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Abstract

The numerical prediction of in-flight ice accretion generally involves geometry updates and re-meshing as the ice builds
up. However, the generation of body-fitted meshes around complex ice shapes is not trivial and needs to be repeated
several times to obtain the final ice shape. The use of an immersed boundary method can simplify the mesh generation
and help in the automation of ice accretion simulations. In this paper, the development of an immersed boundary
method for Euler flows is detailed. A new penalization method is proposed to impose the conservation of entropy and
total enthalpy in the normal direction to the wall instead of the classical adiabatic condition. The two approaches are
compared and numerically tested on several cases: weakly compressible flow around a circular cylinder, subsonic flow
around a NACA0012 airfoil and flow around a challenging high curvature ice horn. The new method is found to be more
accurate on coarser meshes and better at retrieving attached flows for curved geometries. The paper concludes that the
proposed method is suitable for icing simulations while being still appropriate for general aerospace applications.

Keywords: CFD, Euler Equations, Volume Penalization, Compressible Flow, Inviscid Flow, Immersed Boundary
Method, Icing, Ice Accretion

1. Introduction

Numerical tools for the prediction of in-flight ice accre-
tion have been developed and used for many years. Ice ac-
cretion is an unsteady multi-physics process where super-
cooled water droplets impinge on a cold surface (e.g. air-
craft wings, tail) and might freeze upon impact or run back
and freeze farther downstream. This process of impinge-
ment and freezing generates ice buildups ranging from sim-
ple streamlined ice shapes to more complex geometries like
ice horns, scallops and lobster tails [1]. Typical tools for
the prediction of ice accretion segregate the simulation of
the physics in different modules that are called sequentially
in a quasi-steady approach:

1. mesh generation;
2. computation of the aerodynamics;
3. computation of the droplet trajectories and impinge-

ment rates;
4. evaluation of the convective heat transfer at the wall;
5. computation of the ice accretion (mass and heat bal-

ance);
6. geometry update (the ice shape is generated).

The ice accretion can be divided in several time steps, re-
ferred to as a multi-step process. In this case, modules 1 to
6 are embedded in a time loop where for each time step, a
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mesh is regenerated (module 1), the physics is re-evaluated
(modules 2 to 5) and the ice shape is updated (module 6).
The process is repeated until the final ice accretion time is
achieved. A mesh is generated for each time step and this
can become cumbersome when a large number of steps are
required. Nowadays, much interest is directed towards the
simulation of complex 3D ice shapes such as scallops and
lobster tails. These types of geometries are difficult to pre-
dict using numerical tools and difficult to mesh. To reduce
the cost related to mesh generation and ease its automa-
tion, it is envisioned to replace the classical body-fitted
meshes by the use of an immersed boundary method.

When using body-fitted (BF) meshes, the effort is spent
on generating a good quality mesh that matches the geom-
etry. On the other hand, when using an Immersed Bound-
ary Method (IBM), the mesh generation can be much sim-
pler (e.g. Cartesian grid) as the geometry is allowed to
arbitrarily cut through the mesh. In this case the effort
is spent on the correct imposition of the boundary con-
dition. In the context of ice accretion, the use of an Im-
mersed Boundary Method could reduce the effort invested
in re-meshing (especially in 3D), and could ease the au-
tomation of 3D ice accretion tools. The first step towards
the application of an Immersed Boundary Method to an
ice accretion suite is its application to the aerodynamics
solver which is the focus of this paper.

Although there is a higher benefit in using Immersed
Boundary Methods for 3D ice accretion, the developments
are performed in ONERA’s 2D icing suite IGLOO2D [2]
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in a preliminary phase. This icing suite uses an Euler
flow solver combined with an integral boundary layer code.
Thus, the objective is to apply an immersed boundary
method to the Euler equations.

From the literature, a variety of Immersed Boundary
Methods are available, ranging from the geometric Cut-
Cell approach [3, 4, 5] to discrete [6, 7, 8] and continuous
methods [9, 10]. Here the goal is not to perform a de-
tailed and comprehensive comparison between the differ-
ent methods, instead the reader is referred to [11, 12] for
a thorough review.

Continuous immersed boundary methods have the ad-
vantage of being independent of the discretization and
numerical methods. Furthermore, continuous approaches
such as the penalization method of [10] are appealing for
their simplicity of implementation. The penalization method
was applied to incompressible Navier-Stokes equations [13,
14, 10, 15, 16] and extended to compressible flows [17, 18,
19, 20, 21, 22, 23]. However, only one application of the
Penalization method to the Euler equation was found in
the literature [24] by using the method described in [23].

In this paper, the Characteristic-Based Volume Penal-
ization (CBVP) of [23, 24] is applied to the Euler equa-
tion in an alternative way. Our approach uses a differ-
ent set of boundary conditions inspired by [25] where the
conservation of entropy and total enthalpy in the normal
direction are applied. Additionally, artificial dissipation
terms present in the original CBVP method are removed
in favor of convective terms. This is more suitable for the
Euler equations as routines for the computation of dissi-
pation terms are not always readily available for this type
of solvers.

This paper is divided in six sections. Excluding this in-
troduction section, the paper starts with the review of two
types of numerical wall boundary conditions for the Eu-
ler equations and their application to body-fitted meshes
in a finite volume context. This is helpful to understand
what is applied for the immersed boundary method. Then
in section 3, the representation of the immersed boundary
is discussed. Section 4 is dedicated to the description of
the penalization method. More precisely, the penalization
method of [23] and its application to the Euler equations
[24] is discussed. Then the development of the new pe-
nalization method is presented along with implementation
details for a Finite Volume Method. In section 5, verifica-
tion of the new method is made on canonical test cases and
on a challenging 2D ice horn case. Some comparisons are
also made against the CBVP method. Section 6 concludes
on the new penalization method.

2. Wall Boundary Conditions for the Euler Equa-
tions

In this section, wall boundary conditions for the Euler
equations are reviewed for body-fitted meshes. The Eu-
ler equations are reminded in both conservative and non-
conservative forms as both formulations are used later in

this paper. Then two types of numerical wall boundary
conditions are described for finite volume implementation.
The non-conservative form of the Euler equations is:

∂ρ

∂t
+ ρ∇ · v + v ·∇ρ = 0

ρ
∂v

∂t
+ ρv ·∇v + ∇P = 0

ρ
∂e

∂t
+ ρv ·∇e+ P∇ · v = 0

(1)

and its conservative form is written as:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v + P I) = 0

∂(ρE)

∂t
+ ∇ · ((ρE + P )v) = 0

(2)

where ρ is the density, v the velocity, P the pressure, e
the internal energy, E the total energy and I the identity
tensor. The system is closed using the ideal gas law.

e =
R

γ − 1
T (3)

E = e+
1

2
||v||2 (4)

P = ρRT (5)

The specific gas constant for air is R = 287.0 and the
specific heat ratio is γ = 1.4.

The wall boundary conditions for the Euler equations
are set in order to obtain a no-penetration velocity (or slip
velocity) where v · n = 0. This leads to the following wall
flux (in 2D):

Fwall =


ρv · n

ρuv · n + Pnx
ρvv · n + Pny

ρHv · n

 =


0

Pnx
Pny

0

 (6)

On a physics point of view, only the no-penetration veloc-
ity is a required boundary condition at the wall. However
on a numerical point of view (i.e. finite volume method),
adequate values for the primitive variables (ρ, u, v and P )
are required in the ghost cells for both the evaluation of
the wall flux and the evaluation of the gradients. Two ap-
proaches are reviewed here, which are both implemented
in the unstructured Euler flow solver of IGLOO2D: the
Symmetry Technique (ST) and the Curvature Corrected
Symmetry Technique (CCST).

