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Abstract

The Bethe-Salpeter equation (BSE) formalism is steadily asserting itself as a new efficient and accurate
tool in the ensemble of computational methods available to chemists in order to predict optical excitations in
molecular systems. In particular, the combination of the so-called GW approximation, giving access to reliable
ionization energies and electron affinities, and the BSE formalism, able to model UV/Vis spectra, has shown to
provide accurate singlet excitation energies with a typical error of 0.1–0.3 eV. With a similar computational cost
as time-dependent density-functional theory (TD-DFT), BSE is able to provide an accuracy on par with the most
accurate global and range-separated hybrid functionals without the unsettling choice of the exchange-correlation
functional, resolving further known issues (e.g., charge-transfer excitations). In this Perspective article, we
provide a historical overview of BSE, with a particular focus on its condensed-matter roots. We also propose a
critical review of its strengths and weaknesses in different chemical situations.
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Introduction. In its press release announcing the attri-
bution of the 2013 Nobel prize in Chemistry to Karplus,
Levitt, and Warshel, the Royal Swedish Academy of Sci-
ences concluded by stating “Today the computer is just as
important a tool for chemists as the test tube. Simulations
are so realistic that they predict the outcome of traditional
experiments.”1 Martin Karplus’ Nobel lecture moderated
this statement, introducing his presentation by a 1929 quote
from Dirac emphasizing that laws of quantum mechanics

are “much too complicated to be soluble”, urging scien-
tists to develop “approximate practical methods”. This is
where the electronic structure community stands, attempting
to develop robust approximations to study with increasing
accuracy the properties of ever more complex systems. The
study of optical excitations (also known as neutral excitations
in condensed-matter systems), from molecules to extended
solids, has witnessed the development of a large number of
such approximate methods with numerous applications to
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a large variety of fields, from the prediction of the colour
of precious metals for jewellery,2 to the understanding,
e.g., of the basic principles behind organic photovoltaics,
photocatalysis and DNA damage under irradiation.3–5 The
present Perspective aims at describing the current status and
upcoming challenges for the Bethe-Salpeter equation (BSE)
formalism6,7 that, while sharing many features with time-
dependent density-functional theory (TD-DFT),8 including
computational scaling with system size, relies on a very dif-
ferent formalism, with specific difficulties but also potential
solutions to known TD-DFT issues.9

Theory. The BSE formalism6,7,10–13 belongs to the fam-
ily of Green’s function many-body perturbation theories
(MBPT)14–16 together with, for example, the algebraic-
diagrammatic construction (ADC) techniques17 or the polar-
ization propagator approaches (like SOPPA18) in quantum
chemistry. While the one-body density stands as the basic
variable in density-functional theory (DFT),19,20 the pillar
of Green’s function MBPT is the (time-ordered) one-body
Green’s function

G(xt, x ′t ′) = −i 〈N |T
[
ψ̂(xt)ψ̂†(x ′t ′)

]
|N〉 , (1)

where |N〉 is the N-electron ground-state wave function. The
operators ψ̂(xt) and ψ̂†(x ′t ′) remove and add an electron (re-
spectively) in space-spin-time positions (xt) and (x ′t ′), while
T is the time-ordering operator. For t > t ′, G provides the
amplitude of probability of finding, on top of the ground-state
Fermi sea (i.e., higher in energy than the highest-occupied
energy level, also known as Fermi level), an electron in (xt)
that was previously introduced in (x ′t ′), while for t < t ′ the
propagation of an electron hole (often simply called a hole)
is monitored.
This definition indicates that the one-body Green’s func-

tion is well suited to obtain “charged excitations", more com-
monly labeled as electronic energy levels, as obtained, e.g.,
in a direct or inverse photo-emission experiments where an
electron is ejected or added to the N-electron system. In par-
ticular, and as opposed to Kohn-Sham (KS) DFT, the Green’s
function formalism offers a more rigorous and systematically
improvable path for the obtention of the ionization potential
IN = EN−1

0 − EN
0 , the electronic affinity AN = EN

0 − EN+1
0 ,

and the experimental (photoemission) fundamental gap

E fund
g = IN − AN (2)

of the N-electron system, where EN
0 corresponds to its

ground-state energy. Since these energy levels are key input
quantities for the subsequent BSE calculation, we start by
discussing these in some details.

Charged excitations. A central property of the one-
body Green’s function is that its frequency-dependent (i.e.,
dynamical) spectral representation has poles at the charged
excitation energies (i.e., the ionization potentials and electron

affinities) of the system

G(x, x ′;ω) =
∑
s

fs(x) f ∗s (x ′)
ω − εs + iη × sgn(εs − µ)

, (3)

where µ is the chemical potential, η is a positive infinites-
imal, εs = EN+1

s − EN
0 for εs > µ, and εs = EN

0 − EN−1
s

for εs < µ. Here, EN
s is the total energy of the sth excited

state of the N-electron system. The fs’s are the so-called
Lehmann amplitudes that reduce to one-body orbitals in the
case of single-determinant many-body wave functions (see
below). Unlike KS eigenvalues, the poles of the Green’s
function {εs} are proper addition/removal energies of the
N-electron system, leading to well-defined ionization poten-
tials and electronic affinities. In contrast to standard ∆SCF
techniques, the knowledge of G provides the full ionization
spectrum, as measured by direct and inverse photoemission
spectroscopy, not only that associated with frontier orbitals.
Using the equation-of-motion formalism for the cre-

ation/destruction operators, it can be shown formally that
G verifies[

∂

∂t1
− h(r1)

]
G(1, 2) −

∫
d3 Σ(1, 3)G(3, 2) = δ(1, 2), (4)

where we introduce the composite index, e.g., 1 ≡ (x1t1).
Here, δ is Dirac’s delta function, h is the one-body Hartree
Hamiltonian and Σ is the so-called exchange-correlation (xc)
self-energy operator. Using the spectral representation of G
[see Eq. (3)], dropping spin variables for simplicity, one gets
the familiar eigenvalue equation, i.e.,

h(r) fs(r) +
∫

dr ′ Σ(r, r ′; εs) fs(r ′) = εs fs(r), (5)

which formally resembles the KS equation20 with the differ-
ence that the self-energy Σ is non-local, energy-dependent
and non-hermitian. The knowledge of Σ allows to access the
true addition/removal energies, namely the entire spectrum
of occupied and virtual electronic energy levels, at the cost
of solving a generalized one-body eigenvalue equation.

The GW self-energy. While the equations reported
above are formally exact, it remains to provide an expres-
sion for the xc self-energy operator Σ. This is where Green’s
function practical theories differ. Developed by Lars Hedin in
1965 with application to the interacting homogeneous elec-
tron gas,14 the GW approximation15,21 follows the path of
linear response by considering the variation of G with re-
spect to an external perturbation (see Fig. 1). The resulting
equation, when compared with the equation for the time-
evolution of G [see Eq. (4)], leads to a formal expression for
the self-energy

Σ(1, 2) = i
∫

d34 G(1, 4)W(3, 1+)Γ(42, 3), (6)

whereW is the dynamically-screened Coulomb potential and
Γ is the so-called “vertex" function. The notation 1+ means
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that the time t1 is taken at t+1 = t1 + 0+ for sake of causal-
ity, where 0+ is a positive infinitesimal. The neglect of the
vertex, i.e., Γ(42, 3) = δ(23)δ(24), leads to the so-called GW
approximation of the self-energy

Σ
GW (1, 2) = i G(1, 2)W(2, 1+), (7)

that can be regarded as the lowest-order perturbation in terms
of the screened Coulomb potential W with

W(1, 2) = v(1, 2) +
∫

d34 v(1, 3)χ0(3, 4)W(4, 2), (8a)

χ0(1, 2) = −iG(1, 2+)G(2, 1+), (8b)

where χ0 is the independent electron susceptibility and v the
bare Coulomb potential. Equation (8a) can be recast as

W(1, 2) = v(1, 2) +
∫

d34 v(1, 3)χ(3, 4)v(4, 2), (9)

where χ is the interacting susceptibility. In this latter expres-
sion, (vχv) represents the field created in (2) by the charge
rearrangement of the N-electron system generated by a (unit)
charge added in (1). As such, this term contains the effect
of dielectric screening (or polarization in a quantum chemist
language). As in a standard ∆SCF calculation, the GW for-
malism contains the response of the N-electron system to an
electron added (removed) to any virtual (occupied) molecular
orbital, but without the restriction that only frontier orbitals
can be tackled. This explains that the GW one-electron ener-
gies are proper addition/removal energies.
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Figure 1: Hedin’s pentagon connects the Green’s function G, its
non-interacting analog G0, the irreducible vertex function Γ, the irre-
ducible polarizability P, the dynamically-screened Coulomb poten-
tial W , and the self-energy Σ through a set of five integro-differential
equations known as Hedin’s equations.14 The path made of black
arrows shows the GW process which bypasses the computation of
Γ (gray arrows). As input, one must provide KS (or HF) orbitals
and their corresponding energies. Depending on the level of self-
consistency in the GW calculation, only the orbital energies or both
the orbitals and their energies are corrected. As output, GW pro-
vides corrected quantities, i.e., quasiparticle energies and W , which
can then be used to compute the BSE optical excitations of the sys-
tem of interest.

