t Z0(t) t Z1(t) · · · t Zd(t) W(t)


,
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where A0,0, Ai, j , B1, j are defined in paragraph 3.1.1, Zi(t) (i = 0, . . . , d) has entries zero on its

diagonal and O(e−γt ) elsewhere, and W(t) possesses the coefficients
∫
Rd

(
x · ∇Qωk

)2
dx, k =

1, . . . ,K on its diagonal and O(e−γt ) elsewhere.
For the sake of completeness, let us justify how to determine the coefficients of Zi(t) (i = 1, . . . , d)
which are the less obvious one to compute. By the orthogonality condition Re

∫
Rd

z̃(t)∇Rk(t) dx =

0, the coefficient Zi(k, l) of Zi located at line k and column l is equal to

Zi(k, l) =
d

2
Re

∫
Rd

Rk∂xi Rl dx + Re

∫
Rd

yk · ∇Rk∂xi Rl dx +
1

2
vk · Im

∫
Rd

ykRk∂xi Rl dx.

Thus for k , l, we have Zi(k, l) = O(e−γt ) by (2.5), and for k = l, we obtain:

Zi(k, l) = Re

∫
Rd

yk ·
(
∇Rk −

i

2
vkRk

)
∂xi Rk dx =

∫
Rd

x · ∇Qωk
∂xiQωk

=

d∑
j=1

∫
Rd−1

(∫
R

xj∂x j
Qωk

∂xiQωk
dxi

)
dx1 . . . ˆdxi . . . dxd = 0,

since for all j ∈ {1, . . . , d}, xi 7→ xj∂x j
Qωk

(x1, . . . , xd)∂xiQωk
(x1, . . . , xd) is an odd integrable

function on R in view of the fact that Qωk
is radial.

Hence, we obtain that

det M̃(t) = det M(t)
K∏
k=1

∫
Rd

(
x · ∇Qωk

)2
dx + O(e−γt )

is strictly positive for t large enough (see (3.90) in Appendix).

Moreover, for all t ≥ T1,

(3.67) |ak(t)|, |bk(t)|, |ck(t)| ≤ ‖z(t)‖L2,

and

(3.68) |a′
k(t)|, |∇bk(t)|, |c′k(t)| ≤ ‖z(t)‖H1 .

Remark 3.18. The consideration of z̃ turns out to be appropriate judging by the properties stated

in Lemma 3.20. Besides let us note that the particular non-linearity satisfies the ODE dx f ′(x) =
2 f (x) in the L2-critical case; this will be truly useful to control the third family of directions asso-

ciated with the coefficients ck .

First of all, let us begin with the useful computation of the derivative of z̃ with respect to the
time variable.

Lemma 3.19. We have

∂t z̃ = i
(
∆z̃ + f (|ϕ|2)z̃ +

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕ
)
+

K∑
k=1

{
ia′

kRk + b′k · ∇Rk

}

− 2i

K∑
k=1

ckωkRk +

K∑
k=1

c′k

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk(t, x)

)
+ g,

where g is a function of t and x such that∫
Rd

|g |
(
| z̃ | + |∇z̃ | + |∆z̃ |

)
dx ≤ C

(
e−γt ‖z‖H1 ‖ z̃‖H1 + ‖z‖2

H1 ‖ z̃‖H1

)
.



42 RAPHAËL CÔTE AND XAVIER FRIEDERICH

Proof. Note that ∂t z̃ decomposes like
(3.69)

∂t z̃ = ∂t z +

K∑
k=1

{
a′
k(· · · ) + b′k(· · · ) + ak(· · · ) + bk(· · · )

}
+

K∑
k=1

c′k

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk

)

+

K∑
k=1

ck

(
i
d

2
(∆Rk + f (|Rk |2))Rk) − vk · ∇Rk +

i

2
|vk |2Rk + iyk · ∇

(
∆Rk + f (|Rk |2)Rk

)

+

1

2
vk · yk

(
∆Rk + f (|Rk |2)Rk

) )
.