2.1. Symmetry Technique (ST)
Considering a Finite Volume cell-centered discretiza-

tion using ghost-cells at the wall boundary (Figure 1), the
Symmetry Technique consists in imposing the following
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primitive variables in the ghost cells (g) to obtain the ap-
propriate wall flux:

vg = vd − 2(vd · n)n (7)
ρg = ρd (8)
Pg = Pd (9)

where n is the wall normal. It follows the assumption
that the wall is locally flat (negligible curvature). This
assumption holds if the mesh in the vicinity of the wall is
sufficiently refined (see Eq. (11) with ∆n = 0).

Boundary

d

g
~n

Figure 1: Representation of the domain (d) and ghost (g) cells at
the boundary along with the wall normal (n)

2.2. Curvature Corrected Symmetry Technique (CCST)
The CCST is presented in 2D in [25, 26], then extended

to 3D in [27] and applied to 2D unstructured meshes in
[28]. This approach imposes the normal momentum re-
lation to account for the wall curvature in the pressure
extrapolation, which can be written as:

∂P

∂n

∣∣∣∣
w

= ρwκ||vw||2 (10)

where κ is the signed wall curvature (positive if the cen-
ter of curvature is on the domain/fluid side, negative on
the ghost/solid side). Note that Eq. (10) is derived from
the momentum equation and is valid for both steady and
unsteady flows. However its application is limited to sta-
tionary and non-deformable bodies (∂n∂t = 0). As a con-
sequence of Eq. (10) the ghost cell values are computed
as:

Pg = Pd + ρwκ||vw||2∆n (11)

ρg = ρd

(
Pg
Pd

)1/γ

(12)

(v · n)g = − (v · n)d (13)

(v · t)2g = (v · t)2d +
2γ

γ − 1

(
Pd
ρd
− Pg
ρg

)
(14)

where ∆n is the distance between the centers of the domain
(d) and ghost (g) cells along the normal direction. Eq. (12)
and Eq. (14) result from the conservation of entropy and
total enthalpy respectively. The wall (w) values in Eq. (11)

are typically taken as [25, 28]:

ρw = ρd (15)
vw = vd − (vd · n)n (16)

The norm of the tangential velocity is computed from
Eq. (14) and its direction follows the unit tangent vector
computed as:

t =
v − (v · n)n

||v − (v · n)n||
(17)

When the wall curvature is not negligible, the CCST is
shown to be more accurate and to exhibit faster grid con-
vergence [25] for steady flow computations. The ST and
CCST boundary conditions converge towards the same so-
lution as the mesh is refined. Furthermore, when the cur-
vature is zero (κ = 0), the CCST method simplifies to the
ST approach.

3. Immersed Boundary Representation

Before describing the penalization methods for the Eu-
ler equations, it is worth discussing how the immersed
boundary is represented.

3.1. Signed Distance
For this paper, the immersed boundary is defined by a

discrete list of nodes (2D). The location of the immersed
boundary is defined by the level-set φ = 0, where φ is the
signed distance field from the immersed boundary. Values
of φ are computed using a geometric approach : evaluating
the minimum projected distance to the edges forming the
immersed boundary [29].

The sign of φ is determined by a ray casting algorithm
[29] where the immersed boundary is considered as a closed
body. To reduce computation costs a bounding box is
created around the body of interest by identifying xmin
and xmax of the discrete node list. The cell centers outside
this bounding box have a positive sign (φ > 0, fluid). For
the cell centers inside the bounding box, the ray casting
algorithm is applied.

Using a signed distance field leads to a simple evalua-
tion of the normals (nφ) and curvature (κ) of the immersed
boundary using:

nφ = − ∇φ

||∇φ||
(18)

κ = ∇ · nφ. (19)

Note that the normal based on φ has a negative sign in or-
der to point towards the solid zone (φ < 0). This is useful
in the definition of the Penalization methods presented in
the next section.
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3.2. Data Extraction
To extract the data at the immersed boundary (e.g.

density, velocity, pressure), a simple weighted least square
interpolation at the discrete nodes defining the immersed
boundary is used. The interpolation stencil is determined
firstly by identifying the cell containing the immersed bound-
ary node, and secondly by saving the extended neighbor-
hood of this cell. The penalization methods described in
the following sections extend the fluid data into the solid
zone (from outside the geometry to its inside). Thus the
interpolation stencil in the vicinity of the solid/fluid inter-
face is assumed to be filled with valid data to perform the
interpolation.

4. Penalization Method

In this section, the classical Volume Penalization method
is presented along with a discussion on its application to
the Euler equations. Then the penalization method of [23]
(CBVP) is described followed by the development of the
improved penalization approach called CBVP-Hs because
it conserves total enthalpy (H) and entropy (s).

4.1. Volume Penalization
The Volume Penalization method consists in adding

source terms in the continuous form of the equation to en-
force the desired boundary condition. The source terms
are activated/deactivated using a mask function (χ) equal
to unity in the solid and zero in the fluid. In this way, only
the solid is penalized and the usual equations are retrieved
in the fluid. The penalization parameter (η � 1) ensures
the boundary condition is enforced accurately. This type
of method is well suited for the imposition of Dirichlet
boundary conditions for moving or stationary bodies. The
volume penalization is known to be 0th order accurate
in the imposition of the boundary condition, meaning a
global 1st order accuracy in space can be achieved.

In order to review how boundary conditions are im-
posed using the Volume Penalization, it is applied to a
generic partial differential equation (PDE):

∂u

∂t
= RHS. (20)

This equation is solved on a generic computational domain
Ω including an immersed solid domain Ωs, where the fluid
domain is Ωf = Ω\Ωs. To impose a Dirichlet condition
u = ubc on the fluid/solid interface , a source term is ap-
plied to the generic PDE as:

∂u

∂t
= RHS − χ

η
(u− ũbc(x, t)) (21)

where the physical RHS is solved both in the fluid and the
solid. The scalar field u is penalized in the solid in order
to impose ubc. Here ũbc is an extension of ubc on Ωs.

When solving Eq. (21) in the solid, η is selected to be
small enough for the RHS to be considered negligible in

front of the penalization term. It comes back to solving
an ordinary differential equation of the form:

du

dt
= −1

η
(u− ũbc) (22)

The solution of this ODE is a rapidly decaying exponential,
meaning u = ubc is imposed almost instantaneously:

|(u− ũbc)| = A0e
-t/η (23)

The penalization parameter η can be seen as a character-
istic timescale which must be small (η � 1) in order to
enforce the boundary condition.