In practice, the input G and χ0 required to initially build
ΣGW are chosen as the “best” Green’s function and suscepti-
bility that can be easily computed, namely the KS or Hartree-
Fock (HF) ones where the {εp, fp} of Eq. (3) are taken to
be KS (or HF) eigenstates. Taking then (ΣGW − Vxc) as a
correction to the KS xc potential Vxc, a first-order correction
to the input KS energies {εKSp } is obtained by solving the
so-called quasiparticle equation

ω = εKSp +
〈
φKSp

��ΣGW (ω) − Vxc��φKSp 〉
. (10)

As a non-linear equation, the self-consistent quasiparticle
equation (10) has various solutions associated with different
spectral weights. The existence of a well defined quasipar-
ticle energy requires a solution with a large spectral weight,
i.e., close to unity, a condition not always fulfilled for states
far away from the fundamental gap.22
Such an approach, where input KS energies are corrected

to yield better electronic energy levels, is labeled as the
single-shot, or perturbative, G0W0 technique. This simple
scheme was used in the early GW studies of extended semi-
conductors and insulators,23–26 and surfaces,27–29 allowing
to dramatically reduce the errors associatedwithKS eigenval-
ues in conjunction with common local or gradient-corrected
approximations to the xc potential. In particular, the well-
known “band gap" problem,30,31 namely the underestimation
of the occupied to unoccupied bands energy gap at the local-
density approximation (LDA) KS level, was dramatically re-
duced, bringing the agreement with experiment to within a
few tenths of an eV with a computational cost scaling quarti-
cally with the system size (see below). A compilation of data
for G0W0 applied to extended inorganic semiconductors can
be found in Ref. 32.
Although G0W0 provides accurate results (at least for

weakly/moderately correlated systems), it is strongly starting-
point dependent due to its perturbative nature. For exam-
ple, the quasiparticle energies, and in particular the HOMO-
LUMO gap, depends on the input KS eigenvalues. Tuning
the starting point functional or applying a self-consistent GW
scheme are two different approaches commonly employed to
tackle this problem. We will comment further on this par-
ticular point below when addressing the quality of the BSE
optical excitations.
Another important feature compared to other perturbative

techniques, the GW formalism can tackle finite and peri-
odic systems, and does not present any divergence in the
limit of zero gap (metallic) systems.33 However, remaining
a low-order perturbative approach starting with a single-
determinant mean-field solution, it is not intended to explore
strongly correlated systems.34

Neutral excitations. Like TD-DFT, BSE deals with the
calculations of optical (or neutral) excitations, as measured
by optical (e.g., absorption) spectroscopy, However, while
TD-DFT starts with the variation of the charge density ρ(1)
with respect to an external local perturbation U(1), the BSE
formalism considers a generalized four-point susceptibility,
or two-particle correlation function, that monitors the varia-
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Figure 2: Definition of the optical gap Eopt
g and fundamental gap E fund

g . EB is the electron-hole or excitonic binding energy, while IN and AN

are the ionization potential and the electron affinity of the N-electron system. EKS
g and EGW

g are the KS and GW HOMO-LUMO gaps. See
main text for the definition of the other quantities

tion of the one-body Green’s function G(1, 1′) with respect
to a non-local external perturbation U(2, 2′):7

χ(1, 2) DFT= ∂ρ(1)
∂U(2) → L(1, 2; 1′, 2′) BSE= ∂G(1, 1′)

∂U(2′, 2) .
(11)

The formal relation χ(1, 2) = −iL(1, 2; 1+, 2+) with ρ(1) =
−iG(1, 1+) offers a direct bridge between the TD-DFT and
BSE worlds. The equation of motion for G [see Eq. (4)] can
be reformulated in the form of a Dyson equation

G = G0 + G0(vH +U + Σ)G, (12)

that relates the full (interacting) Green’s function, G, to its
non-interacting version, G0, where vH and U are the Hartree
and external potentials, respectively. The derivative with
respect to U of this Dyson equation yields the self-consistent
Bethe-Salpeter equation

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′)+∫
d3456 L0(1, 4; 1′, 3)ΞBSE(3, 5; 4, 6)L(6, 2; 5, 2′), (13)

where L0(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) is the non-interacting
4-point susceptibility and

i ΞBSE(3, 5; 4, 6) = v(3, 6)δ(34)δ(56) + i
∂Σ(3, 4)
∂G(6, 5) (14)

is the so-called BSE kernel. This equation can be compared
to its TD-DFT analog

χ(1, 2) = χ0(1, 2) +
∫

d34 χ0(1, 3)ΞDFT(3, 4)χ(4, 2), (15)

where
Ξ
DFT(3, 4) = v(3, 4) + ∂Vxc(3)

∂ρ(4) (16)

is the TD-DFT kernel. Plugging now the GW self-energy
[see Eq. (7)], in a scheme that we label BSE@GW , leads to
an approximate version of the BSE kernel

i ΞBSE(3, 5; 4, 6)
= v(3, 6)δ(34)δ(56) −W(3+, 4)δ(36)δ(45), (17)

where it is customary to neglect the derivative (∂W/∂G) that
introduces again higher orders in W .35–37 At that stage, the
BSEkernel is fully dynamical, i.e., it explicitly depends on the
frequency ω. Taking the static limit, i.e., W(ω = 0), for the
screened Coulomb potential, that replaces the static DFT xc
kernel, and expressing Eq. (13) in the standard product space
{φi(r)φa(r ′)} [where (i, j) are occupied spatial orbitals and
(a, b) are unoccupied spatial orbitals], leads to an eigenvalue
problem similar to the so-called Casida equations in TD-
DFT:38 (

R C
−C∗ −R∗

) (
Xm

Ym

)
= Ωm

(
Xm

Ym

)
, (18)

with electron-hole (eh) eigenstates written as

ψeh
m (re, rh) =

∑
ia

[
Xm
iaφi(rh)φa(re) + Ym

ia φi(re)φa(rh)
]
,

(19)
where m indexes the electronic excitations. The {φi/a} are
typically the input (KS) eigenstates used to build theGW self-
energy. They are here taken to be real in the case of finite-size
systems. In the case of a closed-shell singlet ground state,
the resonant and coupling parts of the BSE Hamiltonian read

Rai,bj =
(
εGW
a − εGW

i

)
δi jδab + κ(ia| jb) −Wi j,ab, (20)

Cai,bj = κ(ia|bj) −Wib,aj, (21)

with κ = 2 or 0 if one targets singlet or triplet excited states
(respectively), and

Wi j,ab =

∬
drdr ′φi(r)φ j(r)W(r, r ′;ω = 0)φa(r ′)φb(r ′),

(22)
where we notice that the two occupied (virtual) eigenstates
are taken at the same position of space, in contrast with the
(ia| jb) bare Coulomb term defined as

(ia| jb) =
∬

drdr ′φi(r)φa(r)v(r − r ′)φ j(r ′)φb(r ′). (23)

Neglecting the coupling term C between the resonant term
R and anti-resonant term −R∗ in Eq. (18), leads to the well-
known Tamm-Dancoff approximation (TDA).
As compared to TD-DFT: i) the GW quasiparticle energies
{εGW

i/a } replace the KS eigenvalues, and ii) the non-local
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screened Coulomb matrix elements replaces the DFT xc
kernel. We emphasize that these equations can be solved at
exactly the same cost as the standard TD-DFT equations once
the quasiparticle energies and screened Coulomb potentialW
are inherited from preceding GW calculations. This defines
the standard (static) BSE@GW scheme that we discuss in
this Perspective, highlighting its pros and cons.