Now, we want to express ∂t z given by (3.5) in terms of z̃, as already made in Lemma 3.8. For this,
let us observe that:

∆
(
yk · ∇Rk

)
= yk · ∇(∆Rk) + 2∆Rk,(3.70)

∆

(
− i

2
vk · ykRk

)
= − i

2
vk · yk∆Rk − ivk · ∇Rk,(3.71)

f (|z + ϕ|2)z =
(
f (|z + ϕ|2) − f (|ϕ|2)

)
z + f (|ϕ|2)z̃

− f (|ϕ|2)
∑
k

{
ak(· · · ) + bk(· · · ) + ck

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk(t, x)

)}
,

(3.72)

and
(3.73)(

f (|z + ϕ|2) − f (|ϕ|2)
)
ϕ =

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕ + 2Re

(
(z − z̃)ϕ

)
f ′(|ϕ|2)ϕ + g

=

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕ − 2

K∑
k=1

Re

[(
bk(· · · ) + ck

(
d

2
Rk + yk · ∇Rk

))
Rk

]
f ′(|Rk |2)Rk + g.

Inserting each equality (3.70), (3.71), (3.72), and (3.73) in (3.69) leads to

∂t z̃ = i
(
∆z̃ + f (|ϕ|2)z̃ +

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
ϕ
)
+

K∑
k=1

{
ia′

k Rk + b′k · ∇Rk

}

+

K∑
k=1

c′k

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk(t, x)

)

+

K∑
k=1

ck

(
−2vk · ∇Rk +

i

2
|vk |2Rk − 2i∆Rk − id |Rk |2 f ′(|Rk |2)Rk

)
+ g.

Finally, we conclude by means of

(3.74) d |Rk |2 f ′(|Rk |2) = 2 f (|Rk |2)

(which indeed holds in the L2-critical case as mentioned in Remark 3.18) and the two possibilities
given in (3.36) to write ∂tRk . �

3.4.2. Control of H̃ and of the modulation parameters. Take again H̃ as defined at the end of
paragraph 3.1.2 and consider still Main(t) as in Proposition 3.6. Then we can state
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Lemma 3.20 (Control of the derivative of the Weinstein functional). The following assertion holds

true:

dH̃

dt
(t) = Main(t) − 4

K∑
k=1

c′k(t)
(
ωk −

|vk |2
4

)
Re

∫
Rd

z̃Rk(t) dx

+ O
( (

e−γt + ‖z(t)‖H1

)
‖ z̃(t)‖H1 ‖z(t)‖H1

)
.

Proof. Take again the proof of Proposition 3.6. Concerning the expression of the derivative of H̃,
observe that everything is kept unchanged in the present context except that we have to take care
of the additional terms involving the parameters ck(t) and c′

k
(t), for all k = 1, . . . ,K .

Let us define the C-linear endomorphism Lk of H1(Rd) by

Lk(v) := −∆v − f (|Rk |2)v +
(
ωk +

|vk |2
4

)
v + ivk · ∇v.

Observe that Lk(Rk) = 0 and for all v,w ∈ H1(Rd),
(3.75)

Re

∫
Rd

vLk(w)φk dx = Re

∫
Rd

wLk(v)φk dx − 2Re

∫
Rd

w∇v · ∇φk dx +Re i

∫
Rd

vwvk · ∇φk dx,

Using (3.16), (3.18), and (3.75), we deduce that for all v ∈ H1(Rd):

(3.76)

Re

∫
Rd

RkLk(v) dx = Re

∫
Rd

RkLk(v)φk dx + O
(
e−γt ‖v‖H1

)
= Re

∫
Rd

vLk(Rk)φk dx + O
(
e−γt ‖v‖H1

)
= O

(
e−γt ‖v‖H1

)
.

The term associated with ck(t) in the expression of d
dt

H̃ writes

2 ck(t)Re

∫
Rd

(−2iωk Rk)Lk(z̃) dx.

By (3.76), it is thus bounded by Ce−γt ‖ z̃‖H1 ‖z‖H1 .

It remains us to obtain the term associated with c′
k

in d
dt

H̃. This term corresponds to I1,k −I2,k ,
where

I1,k = 2 Re

∫
Rd

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk(t, x)

)
Lk(z̃)φk dx

and

I2,k = 2 Re

∫
Rd

(
d

2
Rk + yk · ∇Rk

)
ϕ
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx.

Let us concentrate first on I1,k . By (3.75),

I1,k = 2 Re

∫
Rd

Lk

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk(t, x)

)
z̃ dx + O

(
e−γt ‖ z̃‖H1

)
.

