
HAL Id: hal-02872415
https://hal.science/hal-02872415v1

Preprint submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A curiosity about (−1)[e] + (−1)[2e] + · · · + (−1)[Ne].
Francesco Amoroso, Moubinool Omarjee

To cite this version:
Francesco Amoroso, Moubinool Omarjee. A curiosity about (−1)[e] + (−1)[2e] + · · ·+ (−1)[Ne].. 2020.
�hal-02872415�

https://hal.science/hal-02872415v1
https://hal.archives-ouvertes.fr


A CURIOSITY ABOUT (−1)[e] + (−1)[2e] + · · ·+ (−1)[Ne].

FRANCESCO AMOROSO AND MOUBINOOL OMARJEE

Abstract. Let α be an irrational real number; the behavior of the sum
SN (α) := (−1)[α] + (−1)[2α] + · · ·+ (−1)[Nα] depends on the continued
fraction expansion of α/2. Since the continued fraction expansion of√

2/2 has bounded partial quotients, SN (
√

2) = O(log(N)) and this
bound is best possible. The partial quotients of the continued fraction

expansion of e grow slowly and thus SN (2e) = O( log(N)2

log log(N)2
), again

best possible. The partial quotients of the continued fraction expansion
of e/2 behave similarly as those of e. Surprisingly enough SN (e) =

O( log(N)
log log(N)

).

1. Introduction

Let α be an irrational real number; we are interested in the asymptotic
behavior of the sum

SN (α) := (−1)[α] + (−1)[2α] + · · ·+ (−1)[Nα].

The origin of this question seems to go back to [12], where it is remarked
that SN (

√
2) = O(logN). More accurate estimates for SN (

√
2) are avail-

able in [5] and were already implicit in [9], where the authors gave an un-
expected explicit formula1 for SN (

√
2) in terms of the continued fraction

expansion2
√

2 = [1; 2].

The behavior of SN (α) is closely related to the uniform distribution mod
1 of the sequence (nα/2)n∈N. Indeed, [nα] is even if and only if the fractional
part {nα/2} is in [0, 1/2). Thus,

(1.1)

SN (α) = |{n = 1, . . . , N | [nα] even }| − |{n = 1, . . . , N | [nα] odd }|
= 2|{n = 1, . . . , N | {nα/2} ∈ [0, 1/2)}| −N
= 2DN (α/2, 1/2).

Here DN is the local discrepancy:

DN (α, x) = |{n = 1, . . . , N | {nα} ∈ [0, x)}| −Nx
for α ∈ R and x ∈ [0, 1]. A lazy way to bound DN (α) is to put in the picture
the global discrepancy3

DN (α) := sup
0≤x<y≤1

∣∣∣|{n = 1, . . . , N | {nα} ∈ [x, y)}| −N(y − x)
∣∣∣.

Date: June 17, 2020.
1which can be viewed as an equality between non absolutely convergent Fourier series.
2Here and below, a1, . . . , ak means a1, . . . , ak, a1, . . . , ak, . . .
3Note that some authors, as [3], divide by N in the definition of DN .
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2 AMOROSO AND OMARJEE

Thus |DN (α, 1/2)| ≤ DN (α). For an irrational α, the sequence (nα) is uni-
form distribution mod 1 by a well known theorem attributed ([3], p.21) in-
dependently to Bohl, Sierpiński and Weyl. This means that DN (α) = o(N).
More precise estimates for DN depend on the diophantine approximation
properties of α. We recall that the irrationality exponent µ(α) of an irra-
tional α ∈ R is the infimum (possibly +∞) of the set of positive real numbers
µ such that for every ε > 0 there exists Cε > 0 such that for all p, q ∈ Z
with q > 0 we have ∣∣∣α− p

q

∣∣∣ > Cε
qµ+ε

.

It is well known that µ(α) ≥ 2 with equality for almost all α. It is also well
known that µ is invariant by integral Möbius transformations α 7→ aα+b

cα+d

(a, b, c, d ∈ Z, ad− bc 6= 0).
From4 [3, Theorem 3.2, p.123] DN (α) = Oγ(Nγ) for any γ > 1− 1

µ(α)−1 .

In particular, if µ(α) = 2 we have DN (α) = Oγ(Nγ) for any γ > 0. A
more precise result holds for irrational numbers α whose continued fraction
expansion has bounded partial quotients (and hence irrationality measure
2). In this case we have (see [3, Theorem 3.4, p.125]) DN (α) = O(logN).

This last estimate cannot be improved. Indeed the global discrepancy DN

of every infinite sequence (un)n is5 Ω(logN) (see [13, Theorem 1, p.45]).
Nevertheless, we can construct irrational α such that |DN (α, 1/2)| is as

small as we wish. Our first result is:

Theorem 1.1. Let δ : N→ R+ be a function which tends to infinity. Then
there exists an irrational number α such that

DN (α, 1/2) = O(δ(N)).