Historical overview. Originally developed in the frame-
work of nuclear physics,6 the BSE formalism has emerged
in condensed-matter physics around the 1960’s at the tight-
binding level with the study of the optical properties of simple
semiconductors.37,39,40 Three decades later, the first ab initio
implementations, starting with small clusters,11,41 extended
semiconductors, and wide-gap insulators12,42,43 paved the
way to the popularization in the solid-state physics commu-
nity of the BSE formalism.
Following pioneering applications to periodic polymers

and molecules,44–47 BSE gained much momentum in quan-
tum chemistry48 with, in particular, several benchmarks49–56
on large molecular sets performed with the very same pa-
rameters (geometries, basis sets, etc) than the available
higher-level reference calculations.57 Such comparisonswere
grounded in the development of codes replacing the plane-
wave paradigm of solid-state physics by Gaussian basis sets,
together with adequate auxiliary bases when resolution-of-
the-identity (RI) techniques58 were used.
An important conclusion drawn from these calculations

was that the quality of the BSE excitation energies is strongly
correlated to the deviation of the preceding GW HOMO-
LUMO gap

EGW
g = εGW

LUMO − ε
GW
HOMO, (24)

with the experimental (photoemission) fundamental gap de-
fined in Eq. (2).
Standard G0W0 calculations starting with KS eigenstates

generated with (semi)local functionals yield much larger
HOMO-LUMO gaps than the input KS gap

EKS
g = εKSLUMO − ε

KS
HOMO, (25)

but still too small as compared to the experimental value, i.e.,

EKS
g � EG0W0

g < E fund
g . (26)

Such a residual discrepancy has been attributed by several
authors to “overscreening", namely the effect associated with
building the susceptibility χ based on a grossly underesti-
mated (KS) band gap. This leads to a spurious enhancement
of the screening or polarization and, consequently, to an un-
derestimatedG0W0 gap as compared to the (exact) fundamen-
tal gap. More prosaically, the G0W0 approach is constructed
as a first-order perturbation theory, so by correcting a very
“bad" zeroth-order KS system one cannot expect to obtain
an accurate corrected gap. Such an underestimation of the
fundamental gap leads to a similar underestimation of the
optical gap Eopt

g , i.e., the lowest optical excitation energy:

Eopt
g = EN

1 − EN
0 = E fund

g + EB, (27)

where EB accounts for the excitonic effect, that is, the stabi-
lization induced by the attraction of the excited electron and
its hole left behind (see Fig. 2).
Such a residual gap problem can be significantly im-

proved by adopting xc functionals with a tuned amount
of exact exchange59,60 that yield a much improved KS
gap as a starting point for the GW correction.56,61–63 Al-
ternatively, self-consistent approaches such as eigenvalue
self-consistent (evGW)24 or quasiparticle self-consistent
(qsGW)64 schemes, where corrected eigenvalues, and possi-
bly orbitals, are reinjected in the construction of G and W ,
have been shown to lead to a significant improvement of the
quasiparticle energies in the case of molecular systems, with
the advantage of significantly removing the dependence on
the starting point functional.62,65–69 As a result, BSE singlet
excitation energies starting from such improved quasiparticle
energies were found to be in much better agreement with ref-
erence calculations. For sake of illustration, an average error
of 0.2 eV was found for the well-known Thiel set57 gathering
ca. 200 representative singlet excitations from a large variety
of representativemolecules.50,51,55,56 This is equivalent to the
best TD-DFT results obtained by scanning a large variety of
hybrid functionals with various amounts of exact exchange.

Charge-transfer excited states. A very remarkable
success of the BSE formalism lies in the description of
charge-transfer (CT) excitations, a notoriously difficult prob-
lem for TD-DFT adopting standard (semi-)local function-
als.70 Similar difficulties emerge in solid-state physics for
semiconductors where extended Wannier excitons, charac-
terized by weakly overlapping electrons and holes (Fig. 3),
cause a dramatic deficit of spectral weight at low energy.71
These difficulties can be ascribed to the lack of long-range
electron-hole interaction with local xc functionals. It can be
cured through an exact exchange contribution, a solution that
explains the success of (optimally-tuned) range-separated
hybrids for the description of CT excitations.59,60 The anal-
ysis of the screened Coulomb potential matrix elements in
the BSE kernel [see Eq. (17)] reveals that such long-range
(non-local) electron-hole interactions are properly described,
including in environments (solvents, molecular solid, etc.)
where the screening reduces the long-range electron-hole
interactions. The success of the BSE formalism to treat CT
excitations has been demonstrated in several studies,66,72–79
opening the way to the modeling of key applications such as
doping,80 photovoltaics or photocatalysis in organic systems.

Combining BSE with PCM and QM/MM models.
The ability to account for the effect on the excitation energies
of an electrostatic and dielectric environment (an electrode,
a solvent, a molecular interface. . . ) is an important step to-
wards the description of realistic systems. Pioneering BSE
studies demonstrated, for example, the large renormalization
of charged and neutral excitations in molecular systems and
nanotubes close to a metallic electrode or in bundles.74,81,82
Recent attempts to merge the GW and BSE formalisms with
model polarizable environments at the PCM or QM/MM lev-
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Figure 3: Symbolic representation of (a) extended Wannier exciton
with large electron-hole average distance, and (b) Frenkel (local) and
charge-transfer (CT) excitations at a donor-acceptor interface. Wan-
nier and CT excitations require long-range electron-hole interaction
accounting for the host dielectric constant. In the case of Wannier
excitons, the binding energy EB can be well approximated by the
standard hydrogenoid model where µ is the effective mass and ε is
the dielectric constant.

els83–89 paved the way not only to interesting applications
but also to a better understanding of the merits of these ap-
proaches relying on the use of the screenedCoulombpotential
designed to capture polarization effects at all spatial ranges.
As a matter of fact, dressing the bare Coulomb potential with
the reaction fieldmatrix [v(r, r ′) −→ v(r, r ′)+vreac(r, r ′;ω)]
in the relation between the screened Coulomb potential W
and the independent-electron susceptibility [see Eq. (8a)] al-
lows to perform GW and BSE calculations in a polarizable
environment at the same computational cost as the corre-
sponding gas-phase calculation. The reaction field operator
vreac(r, r ′;ω) describes the potential generated in r ′ by the
charge rearrangements in the polarizable environment in-
duced by a source charge located in r , where r and r ′ lie in
the quantum mechanical subsystem of interest. The reaction
field is dynamical since the dielectric properties of the envi-
ronment, such as the macroscopic dielectric constant εM (ω),
are in principle frequency dependent. Once the reaction
field matrix is known, with typically O(NorbN2

MM) operations
(where Norb is the number of orbitals and NMM the number of
polarizable atoms in the environment), the full spectrum of
GW quasiparticle energies and BSE neutral excitations can
be renormalized by the effect of the environment.
A remarkable property87 of the scheme described above,

which combines the BSE formalism with a polarizable envi-

ronment, is that the renormalization of the electron-electron
and electron-hole interactions by the reaction field captures
both linear-response and state-specific contributions90 to the
solvatochromic shift of the optical lines, allowing to treat on
the same footing local (Frenkel) and CT excitations. This is
an important advantage as compared to, e.g., TD-DFT where
linear-response and state-specific effects have to be explored
with different formalisms.
To date, environmental effects on fast electronic excita-

tions are only included by considering the low-frequency
optical response of the polarizable medium (e.g., consider-
ing the ε∞ ' 1.78 macroscopic dielectric constant of water
in the optical range), neglecting the frequency dependence
of the dielectric constant in the optical range. Generaliza-
tion to fully frequency-dependent polarizable properties of
the environment would allow to explore systems where the
relative dynamics of the solute and the solvent are not de-
coupled, i.e., situations where neither the adiabatic limit nor
the anti-adiabatic limits are expected to be valid (for a recent
discussion, see Ref. 91).
We now leave the description of successes to discuss

difficulties and future directions of developments and im-
provements.

The computational challenge. As emphasized above,
the BSE eigenvalue equation in the single-excitation space
[see Eq. (18)] is formally equivalent to that of TD-DFTor TD-
HF.92 Searching iteratively for the lowest eigenstates exhibits
the sameO(N4

orb)matrix-vector multiplication computational
cost within BSE and TD-DFT. Concerning the construction
of the BSE Hamiltonian, it is no more expensive than build-
ing its TD-DFT analogue with hybrid functionals, reducing
again to O(N4

orb) operations with standard RI techniques. Ex-
plicit calculation of the full BSE Hamiltonian in transition
space can be further avoided using density matrix perturba-
tion theory,72,93 not reducing though the O(N4

orb) scaling, but
sacrificing further the knowledge of the eigenvectors. Ex-
ploiting further the locality of the atomic orbital basis, the
BSE absorption spectrum can be obtained with O(N3

orb) op-
erations using such iterative techniques.94 With the same
restriction on the eigenvectors, a time-propagation approach,
similar to that implemented for TD-DFT,95 combined with
stochastic techniques to reduce the cost of building the BSE
Hamiltonian matrix elements, allows quadratic scaling with
systems size.96
In practice, the main bottleneck for standard BSE calcula-

tions as compared to TD-DFT resides in the preceding GW
calculation that scales as O

(
N4
orb

)
with system size using

plane-wave basis sets or RI techniques, but with a rather
large prefactor. The field of low-scaling GW calculations is
however witnessing significant advances. While the sparsity
of, for example, the overlap matrix in the atomic orbital
basis allows to reduce the scaling in the large size limit,97,98
efficient real-space grids and time techniques are bloom-
ing,99,100 borrowing in particular the well-known Laplace
transform approach used in quantum chemistry.101 Together
with a stochastic sampling of virtual states, this family of
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techniques allow to set up linear scaling GW calculations.102
The separability of occupied and virtual states summations
lying at the heart of these approaches are now spreading
fast in quantum chemistry within the interpolative separa-
ble density fitting (ISDF) approach applied for calculating
with cubic scaling the susceptibility needed in random-phase
approximation (RPA) and GW calculations.103–105 These on-
going developments pave the way to applying the GW@BSE
formalism to systems containing several hundred atoms on
standard laboratory clusters.