4.1.1. Application to the Euler Equations
The volume penalization is widely used for the Navier-

Stokes equations where the velocity v is penalized on the
momentum equations to obtain v = 0 in the solid (for a
stationary body). A simple adaptation of this approach to
the Euler equations consists in penalizing the momentum
equations to obtain v · n = 0 in the solid instead, similar
to [30]. In brief, the goal is to obtain a slip velocity in the
solid instead of the no-slip condition. In non-conservative
form the penalized Euler equations read:

∂ρ

∂t
+ ∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv ·∇v + ∇P = −χ

η
ρ(v · nφ)nφ

ρ
∂e

∂t
+ ρv ·∇e+ P∇ · v = 0

(24)

In the fluid (χ = 0) the usual Euler equations are retrieved.
In the solid (χ = 1), by identifying terms of same order of
magnitude, the no-penetration velocity is enforced:

ρ(v · nφ)nφ = 0 (25)

The Euler equations are also solved in the solid but be-
cause of Eq. (25), only the tangential component of the
velocity remains (vt):

∂ρ

∂t
+ ∇ · (ρvt) = 0

ρ
∂vt
∂t

+ ρvt ·∇vt + ∇P = 0

ρ
∂e

∂t
+ ρvt ·∇e+ P∇ · vt = 0

(26)

Contrary to the Navier-Stokes equations where the fluid is
at rest at the immersed boundary and in the solid (no-slip
wall), Eq. (26) shows that there is an actual fluid flow in
the solid with the Euler equations (slip wall). Further-
more, as the no-penetration velocity is imposed at the im-
mersed boundary, there is a lack of communication from
the fluid to the solid. One constraint only is imposed: the
immersed boundary is a streamline because it is parallel
to the flow. But some discontinuities in tangential veloc-
ity (vt), pressure, entropy and total enthalpy are allowed
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across the immersed boundary, which is thus a slip line.
The objective is to retrieve continuity across the streamline
at the immersed boundary by the imposition of additional
constraints in the normal direction. This can be achieved
by enforcing Neumann boundary conditions, which can be
implemented using the penalization method of [23], pre-
sented in the following section.

4.2. Characteristic-Based Volume Penalization (CBVP)
The Characteristic-based Volume Penalization (CBVP)

method [23] provides a systematic way of implementing
Dirichlet, Neumann and Robin boundary conditions by
the addition of hyperbolic penalization terms. It uses a
sharp Heaviside function for the mask (χ) where χ = 1
in the solid (Ωs) and χ = 0 in the fluid (Ωf ). This leads
to a staircase definition of the immersed boundary (IB) as
shown in Figure 2. However, a smooth solution is recov-
ered at the IB by the use of hyperbolic penalization terms
for Neumann and Robin conditions, and by the use of dis-
sipation terms for Dirichlet conditions. This makes for a
more flexible penalization method than the classic volume
penalization.

Fluid

Solid

Immersed
Boundary

Figure 2: Staircase representation of the solid

In the following sections, the boundary conditions as
imposed by [23, 24] are applied on the generic PDE (Eq. (20))
and then to the Euler equations.

4.2.1. Dirichlet Boundary Condition
The Dirichlet condition u = ubc is imposed on the

generic PDE as:

∂u

∂t
= (1− χ)RHS − χ

η
(u− ũbc(x, t)) + χνη∇2u (27)

As with the Volume Penalization, the mask function χ
activates the penalization terms in the solid only. In the
fluid, the mask function is zero and therefore the generic
PDE is retrieved.

As explained in [23], for the CBVP method the RHS
is removed from Ωs to prevent any interaction with the
penalization terms. The removal of the RHS also disables

any physical dissipation/viscosity. As a replacement, an
artificial dissipation term is added using the artificial vis-
cosity νη which must be of the order νη ≥ ∆x2/η. Accord-
ing to [23], this term helps in retrieving a smooth solution
at the immersed boundary for Dirichlet conditions

4.2.2. Neumann Boundary Condition
The Neumann condition n ·∇u = q is imposed by the

addition of a hyperbolic penalization term:

∂u

∂t
= (1− χ)RHS − χ

ηc
(nφ ·∇u− q(x, t)) (28)

where nφ is the normal to the immersed boundary pointing
towards the solid. Note that 1/ηc can be seen as a char-
acteristic velocity with ηc � 1. In the solid (χ = 1), the
equation reduces to pure convection, propagating the in-
formation from the fluid to the solid in a direction normal
to the immersed boundary. A similar approach is applied
for Robin conditions [23].

4.2.3. Application to the Euler equations
In [24], a set of penalized Euler equations are presented

very briefly. In non-conservative form, it writes:

∂ρ

∂t
+ (1− χ)∇ · (ρv) = − χ

ηc

(
nφ ·∇ρ− κρ

2

P
||v||2

)
ρ
∂v

∂t
+ (1− χ)(ρv ·∇v + ∇P ) = −χ

η
ρ(v · nφ)nφ + χρνη∇2v

ρ
∂e

∂t
+ (1− χ)(ρv ·∇e+ P∇ · v) = − χ

ηc
(ρnφ ·∇e)

(29)

In the fluid (χ = 0) the usual Euler equations are retrieved.
In the solid (χ = 1), by identifying terms of the same order
of magnitude, the following conditions are enforced:

nφ ·∇ρ = κ
ρ2

P
||v||2 (30)

−1

η
ρ(v · nφ)nφ + νη∇2v = 0 (31)

nφ ·∇e = 0 (32)

This set of equations is equivalent to imposing an adiabatic
wall (Eq. (32)), a no penetration velocity (Eq. (31)) and
the normal momentum relation which relates the pressure
gradient to the wall curvature (Eq. (30)), except it is writ-
ten in terms of the density gradient instead. The normal
momentum relation can be written as:

nφ ·∇P = κρ||v||2 (33)

where in 2D, the curvature (κ) is computed from the nor-
mals to the immersed boundary nφ as κ = ∇ · nφ. To
obtain Eq. (30), one must use the ideal gas law (P =
ρe(γ− 1)) in combination with the normal momentum re-
lation (Eq. (33)) and apply the adiabatic wall condition
(nφ ·∇e = 0).
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The dissipation term in Eq. (31) helps in obtaining
continuity of the tangential velocity but also hinders the
correct imposition of (v · n)n = 0. Thus this parameter
must be selected small enough for the correct imposition
of the no-penetration velocity, but large enough to ensure
continuity and stability. In this paper the dissipation pa-
rameter is taken as νη = ∆x2/η as suggested in [23]. Note
that this penalization method depends on three parame-
ters requiring adjustments: η, ηc and νη instead of one for
the classic volume penalization method.

4.3. CBVP-Hs
Because of the dissipation term in the CBVP method,

there is a smooth transition of the velocity from the fluid
to the solid. However, this transition is not based on
the physics of the problem. Furthermore, for Euler flow
solvers, routines are not always readily available to com-
pute dissipation terms. It is thus more convenient to avoid
them if possible. For these reasons, a new method inspired
by the CBVP of [23] is proposed hereafter.

The goal is to develop a method that would respect the
properties of the inviscid ideal gas flow in the vicinity of
the wall streamline. The streamline is, of course, defined
by the no-penetration velocity (Eq. (37)). The continuity
of tangential velocity, pressure, entropy and total enthalpy
must be ensured by additional equations. The normal mo-
mentum relation (Eq. (33)) allows the continuity of pres-
sure. The normal conservation of total enthalpy (Eq. (34))
and the normal conservation of entropy (Eq. (35)) are im-
posed to close the system:

nφ ·∇H = 0 (34)
nφ ·∇s = 0 (35)

nφ ·∇P = κρ||v||2 (36)
(v · nφ)nφ = 0 (37)

where nφ is the normal to the immersed boundary based
on the signed distance field (φ). This set of boundary con-
ditions allows the continuity of the flow variables including
the norm of the velocity across the boundary. It is better
suited for homentropic and homenthalpic flows which are
the primary target of our model, although the presence
of a shock wave for instance may not hinder the use of
(Eq. (35)) as long as the shock is parallel to nφ.