Moreover,

Re

∫
Rd

z̃Lk

(
d

2
Rk

)
dx = 0;

Re

∫
Rd

z̃Lk(yk · ∇Rk) dx
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= Re

∫
Rd

z̃
(
− yk · ∇(∆Rk) − 2∆Rk

)
dx − Re

∫
Rd

z̃ f (|Rk |2)yk · ∇Rk dx

+ Re

∫
Rd

iz̃vk · ∇(yk · ∇Rk) dx + Re

∫
Rd

z̃

(
ωk +

|vk |2
4

)
yk · ∇Rk dx

= Re

∫
Rd

(
∇z̃ · yk + dz̃

)
∆Rk dx − 2 Re

∫
Rd

v∆Rk dx

+ Re

∫
Rd

(
∇z̃ · yk + dz̃

)
f (|Rk |2)Rk dx + Re

∫
Rd

z̃yk · ∇( f (|Rk |2))Rk dx

− Re

∫
Rd

i
(
∇z̃ · yk

) (
vk · ∇Rk

)
dx − (d − 1)Re

∫
Rd

iz̃vk · ∇Rk dx

− Re

∫
Rd

(
∇z̃ · yk + dz̃

) (
ωk +

|vk |2
4

)
Rk dx + O

(
e−γt ‖ z̃‖L2

)
= − 2 Re

∫
Rd

z̃∆Rk dx + Re

∫
Rd

iz̃vk · ∇Rk dx

+ 2 Re

∫
Rd

z̃ f ′(|Rk |2)yk · Re
(
Rk∇Rk

)
Rk dx + O(e−γt ‖ z̃‖L2);

Re

∫
Rd

z̃Lk

(
i

2
vk · ykRk

)
dx

= Re

∫
Rd

z̃

(
− i

2
(vk · yk)∆Rk − ivk · ∇Rk

)
dx + Re

∫
Rd

z̃

(
ωk +

|vk |2
4

)
i

2
vk · ykRk dx

− 1

2
Re

∫
Rd

z̃vk · ∇ (vk · ykRk) dx − Re

∫
Rd

i

2
z̃ f (|Rk |2)vk · ykRk dx + O

(
e−γt ‖ z̃‖L2

)
= − Re

∫
Rd

iz̃vk · ∇Rk dx − |vk |2
2

Re

∫
Rd

z̃Rk dx + O
(
e−γt ‖ z̃‖L2

)
.

Note that to establish the three preceding equalities, we have used once again Lk(Rk) = 0. Thus,
gathering the preceding calculations, we infer
(3.77)

c′kI1,k = 2 c′kRe

∫
Rd

z̃Rkyk · ∇
(
f (|Rk |2)

)
dxk − 4 c′kRe

∫
Rd

z̃

(
∆Rk + ivk · ∇Rk −

|vk |2
4

Rk

)
dx

+ O
(
e−γt ‖ z̃‖L2 ‖z‖H1

)
.

Now, let us focus on the second integral I2,k . On the one hand, by means of a Taylor expansion, by
(2.5), (3.3), and (3.74), we obtain
(3.78)

d

∫
Rd

|Rk |2
(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx = d

∫
Rd

|Rk |2 × 2Re(z̃Rk) f ′(|Rk |2) dx + O
(
e−γt ‖ z̃‖L2 + ‖ z̃‖2

L2

)
= 4

∫
Rd

f (|Rk |2)Re(z̃Rk) dx + O
(
e−γt ‖ z̃‖L2 + ‖ z̃‖2

L2

)
.

On the other, we observe that

(3.79)

2 Re

∫
Rd

yk · ∇RkRk

(
f (| z̃ + ϕ|2) − f (|ϕ|2)

)
dx

= 4 Re

∫
Rd

yk · ∇RkRkRe
(
z̃Rk

)
f ′(|Rk |2) dx + O

(
e−γt ‖ z̃‖L2 + ‖ z̃‖2

L2

)
.
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Thus, we deduce from (3.78), (3.79), and (3.4) that

(3.80)
c′kI2,k = c′kRe

∫
Rd

z̃

(
∆Rk + ivk · ∇Rk −

|vk |2
4

Rk

)
dx

+ 2 c′kRe

∫
Rd

z̃Rk yk · ∇
(

f (|Rk |2)
)

dx + O
(
e−γt ‖ z̃‖L2 + ‖ z̃‖2

L2

)
.