The triplet instability challenge. The analysis of the
singlet-triplet splitting is central to numerous applications
such as singlet fission or thermally activated delayed fluores-
cence (TADF). From a more theoretical point of view, triplet
instabilities that often plague the applicability of TD-DFT
are intimately linked to the stability analysis of restricted
closed-shell solutions at the HF106 and KS107 levels. While
TD-DFT with range-separated hybrids can benefit from tun-
ing the range-separation parameter(s) as a mean to act on
the triplet instability,108 BSE calculations do not offer this
pragmatic way-out since the screened Coulomb potential that
builds the kernel does not offer any parameter to tune.
Benchmark calculations109,110 clearly concluded that

triplets are notably too low in energy within BSE and
that the use of the TDA was able to partly reduce this error.
However, as it stands, the BSE accuracy for triplets remains
rather unsatisfactory for reliable applications. An alternative
cure was offered by hybridizing TD-DFT and BSE, that
is, by adding to the BSE kernel the correlation part of the
underlying DFT functional used to build the susceptibility
and resulting screened Coulomb potential W .111

The challenge of the ground-state energy. In con-
trast to TD-DFT which relies on KS-DFT as its ground-state
analog, the ground-state BSE energy is not a well-defined
quantity, and no clear consensus has been found regarding its
formal definition. Consequently, the BSE ground-state for-
malism remains in its infancy with very few available studies
for atomic and molecular systems.88,112–115
A promising route, which closely follows RPA-type for-

malisms,116 is to calculate the ground-state BSE energy
within the adiabatic-connection fluctuation-dissipation the-
orem (ACFDT) framework.117 Thanks to comparisons with
both similar and state-of-art computational approaches, it
was recently shown that the ACFDT@BSE@GW approach
yields extremely accurate PES around equilibrium, and can
even compete with high-order coupled cluster methods in
terms of absolute ground-state energies and equilibrium
distances.115 However, their accuracy near the dissociation
limit remains an open question.112,113,118–120 Indeed, in the
largest available benchmark study113 encompassing the total
energies of the atoms H–Ne, the atomization energies of
the 26 small molecules forming the HEAT test set, and the
bond lengths and harmonic vibrational frequencies of 3d
transition-metal monoxides, the BSE correlation energy, as

evaluated within the ACFDT framework,117 was mostly dis-
carded from the set of tested techniques due to instabilities
(negative frequency modes in the BSE polarization propa-
gator) and replaced by an approximate (RPAsX) approach
where the screened-Coulomb potential matrix elements was
removed from the resonant electron-hole contribution.113,121
Moreover, it was also observed in Ref. 115 that, in some
cases, unphysical irregularities on the ground-state PES ap-
pear due to the appearance of discontinuities as a function of
the bond length for some of the GW quasiparticle energies.
Such an unphysical behavior stems from defining the quasi-
particle energy as the solution of the quasiparticle equation
with the largest spectral weight in cases where several so-
lutions can be found [see Eq. (10)]. We refer the interested
reader to Refs. 22,122–125 for detailed discussions.

The challenge of analytical nuclear gradients. The
features of ground- and excited-state potential energy sur-
faces (PES) are critical for the faithful description and a
deeper understanding of photochemical and photophysical
processes.126 For example, chemoluminescence and fluo-
rescence are associated with geometric relaxation of ex-
cited states, and structural changes upon electronic excita-
tion.127 Reliable predictions of these mechanisms, which
have attracted much experimental and theoretical interest
lately, require exploring the ground- and excited-state PES.
From a theoretical point of view, the accurate prediction of
excited electronic states remains a challenge,128 especially
for large systems where state-of-the-art computational tech-
niques (such as multiconfigurational methods129) cannot be
afforded. For the last two decades, TD-DFT has been the
go-to method to compute absorption and emission spectra in
large molecular systems.
In TD-DFT, the PES for the excited states can be easily and

efficiently obtained as a function of the molecular geometry
by simply adding the ground-state DFT energy to the excita-
tion energy of the selected state. One of the strongest assets of
TD-DFT is the availability of first- and second-order analytic
nuclear gradients (i.e., the first- and second-order deriva-
tives of the excited-state energy with respect to atomic dis-
placements), which enables the exploration of excited-state
PES.130
Asignificant limitation of the BSE formalism, as compared

to TD-DFT, lies in the lack of analytical nuclear gradients
for both the ground and excited states, preventing efficient
studies of many key excited-state processes. While calcu-
lations of the GW quasiparticle energy ionic gradients is
becoming increasingly popular,131–135 only one pioneering
study of the excited-state BSE gradients has been published
so far.136 In this seminal work devoted to small molecules
(CO and NH3), only the BSE excitation energy gradients
were calculated, with the approximation that the gradient of
the screened Coulomb potential can be neglected, computing
further the KS-LDA forces as its ground-state contribution.
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Beyond the static approximation. Going beyond the
static approximation is a difficult challenge which has been,
nonetheless, embraced by several groups.7,137–145 As men-
tioned earlier in this Perspective, most of BSE calcula-
tions are performed within the so-called static approxi-
mation, which substitutes the dynamically-screened (i.e.,
frequency-dependent) Coulomb potential W(ω) by its static
limitW(ω = 0) [see Eq. (22)]. It is important to mention that
diagonalizing the BSE Hamiltonian in the static approxima-
tion corresponds to solving a linear eigenvalue problem in the
space of single excitations, while it is, in its dynamical form,
a non-linear eigenvalue problem (in the same space) which is
much harder to solve from a numerical point of view. In com-
plete analogy with the ubiquitous adiabatic approximation in
TD-DFT, one key consequence of the static approximation
is that double (and higher) excitations are completely absent
from the BSE optical spectrum, which obviously hampers
the applicability of BSE as double excitations may play, in-
directly, a key role in photochemistry mechanisms. Higher
excitations would be explicitly present in the BSE Hamil-
tonian by “unfolding” the dynamical BSE kernel, and one
would recover a linear eigenvalue problem with, nonetheless,
a much larger dimension. Corrections to take into account
the dynamical nature of the screening may or may not recover
these multiple excitations. However, dynamical corrections
permit, in any case, to recover, for transitions with a domi-
nant single-excitation character, additional relaxation effects
coming from higher excitations.
From amore practical point of view, dynamical effects have

been found to affect the positions and widths of core-exciton
resonances in semiconductors,36,37 rare gas solids, and tran-
sition metals.146 Thanks to first-order perturbation theory,
Rohlfing and coworkers have developed an efficient way of
taking into account the dynamical effects via a plasmon-pole
approximation combined with TDA.137–139,147 With such a
scheme, they have been able to compute the excited states of
biological chromophores, showing that taking into account
the electron-hole dynamical screening is important for an ac-
curate description of the lowest n→ π∗ excitations.138,139,147
Studying PYP, retinal and GFP chromophore models, Ma
et al. found that “the influence of dynamical screening
on the excitation energies is about 0.1 eV for the lowest
π → π∗ transitions, but for the lowest n → π∗ transitions
the influence is larger, up to 0.25 eV.”139 Zhang et al. have
studied the frequency-dependent second-order BSE kernel
and they have observed an appreciable improvement over
configuration interaction with singles (CIS), time-dependent
Hartree-Fock (TDHF), and adiabatic TD-DFT results.143
Rebolini and Toulouse have performed a similar investiga-
tion in a range-separated context, and they have reported a
modest improvement over its static counterpart.144 In these
two latter studies, they also followed a (non-self-consistent)
perturbative approach within TDA with a renormalization of
the first-order perturbative correction.

Conclusion. Although far from being exhaustive, we
hope that this Perspective provides a concise and fair assess-

ment of the strengths and weaknesses of the BSE formalism
of many-body perturbation theory. To do so, we have briefly
reviewed the theoretical aspects behind BSE, and its in-
timate link with the underlying GW calculation that one
must perform to compute quasiparticle energies and the
dynamically-screened Coulomb potential; two of the key in-
put ingredients associated with the BSE formalism. We have
then provided a succinct historical overview with a particular
focus on its condensed-matter roots, and the lessons that the
community has learnt from several systematic benchmark
studies on large molecular systems. Several success stories
are then discussed (charge-transfer excited states and combi-
nation with reaction field methods), before debating some of
the challenges faced by the BSE formalism (computational
cost, triplet instabilities, ambiguity in the definition of the
ground-state energy, lack of analytical nuclear gradients, and
limitations due to the static approximation). We hope that,
by providing a snapshot of the ability of BSE in 2020, the
present Perspective article will motivate a larger commu-
nity to participate to the development of this alternative to
TD-DFT which, we believe, may become a very valuable
computational tool for the physical chemistry community.

