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Introduction

Let α be an irrational real number; we are interested in the asymptotic behavior of the sum S N (α) := (-1) [α] + (-1) [2α] 

+ • • • + (-1) [N α] .
The origin of this question seems to go back to [START_REF] Ruderman | Problems and Solutions: Solutions of Advanced Problems: 6105[END_REF], where it is remarked that S N ( √ 2) = O(log N ). More accurate estimates for S N ( √ 2) are available in [START_REF] O'bryant | Almost Alternating Sums[END_REF] and were already implicit in [START_REF] Perelli | On the parity of [n √ 2][END_REF], where the authors gave an unexpected explicit formula 1 for S N ( √ 2) in terms of the continued fraction expansion 2 √ 2 = [1; 2].

The behavior of S N (α) is closely related to the uniform distribution mod 1 of the sequence (nα/2) n∈N . Indeed, [nα] is even if and only if the fractional part {nα/2} is in [0, 1/2). Thus, Here D N is the local discrepancy:

D N (α, x) = |{n = 1, . . . , N | {nα} ∈ [0, x)}| -N x for α ∈ R and x ∈ [0, 1]. A lazy way to bound D N (α) is to put in the picture the global discrepancy 3 D N (α) := sup 0≤x<y≤1 |{n = 1, . . . , N | {nα} ∈ [x, y)}| -N (y -x) .
Date: June 17, 2020. 1 which can be viewed as an equality between non absolutely convergent Fourier series. 2 Here and below, a1, . . . , a k means a1, . . . , a k , a1, . . . , a k , . . . 3 Note that some authors, as [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF], divide by N in the definition of DN .

Thus |D N (α, 1/2)| ≤ D N (α). For an irrational α, the sequence (nα) is uniform distribution mod 1 by a well known theorem attributed ( [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF], p.21) independently to Bohl, Sierpiński and Weyl. This means that D N (α) = o(N ). More precise estimates for D N depend on the diophantine approximation properties of α. We recall that the irrationality exponent µ(α) of an irrational α ∈ R is the infimum (possibly +∞) of the set of positive real numbers µ such that for every ε > 0 there exists C ε > 0 such that for all p, q ∈ Z with q > 0 we have α -p q > C ε q µ+ε . It is well known that µ(α) ≥ 2 with equality for almost all α. It is also well known that µ is invariant by integral Möbius transformations α → aα+b cα+d (a, b, c, d ∈ Z, ad -bc = 0).

From

4 [3, Theorem 3.2, p.123] D N (α) = O γ (N γ ) for any γ > 1 -1 µ(α)-1 . In particular, if µ(α) = 2 we have D N (α) = O γ (N γ
) for any γ > 0. A more precise result holds for irrational numbers α whose continued fraction expansion has bounded partial quotients (and hence irrationality measure 2). In this case we have (see [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF]Theorem 3.4,p.125

]) D N (α) = O(log N ).
This last estimate cannot be improved. Indeed the global discrepancy D N of every infinite sequence (u n ) n is5 Ω(log N ) (see [START_REF] Schmidt | Irregularities of distribution.VII[END_REF]Theorem 1,p.45]).

Nevertheless, we can construct irrational α such that |D N (α, 1/2)| is as small as we wish. Our first result is: Theorem 1.1. Let δ : N → R + be a function which tends to infinity. Then there exists an irrational number α such that

D N (α, 1/2) = O(δ(N )).
Equivalently, we can find an irrational α such that6 S n (α) = O(δ(N )).

By [2, Theorem 8, p.237], for any irrational α there exists a positive constant

A = A(α) such that | N n=1 f (nα)| ≥ AN , where f (t) = {t} -1/2
. By Theorem (1.1) we cannot replace in this statement {t} -1/2 with (-1) [t] , even taking instead of N any function δ(N ) which tends to infinity. See also [START_REF] Perelli | An Ω result in uniform distribution theory[END_REF] for a related question.

We then show that for some classical number the local discrepancy D N (α, 1/2) can be substantially smaller than D N (α) and even o(log N ).