From (3.77) and (3.80), we conclude that the term associated with c′
k

in d
dt

H̃ is equal to

−4 c′kRe

∫
Rd

z̃

(
∆Rk + ivk · ∇Rk + f (|Rk |2)Rk −

|vk |2
4

Rk

)
dx + O(e−γt ‖ z̃‖L2 ‖z‖H1),

that is to

4 c′k

(
ωk −

|vk |2
4

)
Re

∫
Rd

z̃Rk dx + O(e−γt ‖ z̃‖L2 ‖z‖H1).

This finishes the proof of Lemma 3.20. �

Lemma 3.21 (Control of the modulation parameters). We have for all k = 1, . . . ,K:

∀ t ≥ T1, |a′
k(t)| + |b′k(t)| + |c′k(t)| ≤ C

(
e−γt ‖z‖H1 + ‖z‖2

H1 + ‖ z̃‖L2

)
.

Proof. This lemma follows from the preliminary computations

∆z̃ = ∆z +

K∑
j=1

{
iaj∆Rk + bj · ∇(∆Rj) + cj

((
d

2
+ 2

)
∆Rj + yj · ∇(∆Rj ) −

i

2
vj · yj∆Rj − ivj · ∇Rj

)}

∂t z̃ = ∂t z +

K∑
j=1

{
ia′

j Rj + b′j · ∇Rj + c′j

(
d

2
Rj + yj · ∇Rj −

i

2
vj · yjRj

)}

+

K∑
j=1

{
iaj∂tRj + bj · ∇(∂tRj) + cj

(
d

2
∂tRj + yj · ∇(∂tRj) −

i

2
vj · yj∂tRj − vj · ∇Rj +

i

2
|vj |2Rj

)}
,

from (3.52), (3.53) (which still take the same form in the present context with the consideration
of a third direction), and from the derivation with respect to t of the third family of orthogonal
conditions

Re

∫
Rd

z̃

(
d

2
Rk + yk · ∇Rk −

i

2
vk · ykRk

)
dx = 0,

which yields

(3.81) 0 = c′k

(∫
Rd

(
x · ∇Qωk

)2
dx − d2

4

∫
Rd

Q2
ωk

dx

)
+ O

(
‖z‖2

H1 + e−γt ‖z‖H1 + ‖ z̃‖H1

)
.

We finish the proof of Lemma 3.21 with (3.90) in Appendix. �

Now, to exploit Lemma 3.20 in order to perform an estimate of H̃(t), we have to control the
scalar products Re

∫
Rd

z̃Rk dx, k = 1, . . . ,K . In fact, we state and prove next the analogue of
Lemma 3.11.

Lemma 3.22 (Control of the Rk directions). We have���� d

dt
Re

∫
Rd

z̃Rk dx

���� ≤ C
(
e−γt ‖z‖H1 + ‖z‖2

H1

)
.
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Proof. Note that (3.46) is still guaranteed here by observing moreover that

K∑
j=1

cjRe

∫
Rd

(
d

2
Rj + yj · ∇Rj −

i

2
vjRj

)
Rk dx =

∫
Rd

d

2
|Rk |2 dx + Re

∫
Rd

yk · ∇RkRk dx + ǫ(t)

= ǫ(t),

where ǫ ′(t) = O
(
e−γt ‖z(t)‖H1

)
. Now, the rest of the proof of Lemma 3.11 is kept unchanged and

thus we obtain Lemma 3.22. �

We deduce from Lemma 3.21 and from Lemma 3.22 that

(3.82)

����c′kRe

∫
Rd

z̃Rk dx

���� ≤ C
(
e−γt ‖z‖H1 + ‖z‖2

H1 + ‖ z̃‖H1

) ∫
+∞

t

(
e−γs ‖z‖H1 + ‖z‖2

H1

)
ds.

Next, it follows from (3.82) and Lemma 3.20 that
(3.83)

H̃(t) ≤ C

∫
+∞

t

{
1

s
‖ z̃(s)‖2

H1 + (e−γs + ‖z(s)‖H1) ‖ z̃(s)‖H1 ‖z(s)‖H1

}
ds

+ C

∫
+∞

t

(
e−γs ‖z(s)‖H1 + ‖z(s)‖2

H1 + ‖ z̃(s)‖H1

) ∫
+∞

s

(
e−γu ‖z(u)‖H1 + ‖z(u)‖2

H1

)
du ds.