ACKNOWLEDGMENTS
PFL thanks the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 863481) for financial sup-
port. Funding from the “Centre National de la Recherche
Scientifique” is also acknowledged. This work has also been
supported through the EUR Grant NanoX ANR-17-EURE-
0009 in the framework of the “Programme des Investisse-
ments d’Avenir”. DJ acknowledges the Région des Pays de
la Loire for financial support.

REFERENCES

(1) The Royal Swedish Academy of Sciences, The Nobel
Prize in Chemistry 2013. Press release, 2013.

(2) Prandini, G.; Rignanese, G.-M.; Marzari, N. Photore-
alistic Modelling of Metals from First Principles. npj
Comput. Mater. 2019, 129.

(3) Kippelen, B.; Brédas, J.-L. Organic photovoltaics. En-
ergy Environ. Sci. 2009, 2, 251–261.

(4) Improta, R.; Santoro, F.; Blancafort, L. Quantum Me-
chanical Studies on the Photophysics and the Photo-
chemistry of Nucleic Acids and Nucleobases. Chem.
Rev. 2016, 116, 3540–3593.

(5) Wu, X.; Choudhuri, I.; Truhlar, D. G. Computational
Studies of Photocatalysis with Metal–Organic Frame-
works. Energy Environ. Mat. 2019, 2, 251–263.

(6) Salpeter, E. E.; Bethe, H. A. A Relativistic Equation
for Bound-State Problems. Phys. Rev. 1951, 84, 1232.

(7) Strinati, G. Application of the Green’s Functions
Method to the Study of the Optical Properties of Semi-
conductors. Riv. Nuovo Cimento 1988, 11, 1–86.

(8) Runge, E.; Gross, E. K. U. Density-Functional Theory

8



for Time-Dependent Systems. Phys. Rev. Lett. 1984,
52, 997–1000.

(9) Blase, X.; Duchemin, I.; Jacquemin, D. The Bethe–
Salpeter Equation in Chemistry: Relations with TD-
DFT, Applications and Challenges. Chem. Soc. Rev.
2018, 47, 1022–1043.

(10) Albrecht, S.; Reining, L.; Del Sole, R.; Onida, G. Ab
Initio Calculation of Excitonic Effects in the Optical
Spectra of Semiconductors. Phys. Rev. Lett. 1998, 80,
4510–4513.

(11) Rohlfing, M.; Louie, S. G. Electron-Hole Excitations
in Semiconductors and Insulators. Phys. Rev. Lett.
1998, 81, 2312–2315.

(12) Benedict, L. X.; Shirley, E. L.; Bohn, R. B. Optical
Absorption of Insulators and the Electron-Hole In-
teraction: An Ab Initio Calculation. Phys. Rev. Lett.
1998, 80, 4514–4517.

(13) van der Horst, J.-W.; Bobbert, P. A.; Michels, M. A. J.;
Brocks, G.; Kelly, P. J. Ab Initio Calculation of the
Electronic and Optical Excitations in Polythiophene:
Effects of Intra- and Interchain Screening. Phys. Rev.
Lett. 1999, 83, 4413–4416.

(14) Hedin, L. New Method for Calculating the One-
Particle Green’s Function with Application to the
Electron-Gas Problem. Phys. Rev. 1965, 139, A796.

(15) Onida, G.; Reining, L.; and, A. R. Electronic Excita-
tions: Density-Functional VersusMany-BodyGreen’s
Function Approaches. Rev. Mod. Phys. 2002, 74, 601–
659.

(16) Martin, R.; Reining, L.; Ceperley, D. Interacting Elec-
trons: Theory and Computational Approaches; Cam-
bridge University Press, 2016.

(17) Dreuw, A.; Wormit, M. The Algebraic Diagrammatic
Construction Scheme for the Polarization Propagator
for theCalculation of Excited States.Wiley Interdiscip.
Rev. Comput. Mol. Sci. 2015, 5, 82–95.

(18) Packer, M. K.; Dalskov, E. K.; Enevoldsen, T.;
Jensen, H. J.; Oddershede, J. A New Implementation
of the Second-Order Polarization Propagator Approx-
imation (SOPPA): The Excitation Spectra of Benzene
and Naphthalene. J. Chem. Phys. 1996, 105, 5886–
5900.

(19) Hohenberg, P.; Kohn, W. Inhomogeneous Electron
Gas. Phys. Rev. 1964, 136, B864–B871.

(20) Kohn, W.; Sham, L. J. Self-Consistent Equations In-
cluding Exchange and Correlation Effects. Phys. Rev.
1965, 140, A1133–A1138.

(21) Golze, D.; Dvorak, M.; Rinke, P. The GW Com-
pendium: A Practical Guide to Theoretical Photoe-
mission Spectroscopy. Front. Chem. 2019, 7, 377.

(22) Veril, M.; Romaniello, P.; Berger, J. A.; Loos, P. F.
Unphysical Discontinuities in GWMethods. J. Chem.
Theory Comput. 2018, 14, 5220.

(23) Strinati, G.; Mattausch, H. J.; Hanke, W. Dynamical
Correlation Effects on the Quasiparticle Bloch States
of a Covalent Crystal. Phys. Rev. Lett. 1980, 45, 290–
294.

(24) Hybertsen, M. S.; Louie, S. G. Electron Correlation
in Semiconductors and Insulators: Band Gaps and

Quasiparticle Energies. Phys. Rev. B 1986, 34, 5390–
5413.

(25) Godby, R. W.; Schlüter, M.; Sham, L. J. Self-Energy
Operators and Exchange-Correlation Potentials in
Semiconductors. Phys. Rev. B 1988, 37, 10159–
10175.

(26) von der Linden, W.; Horsch, P. Precise Quasiparticle
Energies and Hartree-Fock Bands of Semiconductors
and Insulators. Phys. Rev. B 1988, 37, 8351–8362.

(27) Northrup, J. E.; Hybertsen, M. S.; Louie, S. G. Many-
body Calculation of the Surface-State Energies for
Si(111)2×1. Phys. Rev. Lett. 1991, 66, 500–503.

(28) Blase, X.; Zhu, X.; Louie, S. G. Self-Energy Effects
on the Surface-State Energies of H-Si(111)1×1. Phys.
Rev. B 1994, 49, 4973–4980.

(29) Rohlfing, M.; Krüger, P.; Pollmann, J. Efficient
Scheme for GW Quasiparticle Band-Structure Cal-
culations with Aapplications to Bulk Si and to the
Si(001)-(2×1) Surface. Phys. Rev. B 1995, 52, 1905–
1917.

(30) Perdew, J. P.; Levy, M. Physical Content of the Exact
Kohn-ShamOrbital Energies: Band Gaps and Deriva-
tive Discontinuities. Phys. Rev. Lett. 1983, 51, 1884–
1887.

(31) Sham, L. J.; Schlüter, M. Density-Functional Theory
of the Energy Gap. Phys. Rev. Lett. 1983, 51, 1888–
1891.

(32) Shishkin, M.; Kresse, G. Self-Consistent GW Calcu-
lations for Semiconductors and Insulators. Phys. Rev.
B 2007, 75, 235102.

(33) Campillo, I.; Pitarke, J. M.; Rubio, A.; Zarate, E.;
Echenique, P. M. Inelastic Lifetimes of Hot Electrons
in Real Metals. Phys. Rev. Lett. 1999, 83, 2230–2233.

(34) Verdozzi, C.; Godby, R. W.; Holloway, S. Evaluation
of GW Approximations for the Self-Energy of a Hub-
bard Cluster. Phys. Rev. Lett. 1995, 74, 2327–2330.

(35) Hanke, W.; Sham, L. J. Many-Particle Effects in the
Optical Spectrum of a Semiconductor. Phys. Rev. B
1980, 21, 4656.

(36) Strinati, G. Dynamical Shift and Broadening of Core
Excitons in Semiconductors.Phys. Rev. Lett. 1982, 49,
1519.

(37) Strinati, G. Effects of Dynamical Screening on Reso-
nances at Inner-Shell Thresholds in Semiconductors.
Phys. Rev. B 1984, 29, 5718.

(38) Casida, M. E. In Time-Dependent Density Functional
Response Theory for Molecules; Chong, D. P., Ed.;
Recent Advances in Density Functional Methods;
World Scientific, Singapore, 1995; pp 155–192.

(39) Sham, L. J.; Rice, T. M. Many-Particle Derivation of
the Effective-Mass Equation for the Wannier Exciton.
Phys. Rev. 1966, 144, 708–714.

(40) Delerue, C.; Lannoo, M.; Allan, G. Excitonic and
Quasiparticle Gaps in Si Nanocrystals.Phys. Rev. Lett.
2000, 84, 2457–2460.

(41) Onida, G.; Reining, L.; Godby, R. W.; Del Sole, R.;
Andreoni, W. Ab Initio Calculations of the Quasipar-
ticle and Absorption Spectra of Clusters: The Sodium
Tetramer. Phys. Rev. Lett. 1995, 75, 818–821.