Equivalently, we can find an irrational α such that6 Sn(α) = O(δ(N)).

By [2, Theorem 8, p.237], for any irrational α there exists a positive con-

stant A = A(α) such that |
∑N

n=1 f(nα)| ≥ AN , where f(t) = {t}− 1/2. By

Theorem (1.1) we cannot replace in this statement {t} − 1/2 with (−1)[t],
even taking instead of N any function δ(N) which tends to infinity. See
also [10] for a related question.

We then show that for some classical number the local discrepancyDN (α, 1/2)
can be substantially smaller than DN (α) and even o(logN).

Theorem 1.2.

(1.2) lim
N→+∞

DN (e/2)

(
log logN

logN

)2

=
1

8

and

(1.3) lim
N→+∞

|DN (e/2, 1/2)| log logN

logN
=

3

2
.

4The authors state this result in terms of the type of α which is equal to µ(α)− 1.
5Here Ω is the Landau symbol: if f , g are two functions with g > 0 then f = Ω(g).

means f 6= o(g)
6Note that for any irrational α we have lim |Sn(α)| = +∞ ([7, Theorem 1]).
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Let’s come back to the sum in the title. The question of providing good
bound for SN (e) goes back to H. Pépin [7], who, in the nice self-contained
treatement of this matter [8], already get SN (e) = O((logN)2). Equa-
tions (1.1) and (1.2) show that SN (e) is smaller than what one would expect:

(1.4) SN (e) = (−1)[e] + (−1)[2e] + · · ·+ (−1)[ne] = O(log(N)/ log log(N)).

Note that

SN (2e) = (−1)[2e] + (−1)[4e] + · · ·+ (−1)[2Ne] = O((log(N)/ log log(N))2)

is best possible, by (1.1) and by (1.6) of Theorem 1.3 below.
Bounds for SN (α) are useful to study the convergence of sums of the

shape
∑

n(−1)[nα]un. Let ∆un = un+1 − un. By partial sommation (as in
the solution to [6] proposed by R. Tauraso [14]) we see that such a sum
converges if SN (α)uN → 0 and

∑
N SN (α)∆uN converges. By (1.4) both

conditions are satisfied when α = e and un = log log(n+1)
log(n+1)2

. To get more

precise and general results, it might be suitable to make a second partial
summation, since the arithmetic mean of SN (α) behave more regularly.

The gain of the factor log logN
logN in (1.3) heavily depends on the particular

structure of the continued expansion of e/2. Let us give a short explication.
Both estimates (1.2) and (1.3) for the global and local discrepancy of (ne/2)
depend on the partial quotients {an}n≥1 of the continued fraction expansion
of e/2. This sequence is unbounded. But in the estimate (1.3) only the an
with n 6≡ 2 mod 3 come in. The corresponding sequence is now bounded.
This phenomenon does not occurr if we replace e/2 by e, as the following
theorem shows.

Theorem 1.3.

(1.5) lim
N→+∞

DN (e)

(
log logN

logN

)2

=
1

4

and

(1.6) lim
N→+∞

|DN (e, 1/2)|
(

log logN

logN

)2

=
1

4
.

Relations (1.3) and (1.6) show that the order of growth of α 7→ DN (α, 1/2)
is not invariant with respect to Möbius transformations, contrary to what
happen for the global discrepancy.

Although our theorems are straightforward applications of known results
([1] and [11]), it seems that they deserve to be remarked.

2. Computations

Proof of of Theorem 1.1. The proof is an easy application of [11, Ex-
ample, p.1497]. Let f : N → N be a function taking odd values and which
increases to infinity sufficiently fast. We choose

α = αf = [0; 1, 1, f(1), 1, 1, f(2), . . .].
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Let aj and qm be the partial quotients and the denominators of the conver-
gents of α. For N ∈ N we define m(N) ∈ N by the property

qm(N) ≤ N < qm(N) + 1.

Put

a+j =

{
aj , if qj−1 is even and j is odd;

0, otherwise

and

a−j =

{
aj , if qj−1 and j are even;

0, otherwise.

Define the following sums:

S+
m =

1

4

∑
2|j≤m
2-qj

aj+1 =
1

4

m∑
j=0

a+j+1, S−m =
1

4

∑
2-j≤m
2-qj

aj+1 =
1

4

m∑
j=0

a−j+1.

Then from [11, Example, p.1497] we have (as in the deduction of Corollary
1.2 from Theorem 1.1 in [1]):

(2.1) lim
N→+∞

DN (e/2, 1/2)/S+
m(N) = − lim

N→+∞
DN (e/2, 1/2)/S−m(N) = 1.