3.4.3. Conclusion of the proof of uniqueness in the critical case. Proposition 3.17 allows us to
obtain the coercivity estimate in Proposition 3.4) so that by (3.50) (which follows also from Lemma
3.22) and (3.83), we obtain

‖ z̃(t)‖2
H1 ≤ C

∫
+∞

t

{
1

s
‖ z̃(s)‖2

H1 + (e−γs + ‖z(s)‖H1) ‖ z̃(s)‖H1 ‖z(s)‖H1

}
ds

+ C

∫
+∞

t

(
e−γs ‖z(s)‖H1 + ‖z(s)‖2

H1 + ‖ z̃(s)‖H1

) ∫
+∞

s

(
e−γu ‖z(u)‖H1 + ‖z(u)‖2

H1

)
du ds.

On the other hand, Proposition 3.14 and in fact (3.56), (3.57), and (3.59) are still available here in
the critical case; this is guaranteed by Lemma 3.21.
Thus, adapting the proof of Lemma 3.15, we deduce the following estimate in which z̃ is the only
variable that appears: for t large enough, and for some α > 4,

(3.84) ‖ z̃(t)‖H1 ≤ C

[∫
+∞

t

1

s
‖ z̃(s)‖H1 ds +

1

tα−2

∫
+∞

t

∫
+∞

s

‖ z̃(u)‖H1 du ds

]

(with C independent of z for the same reasons as those mentioned in Remark 3.16).
It results then z̃(t) = 0 in the neighborhood of +∞. Note that one requires here ‖z(t)‖H1 =

O
(

1
tα

)
, with α > 4, to hold. Consequently, uniqueness of a multi-soliton associated with the Rk ,

k = 1, . . . ,K in the sense of (1.11) is proved also in the L2-critical case.

Appendix

Linear independence of
(
∂xiQω

)
i∈{1,...,d}.

Proposition 3.23. Let u ∈ H1(Rd) be such that there exists n ∈ Rd \ {0} such that

∀ x ∈ Rd, n · ∇u(x) = 0.

Then u = 0.
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Proof. Even if it means completing
{

n
|n |

}
in an orthonormal basis of Rd and considering the pas-

sage matrix between the canonical basis and this new basis, we can always assume that n is the last
vector of the canonical basis of Rd. In that case, our assumption in Proposition 3.23 reads:

∀ (x1, . . . , xd) ∈ Rd, ∂xdu(x1, . . . , xd) = 0,

or, in other words, for all x1, . . . , xd−1 ∈ R, the application xd 7→ u(x1, . . . , xd−1, xd) is constant,
equal to u(x1, . . . , xd−1, 0).
Since u ∈ L2(Rd), for all x1, . . . , xd−1 ∈ R, one must have that∫

R

|u(x1, . . . , xd−1, xd)|2 dxd =

∫
R

|u(x1, . . . , xd−1, 0)|2 dxd

is a finite quantity by Fubini theorem. This is the case if and only if u(x1, . . . , xd−1, 0) = 0. Thus
u = 0. �

Proof of Lemma 3.3. Assume that 1 ≤ k < j ≤ K .
If x1 < ξj−1 + (σj−1 − A0)t, we have φ j(t, x) = 0 .
If x1 ≥ ξj−1 + (σj−1 − A0)t, then x1 > vk,1t for large values of t and thus, by (1.5), we have

|Rk(t, x)| ≤ Ce−
√
ωk
4 (x1−vk,1t)e−

√
ωk
4 |x−vk t | ≤ Ce−

√
ωk
4 (σj−1−A0−vk,1)te−

√
ωk
4 |x−vk t |

≤ Ce−
√
ωk
4 (σj−1−A0−v j−1,1)te−

√
ωk
4 |x−vk t | ≤ Ce

−
√
ωk
4

(
vj,1−vj−1,1

2 −A0

)
t
e−

√
ωk
4 |x−vk t |

≤ Ce−γte−
√
ωk
4 |x−vk t | .

