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Abstract

Immersed boundary methods (IBMs) are an interesting alternative to the usual

body-fitted mesh approach when dealing with complex geometries as they allow

simpler mesh generation. The volume penalization method (an IBM) is com-

monly used for incompressible and compressible viscous flows but only one appli-

cation to compressible inviscid flows can be found, which uses the characteristic-

based volume penalization (CBVP) method. This approach penalizes the Euler

equations to enforce a no-penetration velocity and an adiabatic wall while ac-

counting for wall curvature. A new penalization method based on the CBVP

is proposed to impose the conservation of entropy and total enthalpy in the

normal direction to the wall instead of the classical adiabatic condition. The

two approaches are compared and numerically tested on several cases: weakly

compressible flow around a circular cylinder, subsonic flow around a NACA0012

airfoil and flow around a challenging high curvature ice horn. The new method

is found to be more accurate than the CBVP on coarser meshes and better at

retrieving attached flows for curved geometries. The paper concludes that the

proposed method is suitable for general aerospace applications and beneficial

for icing simulations which can exhibit highly curved geometries.
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1. Introduction

Immersed boundary methods (IBM) are an interesting alternative to the

usual body-fitted (BF) mesh approach when dealing with complex and moving

geometries. With BF meshes, the boundary conditions can be imposed exactly

but the mesh generation is more restrictive as it must conform to the geometry.

Alternatively when using an IBM, the geometry can arbitrarily cut through the

mesh, even allowing the use of Cartesian grids which are simpler to generate

and allow the use of fast and efficient algorithms [1]. On the other hand, effort

must be spent on the correct imposition of the boundary conditions.

Amongst the variety of IBMs available in the literature (see for instance [1]

or [2] for a review), continuous IBMs have the advantage of being independent of

the discretization and numerical methods. Furthermore, continuous approaches

such as the volume penalization method of [3] are appealing for their simplicity

of implementation. This type of approach stems from the Brinkman penalization

method [4] where a penalization term is applied as a basic source term in the

momentum equation of the incompressible Navier-Stokes equations to account

for the presence of a porous medium. The idea was generalized for solid bodies in

[3, 5], where the no-slip wall boundary condition is applied by assuming a porous

medium with very low permeability. An analysis of the method is also given in

[3] along with error estimates for the penalization. The Brinkman penalization

or volume penalization was applied for instance in [6] for the tracking of ice

shedding trajectories in a Cartesian grid, again using an incompressible laminar

viscous flow.

For compressible viscous flow, a penalization term is added to the continuity

equation in [7]. The same approach is employed by [8] where a comparison

between the penalization and direct-forcing method (another type of IBM) is

performed. In [9], the momentum equation is penalized along with the energy
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equation in order to apply a fixed wall temperature, but the continuity equation

is left untouched. A similar approach is followed by [10, 11].

A generalization of the Brinkman penalization method is proposed by [12]

where the imposition of Dirichlet, Neumann and Robin boundary conditions is

discussed for diffusion and convection-diffusion problems. Another generaliza-

tion is proposed by [13], the characteristic-based volume penalization (CBVP)

method, which provides a systematic way of implementing Dirichlet, Neumann

and Robin conditions using source terms and hyperbolic penalization terms.

As shown by the previous literature review, the Brinkman penalization

method is commonly used with incompressible or compressible viscous flows and

rare applications to compressible inviscid flows can be found. The Brinkman

penalization is applied to the prediction of acoustic scattering in [14] using the

linearized Euler equations. The slip wall boundary condition is achieved by pe-

nalization of the normal velocity component (on the momentum equation). For

aerodynamics, only one application is found in the literature where the Euler

equations are penalized [15] using the method of [13].

Contrary to the penalization of the Navier-Stokes equations, the penalization

of the Euler equations involves only one component of the velocity (v ·n) for the

wall boundary condition. Without proper treatment, the continuity of the other

variables at the wall is not ensured and can pollute the near-wall solution and

thus the wall data extraction. This problem is not observed for Navier-Stokes

equation which exhibits its own set of issues related to the characteristics of the

boundary layer ( e.g. flow anisotropy, strong gradients).

In this paper, the Characteristic-Based Volume Penalization (CBVP) of

[13, 15] is applied to the Euler equations in an alternative way. Our approach

uses a different set of boundary conditions inspired by [16] where the conserva-

tion of entropy and total enthalpy in the normal direction are applied. This set

of boundary conditions also accounts for the wall curvature and allows superior

mesh convergence for curved geometries [16]. This type of boundary condition

is useful for general applications and was found beneficial for the numerical sim-

ulation of ice accretion where ice shapes can exhibit features of high curvature.
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It is worth mentioning that the Euler equations are still relevant in the icing

community where many numerical tools for industrial applications are based on

inviscid-viscous coupling (e.g. LEWICE [17], IGLOO2D [18]). The Euler equa-

tions can also be used during the preliminary design of aerodynamic shapes

(with or without viscous-inviscid interaction). For instance, [19] developed a

ghost-cell method (a type of IBM) on Cartesian grids following this goal.

For this paper, the implementation of the penalization method is performed

in the Euler flow solver of ONERA’s 2D icing suite: IGLOO2D [18]. Although

higher benefits are achieved when using IBMs on Cartesian grids in terms of

computational effort and mesh generation, unstructured meshes are used in

this paper for more flexibility in mixing body-fitted and immersed boundary

approaches. It allows the simultaneous use of the two approaches within a

simulation and also help in comparing the IBM to the body-fitted approach

as the numerical code is against itself. Moreover, the penalization method is

independent of the discretization and therefore the developments made in this

paper are equally applicable to Cartesian, structured and unstructured meshes.

The penalization methods are presented in 2D but their extension to 3D does

not present any new difficulty as the evaluation of the curvature in 3D (a key

element of the method) has already been treated in the literature [20, 15].

The paper starts with the review of two types of numerical wall boundary

conditions for the Euler equations and their application to body-fitted meshes in

a finite volume context. This is helpful to understand the boundary conditions

that are to be imposed with the penalization method. Then in section 3, the

representation of the immersed boundary is discussed. Section 4 is dedicated

to the description of the penalization method. More precisely, the penalization

method of [13] and its application to the Euler equations [15] is discussed. Then

the development of the new penalization method is presented along with imple-

mentation details for a Finite Volume Method. In section 5, verification of the

new method is made on canonical test cases and on a challenging 2D ice horn

case. Some comparisons are also made against the CBVP method.
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2. Wall Boundary Conditions for the Euler Equations

In this section, wall boundary conditions for the Euler equations are reviewed

for motionless body-fitted meshes. The Euler equations are reminded in both

conservative and non-conservative forms as both formulations are used later in

this paper. Then two types of numerical wall boundary conditions are described

for finite volume implementation.

The non-conservative form of the Euler equations is:

∂ρ

∂t
+ ρ∇ · v + v ·∇ρ = 0

ρ
∂v

∂t
+ ρv ·∇v + ∇P = 0

ρ
∂e

∂t
+ ρv ·∇e+ P∇ · v = 0

(1)

and its conservative form is written as:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v + P I) = 0

∂(ρE)

∂t
+ ∇ · ((ρE + P )v) = 0

(2)

where ρ is the density, v the velocity, P the pressure, e the internal energy, E

the total energy, H is the total enthalpy and I the identity tensor.

e =
R

γ − 1
T (3)

E = e+
1

2
||v||2 (4)

H = γe+
1

2
||v||2 (5)

The system is closed using the ideal gas law.

P = ρRT (6)

The specific gas constant for air is R = 287.0 and the specific heat ratio is

γ = 1.4.