This new method can be seen as a first order imple-
mentation of the CCST boundary condition of [25, 26, 27]
using the CBVP method of [23]. Because it is based on the
CBVP but designed to conserve the entropy (s) and total
enthalpy (H), it is referred to as CBVP-Hs. It is important
to understand that the only physical wall boundary condi-
tion required for the Euler equations is the no-penetration
velocity. The other conditions are numerical (normal mo-
mentum relation, conservation of total enthalpy and en-
tropy) and are used to improve the accuracy of the model,
the continuity of the solution near the immersed bound-
ary and provide adequate support for the evaluation of the

fluxes and gradients. They also make the interpolation of
wall data easier.

In the following sections, penalization terms are first
derived for the primitive variables and applied to the non-
conservative form of the Euler equations. It is useful to
start with the primitive variables as the penalization terms
can easily be derived for them. Then the transition from
the non-conservative to the conservative form naturally
provides the penalized Euler equations in terms of conser-
vative variables.

4.3.1. Penalization of the Primitive Variables
In this section, penalization terms are derived for the

non-conservative form of the Euler equations (Eq. (1)).
Hyperbolic penalization terms of the form n ·∇u = q are
sought, where u is ρ,v or e.

The penalization term for the density is derived from
Eqs. (35)–(33). The conservation of entropy can be written
as:

nφ ·∇s = nφ ·∇
(
P

ργ

)
= 0 (38)

⇒ nφ ·∇ρ =
ρ

γP
nφ ·∇P (39)

By substituting the normal momentum relation (Eq. (33))
in Eq. (39), a relation for the normal density gradient is
obtained. It is applied to the continuity equation as a
hyperbolic penalization term (Eq. (40)).

χ

ηc

(
nφ ·∇ρ− ρ2

γP
κ||v||2

)
= 0 (40)

A penalization term for the internal energy can be de-
rived from equations (5), (3) and (39), which gives:

χ

ηc

(
nφ ·∇e− 1

γ
κ||v||2

)
= 0 (41)

At this point, only the penalization term on velocity is
missing. This term is the application of the no-penetration
velocity (Eq. (37)) as a Dirichlet condition and a hyper-
bolic penalization term denoted Pv which must be deter-
mined to set the velocity magnitude.

ρ
∂v

∂t
+ (1− χ)(ρv ·∇v + ∇P ) =

Pv −
χ

η
ρ(v · nφ)nφ

(42)

In addition, the conservation of total enthalpy must
still be enforced. The term Pv can thus be derived in two
steps. First, by using the normal conservation of total
enthalpy (Eq. (34)) one can derive a condition on kinetic
energy. The conservation of total enthalpy (nφ ·∇H = 0)
can be written as:

γ

γ − 1
nφ·∇

(
P

ρ

)
+ nφ ·∇

(
1

2
||v||2

)
= 0 (43)
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with

nφ·∇
(
P

ρ

)
=

nφ
ρ
·∇P − Pnφ

ρ2
·∇ρ (44)

By using Eq. (44), the normal momentum relation (Eq. (33))
and the condition on density (Eq. (40)), the condition on
kinetic energy is retrieved.

⇒ nφ ·∇
(

1

2
||v||2

)
+ κ||v||2 = 0 (45)

It can also be recast in a penalized equation for the kinetic
energy in the solid:

ρ
∂
(
1
2 ||v||

2
)

∂t
= − χ

ηc

(
ρnφ ·∇

(
1

2
||v||2

)
+ ρκ||v||2

)
(46)

Second, a relation for kinetic energy can also be com-
puted from the momentum equation (42) scalar product
with v as:

v · ρ∂v
∂t

+ v · (1− χ)(ρv ·∇v + ∇P ) =

v · Pv − v · χ
η
ρ(v · nφ)nφ

(47)

By considering this equation in the solid (χ = 1) and
by keeping only terms of the same order of magnitude,
it reads:

v · ρ∂v
∂t

= v · Pv (48)

or

ρ
∂
(
1
2 ||v||

2
)

∂t
= v · Pv (49)

This simplification follows the assumption that η and ηc
are not of the same order of magnitude and thus, that v·nφ
exponentially tend towards zero. By equating, Eq. (49)
and Eq. (46), it leads to:

v · Pv = − χ
ηc

(
ρnφ ·∇

(
1

2
||v||2

)
+ ρκ||v||2

)
(50)

Pv must be selected to respect this condition on kinetic
energy (Eq. (50)). A natural approach is to select Pv

orthogonal to n in order to decouple the hyperbolic pe-
nalization term and the Dirichlet condition (see Eq. (42)).
However, no practical formulation was found for use with
the Finite Volume Method. An alternative and simpler
choice for Pv is:

Pv = − χ
ηc

(ρnφ ·∇v + κρv) (51)

In Eq. (51), the hyperbolic penalization term and the Dirich-
let condition in Eq. (42) are decoupled by using η � ηc.

The non-conservative form of the penalized equations
can now be updated using the hyperbolic terms for ρ, v
and e:

∂ρ

∂t
+ (1− χ)∇ · (ρv) = − χ

ηc

(
nφ ·∇ρ− κ ρ

2

γP
||v||2

)
ρ
∂v

∂t
+ (1− χ)(ρv ·∇v + ∇P ) = − χ

ηc
(ρnφ ·∇v + κρv)

− χ

η
ρ(v · nφ)nφ

ρ
∂e

∂t
+ (1− χ)(ρv ·∇e+ P∇ · v) = − χ

ηc

(
ρnφ ·∇e− κρ

γ
||v||2

)
(52)

4.3.2. Penalization of the Conservative Variables
By transferring to the conservative form, the equations

including the penalization terms become:

∂ρ

∂t
+ (1− χ)∇ · (ρv) = − χ

ηc

(
nφ ·∇ρ− κ ρ

2

γP
||v||2

)
∂ρv

∂t
+ (1− χ)∇ · (ρv ⊗ v + PI) = −χ

η
ρ(v · nφ)nφ

− χ

ηc

(
nφ ·∇(ρv) + κρv

(
1− ρ

γP
||v||2

))
∂ρE

∂t
+ (1− χ)∇ · ((ρE + P )v) = −χ

η
ρ(v · nφ)2

− χ

ηc

(
ρnφ ·∇E − (γ − 1)

γ
ρκ||v||2

)
(53)

The energy equation can also be written as:

∂ρE

∂t
+ (1− χ)∇ · ((ρE + P )v) = −χ

η
ρ(v · nφ)2

− χ

ηc
ρnφ ·∇H

(54)

Using this set of penalization terms ensure Eqs. (34)–(37)
are respected. Furthermore, the term Pv replace the dissi-
pation term employed in [23] on the momentum equation.
This convection term is derived from physical arguments in
order to respect the conservation of total enthalpy instead
of using a numerical artifice.

4.3.3. Implementation Details
The penalized Euler equations of Eq. (53) are imple-

mented in a cell-centered Finite Volume framework using
unstructured meshes. They are written in vector form as:

∂W

∂t
+ (1− χ)∇ · FEuler = −χ∇ · Fibm + χSibm (55)
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where the penalization terms are conveniently split into
flux (Fibm) and source (Sibm) terms.