Theorem 1.2. (1.2) lim N →+∞ D N (e/2) log log N log N 2 = 1 8
and

(1.3) lim N →+∞ |D N (e/2, 1/2)| log log N log N = 3 2 .
Let's come back to the sum in the title. The question of providing good bound for S N (e) goes back to H. Pépin [START_REF] Pépin | Question et Réponses. Q86[END_REF], who, in the nice self-contained treatement of this matter [START_REF] Pépin | Question et Réponses. R86[END_REF], already get S N (e) = O((log N ) 2 ). Equations (1.1) and (1.2) show that S N (e) is smaller than what one would expect:

(1.4) S N (e) = (-1) [e] + (-1) [2e] + • • • + (-1) [ne] = O(log(N )/ log log(N )). Note that S N (2e) = (-1) [2e] + (-1) [4e] + • • • + (-1) [2N e] = O((log(N )/ log log(N )) 2 )
is best possible, by (1.1) and by (1.6) of Theorem 1.3 below.

Bounds for S N (α) are useful to study the convergence of sums of the shape n (-1) [nα] u n . Let ∆u n = u n+1 -u n . By partial sommation (as in the solution to [START_REF] Omarjee | Problem 11384[END_REF] proposed by R. Tauraso [START_REF] Tauraso | Solution to Problem 11384[END_REF]) we see that such a sum converges if S N (α)u N → 0 and N S N (α)∆u N converges. By (1.4) both conditions are satisfied when α = e and u n = log log(n+1) log(n+1) 2 . To get more precise and general results, it might be suitable to make a second partial summation, since the arithmetic mean of S N (α) behave more regularly.

The gain of the factor log log N log N in (1.3) heavily depends on the particular structure of the continued expansion of e/2. Let us give a short explication. Both estimates (1.2) and (1.3) for the global and local discrepancy of (ne/2) depend on the partial quotients {a n } n≥1 of the continued fraction expansion of e/2. This sequence is unbounded. But in the estimate (1.3) only the a n with n ≡ 2 mod 3 come in. The corresponding sequence is now bounded. This phenomenon does not occurr if we replace e/2 by e, as the following theorem shows. Although our theorems are straightforward applications of known results ( [START_REF] Baxa | Minimum and maximum order of magnitude of the discrepancy of (nα)[END_REF] and [START_REF] Roçadas | On the local discrepancy of (nα)sequences[END_REF]), it seems that they deserve to be remarked.

Computations

Proof of of Theorem 1.1. The proof is an easy application of [11, Example, p.1497]. Let f : N → N be a function taking odd values and which increases to infinity sufficiently fast. We choose

α = α f = [0; 1, 1, f (1), 1, 1, f (2), . . .].
Let a j and q m be the partial quotients and the denominators of the convergents of α. For N ∈ N we define m(N ) ∈ N by the property

q m(N ) ≤ N < q m(N ) + 1. Put a + j =
a j , if q j-1 is even and j is odd; 0, otherwise and a - j = a j , if q j-1 and j are even; 0, otherwise.

Define the following sums:

S + m = 1 4 2|j≤m 2 q j a j+1 = 1 4 m j=0 a + j+1 , S - m = 1 4 2 j≤m 2 q j a j+1 = 1 4 m j=0 a - j+1 .
Then from [START_REF] Roçadas | On the local discrepancy of (nα)sequences[END_REF]Example,p.1497] we have (as in the deduction of Corollary 1.2 from Theorem 1.1 in [START_REF] Baxa | Minimum and maximum order of magnitude of the discrepancy of (nα)[END_REF]):

(2.1) lim

N →+∞ D N (e/2, 1/2)/S + m(N ) = -lim N →+∞ D N (e/2, 1/2)/S - m(N ) = 1.
From the usual recursive definition of q m we easily see that 7 q j-1 is even iff j ≡ 0 mod 3. Thus

{a + j } j≥1 = {1, 0, 0}, {a - j } j≥1 = {0, 1, 0} and (2.2) S + m ∼ S - m ∼ 1 4 [m/3] k=1 1 ∼ m 12 .
Moreover, from the recursive definition of q m we have

q m ≥ [m/3] j=1 f (j).
Thus, if f grows sufficiently fast, for N ∈ N we have q 12[δ(N )] ≥ N and, by definition, m(N ) ≤ [12δ(N )]. By (2.1) and (2.2) we have D N (α, 1/2) = O(δ(N )) as desired. 7 To check this property we can of course reduce modulo 2 all the partial coefficients, thus reduce ourselves to compute the well-known convergents of the golden ratio.