The wall boundary conditions for the Euler equations are set in order to

obtain a no-penetration velocity (or slip velocity) where v·n = 0 (the boundaries
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are assumed motionless for this paper). This leads to the following wall flux (in

2D):

Fwall =


ρv · n

ρuv · n + Pnx

ρvv · n + Pny

ρHv · n

 =


0

Pnx

Pny

0

 (7)

On a physics point of view, only the no-penetration velocity is a required bound-

ary condition at the wall. However on a numerical point of view (i.e. finite

volume method), adequate values for the variables ρ, u, v, P are required in

the ghost cells for both the evaluation of the wall flux and the evaluation of the

gradients (MUSCL reconstruction). Two approaches are reviewed here, which

are both implemented in the unstructured Euler flow solver of IGLOO2D: the

Symmetry Technique (ST) and the Curvature Corrected Symmetry Technique

(CCST).

2.1. Symmetry Technique (ST)

Considering a Finite Volume cell-centered discretization using ghost cells at

the wall boundary (Figure 1), the Symmetry Technique consists in imposing the

following variables in the ghost cells (g) to obtain the appropriate wall flux:

vg = vd − 2(vd · n)n (8)

ρg = ρd (9)

Pg = Pd (10)

where n is the wall normal. It follows the assumption that the wall is locally

flat (negligible curvature). This assumption holds if the mesh in the vicinity of

the wall is sufficiently refined (see Eq. (12) with ∆n = 0).
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Boundary

d

g
~n

Figure 1: Representation of the domain (d) and ghost (g) cells at the boundary along with

the wall normal (n)

2.2. Curvature Corrected Symmetry Technique (CCST)

The CCST is presented in 2D in [16, 21], then extended to 3D in [20] and

applied to 2D unstructured meshes in [22]. This approach imposes the normal

momentum relation to account for the wall curvature in the pressure extrapo-

lation, which can be written as:

∂P

∂n

∣∣∣∣
w

= ρwκ||vw||2 (11)

where κ is the signed wall curvature (positive if the center of curvature is on

the domain/fluid side, negative on the ghost/solid side). Note that Eq. (11) is

derived from the momentum equation and is valid for both steady and unsteady

flows. However its application is limited to stationary and non-deformable bod-

ies (∂n∂t = 0). As a consequence of Eq. (11) the ghost cell values are computed

as:

Pg = Pd + ρwκ||vw||2∆n (12)

ρg = ρd

(
Pg
Pd

)1/γ

(13)

(v · n)g = − (v · n)d (14)

(v · t)2g = (v · t)2d +
2γ

γ − 1

(
Pd
ρd
− Pg
ρg

)
(15)
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where ∆n is the distance between the centers of the domain (d) and ghost

(g) cells along the normal direction. Eq. (13) and Eq. (15) result from the

conservation of entropy and total enthalpy respectively. The wall (w) values in

Eq. (12) are typically taken as [16, 22]:

ρw = ρd (16)

vw = vd − (vd · n)n (17)

The norm of the tangential velocity is computed from Eq. (15) and its direction

follows the unit tangent vector computed as:

t =
v − (v · n)n

||v − (v · n)n||
(18)

The CCST is shown to generate less numerical entropy and to exhibit faster

grid convergence for steady flow computations around a cylinder [16]. However,

the ST and CCST boundary conditions converge towards the same solution as

the mesh is refined. Furthermore, when the curvature is zero (κ = 0), the CCST

method simplifies to the ST approach.

To assess if a simulation benefited from the CCST, the correction term

(ρwκ||vw||2∆n) in the pressure extrapolation (Eq. (12)) can be evaluated. It

can be interpreted as the error (∆P , Eq. (19)) committed on the pressure ex-

trapolation when using the ST instead of the CCST, where the characteristic

wall cell size (∆x) is used to estimate ∆n. Using the relative error Eq. (20),

one can observe that it depends not only on curvature and cell size, but also on

the local wall Mach number (Mw). Thus a scenario with high curvature and a

coarse mesh would greatly benefit from the use of the CCST.

∆P = ρw||vw||2κ∆x (19)

∆P

Pw
= γM2

wκ∆x (20)

3. Immersed Boundary Representation

Before describing the penalization methods for the Euler equations, it is

worth discussing how the immersed boundary (IB) is represented.
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3.1. Signed Distance

For this paper, the immersed boundary (IB) is defined by a discrete list of

nodes (2D). The location of the IB is defined by the level-set φ = 0, where

φ is the signed distance field from the IB. Values of φ are computed using a

geometric approach : evaluating the minimum projected distance to the edges

forming the IB [23]. The signed distance is negative (φ < 0) in the solid and

positive in the fluid (φ > 0).

Using a signed distance field leads to a simple evaluation of the normals (nφ)

and curvature (κ) of the IB using:

nφ = − ∇φ

||∇φ||
(21)

κ = ∇ · nφ. (22)

Note that the normal based on φ has a negative sign in order to point towards

the solid zone (φ < 0). This is useful in the definition of the penalization

methods presented in the next section.

3.2. Data Extraction

To extract the data at the IB (e.g. density, velocity, pressure), a weighted

least square interpolation at the discrete nodes defining the IB is used. The

weight is based on the inverse distance with a threshold on the distance (0.5∆x)

to avoid division by a very small number and provide some smoothing to the

data. The interpolation stencil is determined firstly by identifying the cell con-

taining the IB node, and secondly by saving the extended neighborhood of this

cell. The penalization methods described in the following sections extend the

fluid data into the solid zone (from outside the geometry to its inside). Thus

the interpolation stencil in the vicinity of the solid/fluid interface is assumed to

be filled with valid data to perform the interpolation.

4. Penalization Method

In this section, the volume penalization method [3, 5] is presented along with

a discussion on its application to the Euler equations. Then the penalization
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method of [13] (CBVP) is described followed by the development of the improved

penalization approach called CBVP-Hs because it conserves total enthalpy (H)

and entropy (s).

4.1. Volume Penalization

The volume penalization method consists in adding source terms in the con-

tinuous form of the equation to enforce the desired boundary condition. The

source terms are activated/deactivated using a mask function (χ) equal to unity

in the solid and zero in the fluid. In this way, only the solid is penalized and the

usual equations are retrieved in the fluid. The penalization parameter (η � 1)

ensures the boundary condition is enforced accurately. This type of method is

mostly used for Dirichlet boundary conditions but a general extension of the

method to Neumann and Robin conditions is proposed in [12]. The volume

penalization is limited to 1st order accuracy in space [24]. However, a 2nd order

adaptation of the method, the sub-mesh penalty method, is proposed by [24].

The volume penalization is widely used for the Navier-Stokes equations

where the velocity v is penalized on the momentum equations to obtain v = 0

in the solid (for a stationary body). Some authors also apply penalization terms

to the density and energy equation for compressible flows (e.g. [7],[9]). Other

implementations for adiabatic walls do not require the penalization of these

equations (e.g. [10]). A simple adaptation of this approach to the Euler equa-

tions consists in penalizing only the momentum equations to obtain v · n = 0

in the solid instead, similar to [14]. In brief, the goal is to obtain a slip veloc-

ity in the solid instead of the no-slip condition. In non-conservative form the

penalized Euler equations read:

∂ρ

∂t
+ ∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv ·∇v + ∇P = −χ

η
ρ(v · nφ)nφ

ρ
∂e

∂t
+ ρv ·∇e+ P∇ · v = 0

(23)

In the fluid (χ = 0), the usual Euler equations are retrieved. In the solid the

penalization term is activated by χ = 1. As η � 1, the physical terms in the
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momentum equation are negligible in front of the penalization term. It thus

comes back to solving an ordinary differential equation of the form:

dv

dt
= −1

η
(v · nφ)nφ (24)

where the penalization parameter η can be seen as a characteristic timescale.