W =


ρ
ρu
ρv
ρE

 , FEuler =


ρv

ρuv + Px
ρvv + Py
ρHv

 (56)

Fibm =
1

ηc


ρnφ
ρunφ
ρvnφ
ρHnφ

 (57)

The immersed boundary source term (Sibm) is split in
Dirichlet, convective and curvature contributions:

Sibm = Sibm,D + Sibm,conv + Sibm,curv (58)

Sibm,D =
1

η


0

−ρ(v · nφ)nφ,x
−ρ(v · nφ)nφ,y
−ρ(v · nφ)2

 (59)

Sibm,conv =
1

ηc


ρ∇ · nφ
ρu∇ · nφ
ρv∇ · nφ
ρH∇ · nφ

 (60)

Sibm,curv =
1

ηc
κ


ρ ρ
γP ||v||

2

ρu
(
ρ
γP ||v||

2 − 1
)

ρv
(
ρ
γP ||v||

2 − 1
)

ρH ρ
γP ||v||

2

 (61)

where the convective source term Sibm,conv comes from
rewriting Eq. (53) to isolate Fibm. From the immersed
boundary flux (Eq. (57)), the system is shown to be hy-
perbolic in the solid with eigenvalues nφ,nφ,nφ and γnφ.

The penalization of the Euler equations leads to a stiff
system as the penalization parameters (η and ηc) are very
small. One way to alleviate this problem is to solve the sys-
tem implicitly. In this paper it is solved using a BICGSTAB
algorithm with a block Jacobi preconditioner. The Eu-
ler fluxes are computed by a 2nd order Roe scheme while
the immersed boundary fluxes are evaluated with a simple
1st order upwind scheme (upwinded by nφ).

The mask function χ is the Heaviside function (H)
based on the signed distance field φ.

χ = H(−φ) (62)

The level-set φ = 0 determines the location of the im-
mersed boundary while φ < 0 in the solid and φ > 0 in the
fluid. It can be seen that in the fluid (χ = 0), the usual
Euler equations are retrieved while in the solid (χ = 1)
only the penalization terms are activated.

From [23], ηc � 1 and η � 1 in order to enforce the cor-
rect condition in the solid by penalization. In the current

implementation, a slightly different approach is followed.
Since the Euler fluxes are deactivated in the solid, ηc is not
required to be very small in order to propagate the fluid
properties towards the solid. Here, the immersed bound-
ary fluxes are not penalized but are merely a replacement
for the Euler fluxes inside the solid. It comes back to solv-
ing propagation equations in the solid, which are penalized
to apply the no-penetration velocity. By using ηc = 1, the
equations in the solid are:

∂ρ

∂t
+ nφ ·∇ρ = κ

ρ2

γP
||v||2

∂ρv

∂t
+ nφ ·∇(ρv) = κρv

(
ρ

γP
||v||2 − 1

)
− 1

η
ρ(v · nφ)nφ

∂ρE

∂t
+ ρnφ ·∇H = −1

η
ρ(v · nφ)2

(63)

where the only penalization term is 1
ηρ(v · nφ)nφ. A typ-

ical value for the penalization parameter is η = 10−10,
which accurately enforces the slip velocity (v · nφ = 0)
near the immersed boundary. As for the classic penal-
ization method, v · nφ exponentially tend towards zero
(almost instantaneously). This approach is suitable if the
Euler equations are solved for a steady state.

It is also possible to use ηc < 1. In such a case, it is
important to respect a ratio η/ηc as there is an interaction
between the Neumann and Dirichlet conditions in the mo-
mentum equation. The idea is to keep the imposition of
v · n = 0 dominant over the propagation of the informa-
tion. To do so, η � ηc, a ratio of η/ηc = 10−6 was found
to be sufficient for most applications.

With the CBVP-Hs method, two adjustable parame-
ters are used: η and ηc. However, by defining ηc = 1 or
ηc ≥ 106η only one parameter is left (η). It is therefore
easy to calibrate, just like the Volume Penalization method
of §4.1. This is also an improvement over the CBVP
method which has three adjustable parameters: η,ηc and
νη.

4.4. Note on Accuracy
The volume penalization method is known to be 0th or-

der accurate in the imposition of the boundary condition,
meaning only a global 1st order accuracy can be achieved.
Some extensions to second order accuracy are available in
the literature [31, 32] by using information at the discrete
level. Here the implementation is limited to the classical
first order accuracy. With this type of approach, the ac-
curacy of the method is usually improved by refining the
mesh in the vicinity of the immersed boundary.

In the current implementation, even if the sharp Heav-
iside function leads to a staircase representation of the
immersed boundary, the Neumann boundary conditions
(convective terms) are smoothing the interface and im-
proving the solution on coarser meshes. However, because
of the staircase representation of the immersed boundary
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and because the cell centers are used to determine if a cell
is fluid or solid, the current implementation is not well
suited to deal with sharp features (e.g. sharp trailing edge
of an airfoil). In such a case, a refinement in the vicinity
of the sharp feature must be done to capture it accurately.
There are alternative ways to deal with this issue without
increasing the cell count nor relying on adaptive meshing
technique.

1. For the specific case of the sharp trailing edge, it is
possible to simply approximate it as blunt. In this
way, the cell refinement can be coarser while allowing
the correct overall solution to be retrieved.

2. A second order volume penalization method [31, 32]
could be implemented avoiding the staircase repre-
sentation of the immersed boundary. However, be-
cause information is required at the discrete level the
penalization method loses its discretization-independent
character.

3. A smooth mask function (χ) like a smeared-out Heav-
iside function could be used. In this way, it would be
possible for χ to have a value between 0 and 1, thus
allowing cells intersected by the immersed bound-
ary to be penalized even if the cell center is on the
fluid side. However, this leads to a diffuse interface
representation and an interaction between the Euler
and immersed boundary fluxes which is difficult to
control.

4. The selected approach for icing application is to deal
with sharp features on the clean geometry using a
body-fitted mesh (e.g. sharp trailing edge on an air-
foil). Only the ice will be immersed in the mesh (see
Figure 19b). Although some sharp features may be
generated by the ice growth, it is acceptable for them
to be slightly smoothed out.

4.5. Mesh Particularities
For unstructured meshes made of triangles, some cell

configurations lead to a poor propagation of the informa-
tion from the fluid to the solid. This situation occurs when
a fluid cell near the immersed boundary is trapped between
solid cells and the numerical fluxes allow no communica-
tion with neighboring fluid cells. One example is illus-
trated in Figure 3, where cell A is fluid and cell B is solid.
Cell A has 2 solid cells and one fluid cell as direct face
neighbors. In this specific configuration, cell A is emptied
and the solution is propagated in the solid (e.g. cell B).

One solution is to apply a correction on the mask func-
tion (χ) for these pathological cells: instead of using a
sharp definition (χ = 0 or 1), χ is set to the solid fraction
of the cell (χ ∈ [0, 1]). This correction blends the Euler
and the penalization fluxes leading to a smoother solution
as the communication with the fluid is restored.

X

Y

0.075 0.08 0.085 0.09

0.05

0.045

0.04

chi

0

Euler flux

IBM flux

A

B

Figure 3: Pathological cell example with flux representation and
mask function χ

From numerical experiments, the issue was observed for
only a few cells (1% to 2% of the immersed boundary cells)
and not for all meshes. Some unstructured meshes will
present no pathological cells while for structured meshes
made of quadrilateral cells, the issue was never observed.
Also, note that the issue is present for both the CBVP and
CBVP-Hs methods.

5. Results

In this section, the behavior of the CBVP-Hs method is
shown on different test cases. A mesh refinement study is
first performed for the weakly compressible flow around a
circular cylinder. Then the subsonic flow around a NACA0012
airfoil is studied. The penalization method is also tested
on an ice horn which was found difficult to solve in a pre-
vious communication [33] due to its high curvature. The
simulation parameters are summarized in Table 1.