9



(42) Albrecht, S.; Onida, G.; Reining, L. Ab initio Cal-
culation of the Quasiparticle Spectrum and Excitonic
Effects in Li2O. Phys. Rev. B 1997, 55, 10278–10281.

(43) Rohlfing, M.; Louie, S. G. Excitons and Optical Spec-
trum of the Si(111) − (2 × 1) Surface. Phys. Rev. Lett.
1999, 83, 856–859.

(44) Rohlfing, M.; Louie, S. G. Optical Excitations in Con-
jugated Polymers. Phys. Rev. Lett. 1999, 82, 1959–
1962.

(45) van der Horst, J.-W.; Bobbert, P. A.; Michels, M. A. J.;
Brocks, G.; Kelly, P. J. Ab Initio Calculation of the
Electronic and Optical Excitations in Polythiophene:
Effects of Intra- and Interchain Screening. Phys. Rev.
Lett. 1999, 83, 4413–4416.

(46) Puschnig, P.; Ambrosch-Draxl, C. Suppression of
Electron-Hole Correlations in 3D Polymer Materials.
Phys. Rev. Lett. 2002, 89, 056405.

(47) Tiago, M. L.; Northrup, J. E.; Louie, S. G. Ab Initio
Calculation of the Electronic and Optical Properties
of Solid Pentacene. Phys. Rev. B 2003, 67, 115212.

(48) See Table 1 of Ref. 9 for an exhaustive list of applica-
tions to molecular systems.

(49) Boulanger, P.; Jacquemin, D.; Duchemin, I.; Blase, X.
Fast and Accurate Electronic Excitations in Cyanines
with the Many-Body Bethe–Salpeter Approach. J.
Chem. Theory Comput. 2014, 10, 1212–1218.

(50) Jacquemin,D.; Duchemin, I.; Blase,X.Benchmarking
the Bethe–Salpeter Formalism on a Standard Organic
Molecular Set. J. Chem. Theory Comput. 2015, 11,
3290–3304.

(51) Bruneval, F.; Hamed, S. M.; Neaton, J. B. A System-
atic Benchmark of the ab initio Bethe-Salpeter Equa-
tion Approach for Low-Lying Optical Excitations of
Small Organic Molecules. J. Chem. Phys. 2015, 142,
244101.

(52) Jacquemin, D.; Duchemin, I.; Blase, X. 0–0 Ener-
giesUsingHybrid Schemes: Benchmarks of TD-DFT,
CIS(D), ADC(2), CC2, and BSE/GW formalisms for
80 Real-Life Compounds. J. Chem. Theory Comput.
2015, 11, 5340–5359.

(53) Hirose, D.; Noguchi, Y.; Sugino, O. All-
Electron GW+Bethe-Salpeter Calculations on Small
Molecules. Phys. Rev. B 2015, 91, 205111.

(54) Jacquemin, D.; Duchemin, I.; Blase, X. Is the Bethe–
Salpeter Formalism Accurate for Excitation Energies?
Comparisons with TD-DFT, CASPT2, and EOM-
CCSD. J. Phys. Chem. Lett. 2017, 8, 1524–1529.

(55) Krause, K.; Klopper,W. Implementation of the Bethe-
Salpeter equation in the TURBOMOLE program. J.
Comp. Chem. 2017, 38, 383–388.

(56) Gui, X.; Holzer, C.; Klopper, W. Accuracy Assess-
ment of GWStarting Points for CalculatingMolecular
Excitation EnergiesUsing theBethe–Salpeter Formal-
ism. J. Chem. Theory Comput. 2018, 14, 2127–2136.

(57) Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.;
Thiel, W. Benchmarks for Electronically Excited
States: CASPT2, CC2, CCSD and CC3. J. Chem.
Phys. 2008, 128, 134110.

(58) Ren, X.; Rinke, P.; Blum, V.; Wieferink, J.;
Tkatchenko, A.; Sanfilippo, A.; Reuter, K.;
Scheffler, M. Resolution-of-identity Approach to
Hartree–Fock, Hybrid Fensity Functionals, RPA,MP2
and GW with Numeric Atom-Centered Orbital Basis
Functions. New J. Phys. 2012, 14, 053020.

(59) Stein, T.; Kronik, L.; Baer, R. Reliable Prediction of
Charge Transfer Excitations in Molecular Complexes
Using Time-Dependent Density Functional Theory. J.
Am. Chem. Soc. 2009, 131, 2818–2820.

(60) Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R.
Excitation Gaps of Finite-Sized Systems from Opti-
mally Tuned Range-Separated Hybrid Functionals. J.
Chem. Theory Comput. 2012, 8, 1515–1531.

(61) Bruneval, F.; Marques, M. A. L. Benchmarking
the Starting Points of the GW Approximation for
Molecules. J. Chem. Theory Comput. 2013, 9, 324–
329.

(62) Rangel, T.; Hamed, S. M.; Bruneval, F.; Neaton, J. B.
Evaluating the GWApproximation with CCSD(T) for
Charged Excitations Across the Oligoacenes. J. Chem.
Theory Comput. 2016, 12, 2834–2842.

(63) Knight, J. W.; Wang, X.; Gallandi, L.; Dolgo-
unitcheva, O.; Ren, X.; Ortiz, J. V.; Rinke, P.; Körzdör-
fer, T.; Marom, N. Accurate Ionization Potentials
and Electron Affinities of Acceptor Molecules III: A
Benchmark of GW Methods. J. Chem. Theory Com-
put. 2016, 12, 615–626.

(64) van Schilfgaarde, M.; Kotani, T.; Faleev, S. Quasi-
particle Self-Consistent GW Theory. Phys. Rev. Lett.
2006, 96, 226402.

(65) Rostgaard, C.; Jacobsen, K. W.; Thygesen, K. S. Fully
Self-ConsistentGWCalculations forMolecules.Phys.
Rev. B 2010, 81, 085103.

(66) Blase, X.; Attaccalite, C. Charge-Transfer Excitations
in Molecular Donor-Acceptor Complexes within the
Many-Body Bethe-Salpeter Approach. Appl. Phys.
Lett. 2011, 99, 171909.

(67) Ke, S.-H. All-Electron G W Methods Implemented
in Molecular Orbital Space: Ionization Energy and
Electron Affinity of ConjugatedMolecules. Phys. Rev.
B 2011, 84, 205415.

(68) Kaplan, F.; Harding, M. E.; Seiler, C.; Weigend, F.;
Evers, F.; van Setten, M. J. Quasi-Particle Self-
Consistent GW for Molecules. J. Chem. Theory Com-
put. 2016, 12, 2528–2541.

(69) Caruso, F.; Dauth, M.; van Setten, M. J.; Rinke, P.
Benchmark of GW Approaches for the GW100 Test
Set. J. Chem. Theory Comput. 2016, 12, 5076.

(70) Dreuw, A.; Head-Gordon, M. Failure of Time-
Dependent Density Functional Theory for
Long-Range Charge-Transfer Excited States:
The Zincbacteriochlorin-Bacteriochlorin and
Bacteriochlorophyll-Spheroidene Complexes. J. Am.
Chem. Soc. 2004, 126, 4007–4016.

(71) Botti, S.; Sottile, F.; Vast, N.; Olevano, V.; Rein-
ing, L.; Weissker, H.-C.; Rubio, A.; Onida, G.;
Del Sole, R.; Godby, R. W. Long-Range Contribu-
tion to the Exchange-Correlation Kernel of Time-

10



Dependent Density Functional Theory. Phys. Rev. B
2004, 69, 155112.

(72) Rocca, D.; Lu, D.; Galli, G. Ab Initio Calculations of
Optical Absorption Spectra: Solution of the Bethe–
Salpeter EquationWithin DensityMatrix Perturbation
Theory. J. Chem. Phys. 2010, 133, 164109.

(73) Cudazzo, P.; Attaccalite, C.; Tokatly, I. V.; Ru-
bio, A. Strong Charge-Transfer Excitonic Effects and
the Bose-Einstein Exciton Condensate in Graphane.
Phys. Rev. Lett. 2010, 104, 226804.

(74) Garcia-Lastra, J. M.; Thygesen, K. S. Renormaliza-
tion of Optical Excitations in Molecules Near a Metal
Surface. Phys. Rev. Lett. 2011, 106, 187402.

(75) Baumeier, B.; Andrienko, D.; Rohlfing, M. Frenkel
and Charge-Transfer Excitations in Donor–Acceptor
Complexes FromMany-Body Green’s Functions The-
ory. J. Chem. Theory Comput. 2012, 8, 2790–2795.

(76) Duchemin, I.; Deutsch, T.; Blase, X. Short-Range
to Long-Range Charge-Transfer Excitations in the
Zincbacteriochlorin-Bacteriochlorin Complex: A
Bethe-Salpeter Study. Phys. Rev. Lett. 2012, 109,
167801.