The solution of this ODE is a rapidly decaying exponential (see Eq. (25) for

the x component), which means the no-penetration velocity is imposed almost

instantaneously (Eq. (26)).

(v · nφ)nφ,x = A0e
-(tnφ,x)/η (25)

(v · nφ)nφ = 0 (26)

The Euler equations are also solved in the solid but because of Eq. (26), only

the tangential component of the velocity remains (vt):

∂ρ

∂t
+ ∇ · (ρvt) = 0

ρ
∂vt
∂t

+ ρvt ·∇vt + ∇P = 0

ρ
∂e

∂t
+ ρvt ·∇e+ P∇ · vt = 0

(27)

In [15], more complex penalized Euler equations are briefly suggested but no

justification for their selection is provided. Numerical experiments showed that

with a simpler form like Eq. (23), the velocity tends to zero inside the solid

and an artificial boundary layer is created near the immersed boundary. This

behavior was unexpected as, contrary to the Navier-Stokes equations where the

fluid is at rest in the solid (no-slip wall), Eq. (27) shows that there should be a

tangential fluid flow in the solid with the Euler equations (slip wall). Because

the no-penetration velocity is imposed at the IB and because there is no diffusion

term, there is a lack of communication between the fluid and the solid. One

constraint only is imposed: the IB is a streamline because it is parallel to the

flow. But some discontinuities in tangential velocity (vt), pressure, entropy and

total enthalpy are allowed across the IB, which is thus a slip line. The objective

is then to retrieve continuity across the streamline at the IB by the imposition
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of additional constraints in the normal direction. This can be achieved by

enforcing Neumann boundary conditions, which can be implemented using the

penalization method of [13], presented in the following section.

4.2. Characteristic-Based Volume Penalization (CBVP)

The Characteristic-based Volume Penalization (CBVP) method [13] provides

a systematic way of implementing Dirichlet, Neumann and Robin boundary

conditions by the addition of hyperbolic penalization terms. It uses a sharp

Heaviside function for the mask (χ) where χ = 1 in the solid (Ωs) and χ = 0

in the fluid (Ωf ). This leads to a staircase definition of the immersed boundary

(IB) as shown in Figure 2. However, a smooth solution is recovered at the IB

by the use of hyperbolic penalization terms for Neumann and Robin conditions,

and by the use of dissipation terms for Dirichlet conditions.

Fluid

Solid

Immersed
Boundary

Figure 2: Staircase representation of the solid

In [15], a set of penalized Euler equations are presented very briefly. In

non-conservative form, it writes:

∂ρ

∂t
+ (1− χ)∇ · (ρv) = − χ

ηc

(
nφ ·∇ρ− κρ

2

P
||v||2

)
ρ
∂v

∂t
+ (1− χ)(ρv ·∇v + ∇P ) = −χ

η
ρ(v · nφ)nφ + χρνη∇2v

ρ
∂e

∂t
+ (1− χ)(ρv ·∇e+ P∇ · v) = − χ

ηc
(ρnφ ·∇e)

(28)

where nφ is the normal to the IB pointing towards the solid. Note that 1/ηc can

be seen as a characteristic velocity with ηc � 1. Here, hyperbolic penalization
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terms of the form (n ·∇u − q)/ηc = 0 are added to the continuity and energy

equations to apply Neumann boundary conditions. As explained in [13], for

the CBVP method the physical flux terms are removed from Ωs to prevent any

interaction with the penalization terms. For Dirichlet conditions, an artificial

dissipation term is added using the artificial viscosity νη which must be of the

order νη ≥ ∆x2/η. According to [13], this term helps in retrieving a smooth

solution at the IB for Dirichlet conditions.

In the fluid (χ = 0), the usual Euler equations are retrieved. In the solid

(χ = 1), by setting the time derivative to zero (steady state), the following

conditions are enforced:

nφ ·∇ρ = κ
ρ2

P
||v||2 (29)

−1

η
ρ(v · nφ)nφ + νη∇2v = 0 (30)

nφ ·∇e = 0 (31)

This set of equations is equivalent to imposing an adiabatic wall (Eq. (31)),

a no penetration velocity (Eq. (30)) and the normal momentum relation which

relates the pressure gradient to the wall curvature (Eq. (29)), except it is written

in terms of the density gradient. The normal momentum relation can be written

as:

nφ ·∇P = κρ||v||2 (32)

where in 2D, the curvature (κ) is computed from the normals to the IB (nφ) as

κ = ∇ ·nφ. To obtain Eq. (29), one must use the ideal gas law (P = ρe(γ − 1))

in combination with the normal momentum relation (Eq. (32)) and apply the

adiabatic wall condition (nφ ·∇e = 0).

The dissipation term in Eq. (30) helps in obtaining continuity of the tan-

gential velocity but also hinders the imposition of (v · n)n = 0. Thus this

parameter must be selected small enough for the no-penetration velocity to be

enforced, but large enough to ensure continuity and stability. In this paper the

dissipation parameter is taken as νη = ∆x2/η as suggested in [13]. Note that

this penalization method depends on three adjustable parameters: η, ηc and νη
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instead of one for the volume penalization method.

4.3. CBVP-Hs

Because of the dissipation term in the CBVP method, there is a smooth

transition of the velocity from the fluid to the solid. However, this transition is

not based on the physics of the problem and does not ensure the conservation of

total enthalpy. A new penalization of the Euler equations is proposed hereafter,

where the CBVP method of [13] is used to apply the wall boundary conditions

of the CCST [16, 21, 20].

The goal is to develop a method that would respect the properties of the

inviscid ideal gas flow in the vicinity of the wall streamline. The streamline

is, of course, defined by the no-penetration velocity (Eq. (36)). The continuity

of tangential velocity, pressure, entropy and total enthalpy must be ensured

by additional equations. The normal momentum relation (Eq. (32)) allows the

continuity of pressure. The normal conservation of total enthalpy (Eq. (33)) and

the normal conservation of entropy (Eq. (34)) are imposed to close the system:

nφ ·∇H = 0 (33)

nφ ·∇s = 0 (34)

nφ ·∇P = κρ||v||2 (35)

(v · nφ)nφ = 0 (36)

where nφ is the normal to the IB based on the signed distance field (φ). This set

of boundary conditions allows the continuity of the flow variables including the

norm of the velocity across the boundary. It is better suited for homentropic

and homenthalpic flows which are the primary target of our model, although

the presence of a shock wave for instance may not hinder the use of (Eq. (34))

as long as the shock is parallel to nφ.

Because this new method is based on the CBVP but designed to conserve

the entropy (s) and total enthalpy (H), it is referred to as CBVP-Hs. It is im-

portant to understand that the only physical wall boundary condition required

for the Euler equations is the no-penetration velocity. The other conditions are
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numerical and are used to improve the accuracy of the model in terms of wall

pressure extrapolation, generation of entropy and conservation of total enthalpy.

The boundary conditions also improve the continuity of the solution near the

IB and provide adequate support for the evaluation of the fluxes and gradients

(e.g. for a 2nd order MUSCL approach). Furthermore, it allows for the use of

an interpolation method for the extraction of the wall data.

In the following sections, penalization terms are first derived for the primitive

variables and applied to the non-conservative form of the Euler equations. It

is useful to start with the primitive variables as the penalization terms can

easily be derived for them. Then the transition from the non-conservative to

the conservative form naturally provides the penalized Euler equations in terms

of conservative variables.

4.3.1. Penalization of the Primitive Variables

In this section, penalization terms are derived for the non-conservative form

of the Euler equations (Eq. (1)). Hyperbolic penalization terms of the form

n ·∇u = q are sought, where u is ρ,v or e.