Assume now that 1 ≤ j < k ≤ K .
If x1 > ξj + (σj + A0)t, we have φ j(t, x) = 0 .
If x1 ≤ ξj + (σj + A0)t, then x1 < vk,1t for large values of t and thus we have as before

|Rk(t, x)| ≤ Ce−
√
ωk
4 (vk,1t−x1)e−

√
ωk
4 |x−vk t | ≤ Ce−

√
ωk
4 (vk,1−σj−A0)te−

√
ωk
4 |x−vk t |

≤ Ce−
√
ωk
4 (v j+1,1−σj−A0)te−

√
ωk
4 |x−vk t | ≤ Ce−γte−

√
ωk
4 |x−vk t | .

Thus for all k , j,

|Rk(t, x)φ j (t, x)| ≤ Ce−γte−
√
ωk
4 |x−vk t |

and of course the same estimate is valid for |∂x1 Rk(t, x)φ j (t, x)|. This proves (3.15).
In a similar way, one proves (3.16). Now, let us show how to obtain (3.17). First, notice that it

is sufficient to prove (3.17) with ψk instead of φk . Then,

∂x1ψk(t, x) = 1

t
ψ′

(
x1 − ξk − σk t

t

)
, ∂3

x1
ψk(t, x) = 1

t3
ψ(3)

(
x1 − ξk − σk t

t

)
,

and

∂tψk(t, x) = − x1 − ξk − σk t

t2
ψ′

(
x1 − ξk − σkt

t

)
− σk

t
ψ′

(
x1 − ξk − σk t

t

)
.

Hence,

|∂x1ψk(t, x)| ≤ 1

t
‖ψ′‖L∞, |∂(3)x1

ψk(t, x)| ≤ 1

t3
‖ψ(3)‖L∞,

and

|∂tψk(t, x)| ≤ 1

t
‖xψ′‖L∞ +

σk

t
‖ψ′‖L∞,

which leads to (3.17).
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To finish with, let us observe that ∂x1φ j(t, x) = 0 if ξj−1 + (σj−1 + A0)t ≤ x1 ≤ ξj + (σj − A0)t
(and in fact also if x1 ≤ ξj−1 + (σj−1 − A0)t or x1 ≥ ξj + (σj + A0)t). Thus, for k , j, the proof of
(3.18) is just a copy of that of (3.15).
Moreover, if x1 ≤ ξj−1 + (σj−1 + A0)t, then x1 < vj,1t for t large and thus, as before, we obtain

|Rj(t, x)| ≤ Ce−
√
ω j

4 (v j t−x1)e−
√
ωk
4 |x−v j t | ≤ Ce−

√
ω j

4 (v j t−σj−1−A0)te−
√
ωk
4 |x−v j t |

≤ Ce−γte−
√
ωk
4 |x−v j t | .

If x1 ≥ ξj + (σj − A0)t, then x1 > vj,1t and one obtains again

|Rj(t, x)| ≤ Ce−γte−
√
ωk
4 |x−v j t | .

Hence, using in addition (3.17), we deduce from what precedes that

|Rk(t, x)∂x1φ j(t, x)| ≤ C
e−γt

t
e−

√
ωk
4 |x−v j t | .

In this manner, we obtain (3.18).

Proof of Proposition 3.17: coercivity property in the L2-critical case. In the L2-critical (pure

power) case, we consider f : r 7→ r
2
d so that the linearized operators around Qω rewrite L+,ω(v) =

−∆v + ωv − 5Q4
ωv and L−,ω(v) = −∆v + ωv − Q4

ωv.
Let us prove Proposition 3.17, following the results and ideas of Weinstein [34].

Due to Weinstein [34, Proposition 2.7], infv∈H1(Rd ), 〈Qω,v 〉=0 〈L+,ωv, v〉 = 0 so that we can set

τ := infv∈S 〈L+,ω, v〉, where S is the set of all v ∈ H1(Rd) such that 〈Qω, v〉 = 0, for all i = 1, . . . , d,
〈∂xiQω, v〉 = 0, 〈x · ∇Qω, v〉 = 0, and ‖v‖H1 = 1. We have obviously τ ≥ 0; we aim to show that
τ > 0.

Assume by contradiction that τ = 0. Then for all n ∈ N, there exists vn ∈ S such that
〈L+,ωvn, vn〉 ≤ 1

n+1 .
This implies

(3.85) 0 < min{ω, 1}‖vn ‖2
H1 ≤

∫
Rd

|∇vn |2 dx + ω

∫
Rd

|vn |2 dx ≤ 5

∫
Rd

Q4
ωv

2
n dx +

1

n + 1
.