The solution from the penalization method is verified
against analytical solutions when applicable or against nu-
merical solutions obtained by a body-fitted approach. A
comparison is also performed against the CBVP method.
Wall pressure coefficients, entropy and total enthalpy er-
rors are compared and discussed.
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Table 1: Simulation Parameters

Cylinder Airfoil Ice Horn
Geometry Cylinder NACA0012 GLC305
Chord D=2.0 1.0 0.9144
AoA 0.0 1.25 4.0
Mach 0.1 0.5 0.273
Pstatic 100kPa 100kPa 101.325 kPa
Tstatic 300.0K 300.0K 268.3K
LWC – – 0.54g/m3

MVD – – 20µm
Icing Time – – 1350s

In Table 1, LWC stands for Liquid Water Content and
represents the mass of water per volume of air. The me-
dian volume diameter (MVD) represents the droplet size
for the icing simulation. The list of icing parameters are
provided but note that only the aerodynamics is treated
in this paper.

For the following simulations, the convergence is de-
termined by monitoring the L2 and L∞ norms of the wall
pressure coefficient (Cp). The usual density, momentum
and energy residuals are also monitored. In the following
sections, when the convergence threshold is specified, the
criterion on Cp is used. For the penalization method, the
convergence check requires a pressure interpolation at the
immersed boundary at each time step. It is performed by
a weighted least square interpolation method.

5.1. Weakly Compressible Flow Around a Cylinder
The first test case is the weakly compressible flow around

a circular cylinder. As the Euler flow solver in IGLOO2D
is compressible only, the incompressible analytical solution
is approached by performing the simulation at a low Mach
number (Mach= 0.1). The analytical solution for the pres-
sure coefficient (Cp) is, in 2D Cartesian coordinates:

Cpanalytical =
2R2

c(x
2 − y2)−R4

c

(x2 + y2)2
(64)

where Rc is the radius of the cylinder.

X
Y

0 2 4 6
0

2

4

6

Figure 4: Mesh for the cylinder with cell size D/∆x = 10

A family of five meshes is generated ranging fromD/∆x =
10 toD/∆x = 160, whereD is the diameter of the cylinder
and ∆x the Cartesian cell size. The cylinder is immersed
into a uniform Cartesian grid. To reduce the total number
of cells the uniform Cartesian grid is limited to a width of
2 diameters. Outside this zone a structured mesh is used
allowing cell growth and stretching, but still ensuring mesh
symmetry. The far field is located at 50 diameters from the
cylinder. Part of the mesh for D/∆x = 10 is illustrated in
Figure 4 with a zoom on the blanked cylinder.

For the results presented below, the wall Cp residual
is converged to 10−8. Figures 5 and 6 illustrate the Cp
distribution for both the CBVP and CBVP-Hs methods.
From these figures, both methods converge towards the an-
alytical solution. However, the mesh convergence is faster
for the CBVP-Hs method for which a good global Cp dis-
tribution is achieved on a mesh as coarse as D/∆x = 40.
In comparison, the CBVP method exhibits a satisfactory
global solution for the finest mesh only (D/∆x = 160).
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Figure 5: Wall Cp with mesh refinement for the cylinder (CBVP)
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Figure 6: Wall Cp with mesh refinement for the cylinder (CBVP-Hs)

For a more detailed analysis, pressure coefficients are
extracted and tabulated in Table 2 at locations of inter-
est: (x, y) = (−1, 0), (x, y) = (0, 1) and (x, y) = (1, 0).
For these locations the expected analytical solution is re-
spectively: Cp = 1, Cp = −3 and Cp = 1. For the finest
mesh (D/∆x = 160), the CBVP captures the maximum
suction (Cp = −2.967). The forward stagnation point at
x = −1 is solved accurately with Cp = 0.962. However
the aft stagnation point at x = 1 exhibits too much dif-
fusion to reattach correctly and the analytical solution is
not recovered (Cp = 0.621).

Using the CBVP-Hs a great improvement is achieved
on the CBVP method. The suction peak is captured on

a mesh as coarse as D/∆x = 20 with Cp ≈ −3. The
reattachment point at x = 1 is captured much more accu-
rately (Cp = 0.914, D/∆x = 160). The CBVP-Hs allows
a less diffusive solution aft of the cylinder which explains
the better reattachment behavior.

Table 2: Cp at specific wall locations for the cylinder

Location x = −1 x = 0 x = 1
Analytical Cp = 1 Cp = −3 Cp = 1

CBVP
D/∆x = 10 5.048e-01 -1.738e+00 -8.052e-02
D/∆x = 20 7.095e-01 -2.335e+00 1.218e-01
D/∆x = 40 8.514e-01 -2.716e+00 3.095e-01
D/∆x = 80 9.241e-01 -2.888e+00 4.813e-01
D/∆x = 160 9.620e-01 -2.967e+00 6.213e-01

CBVP-Hs
D/∆x = 10 3.465e-01 -3.207e+00 1.402e+00
D/∆x = 20 6.800e-01 -3.017e+00 1.154e+00
D/∆x = 40 8.450e-01 -3.008e+00 9.980e-01
D/∆x = 80 9.229e-01 -2.994e+00 9.301e-01
D/∆x = 160 9.618e-01 -3.009e+00 9.136e-01

The pressure coefficients from Table 2 are also illus-
trated on Figure 7 which shows the Cp error against the
analytical solution for the three locations:

|∆Cp| = |Cp− Cpanalytical| (65)

As the mesh is refined the error at x = −1 is roughly the
same for both methods (CBVP and CBVP-Hs). However,
the error is much lower at the maximum suction peak and
at the aft stagnation point for the CBVP-Hs method. For
the forward stagnation point, the order of convergence is
observed to be 1 for both methods. It is, however, difficult
to conclude on the order of convergence for the other lo-
cations. The order of convergence will be discussed based
on global wall error estimates in the next section.

-7

-6

-5

-4

-3

-2

-1

 0

 1

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

lo
g
(|

∆
C

p
|)

log(∆x/D)

CBVP-HS x= 1
CBVP-HS x= 0
CBVP-HS x=-1

CBVP x= 1
CBVP x= 0
CBVP x=-1

Order 1

Figure 7: Cylinder ∆Cp convergence as the mesh is refined
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5.1.1. Entropy and Total Enthalpy
As the flow around the cylinder presents no heat source

nor external force, the entropy (s) and total enthalpy (H)
should be conserved in the entire computational domain.
Thus, entropy and total enthalpy errors can be evaluated
against the freestream conditions as:

∆s = |(s− s∞)| /s∞ (66)
∆H = |(H −H∞)| /H∞ (67)
s∞ = P∞/ρ

γ
∞ (68)

H∞ =
γ

γ − 1

P∞
ρ∞

+
1

2
||v∞||2 (69)

ds
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Figure 8: Entropy error for the cylinder on the Cartesian mesh
D/∆x = 80. The cylinder is blanked for clarity.
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Figure 9: Total enthalpy error for the cylinder on the Cartesian mesh
D/∆x = 80. The cylinder is blanked for clarity.

The contours for the entropy and total enthalpy error
are illustrated on Figures 8–9. These figures confirm that
the CBVP-Hs method reduces the error in the wake and at

the maximum suction points of the cylinder. However, the
error is similar for both methods at the forward stagnation
point. As an additional comparison point, the maximum
entropy error in the field for the CBVP is ≈1e-3 while it is
≈6e-4 for the CBVP-Hs. The same behavior is observed
for the total enthalpy error whose maximum is ≈1e-3 for
the CBVP and ≈3e-4 for the CBVP-Hs. As a comparison,
for a body-fitted simulation using an equivalent wall cell
size the error for entropy and total enthalpy is respectively
≈1e-5 and ≈8e-6 using the CCST boundary condition.