The penalization term for the density is derived from Eqs. (34)–(32). The

conservation of entropy can be written as:

nφ ·∇s = nφ ·∇
(
P

ργ

)
= 0 (37)

⇒ nφ ·∇ρ =
ρ

γP
nφ ·∇P (38)

By substituting the normal momentum relation (Eq. (32)) in Eq. (38), a relation

for the normal density gradient is obtained. It is applied to the continuity

equation as a hyperbolic penalization term (Eq. (39)).

χ

ηc

(
nφ ·∇ρ− ρ2

γP
κ||v||2

)
= 0 (39)

A penalization term for the internal energy can be derived from equations

(6), (3) and (38), which gives:

χ

ηc

(
nφ ·∇e− 1

γ
κ||v||2

)
= 0 (40)
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At this point, only the penalization term on velocity is missing. This term is

the application of the no-penetration velocity (Eq. (36)) as a Dirichlet condition

and a hyperbolic penalization term denoted Pv which must be determined to

set the velocity magnitude.

ρ
∂v

∂t
+ (1− χ)(ρv ·∇v + ∇P ) =

Pv −
χ

η
ρ(v · nφ)nφ

(41)

In addition, the conservation of total enthalpy must still be enforced. The

term Pv can thus be derived in two steps. First, by using the normal conserva-

tion of total enthalpy (Eq. (33)) one can derive a condition on kinetic energy.

The conservation of total enthalpy (nφ ·∇H = 0) can be written as:

γ

γ − 1
nφ·∇

(
P

ρ

)
+ nφ ·∇

(
1

2
||v||2

)
= 0 (42)

with

nφ·∇
(
P

ρ

)
=

nφ
ρ
·∇P − Pnφ

ρ2
·∇ρ (43)

By using Eq. (43), the normal momentum relation (Eq. (32)) and the condition

on density (Eq. (39)), the condition on kinetic energy is retrieved.

⇒ nφ ·∇
(

1

2
||v||2

)
+ κ||v||2 = 0 (44)

It can also be recast in a penalized equation for the kinetic energy in the solid:

ρ
∂
(
1
2 ||v||

2
)

∂t
= − χ

ηc

(
ρnφ ·∇

(
1

2
||v||2

)
+ ρκ||v||2

)
(45)

Second, a relation for kinetic energy can also be computed from the momen-

tum equation (41) scalar product with v as:

v · ρ∂v
∂t

+ v · (1− χ)(ρv ·∇v + ∇P ) =

v · Pv − v · χ
η
ρ(v · nφ)nφ

(46)

By considering this equation in the solid (χ = 1) and by keeping only terms of

the same order of magnitude (η � 1 and η � ηc), it reads:

v · ρ∂v
∂t

= v · Pv (47)
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or

ρ
∂
(
1
2 ||v||

2
)

∂t
= v · Pv (48)

This simplification follows the assumption that η and ηc are not of the same

order of magnitude and thus, that v · nφ exponentially tends towards zero. In

order to equate Eq. (48) and Eq. (45), Pv must be selected to respect a condition

on kinetic energy (Eq. (49)).

v · Pv = − χ
ηc

(
ρnφ ·∇

(
1

2
||v||2

)
+ ρκ||v||2

)
(49)

A natural approach is to select Pv orthogonal to n in order to decouple the hy-

perbolic penalization term and the Dirichlet condition (see Eq. (41)). However,

no practical formulation was found for use with the Finite Volume Method. An

alternative and simpler choice for Pv is:

Pv = − χ
ηc

(ρnφ ·∇v + κρv) (50)

However note that Eq. (50) is not the only possible choice for Pv. In Eq. (41), the

hyperbolic penalization term (Eq. (50)) and the Dirichlet condition (Eq. (36))

are decoupled by using η � ηc.

The non-conservative form of the penalized equations can now be updated

using the hyperbolic terms for ρ, v and e:

∂ρ

∂t
+ (1− χ)∇ · (ρv) = − χ

ηc

(
nφ ·∇ρ− κ ρ

2

γP
||v||2

)
ρ
∂v

∂t
+ (1− χ)(ρv ·∇v + ∇P ) = − χ

ηc
(ρnφ ·∇v + κρv)

− χ

η
ρ(v · nφ)nφ

ρ
∂e

∂t
+ (1− χ)(ρv ·∇e+ P∇ · v) = − χ

ηc

(
ρnφ ·∇e− κρ

γ
||v||2

)
(51)
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4.3.2. Penalization of the Conservative Variables

By transferring to the conservative form, the equations including the penal-

ization terms become:
∂ρ

∂t
+ (1− χ)∇ · (ρv) = − χ

ηc

(
nφ ·∇ρ− κ ρ

2

γP
||v||2

)
∂ρv

∂t
+ (1− χ)∇ · (ρv ⊗ v + P I) = −χ

η
ρ(v · nφ)nφ

− χ

ηc

(
nφ ·∇(ρv) + κρv

(
1− ρ

γP
||v||2

))
∂ρE

∂t
+ (1− χ)∇ · ((ρE + P )v) = −χ

η
ρ(v · nφ)2

− χ

ηc

(
ρnφ ·∇E +

(γ − 1)

γ
ρκ||v||2

)
(52)

The energy equation can also be written in terms of total enthalpy by expanding

the term containing the curvature and using Eq. (32) and Eq. (39):

(γ − 1)

γ
ρκ||v||2 = ρnφ ·∇

(
P

ρ

)
(53)

By substitution of Eq. (53) in the energy equation Eq. (52), it gives:

∂ρE

∂t
+ (1− χ)∇ · ((ρE + P )v) = −χ

η
ρ(v · nφ)2

− χ

ηc
ρnφ ·∇H

(54)

Using this set of penalization terms ensure Eqs. (33)–(36) are respected. Fur-

thermore, the term Pv replace the dissipation term employed in [13] on the

momentum equation. This convection term is derived from physical arguments

in order to respect the conservation of total enthalpy instead of using a nu-

merical artifice. Ultimately, this should translate into a reduction in entropy

generation, improved conservation of enthalpy and reduced flow separation as

shown by [16, 21, 20] with the CCST.

4.3.3. Implementation Details

The penalized Euler equations of Eq. (52) are implemented in a cell-centered

Finite Volume framework using unstructured meshes. They are written in vector

form as:
∂W

∂t
+ (1− χ)∇ · FEuler = −χ∇ · Fibm + χSibm (55)
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where the penalization terms are conveniently split into flux (Fibm) and source

(Sibm) terms.

W =


ρ

ρu

ρv

ρE

 , FEuler =


ρv

ρuv + Px

ρvv + Py

ρHv

 (56)

Wibm =


ρ

ρu

ρv

ρH

 , Fibm =
1

ηc


ρnφ

ρunφ

ρvnφ

ρHnφ

 (57)

The IB source term (Sibm) is split in Dirichlet, convective and curvature con-

tributions:

Sibm = Sibm,D + Sibm,conv + Sibm,curv (58)

Sibm,D =
1

η


0

−ρ(v · nφ)nφ,x

−ρ(v · nφ)nφ,y

−ρ(v · nφ)2

 (59)

Sibm,conv =
1

ηc


ρ∇ · nφ
ρu∇ · nφ
ρv∇ · nφ
ρH∇ · nφ

 (60)

Sibm,curv =
1

ηc
κ


ρ ρ
γP ||v||

2

ρu
(
ρ
γP ||v||

2 − 1
)

ρv
(
ρ
γP ||v||

2 − 1
)

ρH ρ
γP ||v||

2

 (61)

where the convective source term Sibm,conv comes from rewriting Eq. (52) to

isolate Fibm. From the IB flux (Eq. (57)), the system is shown to be hyperbolic

in the solid with eigenvalues nφ,nφ,nφ and γnφ.