Proof of of Theorem 1.2. To prove (1.2) we follow the proof of [1, Theorem 3.2(2), p.286] taking now (cf (2.3)) a 1 , a 2 , . . . be the partial quotients of the continued fraction expansion 8 of e/2

(2.

3) e/2 = [1; 2, 1,

We easily find To prove (1.3) we apply again the formula in [11, Example, p.1497]. Let a j and q m be the partial quotients and the denominators of the convergents of (2.3). Let m(N ), a ± j and S ± m be as in the the proof of Theorem 1.1. Then (2.4) lim

N →+∞ D N (e/2, 1/2)/S + m(N ) = -lim N →+∞ D N (e/2, 1/2)/S - m(N ) = 1.
From (2.3) and from the usual recursive definition of q m we see (cf note 7 ) that q j-1 is even iff j ≡ 2 mod 3. Thus {a + j } j≥1 = {2, 0, 3, 0, 0, 0, 3}, {a - j } j≥1 = {2, 0, 0, 1, 0, 1, 0} and Equation (1.3) follows. 8 which can be easily computed from the well-known Euler continued fraction of e, e.g. by known algorithms [START_REF] Liardet | Algebraic computations with continued fractions[END_REF].

S + m ∼ 1 4 [m/6] k=1 (3 + 3) ∼ 1 4 m, S - m ∼ 1 4 [m/6] k=1 (1 + 1) ∼ 1 12 m. Moreover (cf (2.3)) log q m ∼ m i=1 log a i ∼ 2 [m/6] k=1 log(2k - 
Proof of of Theorem 1.3. Equation (1.5) is a special case of [1, Theorem 3.2(2), p.286]. The deduction of (1.6) follows the same lines as that of (1.3). Let a j and q m be the partial quotients and the denominators of the convergents of the continued fraction expansion of e From (2.5) and from the usual recursive definition of q m we easily see that q j-1 is even iff j ≡ 0, 4 mod 6. Thus (cf (2.5))

{a + j } j≥1 = {1, 0, 1, 0, 4, 0,1, 0, 1, 0, 8, 0, 1, 0, 1, 0, 12, 0, . . .}; {a - j } j≥1 = {0, 2, 0, 0, 0, 0,0, 6, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, . . .} and 

S + m ∼ 1 4

(1. 1 )

 1 S N (α) = |{n = 1, . . . , N | [nα] even }| -|{n = 1, . . . , N | [nα] odd }| = 2|{n = 1, . . . , N | {nα/2} ∈ [0, 1/2)}| -N = 2D N (α/2, 1/2).

  and(1.6) show that the order of growth of α → D N (α, 1/2) is not invariant with respect to Möbius transformations, contrary to what happen for the global discrepancy.

  definition of m(N ), easily implies m(N ) ∼ 3 log N log log N . Replacing these estimates in (2.6) we get lim

  Let m(N ), a ± j and S ± m as in the the proof of Theorem 1.1. From [11, Example, p.1497]:(2.6) limN →+∞ D N (e, 1/2)/S + m(N ) = -lim N →+∞ D N (e, 1/2)/S - m(N ) = 1.

  which implies m(N ) ∼ 3 log N log log N . Replacing these estimates in (2.6) we get limN →+∞ D N (e, 1/2)/( 1 8 ( log N log log N ) 2 ) = -lim N →+∞ D N (e, 1/2)/( 1 8 ( log N log log N ) 2 ) = 1.Equation (1.6) follows.

The authors state this result in terms of the type of α which is equal to µ(α) -1.

Here Ω is the Landau symbol: if f , g are two functions with g > 0 then f = Ω(g). means f = o(g)

Note that for any irrational α we have lim |Sn(α)| = +∞ ([7, Theorem 1]).