Table 3: Error at the wall for the cylinder (L2 norm)

Grid RMS_H RMS_s RMS_Cp
CBVP

D/∆x = 10 1.462e-03 1.356e-03 8.183e-01
D/∆x = 20 1.203e-03 1.074e-03 5.368e-01
D/∆x = 40 9.681e-04 7.472e-04 3.274e-01
D/∆x = 80 6.608e-04 4.702e-04 1.995e-01
D/∆x = 160 4.456e-04 3.071e-04 1.194e-01

CBVP-Hs
D/∆x = 10 1.731e-03 1.853e-03 4.279e-01
D/∆x = 20 6.930e-04 6.738e-04 1.790e-01
D/∆x = 40 3.371e-04 3.395e-04 8.344e-02
D/∆x = 80 1.575e-04 1.482e-04 4.805e-02
D/∆x = 160 9.232e-05 6.329e-05 3.011e-02

The error at the wall for Cp, s and H are compiled in
Table 3 for both methods and for the different refinement
levels. The error is presented as the L2 norm (RMS) ∆Cp,
∆s and ∆H respectively. This gives an indication of the
global wall error and confirms that the CBVP-Hs is more
accurate. In fact, the CBVP solution with D/∆x = 160 is
equivalent to the CBVP-Hs with D/∆x = 40 in terms of
global wall error.

For a more visual representation, the data from Table
3 is also illustrated in Figure 10. From this figure, the
error is observed to be lower for the CBVP-Hs method
while also offering a faster convergence rate on ∆H and
∆s. The order of convergence is observed to be 1 for the
CBVP-Hs method on entropy and total enthalpy, while
it is slightly lower for the CBVP method. The volume
penalization method is known to be 1st order accurate.
Thus it is logical to obtain 1st order of convergence at
best although the solution is 2nd order accurate in the
field (2nd order Roe Scheme). Note that the Euler flow
solver was verified to achieve 2nd order of convergence for
a family of body fitted meshes (not shown in this paper).
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Figure 10: Global wall error (L2 norm) for the cylinder

5.1.2. Continuity of the Solution
The cylinder case with D/∆x = 80 is used to illus-

trate the continuity of the solution in the vicinity of the
immersed boundary and inside the solid zone. Both the
CBVP and CBVP-Hs are designed with hyperbolic pe-
nalization terms on the continuity and energy equations
allowing the propagation of information from the fluid to
the solid in the normal direction to the interface. How-
ever, the two methods differ on the momentum equation
where the continuity of the velocity is imposed by an arti-
ficial dissipation term for the CBVP and by a hyperbolic
penalization term for the CBVP-Hs. For both methods,
a no-penetration velocity (v · nφ = 0) is enforced in the
solid, thus only the tangential component of the velocity
remains.

As shown on Figure 11, the tangential velocity is con-
tinuous across the immersed boundary for both methods.
For the CBVP, the continuity is enforced via numerical
dissipation. This does not only produce an unphysical ex-
tension of the tangential velocity in the solid, it also pol-
lutes the solution in the fluid near the immersed boundary.
On the other hand, the CBVP-Hs extends the tangential
velocity following the physics of the wall streamline. Also
note that the curvature terms are only activated in the
vicinity of the interface, the remainder of the solid zone
only sees convection terms in the direction normal to the
immersed boundary. It translates into a proper extension
of the fluid properties near the immersed boundary, then
into straight contour lines pointing towards the center of
the cylinder.
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Figure 11: Continuity of the tangential Mach number (Mt) near the
immersed boundary and inside the solid for both CBVP and CBVP-
Hs (D/∆x = 80).

The continuity of the pressure (Cp) is illustrated on
Figure 12. In terms of pressure both the CBVP and CBVP-
Hs methods behave in a similar and satisfactory manner
inside the solid. The main difference is coming from the
quality of the solution, which is more accurate for the
CBVP-Hs on an equivalent mesh.
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Figure 12: Continuity of the pressure coefficient (Cp) near the im-
mersed boundary and inside the solid for both CBVP and CBVP-Hs
(D/∆x = 80).

It is also interesting to verify the continuity of entropy
and total enthalpy as it should be strongly imposed using
the CBVP-Hs, the results are shown on Figures 13–14.
Both methods propagate the entropy and total enthalpy
from the fluid to the solid. The CBVP method exhibits
larger error at the suction peak and aft of the cylinder on
the fluid side. This error is also propagated into the solid.
On the other hand, the CBVP-Hs method shows a non-
dimensional solution closer to unity (more accurate) on the
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fluid side. This is also reflected inside the solid as expected.
These two figures emphasize the difference in accuracy of
the two methods in the vicinity of the immersed boundary,
with a better solution achieved by the CBVP-Hs.
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Figure 13: Continuity of the total enthalpy (H/H∞) near the im-
mersed boundary and inside the solid for both CBVP and CBVP-Hs
(D/∆x = 80).
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Figure 14: Continuity of the entropy (s/s∞) near the immersed
boundary and inside the solid for both CBVP and CBVP-Hs
(D/∆x = 80).

5.2. Subsonic Flow Around a NACA0012
A more representative test case for aerospace appli-

cations is the subsonic flow around an airfoil. As stated
earlier, the first order accurate penalization method is not
well suited for the representation of sharp features like
trailing edges. Here, the issue is worked around by using
a NACA0012 airfoil with a blunt trailing edge, allowing
easier meshing of the solid (interior mesh). An unstruc-
tured mesh is used to show that the method is also appli-
cable to general meshes. Here, the penalization method

is compared to the solution obtained with a body-fitted
approach.

Figure 15: Body-fitted mesh for the NACA0012 airfoil with blunt
trailing edge. Right: zoom on the leading edge. Left: zoom on the
trailing edge.

The body-fitted and immersed boundary meshes are
respectively shown in Figures 15–16. The meshes are re-
fined at the leading and trailing edges and the far field
is located at 50 chords from the airfoil. The same pa-
rameters are used to generate the immersed boundary and
body-fitted meshes, ensuring comparable cell-sizes and re-
finement. In terms of the chord (c), the cell sizes at the
wall, leading edge, trailing edge and far field are respec-
tively: 5e-3c, 1e-3c, 1e-4c and 4c. A linear cell size growth
is allowed from the wall to the far field boundary. For
the body-fitted and immersed boundary meshes, it gives a
total of 42700 and 49850 cells respectively.

Figure 16: Immersed boundary mesh for the NACA0012 airfoil with
blunt trailing edge. Right: zoom on the leading edge. Left: zoom on
the trailing edge.
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For this test case, the standard subsonic flow condition
of Mach = 0.5 and AoA = 1.25 deg are used. To al-
low a fair comparison with the penalization methods, the
body-fitted (BF) simulation is performed with both the ST
and CCST wall boundary conditions. As a reminder, the
CBVP and CBVP-Hs both account for the wall curvature,
similar to the CCST.
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Figure 17: Wall Cp for the NACA0012 airfoil at Mach= 0.5 and
AoA= 1.25 deg. Comparison to the BF ST and BF CCST.

The results from Figure 17 illustrate the Cp distri-
bution at the wall. For the body-fitted results, the ST
and CCST provide almost the same solution except the
CCST boundary condition provides smoother results (Fig-
ure 17b). On a geometry with moderate curvature and
using a mesh with adequate refinement both the ST and
CCST are expected to be equivalent. This is in line with
the observations of Figure 17. The lift coefficients for the
body-fitted solutions are respectively CL = 0.1766 and
CL = 0.1768 for the ST and CCST boundary conditions.