19



The penalization of the Euler equations leads to a stiff system as the penal-

ization parameters (η and ηc) are very small. One way to alleviate this problem

is to solve the system implicitly. In this paper it is solved using a BICGSTAB

algorithm with a block Jacobi preconditioner. The Euler fluxes are computed us-

ing a Roe scheme [25] (no entropy fix) and a MUSCL reconstruction to achieve

2nd order accuracy in space [26]. The IB fluxes are evaluated with a simple

1st order upwind scheme (upwinded by nφ) of the form:

Fedge =
1

2
[(nφ · nedge)(Wibm,R + Wibm,L)

− |nφ · nedge| (Wibm,R −Wibm,L)]

(62)

where L and R represent the left and right state respectively and nedge is the

normal vector to the cell edge.

The mask function χ is the Heaviside function (H) based on the signed

distance field φ.

χ = H(−φ) (63)

The level-set φ = 0 determines the location of the IB with φ < 0 in the solid

and φ > 0 in the fluid. It can be seen that in the fluid (χ = 0), the usual Euler

equations are retrieved while in the solid (χ = 1) only the penalization terms

are activated.

From [13], ηc � 1 and η � 1 in order to enforce the correct condition in

the solid by penalization. In the current implementation, a slightly different

approach is followed. Since the Euler fluxes are deactivated in the solid, ηc is

not required to be very small in order to propagate the fluid properties towards

the solid. Here, the IB fluxes are not penalized but are merely a replacement for

the Euler fluxes inside the solid by using ηc = 1. It comes back to solving prop-

agation equations in the solid, which are penalized to apply the no-penetration
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velocity. By using ηc = 1, the equations in the solid are:

∂ρ

∂t
+ nφ ·∇ρ = κ

ρ2

γP
||v||2

∂ρv

∂t
+ nφ ·∇(ρv) = κρv

(
ρ

γP
||v||2 − 1

)
− 1

η
ρ(v · nφ)nφ

∂ρE

∂t
+ ρnφ ·∇H = −1

η
ρ(v · nφ)2

(64)

where the only penalization terms are 1
ηρ(v · nφ)nφ and 1

ηρ(v · nφ)2. A typical

value for the penalization parameter is η = 10−10, which accurately enforces the

slip velocity (v · nφ = 0) near the IB. As for the volume penalization method,

v ·nφ exponentially tends towards zero (almost instantaneously). This approach

is suitable if the Euler equations are solved for a steady state.

In this paper ηc = 1 is used, but it is also possible to use ηc < 1. In such a

case, it is important to respect a ratio η/ηc as there is an interaction between

the Neumann and Dirichlet conditions in the momentum equation. The idea

is to keep the imposition of v · n = 0 dominant over the propagation of the

information. To do so η � ηc and a ratio of η/ηc = 10−6 was found to be

sufficient for most applications.

With the CBVP-Hs method, two adjustable parameters are used: η and

ηc. Thus, it has fewer parameters to calibrate compared to the CBVP method

which has three of them: η, ηc and νη.

4.3.4. Dimension of the Problem

The approach was derived and assessed in 2D in the present article, with-

out losing generality. Since the penalization method is based on the continuous

form of the equations and is independent of the discretization, the CBVP-Hs

can naturally be extended to 3D. In practice, some difficulties might arise when

evaluating the curvature term (κ), a key element of the method. In 2D, the

curvature is purely geometric and therefore simple to estimate. For 3D appli-

cations, the curvature also depends on the direction of the wall streamlines and

is therefore linked to the flow velocity at the wall. This additional difficulty is

covered for instance in [15] and [20], where the CBVP method and a 3D im-
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plementation of the ghost cell method are respectively discussed. Thus a 3D

implementation of the CBVP-Hs method should be straightforward by building

on previous work from the literature.

4.4. Notes on Moving Boundaries

Although moving boundaries are not considered in this paper, the CBVP-Hs

method is still directly applicable where boundary displacement can be decou-

pled from the aerodynamic flow. For instance, in typical numerical tools for

the prediction of in-flight icing (e.g. LEWICE [17], IGLOO2D [18]), the aero-

dynamic flow is computed to steady state and then the ice shape is updated

according to the ice growth in a segregated step. With the current penalization

method, the geometry update can be accounted for in the aerodynamic solver

by re-evaluating the signed distance field (φ) and associated metrics (nφ, κ,

χ). By doing so, the penalization method automatically applies the boundary

conditions on the new geometry. Note that the CBVP-Hs method is not limited

to icing applications. A similar process could be applied to perform shape opti-

mization where a steady or unsteady flow is computed on a fixed geometry. The

shape update would again be accounted for by re-evaluating the signed distance

field.

4.5. Geometry Fidelity

The volume penalization method is limited to 1st order accuracy because

the boundary condition is applied at the cell centers close to the boundary and

not on the immersed boundary itself. Some extensions to second order accuracy

are available in the literature [27, 28] by using information at the discrete level.

Here the implementation is limited to the classical first order accuracy. With

this type of approach, the accuracy of the method is usually improved by refining

the mesh in the vicinity of the IB.
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Solid

Fluid

Trailing Edge

Figure 3: Trailing edge representation for a NACA0012 airfoil (white line) on a Cartesian grid

In the current implementation, even if the sharp Heaviside function leads to

a staircase representation of the IB, the Neumann boundary conditions (convec-

tive terms) are smoothing the interface and improving the solution on coarser

meshes (e.g. when extracting the pressure coefficients). However, because of

the staircase representation of the IB and because the cell centers are used to

determine if a cell is fluid or solid, the current implementation is not well suited

to deal with sharp features (e.g. sharp trailing edge of an airfoil). As shown on

Figure 3, the sharp trailing edge is seen as blunt by the penalization method

as the fluid cells covering the trailing edge are not penalized. A refinement in

the vicinity of the sharp feature can improve the solution by providing a more

accurate representation of the geometry. In this paper, the sharp trailing edge

is simply treated as blunt. In this way, the cell refinement can be coarser while

allowing the correct overall solution to be retrieved. This approach is used for

the NACA0012 airfoil presented in the next section.

For icing applications [29], the selected approach is to deal with sharp fea-

tures on the clean geometry using a body-fitted mesh (e.g. sharp trailing edge

on an airfoil). Only the ice will be immersed in the mesh (see Figure 18b). Al-

though some sharp features may be generated by the ice growth, it is acceptable

for them to be slightly smoothed out. With this approach, the accuracy of the
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body-fitted approach is retrieved where possible and the flexibility of the IBM

is used otherwise. The ice accretion case presented in this paper follows this

approach.

4.6. Mesh Particularities

For unstructured meshes made of triangles, some cell configurations lead

to a poor propagation of the information from the fluid to the solid. This

situation occurs when a fluid cell near the IB is trapped between solid cells and

the numerical fluxes allow no communication with neighboring fluid cells. One

example is illustrated in Figure 4, where cell A is fluid and cell B is solid. Cell

A has 2 solid cells and one fluid cell as direct face neighbors. In this specific

configuration, cell A is emptied and the solution is propagated in the solid (e.g.

cell B).

In this paper, the issue is solved by applying a correction on the mask func-

tion (χ) for these pathological cells: instead of using a sharp definition (χ = 0

or 1), χ is set to the solid fraction of the cell (χ ∈ [0, 1]). This correction

blends the Euler and the penalization fluxes leading to a smoother solution as

the communication with the fluid is restored.

24



X

Y

0.075 0.08 0.085 0.09

­0.05

­0.045

­0.04

chi

0

Euler flux

IBM flux

A

B

Figure 4: Pathological cell example with flux representation and mask function χ

From numerical experiments, the issue was observed for only a few cells (1%

to 2% of the IB cells) and not for all meshes. Some unstructured meshes will

present no pathological cells while for structured meshes made of quadrilateral

cells, the issue was never observed. Also, note that the issue is present for both

the CBVP and CBVP-Hs methods.