(77) Sharifzadeh, S.; Darancet, P.; Kronik, L.; Neaton, J. B.
Low-Energy Charge-Transfer Excitons in Organic
Solids from First-Principles: The Case of Pentacene.
J. Phys. Chem. Lett. 2013, 4, 2197–2201.

(78) Cudazzo, P.; Gatti, M.; Rubio, A.; Sottile, F. Frenkel
versus Charge-Transfer Exciton Dispersion in Molec-
ular Crystals. Phys. Rev. B 2013, 88, 195152.

(79) Yin, H.; Ma, Y.; Mu, J.; Liu, C.; Rohlfing, M. Charge-
Transfer Excited States in Aqueous DNA: Insights
fromMany-BodyGreen’s Function Theory.Phys. Rev.
Lett. 2014, 112, 228301.

(80) Li, J.; D’Avino, G.; Pershin, A.; Jacquemin, D.;
Duchemin, I.; Beljonne, D.; Blase, X. Correlated
electron-hole mechanism for molecular doping in or-
ganic semiconductors. Phys. Rev. Materials 2017, 1,
025602.

(81) Rohlfing, M. Redshift of Excitons in Carbon Nan-
otubes Caused by the Environment Polarizability.
Phys. Rev. Lett. 2012, 108, 087402.

(82) Spataru, C. D. Electronic and Optical Gap Renormal-
ization in Carbon Nanotubes Near a Metallic Surface.
Phys. Rev. B 2013, 88, 125412.

(83) Baumeier, B.; Rohlfing, M.; Andrienko, D. Electronic
Excitations in Push–Pull Oligomers and Their Com-
plexes with Fullerene fromMany-Body Green’s Func-
tions Theory with Polarizable Embedding. J. Chem.
Theory Comput. 2014, 10, 3104–3110.

(84) Duchemin, I.; Jacquemin, D.; Blase, X. Combining
the GW Formalism with the Polarizable Continuum
Model: A State-Specific Non-Equilibrium Approach.
J. Chem. Phys. 2016, 144, 164106.

(85) Li, J.; D’Avino, G.; Duchemin, I.; Beljonne, D.;
Blase, X. Combining the Many-Body GW Formal-
ism with Classical Polarizable Models: Insights on
the Electronic Structure of Molecular Solids. J. Phys.
Chem. Lett. 2016, 7, 2814–2820.

(86) Varsano, D.; Caprasecca, S.; Coccia, E. Theoretical
Description of Protein Field Effects on Electronic Ex-
citations of Biological Chromophores. J. Phys.: Cond.
Matt. 2016, 29, 013002.

(87) Duchemin, I.; Guido, C. A.; Jacquemin, D.; Blase, X.
The Bethe–Salpeter Formalism with Polarisable Con-
tinuum Embedding: Reconciling Linear-Response
and State-Specific Features.Chem. Sci. 2018, 9, 4430–
4443.

(88) Li, J.; Drummond, N. D.; Schuck, P.; Olevano, V.
Comparing Many-Body Approaches Against the He-
liumAtomExact Solution. SciPost Phys. 2019, 6, 040.

(89) Tirimbò, G.; Sundaram, V.; Çaylak, O.;
Scharpach, W.; Sijen, J.; Junghans, C.; Brown, J.;
Ruiz, F. Z.; Renaud, N.; Wehner, J. et al. Excited-state
electronic structure of molecules using many-body
Green’s functions: Quasiparticles and electron–hole
excitations with VOTCA-XTP. J. Chem. Phys. 2020,
152, 114103.

(90) Cammi, R.; Corni, S.; Mennucci, B.; Tomasi, J.
Electronic Excitation Energies of Molecules in So-
lution: State Specific and Linear Response Methods
for Nonequilibrium Continuum Solvation Models. J.
Chem. Phys. 2005, 122, 104513.

(91) Phan Huu, D. K. A.; Dhali, R.; Pieroni, C.;
Di Maiolo, F.; Sissa, C.; Terenziani, F.; Painelli, A.
Antiadiabatic View of Fast Environmental Effects on
Optical Spectra. Phys. Rev. Lett. 2020, 124, 107401.

(92) Dreuw, A.; Head-Gordon, M. Single-Reference Ab
Initio Methods for the Calculation of Excited States of
Large Molecules. Chem. Rev. 2005, 105, 4009–4037.

(93) Nguyen, N. L.; Ma, H.; Govoni, M.; Gygi, F.; Galli, G.
Finite-Field Approach to Solving the Bethe-Salpeter
Equation. Phys. Rev. Lett. 2019, 122, 237402.

(94) Ljungberg, M. P.; Koval, P.; Ferrari, F.; Foerster, D.;
Sánchez-Portal, D. Cubic-Scaling Iterative Solution of
the Bethe-Salpeter Equation for Finite Systems. Phys.
Rev. B 2015, 92, 075422.

(95) Yabana, K.; Bertsch, G. F. Time-Dependent Local-
Density Approximation in Real Time. Phys. Rev. B
1996, 54, 4484–4487.

(96) Rabani, E.; Baer, R.; Neuhauser, D. Time-Dependent
Stochastic Bethe-Salpeter Approach. Phys. Rev. B
2015, 91, 235302.

(97) Foerster, D.; Koval, P.; Sánchez-Portal, D. An O(N3)
Implementation of Hedin’s GW Approximation for
Molecules. J. Chem. Phys. 2011, 135, 074105.

(98) Wilhelm, J.; Golze, D.; Talirz, L.; Hutter, J.;
Pignedoli, C. A. Toward GW Calculations on Thou-
sands of Atoms. J. Phys. Chem. Lett. 2018, 9, 306–
312.

(99) Rojas, H. N.; Godby, R. W.; Needs, R. J. Space-Time
Method for Ab Initio Calculations of Self-Energies
and Dielectric Response Functions of Solids. Phys.
Rev. Lett. 1995, 74, 1827.

(100) Liu, P.; Kaltak, M.; Klimeš, J. c. v.; Kresse, G. Cu-
bic Scaling GW : Towards Fast Quasiparticle Calcula-
tions. Phys. Rev. B 2016, 94, 165109.

11



(101) Häser, M.; Almlöf, J. Laplace Transform Techniques
inMøller–Plesset Perturbation Theory. J. Chem. Phys.
1992, 96, 489–494.

(102) Vlček, V.; Rabani, E.; Neuhauser, D.; Baer, R.
Stochastic GW Calculations for Molecules. J. Chem.
Theory Comput. 2017, 13, 4997–5003.

(103) Lu, J.; Thicke, K. Cubic Scaling Algorithms for RPA
CorrelationUsing Interpolative SeparableDensity Fit-
ting. J. Comput. Phys. 2017, 351, 187 – 202.

(104) Duchemin, I.; Blase, X. Separable resolution-of-the-
identity with all-electron Gaussian bases: Applica-
tion to cubic-scaling RPA. J. Chem. Phys. 2019, 150,
174120.

(105) Gao, W.; Chelikowsky, J. R. Accelerating Time-
DependentDensity Functional Theory andGWCalcu-
lations for Molecules and Nanoclusters with Symme-
try Adapted Interpolative Separable Density Fitting.
J. Chem. Theory Comput. 2020, 16, 2216–2223.

(106) Seeger, R.; Pople, J. A. SelfâĂŘConsistent Molecular
Orbital Methods. XVIII. Constraints and Stability in
Hartree–Fock Theory. J. Chem. Phys. 1977, 66, 3045–
3050.

(107) Bauernschmitt, R.; Ahlrichs, R. Stability Analysis for
Solutions of the Closed Shell Kohn–Sham Equation.
J. Chem. Phys. 1996, 104, 9047–9052.

(108) Sears, J. S.; Koerzdoerfer, T.; Zhang, C.-R.; Brédas, J.-
L. Orbital Instabilities and Triplet States fFrom Time-
Dependent Density Functional Theory and Long-
Range Corrected Functionals. J. Chem. Phys. 2011,
135, 151103.

(109) Jacquemin, D.; Duchemin, I.; Blondel, A.; Blase, X.
Benchmark of Bethe-Salpeter for Triplet Excited-
States. J. Chem. Theory Comput. 2017, 13, 767–783.

(110) Rangel, T.; Hamed, S. M.; Bruneval, F.; Neaton, J. B.
An Assessment of Low-Lying Excitation Energies
and Triplet Instabilities of Organic Molecules with an
Ab Initio Bethe-Salpeter Equation Approach and the
Tamm-Dancoff Approximation. J. Chem. Phys. 2017,
146, 194108.

(111) Holzer, C.; Klopper, W. A Hybrid Bethe–
Salpeter/Time-DependentDensity-Functional-Theory
Approach for Excitation Energies. J. Chem. Phys.
2018, 149, 101101.

(112) Olsen, T.; Thygesen, K. S. Static Correlation Be-
yond the Random Phase Approximation: Dissociat-
ing H2 With the Bethe-Salpeter Equation and Time-
Dependent GW. J. Chem. Phys. 2014, 140, 164116.