From the usual recursive definition of qm we easily see that7 qj−1 is even iff
j ≡ 0 mod 3. Thus

{a+j }j≥1 = {1, 0, 0}, {a−j }j≥1 = {0, 1, 0}

and

(2.2) S+
m ∼ S−m ∼

1

4

[m/3]∑
k=1

1 ∼ m

12
.

Moreover, from the recursive definition of qm we have

qm ≥
[m/3]∏
j=1

f(j).

Thus, if f grows sufficiently fast, for N ∈ N we have q12[δ(N)] ≥ N and,
by definition, m(N) ≤ [12δ(N)]. By (2.1) and (2.2) we have DN (α, 1/2) =
O(δ(N)) as desired.

�

7 To check this property we can of course reduce modulo 2 all the partial coefficients,
thus reduce ourselves to compute the well-known convergents of the golden ratio.
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Proof of of Theorem 1.2. To prove (1.2) we follow the proof of [1, The-
orem 3.2(2), p.286] taking now (cf (2.3)) a1, a2, . . . be the partial quotients
of the continued fraction expansion8 of e/2

(2.3) e/2 = [1; 2, 1, 3, 1, 1, 1, 3,3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, 1, 3, . . .] .

We easily find

m∑
i=0

ai+1 ∼ 2

[m/6]∑
k=1

(2k − 1) ∼ 1

18
m2

and
m∑
i=0

log ai+1 ∼ 2

[m/6]∑
k=1

log(2k − 1) ∼ 1

3
m logm.

Thus

lim
N→+∞

DN (e/2)

(
log logN

logN

)2

=
1
18

4(13)2
=

1

8
.

To prove (1.3) we apply again the formula in [11, Example, p.1497]. Let
aj and qm be the partial quotients and the denominators of the convergents
of (2.3). Let m(N), a±j and S±m be as in the the proof of Theorem 1.1. Then

(2.4) lim
N→+∞

DN (e/2, 1/2)/S+
m(N) = − lim

N→+∞
DN (e/2, 1/2)/S−m(N) = 1.

From (2.3) and from the usual recursive definition of qm we see (cf note7)
that qj−1 is even iff j ≡ 2 mod 3. Thus

{a+j }j≥1 = {2, 0, 3, 0, 0, 0, 3}, {a−j }j≥1 = {2, 0, 0, 1, 0, 1, 0}

and

S+
m ∼

1

4

[m/6]∑
k=1

(3 + 3) ∼ 1

4
m, S−m ∼

1

4

[m/6]∑
k=1

(1 + 1) ∼ 1

12
m.

Moreover (cf (2.3))

log qm ∼
m∑
i=1

log ai ∼ 2

[m/6]∑
k=1

log(2k − 1) ∼ 2
m

6
logm =

1

3
m logm

which, by definition of m(N), easily implies m(N) ∼ 3 logN
log logN . Replacing

these estimates in (2.6) we get

lim
N→+∞

DN (e/2, 1/2)/( 3
4

logN
log logN

) = − lim
N→+∞

DN (e/2, 1/2)/( 3
12

logN
log logN

) = 1.

Equation (1.3) follows.

�

8which can be easily computed from the well-known Euler continued fraction of e,
e.g. by known algorithms [4].
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Proof of of Theorem 1.3. Equation (1.5) is a special case of [1, The-
orem 3.2(2), p.286]. The deduction of (1.6) follows the same lines as that
of (1.3). Let aj and qm be the partial quotients and the denominators of
the convergents of the continued fraction expansion of e

(2.5) e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]

Let m(N), a±j and S±m as in the the proof of Theorem 1.1. From [11, Exam-

ple, p.1497]:

(2.6) lim
N→+∞

DN (e, 1/2)/S+
m(N) = − lim

N→+∞
DN (e, 1/2)/S−m(N) = 1.

From (2.5) and from the usual recursive definition of qm we easily see that
qj−1 is even iff j ≡ 0, 4 mod 6. Thus (cf (2.5))

{a+j }j≥1 = {1, 0, 1, 0, 4, 0,1, 0, 1, 0, 8, 0, 1, 0, 1, 0, 12, 0, . . .};
{a−j }j≥1 = {0, 2, 0, 0, 0, 0,0, 6, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, . . .}

and

S+
m ∼

1

4

[m/6]∑
k=1

(1 + 1 + 4k) ∼ 1

72
m2, S−m ∼

1

4

[m/6]∑
k=1

(4k − 2) ∼ 1

72
m2.

Moreover (cf again (2.5))

log qm ∼
m∑
i=1

log ai ∼
[m/3]∑
k=1

log(2k) ∼ 1

3
m logm

which implies m(N) ∼ 3 logN
log logN . Replacing these estimates in (2.6) we get

lim
N→+∞

DN (e, 1/2)/( 1
8
( logN
log logN

)2) = − lim
N→+∞

DN (e, 1/2)/( 1
8
( logN
log logN

)2) = 1.

Equation (1.6) follows.

�
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