4.7. Brief Comparison with other type of IBMs

For completion, please note that other type of IBMs have been successfully

applied to the Euler equations, offering their own set of advantages and draw-

backs. For discrete approaches, the desired boundary conditions are imposed by

enforcing them at the discrete level (e.g. [21, 20], [19]). Thus they are depen-

dent on the selected discretization method and also on the type of mesh used.

These approaches have the advantage of being accurate (2nd order, e.g. [30])
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and can also deal with sharp trailing edges in a simple manner (e.g. [21, 19]).

Embedded "cut-cell" methods (e.g. [31, 32]) are also suitable for solving the

Euler equations with similar advantages compared to discrete methods. This

paper inserts itself in the scope of penalization methods and suggests a suit-

able approach for the penalization of the Euler equations. Although the current

CBVP-Hs method is only 1st order accurate (globally), the advantage of penal-

ization methods lies in their independence from the discretization method or the

type of mesh used as they are based on the continuous form of the equations.

They are also independent of the physical dimension of the problem and simple

to implement as they require minimal information from the geometry. A simple

evaluation of the signed distance field (φ) and mask function (χ) is sufficient to

determine the location of the immersed boundary and activate the penalization

terms in the solid.

5. Results

In this section, the behavior of the CBVP-Hs method is shown on different

test cases. A mesh refinement study is first performed for the weakly compress-

ible flow around a circular cylinder. Then the subsonic flow around a NACA0012

airfoil is studied. The penalization method is also tested on an ice horn which

was found difficult to solve in a previous communication [29] due to its high

curvature. The simulation parameters are summarized in Table 1.

The solution from the penalization method is verified against analytical solu-

tions when applicable or against numerical solutions obtained by a body-fitted

approach. A comparison is also performed against the CBVP method. Wall

pressure coefficients, entropy and total enthalpy errors are compared and dis-

cussed.
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Table 1: Simulation Parameters

Cylinder Airfoil Ice Horn

Geometry Cylinder NACA0012 GLC305

Chord D=2.0 1.0 0.9144

AoA 0.0 1.25 4.0

Mach 0.1 0.5 0.273

Pstatic 100kPa 100kPa 101.325 kPa

Tstatic 300.0K 300.0K 268.3K

LWC – – 0.54g/m3

MVD – – 20µm

Icing Time – – 1350s

In Table 1, LWC stands for Liquid Water Content and represents the mass

of water per volume of air. The median volume diameter (MVD) represents the

droplet size for the icing simulation. The list of icing parameters are provided

but note that only the aerodynamics is treated in this paper.

For the following simulations, the convergence is determined by monitoring

the L2 and L∞ norms of the wall pressure coefficient (Cp). The usual density,

momentum and energy residuals are also monitored. In the following sections,

when the convergence threshold is specified, the criterion on Cp is used. For the

penalization method, the convergence check requires a pressure interpolation at

the IB at each time step. It is performed by a weighted least square interpolation

method.

5.1. Weakly Compressible Flow Around a Cylinder

The first test case is the weakly compressible flow around a circular cylinder.

As the Euler flow solver in IGLOO2D is compressible only, the incompressible

analytical solution is approached by performing the simulation at a low Mach

number (Mach= 0.1). The analytical solution for the pressure coefficient (Cp)
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is, in 2D Cartesian coordinates:

Cpanalytical =
2R2

c(x
2 − y2)−R4

c

(x2 + y2)2
(65)

where Rc is the radius of the cylinder.

X

Y

0 2 4 6
0

2

4

6

Figure 5: Mesh for the cylinder with cell size D/∆x = 10

A family of five meshes is generated ranging from D/∆x = 10 to D/∆x =

160, where D is the diameter of the cylinder and ∆x the Cartesian cell size.

The cylinder is immersed into a uniform Cartesian grid. To reduce the total

number of cells the uniform Cartesian grid is limited to a width of 2 diameters.

Outside this zone a structured mesh is used allowing cell growth and stretching,
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but still ensuring mesh symmetry. The far field is located at 50 diameters from

the cylinder. Part of the mesh for D/∆x = 10 is illustrated in Figure 5 with a

zoom on the blanked cylinder.

For the results presented below, the wall Cp residual is converged to 10−8.

Figures 6 and 7 illustrate the Cp distribution for both the CBVP and CBVP-

Hs methods. From these figures, both methods converge towards the analytical

solution. However, the mesh convergence is faster for the CBVP-Hs method

for which a good global Cp distribution is achieved on a mesh as coarse as

D/∆x = 40. In comparison, the CBVP method exhibits a satisfactory global

solution for the finest mesh only (D/∆x = 160).
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Figure 6: Wall Cp with mesh refinement for the cylinder (CBVP)

29



x

C
p

­1 ­0.5 0 0.5 1

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

1.5

Analytical
D/dx=10
D/dx=20

D/dx=40
D/dx=80
D/dx=160

Figure 7: Wall Cp with mesh refinement for the cylinder (CBVP-Hs)

For a more detailed analysis, pressure coefficients are extracted at locations

of interest: (x, y) = (−1, 0), (x, y) = (0, 1) and (x, y) = (1, 0). For these

locations the expected analytical solution is respectively: Cp = 1, Cp = −3

and Cp = 1. The data is shown on Figure 8 as the Cp error (∆Cp) against the

analytical solution for the three locations:

|∆Cp| = |Cp− Cpanalytical| (66)

The observation of Figure 8 shows that as the mesh is refined the error for the

forward stagnation point (x = −1) is roughly the same for both methods (CBVP

and CBVP-Hs). However, the error is much lower at the maximum suction peak

(x = 0) and at the aft stagnation point (x = 1) for the CBVP-Hs method. For

instance, on a mesh as coarse as D/∆x = 20 the suction peak is captured to
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an accuracy of ∆Cp ≈ 10−4 with the CBVP-Hs compared to ∆Cp ≈ 10−0.5

for the CBVP method. The reattachment point at x = 1 is also captured

more accurately with ∆Cp ≈ 10−2.5 for the CBVP-Hs against ∆Cp ≈ 10−1 on

the finest mesh (D/∆x = 160). For the forward stagnation point, the order

of convergence is observed to be 1 for both methods. It is, however, difficult

to conclude on the order of convergence for the other locations. The order of

convergence will be discussed based on the root mean squared (RMS) in the

next section.
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Figure 8: Cylinder ∆Cp convergence as the mesh is refined

5.1.1. Entropy and Total Enthalpy

As the flow around the cylinder presents no heat source nor external force,

the entropy (s) and total enthalpy (H) should be conserved in the entire com-

putational domain. Thus, entropy and total enthalpy errors can be evaluated
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against the freestream conditions as:

∆s = |(s− s∞)| /s∞ (67)

∆H = |(H −H∞)| /H∞ (68)

s∞ = P∞/ρ
γ
∞ (69)

H∞ =
γ

γ − 1

P∞
ρ∞

+
1

2
||v∞||2 (70)

∆s

0.001

0.0005

0.0001

5E­05

1E­05

1E­06

CBVP

CBVP­Hs

Figure 9: Entropy error for the cylinder on the Cartesian mesh D/∆x = 80. Immersed

Boundary: white line. The center of the cylinder is blanked for clarity.
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Figure 10: Total enthalpy error for the cylinder on the Cartesian mesh D/∆x = 80. Immersed

Boundary: white line. The center of the cylinder is blanked for clarity.