Now considering the penalization methods, the Cp dis-
tribution for the CBVP method is close to the body-fitted
solution with a slight overestimation in the vicinity of the
maximum suction. Also, the pressure coefficient is not as
accurate at the trailing edge for this method. On the other

hand, the Cp distribution for the CBVP-Hs fits well with
the body-fitted results. Its behavior is closer to the ST
boundary condition, exhibiting small oscillations. The lift
coefficients are respectively CL = 0.1630 and CL = 0.1760
for the CBVP and CBVP-Hs. Again the CBVP-Hs is much
closer to the body-fitted solution (CL ∈ [0.1766, 0.1768]).
This result shows that this penalization method is able to
perform well on an airfoil case if the mesh is sufficiently
refined and if sharp features are treated adequately. It
also confirms that the method is suitable for unstructured
grids.

5.3. Flow Around an Ice Horn
Ice shape can be very challenging for mesh generation

and for the flow solver. One particular case that was found
difficult to deal with in a previous communication [33] is
the ice horn generated by the conditions listed in Table 1.
This ice shape exhibits an ice horn of high curvature which
can lead to flow separation, even with a Euler flow solver.
This behavior is shown in Figure 18, where the simulation
is performed using the body-fitted mesh of Figure 19a and
the ST wall boundary condition.
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Figure 18: Field of Cp contours and velocity streamtraces for the
ice horn case using a body-fitted mesh and the ST wall boundary
condition

For this test case, the strategy is to use a body fit-
ted mesh for the clean geometry (GLC305) and to use an
immersed boundary to account for the ice shape (Figure
19b). In this way, the sharp trailing edge is solved accu-
rately and the ice shape can be dealt with to first order
accuracy (penalization).

Here, the Euler flow is solved on the ice accreted GLC305
for a 675s icing time (1st step of a 2-step multi-step pro-
cess). The body-fitted and immersed boundary meshes
around the ice horn are shown in Figure 19. Again the
same cell size is used in the vicinity of the wall for both
cases to allow a fair comparison. For this test case, the
wall Cp is converged to 10−6.
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(a) Body-Fitted

(b) Immersed Boundary

Figure 19: Mesh around the ice horn

The Cp distribution on the ice horn is compared in
Figure 21. First, the body-fitted solutions using the two
types of wall boundary conditions are examined: ST and
CCST. The ST was previously shown to give a separated
flow Figure 18 which can now be observed on Figure 21.
This flow separation is induced by the numerical viscosity
of the flow solver and has no physical meaning. It would
be preferable to obtain an attached solution to be in line
with the theory of inviscid flows. Numerical experiments
showed that a significantly finer mesh would be required
to obtain an attached solution with the ST.

An alternative approach is to apply the CCST to ac-
count for the wall curvature and therefore increase the
accuracy of the solution on coarser mesh. On Figures 20–
21, it is shown that the use of the CCST indeed leads to
an attached flow solution on the current mesh. This also
significantly increases the suction peak at the ice horn tip
which is now at Cp ≈ −13 in comparison to Cp ≈ −3 for
the ST approach.
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Figure 20: Field Cp contours and velocity streamtraces for the ice
horn case using a body-fitted mesh and the CCST wall boundary
condition
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Figure 21: Wall Cp for the ice horn, comparison to the BF ST and
BF CCST.

The results from the penalization methods are exam-
ined next: CBVP and CBVP-Hs. Both method account
for the wall curvature in the imposition of the wall bound-
ary condition. However, as shown on Figure 21, the CBVP
still exhibits flow separation on the ice horn case while the
CBVP-Hs does not. This behavior is similar to the results
obtained earlier on the cylinder, where the CBVP-Hs was
more accurate and behaved better aft of the cylinder for
coarser meshes. Again, it suggests that the CBVP would
give similar results if the mesh was refined.

The difference between the two methods could be ex-
plained by the higher diffusivity of the CBVP and the fact
that it does not specifically conserve entropy and total en-

thalpy. Also the CBVP-Hs better impose the streamline
conditions near the immersed boundary. The CBVP-Hs
follows the boundary conditions imposed by the CCST and
exhibits similar behavior on the ice horn case. From the
previous observations, the CBVP-Hs is concluded to be
more accurate and more suitable for geometries with high
curvature and therefore, for ice accretion simulations.

5.4. Transonic Flow Around a NACA0012
Another interesting test case for aerospace applications

is the transonic flow over an airfoil. The flow around a
NACA0012 airfoil at Mach = 0.8 and AoA = 1.25 deg
is computed. The comparison is performed between the
standard Body-Fitted mesh approach and the CBVP-Hs.

It is first observed that the solutions obtained with
the body-fitted ST and CCST boundary conditions are
very close with a lift coefficient of CL = 0.3464 and CL =
0.3462, respectively.

The results of Figure 22 show that for a mesh of com-
parable refinement, the CBVP-Hs is able to capture the
shock location with reasonable accuracy. The lift coeffi-
cient for the CBVP-Hs is CL = 0.3423 which is not far
from the body-fitted results. A better CL could be ob-
tained by properly refining the mesh in the vicinity of the
shocks. However, it still shows the potential of the CBVP-
Hs for the simulation of transonic and supersonic flows.
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Figure 22: Wall Cp for the NACA0012 airfoil at Mach= 0.8 and
AoA= 1.25 deg. Comparison to the BF ST and BF CCST.

6. Conclusion

In this paper, a penalization method which conserves
entropy and total enthalpy is developed for the Euler equa-
tions with icing applications.

Two types of numerical wall boundary conditions are
described for body-fitted meshes: the symmetry technique
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(ST) and curvature-corrected symmetry technique (CCST).
For the immersed boundary method, the penalization is se-
lected for its simplicity of implementation and its mesh and
discretization independence. The penalization method is
usually applied to the Navier-Stokes equations and appli-
cations to the Euler equations are few. The characteristic-
based volume penalization (CBVP) of [23] showed to be
suitable for most cases but exhibits too much diffusivity in
some icing application with high curvature geometries. A
new method is thus developed, the CBVP-Hs, which can
be seen as the application of the CCST boundary condi-
tions using the penalization method.

The body-fitted and penalization methods are tested
on several test cases. A mesh convergence is performed
for the weakly compressible flow around a circular cylin-
der. Then the subsonic and transonic flows around a
NACA0012 airfoil are solved. Also, the airflow around
an ice horn of high curvature is evaluated to assess the
methods on a challenging icing case.

The CBVP and CBVP-Hs are found to perform well
for the Euler equations. However, the CBVP method ex-
hibits a more diffusive solution with higher error level on
the pressure coefficient, conservation of total enthalpy and
conservation of entropy compared to the CBVP-Hs. The
CBVP-Hs is also found to be more accurate on coarser
meshes. For instance on the cylinder, the CBVP-Hs solu-
tion on theD/∆x = 40 mesh is equivalent to the CBVP on
the D/∆x = 160 mesh. For the ice horn case and for the
same mesh refinement, the CBVP exhibits flow separation
while the flow remains attached for the CBVP-Hs, which
is more in line with inviscid flow theory. Also, the CBVP-
Hs shows a good potential for the simulation of transonic
flows as it can capture the same shock location as a Body-
Fitted simulation of comparable mesh refinement.

It is concluded that the application of the penalization
method to the Euler equations requires special care to ob-
tain accurate solutions on complex geometries. The newly
developed approach (CBVP-Hs) proved to be a suitable
candidate for this purpose.
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