(113) Holzer, C.; Gui, X.; Harding, M. E.; Kresse, G.; Hel-
gaker, T.; Klopper, W. Bethe-Salpeter Correlation En-
ergies of Atoms and Molecules. J. Chem. Phys. 2018,
149, 144106.

(114) Li, J.; Duchemin, I.; Blase, X.; Olevano, V. Ground-
state correlation energy of beryllium dimer by the
Bethe-Salpeter equation. SciPost Phys. 2020, 8, 20.

(115) Loos, P.-F.; Scemama, A.; Duchemin, I.;
Jacquemin, D.; Blase, X. Pros and Cons of the Bethe-
Salpeter Formalism for Ground-State Energies . 2020,

(116) Angyan, J. G.; Liu, R.-F.; Toulouse, J.; Jansen, G.
Correlation Energy Expressions from the Adiabatic-

Connection Fluctuation Dissipation Theorem Ap-
proach. J. Chem. Theory Comput. 2011, 7, 3116–
3130.

(117) Furche, F.; Van Voorhis, T. Fluctuation-Dissipation
Theorem Density-Functional Theory. J. Chem. Phys.
2005, 122, 164106.

(118) Caruso, F.; Rohr, D. R.; Hellgren, M.; Ren, X.;
Rinke, P.; Rubio, A.; Scheffler, M. Bond Break-
ing and Bond Formation: How Electron Correla-
tion Is Captured in Many-Body Perturbation Theory
and Density-Functional Theory. Phys. Rev. Lett. 2013,
110, 146403.

(119) Colonna, N.; Hellgren, M.; de Gironcoli, S. Correla-
tion Energy Within Exact-Exchange Adiabatic Con-
nection Fluctuation-Dissipation Theory: Systematic
Development and Simple Approximations. Phys. Rev.
B 2014, 90, 125150.

(120) Hellgren, M.; Caruso, F.; Rohr, D. R.; Ren, X.; Ru-
bio, A.; Scheffler, M.; Rinke, P. Static Correlation and
Electron Localization in Molecular Dimers from the
Self-Consistent RPA and G W Approximation. Phys.
Rev. B 2015, 91, 165110.

(121) Maggio, E.; Kresse, G. Correlation Energy for the Ho-
mogeneous Electron Gas: Exact Bethe-Salpeter Solu-
tion and an Approximate Evaluation. Phys. Rev. B
2016, 93, 235113.

(122) van Setten, M. J.; Caruso, F.; Sharifzadeh, S.;
Ren, X.; Scheffler, M.; Liu, F.; Lischner, J.; Lin, L.;
Deslippe, J. R.; Louie, S. G. et al. GW 100: Bench-
marking G0W0 for Molecular Systems. J. Chem. The-
ory Comput. 2015, 11, 5665–5687.

(123) Maggio, E.; Liu, P.; van Setten, M. J.; Kresse, G. GW
100: A Plane Wave Perspective for Small Molecules.
J. Chem. Theory Comput. 2017, 13, 635–648.

(124) Loos, P. F.; Romaniello, P.; Berger, J. A. Green
Functions and Self-Consistency: Insights From the
SpheriumModel. J. Chem. Theory Comput. 2018, 14,
3071–3082.

(125) Duchemin, I.; Blase, X. Robust Analytic-Continuation
Approach to Many-Body GW Calculations. J. Chem.
Theory Comput. 2020, 16, 1742–1756.

(126) Olivucci,M.Computational Photochemistry; Elsevier
Science: Amsterdam; Boston (Mass.); Paris, 2010.

(127) Navizet, I.; Liu, Y.-J.; Ferre, N.; Roca-
Sanjun, D.; Lindh, R. The Chemistry of Biolumi-
nescence: An Analysis of Chemical Functionalities.
ChemPhysChem 2011, 12, 3064–3076.

(128) Loos, P. F.; Scemama, A.; Jacquemin, D. The Quest
for Highly-Accurate Excitation Energies: a Computa-
tional Perspective. J. Phys. Chem. Lett. 2020, submit-
ted.

(129) Roos, B. O.; Andersson, K.; Fulscher, M. P.;
Malmqvist, P.-A.; Serrano-Andrés, L. In Multiconfig-
urational Perturbation Theory: Applications In Elec-
tronic Spectroscopy; Prigogine, I., Rice, S. A., Eds.;
Adv. Chem. Phys.; Wiley, New York, 1996; Vol.
XCIII; pp 219–331.

(130) Furche, F.; Ahlrichs, R. Adiabatic Time-Dependent

12



Density Functional Methods for Excited State Proper-
ties. J. Chem. Phys. 2002, 117, 7433.

(131) Lazzeri, M.; Attaccalite, C.; Wirtz, L.; Mauri, F. Im-
pact of the Electron-Electron Correlation on Phonon
Dispersion: Failure of LDA and GGA DFT Function-
als in Graphene and Graphite. Phys. Rev. B 2008, 78,
081406.

(132) Faber, C.; Janssen, J. L.; Côté,M.; Runge, E.; Blase,X.
Electron-Phonon Coupling in the C60 Fullerenewithin
the Many-body GW Approach. Phys. Rev. B 2011, 84,
155104.

(133) Yin, Z. P.; Kutepov, A.; Kotliar, G. Correlation-
Enhanced Electron-Phonon Coupling: Applications
of GW and Screened Hybrid Functional to Bis-
muthates, Chloronitrides, and Other High-Tc Super-
conductors. Phys. Rev. X 2013, 3, 021011.

(134) Monserrat, B. Correlation Effects on Electron-Phonon
Coupling in Semiconductors: Many-Body Theory
Along Thermal Lines. Phys. Rev. B 2016, 93, 100301.

(135) Li, Z.; Antonius, G.; Wu, M.; da Jornada, F. H.;
Louie, S. G. Electron-Phonon Coupling from Ab Ini-
tio Linear-Response Theory within the GW Method:
Correlation-Enhanced Interactions and Superconduc-
tivity in Ba1−xKxBiO3. Phys. Rev. Lett. 2019, 122,
186402.

(136) Ismail-Beigi, S.; Louie, S. G. Excited-State Forces
within a First-Principles Green’s Function Formalism.
Phys. Rev. Lett. 2003, 90, 076401.

(137) Rohlfing, M.; Louie, S. G. Electron-hole Excitations
and Optical Spectra from First Principles. Phys. Rev.
B 2000, 62, 4927–4944.

(138) Ma, Y.; Rohlfing, M.; Molteni, C. Excited States
of Biological Chromophores Studied Using Many-
Body Perturbation Theory: Effects of Resonant-
Antiresonant Coupling and Dynamical Screening.
Phys. Rev. B 2009, 80, 241405.

(139) Ma, Y.; Rohlfing, M.; Molteni, C. Modeling the
Excited States of Biological Chromophores within
Many-Body Green’s Function Theory. J. Chem. The-
ory. Comput. 2009, 6, 257–265.

(140) Romaniello, P.; Sangalli, D.; Berger, J. A.; Sottile, F.;
Molinari, L. G.; Reining, L.; Onida, G. Double Exci-
tations in Finite Systems. J. Chem. Phys. 2009, 130,
044108.

(141) Sangalli, D.; Romaniello, P.; Onida, G.; Marini, A.
Double Excitations in Correlated Systems: A
Many–Body Approach. J. Chem. Phys. 2011, 134,
034115.

(142) Huix-Rotllant, M.; Ipatov, A.; Rubio, A.;
Casida, M. E. Assessment of Dressed Time-
Dependent Density-Functional Theory for the Low-
Lying Valence States of 28 Organic Chromophores.
Chem. Phys. 2011, 391, 120–129.

(143) Zhang, D.; Steinmann, S. N.; Yang, W. Dynami-
cal second-order Bethe-Salpeter equation kernel: A
method for electronic excitation beyond the adiabatic
approximation. J. Chem. Phys. 2013, 139, 154109.

(144) Rebolini, E.; Toulouse, J. Range-Separated Time-
Dependent Density-Functional Theory with a

Frequency-Dependent Second-Order Bethe-Salpeter
Correlation Kernel. J. Chem. Phys. 2016, 144,
094107.

(145) Olevano, V.; Toulouse, J.; Schuck, P. A formally
exact one-frequency-only Bethe-Salpeter-like equa-
tion. Similarities and differences between GW+BSE
and self-consistent RPA. J. Chem. Phys. 2019, 150,
084112.

(146) Ankudinov, A. L.; Nesvizhskii, A. I.; Rehr, J. J. Dy-
namic Screening Effects inX-RayAbsorption Spectra.
Phys. Rev. B 2003, 67, 115120.

(147) Baumeier, B.; Andrienko, D.; Ma, Y.; Rohlfing, M.
Excited States of Dicyanovinyl-Substituted Oligothio-
phenes from Many-Body Green’s Functions Theory.
J. Chem. Theory Comput. 2012, 8, 997–1002.

13