The contours for the entropy and total enthalpy error are illustrated on

Figures 9–10. These figures confirm that the CBVP-Hs method reduces the

error in the wake and at the maximum suction points of the cylinder. However,

the error is similar for both methods at the forward stagnation point. As an

additional comparison point, the maximum entropy error in the field for the

CBVP is ≈1e-3 while it is ≈6e-4 for the CBVP-Hs. The same behavior is

observed for the total enthalpy error whose maximum is ≈1e-3 for the CBVP

and ≈3e-4 for the CBVP-Hs. As a comparison, a body-fitted simulation using

an equivalent wall cell size was performed (not shown). The error for entropy

and total enthalpy is respectively ≈1e-5 and ≈8e-6 using the CCST boundary

condition, which shows that even for a body-fitted mesh the entropy and total

enthalpy are not conserved to machine accuracy.

The error at the wall for Cp, s and H are plotted on Figure 11 for both
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methods and for the different refinement levels. The error is presented as the

RMS of the local ∆Cp, ∆s and ∆H respectively. This gives an indication of

the global wall error (RMS) and confirms that the CBVP-Hs is more accurate.

In fact, the CBVP solution with D/∆x = 160 is equivalent to the CBVP-Hs

with D/∆x = 40 in terms of the RMS.

From Figure 11, the error is observed to be lower for the CBVP-Hs method

while also offering a faster convergence rate on ∆H and ∆s. The order of con-

vergence is observed to be 1 for the CBVP-Hs method on entropy and total

enthalpy, while it is slightly lower for the CBVP method. The volume penaliza-

tion method is limited to 1st order accuracy, thus it is logical to obtain a global

1st order of convergence at best although the solution is 2nd order accurate in

the field (2nd order Roe Scheme).
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Figure 11: Global wall error (RMS) for the cylinder
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5.1.2. Continuity of the Solution

The cylinder case with D/∆x = 80 is used to illustrate the continuity of the

solution in the vicinity of the IB and inside the solid zone. Both the CBVP and

CBVP-Hs are designed with hyperbolic penalization terms on the continuity and

energy equations allowing the propagation of information from the fluid to the

solid in the normal direction to the interface. However, the two methods differ

on the momentum equation where the continuity of the velocity is imposed by an

artificial dissipation term for the CBVP and by a hyperbolic penalization term

for the CBVP-Hs. For both methods, a no-penetration velocity (v · nφ = 0) is

enforced in the solid, thus only the tangential component of the velocity remains.

As shown on Figure 12, the tangential velocity is continuous across the IB

for both methods. For the CBVP, the continuity is enforced via numerical dis-

sipation. This does not only produce an unphysical extension of the tangential

velocity in the solid, it also pollutes the solution in the fluid near the IB. On the

other hand, the CBVP-Hs extends the tangential velocity following the physics

of the wall streamline. Also note that the curvature terms are only activated in

the vicinity of the interface, the remainder of the solid zone only sees convection

terms in the direction normal to the IB. It translates into a proper extension

of the fluid properties near the IB, then into straight contour lines pointing

towards the center of the cylinder.
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Figure 12: Continuity of the tangential Mach number (Mt) near the IB and inside the solid

for both CBVP and CBVP-Hs (D/∆x = 80).

The continuity of the pressure (Cp) is illustrated on Figure 13. In terms

of pressure both the CBVP and CBVP-Hs methods behave in a similar and

satisfactory manner inside the solid. The main difference is coming from the

quality of the solution, which is more accurate for the CBVP-Hs on an equivalent

mesh. This is evidenced for instance by the Cp near the aft stagnation point

which is closer to the analytical value of Cp = 1.
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Figure 13: Continuity of the pressure coefficient (Cp) near the IB and inside the solid for both

CBVP and CBVP-Hs (D/∆x = 80).

It is also interesting to verify the continuity of entropy and total enthalpy

as it should be strongly imposed using the CBVP-Hs. As illustrated in Figures

9–10, both methods propagate the entropy and total enthalpy from the fluid to

the solid. The CBVP method exhibits larger error at the suction peak and aft

of the cylinder on the fluid side. This error is also propagated into the solid. On

the other hand, the CBVP-Hs method shows a lower error on the fluid side (for

both ∆s and ∆H). This is also reflected inside the solid as expected. These two

figures emphasize the difference in accuracy of the two methods in the vicinity

of the IB, with a better solution achieved by the CBVP-Hs.

5.2. Subsonic Flow Around a NACA0012

A more representative test case for aerospace applications is the subsonic

flow around an airfoil. As stated earlier, the first order accurate penalization
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method is not well suited for the representation of sharp features like trailing

edges. Here, the issue is worked around by using a NACA0012 airfoil with a

blunt trailing edge [33], allowing easier meshing of the solid (interior mesh).

An unstructured mesh is used to show that the method is also applicable to

general meshes. This also allows a better comparison between the body-fitted

and penalization methods.

Figure 14: Body-fitted mesh for the NACA0012 airfoil with blunt trailing edge. Right: zoom

on the leading edge. Left: zoom on the trailing edge.

The body-fitted and IB meshes are respectively shown in Figures 14–15. The

meshes are refined at the leading and trailing edges and the far field is located

at 50 chords from the airfoil. The same parameters are used to generate the

IB and body-fitted meshes, ensuring comparable cell sizes and refinement. In

terms of the chord (c), the cell sizes at the wall, leading edge, trailing edge and

far field are respectively: 5e-3c, 1e-3c, 5e-4c and 4c. A linear cell size growth
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is allowed from the wall to the far field boundary. For the body-fitted and IB

meshes, it gives a total of 36420 and 49136 cells respectively.

Figure 15: Immersed boundary mesh for the NACA0012 airfoil with blunt trailing edge. Right:

zoom on the leading edge. Left: zoom on the trailing edge.

For this test case, the standard subsonic flow conditions of Mach = 0.5 and

AoA = 1.25 deg are used [34]. To allow a fair comparison with the penalization

methods, the body-fitted (BF) simulation is performed with both the ST and

CCST wall boundary conditions. As a reminder, the CBVP and CBVP-Hs both

account for the wall curvature, similar to the CCST.
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Figure 16: Wall Cp for the NACA0012 airfoil at Mach= 0.5 and AoA= 1.25 deg. Comparison

to the BF ST and BF CCST.
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The results from Figure 16 illustrate the Cp distribution at the wall. For

the body-fitted results, the ST and CCST provide a similar solution where the

two Cp curves are superimposed on Figure 16b. On a geometry with moderate

curvature (κ) and using a mesh with adequate refinement (∆x) both the ST and

CCST are expected to be equivalent. This is justified by Eq. (20) which provides

an error estimate for the pressure extrapolation ∆P/Pw. When κ∆x → 0,

∆P/Pw → 0 and the CCST and ST become equivalent. For this test case, the

ST shows a maximum error of ∆P/Pw ≈ 1% with γM2
wκ = 12.3 and a wall

cell size of ∆x = 1e-3. An error of ≈ 1% is deemed small enough to explain

the superposition of the Cp curves for the ST and CCST in Figure 16. The

lift coefficients for the body-fitted solutions are respectively CL = 0.1776 and

CL = 0.1777 for the ST and CCST boundary conditions.

Now considering the penalization methods, the Cp distribution for the CBVP

method is close to the body-fitted solution with a slight overestimation in the

vicinity of the maximum suction. Also, the pressure coefficient is not as accurate

at the trailing edge for this method. On the other hand, the Cp distribution

for the CBVP-Hs fits well with the body-fitted results. The lift coefficients are

respectively CL = 0.1693 and CL = 0.1768 for the CBVP and CBVP-Hs. Again

the CBVP-Hs is much closer to the body-fitted solution (CL ∈ [0.1776, 0.1777]).

This result shows that this penalization method is able to perform well on an

airfoil case if the mesh is sufficiently refined, especially around sharp features.

For instance, it was observed that the trailing edge must contain at least 6

solid cells in its thickness for the penalization method to work well (Figure 15).