In addition, (‖vn‖H1)n is uniformly bounded so that, up to extraction, (vn) converges in H1(Rd) for
the weak topology, say to v

∗ ∈ H1(Rd). And so, we have

(3.86) 〈Qω, v
∗〉 = 0, ∀ i ∈ {1, . . . , d}, 〈∂xiQω, v

∗〉 = 0, 〈x · ∇Qω, v
∗〉 = 0.

By means of Hölder inequality, interpolation, and exponential decay of Qω , (3.86) leads to

(3.87)

∫
Rd

Q4
ωv

2
n dx −→

n→+∞

∫
Rd

Q4
ωv

∗2
dx.

By passing to the limit as n tends to +∞, it results from (3.85) and (3.87) that

0 < min{ω, 1} ≤ 5

∫
Rd

Q4
ωv

∗2
dx.

In particular, v∗ , 0.
Moreover, by weak convergence, we have

(3.88) ‖v∗‖L2 ≤ lim inf
n→+∞

‖vn‖L2 and ‖∇v∗‖L2 ≤ lim inf
n→+∞

‖∇vn‖L2 .
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It follows from (3.87) and (3.88) that

0 ≤ 〈L+,ωv∗, v∗〉 ≤ lim inf
n→+∞

〈L+,ωvn, vn〉 = 0;

in other words, v∗

‖v∗ ‖
H1

is an element of S which minimizes v 7→ 〈L+,ωv, v〉. Even if it means con-

sidering v∗

‖v∗ ‖
H1

, we will assume moreover ‖v∗‖H1 = 1. We are thus led to the following Lagrange

multiplier condition:

(3.89) L+,ωv
∗
= αv∗ + βQω +

d∑
i=1

γi∂xiQω + δx · ∇Qω,

for some reals α, β, γi, and δ. Since 0 = 〈L+,ωv∗, v∗〉, (3.86) implies that α = 0. Then, for all
j ∈ {1, . . . , d},

0 = 〈L+,ω∂x j
Qω, v

∗〉 = 〈L+,ωv∗, ∂x j
Qω〉 =

d∑
i=1

γi 〈∂xiQω, ∂x j
Qω〉.

Given that ∂x1Qω, . . . , ∂xdQω are linearly independent in L2(Rd), the d × d-matrix with entries
〈∂xiQω, ∂x j

Qω〉 is invertible. Consequently, for all i ∈ {1, . . . , d}, γi = 0.
Now, using

0 = 〈−2Qω, v
∗〉, L+,ω

(
d

2
Qω + x · ∇Qω

)
= −2Qω

(which is specific to the critical case), and the symmetry of the bilinear form 〈L+,ω ·, ·〉, we deduce
that

0 =

〈
L+,ωv

∗,
d

2
Qω + x · ∇Qω

〉
=

βd

2
‖Qω ‖2

L2 −
δd2

4
− βd

2
‖Qω ‖2

L2 + δ

∫
Rd

(x · ∇Qω)2 dx

= δ

(∫
Rd

(x · ∇Qω)2 dx − d2

4

∫
Rd

Q2
ω dx

)
.

But we have

(3.90)

∫
Rd

(
x · ∇Qω

)2
dx − d2

4

∫
Rd

Q2
ω dx > 0,

considering that this quantity is nothing but the square of the L2 norm of d
2 Qω + x · ∇Qω (and

d
2 Qω + x · ∇Qω is obviously not zero).
Hence δ = 0, and finally (3.89) reduces to L+,ωv

∗
= βQω .

We claim now that β , 0: otherwise (using the well-known non-degeneracy condition (1.17) of
L+,ω in the present case) v∗ would be a linear combination of the ∂xiQω , i = 1, . . . , d, and then it
would result v∗ = 0 (since for all i, 〈v∗, ∂xiQω〉 = 0), which is not the case.

Thus v∗ = − 2
β

(
d
2 Qω + x · ∇Qω

)
and

0 = 〈v∗, x · ∇Qω〉 = − 2

β

〈
d

2
Qω + x · ∇Qω, x · ∇Qω

〉

= − 2

β

(∫
Rd

(x · ∇Qω)2 dx − d2

4

∫
Rd

Q2
ω dx

)
,

which contradicts (3.90). So we come to the conclusion that τ is positive; hence Proposition 3.17
is established.
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