In this way, the interpolation and gradient stencils use only valid solid cells

and avoid the ones near the body centerline. The results also confirm that the

penalization method is suitable for unstructured grids.

5.3. Flow Around an Ice Horn

Ice shapes can be very challenging for mesh generation and for the flow

solver. One particular case that was found difficult to deal with in a previous

communication [29] is the ice horn generated by the conditions listed in Table
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1. This ice shape exhibits an ice horn of high curvature which can lead to flow

separation, even with a Euler flow solver. This behavior is shown in Figure 17,

where the simulation is performed using the body-fitted mesh of Figure 18a and

the ST wall boundary condition.
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Figure 17: Field of Cp contours and velocity streamtraces for the ice horn case using a body-

fitted mesh and the ST wall boundary condition

For this test case, the strategy is to use a body fitted mesh for the clean

geometry (GLC305) and to use an IB to account for the ice shape (Figure 18b).

In this way, the sharp trailing edge is solved accurately and the ice shape can

be dealt with to first order accuracy (penalization).

Here, the Euler flow is solved on the ice accreted GLC305 where the ice

shape was generated with IGLOO2D for an icing time of 675s (half the full ice

accretion time). The body-fitted and IB meshes around the ice horn are shown

in Figure 18. Again the same cell size is used in the vicinity of the wall for both

cases to allow a fair comparison. For this test case, the wall Cp is converged to

10−6.
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(a) Body-Fitted

(b) Immersed Boundary

Figure 18: Mesh around the ice horn

The Cp distribution on the ice horn is compared in Figure 20. First, the

body-fitted solutions using the two types of wall boundary conditions are ex-

amined: ST and CCST. The ST was previously shown to give a separated flow

in Figure 17 and this can now be observed in Figure 20. This flow separation is

induced by the numerical viscosity of the flow solver and has no physical mean-

ing. It would be preferable to obtain an attached solution to be in line with

the theory of inviscid flows. Numerical experiments showed that a finer mesh
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allows an attached solution to be obtained with the ST (Figure 21).

An alternative approach is to apply the CCST to account for the wall cur-

vature and therefore increase the accuracy of the solution on coarser mesh. On

Figures 19–20, it is shown that the use of the CCST indeed leads to an attached

flow solution on the current mesh. This also significantly increases the suction

peak at the ice horn tip which is now at Cp ≈ −13 in comparison to Cp ≈ −3

for the ST approach. As the mesh is refined (Figure 21), the ST solution tends

toward the CCST solution except the suction peak is not fully recovered yet.

Assuming an error of 1% is desired on the pressure extrapolation (Eq. (20)), a

cell size can be estimated for the ice horn. According to this approach, the cell

size should be around 2e-5 for the ST and CCST to be equivalent.
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Figure 19: Field Cp contours and velocity streamtraces for the ice horn case using a body-fitted

mesh and the CCST wall boundary condition
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Figure 20: Wall Cp for the ice horn (horn tip cell size 2e-3).
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Figure 21: Wall Cp for the ice horn
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The results from the penalization methods are examined next: CBVP and

CBVP-Hs. Both method account for the wall curvature in the imposition of

the wall boundary condition. However, as shown on Figure 20, the CBVP still

exhibits flow separation on the ice horn case while the CBVP-Hs does not. This

behavior is similar to the results obtained earlier on the cylinder, where the

CBVP-Hs was more accurate and behaved better aft of the cylinder for coarser

meshes. Again, it suggests that the CBVP would give similar results if the

mesh were refined. As the mesh is refined (Figure 21), the amplitude of the flow

separation reduces at first (Figure 21a) and the suction peak increases. However

by refining the mesh once more, the CBVP fails to converge to steady state,

exhibiting unsteady flow behavior. This explains the poor CBVP solution on

Figure 21b. In fact, it was difficult to converge the Cp further than 1e-4 for

the CBVP method whereas the CBVP-Hs exhibited good convergence to steady

state.

The difference between the two methods could be explained by the boundary

conditions which conserve entropy and total enthalpy for the CBVP-Hs. Also

the CBVP-Hs better impose the streamline conditions near the IB. The CBVP-

Hs follows the boundary conditions imposed by the CCST and exhibits similar

behavior on the ice horn case. From the previous observations, the CBVP-Hs

is concluded to be more accurate and more suitable for geometries with high

curvature, particularly on coarser meshes.

5.4. Transonic Flow Around a NACA0012

In order to show that the method is not only limited to subsonic flows, the

transonic flow over a NACA0012 airfoil is computed. The flow parameters are

selected as per [34], with Mach = 0.8 and AoA = 1.25 deg. The comparison

is performed between the Body-Fitted mesh approach using the CCST and the

CBVP-Hs on meshes of equivalent cell sizes. The mesh used are twice as fine

as the ones used for the subsonic test case with the same refinements zones and

geometry (i.e. NACA0012 with a blunt trailing edge).

The results of Figure 22 show that for a mesh of comparable refinement,
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the CBVP-Hs is able to capture the shock location with reasonable accuracy

compared to the CCST results. The lift coefficient for the CBVP-Hs is CL =

0.3460 which is 1.6% off the body-fitted results (CL = 0.3517). A better CL

could be obtained by properly refining the mesh in the vicinity of the shocks.

However, it still shows the potential of the CBVP-Hs for the simulation of

transonic and supersonic flows.
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Figure 22: Wall Cp for the NACA0012 airfoil at Mach= 0.8 and AoA= 1.25 deg. Comparison

to the BF ST and BF CCST.

6. Conclusion

In this paper, a penalization method which conserves entropy and total

enthalpy is developed for the Euler equations.
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Two types of numerical wall boundary conditions are described for body-

fitted meshes: the symmetry technique (ST) and curvature-corrected symmetry

technique (CCST). For the immersed boundary method, the penalization is

selected for its simplicity of implementation and its mesh and discretization

independence. The penalization method is usually applied to the Navier-Stokes

equations and applications to the Euler equations are few. The characteristic-

based volume penalization (CBVP) of [13] showed to be suitable for most cases

but exhibited flow separation in some icing application with high curvature

geometries. A new method is thus developed, the CBVP-Hs, which can be seen

as the application of the CCST boundary conditions using the penalization

method.

The body-fitted and penalization methods are tested on four test cases.

A mesh convergence is performed for the weakly compressible flow around a

circular cylinder. Then the subsonic and transonic flows around a NACA0012

airfoil are solved. Also, the airflow around an ice horn of high curvature is

evaluated to assess the methods on a challenging icing case.

The CBVP and CBVP-Hs are found to tend towards the same solution for

the cylinder case. However, the CBVP method exhibits a higher error level

on the pressure coefficient, conservation of total enthalpy and conservation of

entropy compared to the CBVP-Hs. The CBVP-Hs is also found to be more

accurate on coarser meshes. For instance, on the cylinder the CBVP-Hs solution

on the D/∆x = 40 mesh is equivalent to the CBVP on the D/∆x = 160 mesh.

For the ice horn case on a coarse mesh, the CBVP exhibits flow separation while

the flow remains attached for the CBVP-Hs, which is more in line with inviscid

flow theory. A mesh refinement was not sufficient to obtain an attached flow

with the CBVP. Also, the CBVP-Hs shows a good potential for the simulation

of transonic flows as it can capture the same shock location as a Body-Fitted

simulation of comparable mesh refinement.

It is concluded that the application of the penalization method to the Euler

equations requires special care to obtain accurate solutions on high curvature

geometries. The newly developed approach (CBVP-Hs) proved to be a suitable
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candidate for this purpose. Although the method was presented in 2D in this

article, no major difficulty is expected for the extension of this penalization

method in 3D, which will be done in the future.
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