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Variance linearity for real Gaussian zeros

Raphaél Lachieze-Rey*
September 20, 2021

Abstract We investigate the zero set of a stationary Gaussian process on the real
line, and in particular give lower bounds for the variance of the number of points and of
linear statistics on a large interval, in all generality. We prove that this point process is
never hyperuniform, i.e. the variance is at least linear, and give a necessary condition
to have linear variance, which is close to be sufficient. We study the class of symmetric
Bernoulli convolutions and give an example where the zero set is maximally rigid, weakly
mixing, and not hyperuniform.

Keywords: Gaussian fields, point processes, crossings, nodal set, excursion, hyper-
uniformity, rigidity, chaos decomposition, linear statistics

AMS Classification: 60G10, 60G15, 60G55

1 Background and motivation
We study here the zero set of a Gaussian stationary process X:
Zy = {t € R : X(t) = 0}.

The study of Gaussian zeros has emerged in the fifties, with pioneering works of Kac
and Rice [18], and subsequent applications in the fields of telecommunications and signal
processing, ocean waves, and random mechanics. Rigorous results can be found in the
book of Cramer and Leadbetter [8], along with the first second order results. In the
following decades, most significant second order analyses have been made by Cuzick [9],
Slud [28], Kratz & Léon [21], see the survey [20] and references therein. The weakest
available condition for non-degenerate asymptotic variance is the square integrability of
the covariance function, in [28]. We give here a variance lower bound, under virtually no
hypotheses, that implies that the variance is always at least linear, and give a necessary
condition very close to known sufficient conditions for it to be actually linear. The result
is actually more general, as it concerns linear statistics on Gaussian nodal sets, which have
also been the topic of many recent results, see for instance [30] on the sphere, or [I7 [25]
for zeros of Gaussian entire functions; these statistics can be exploited in particular to
prove the rigidity of a point process, see [I6]. We also explore the class of symmetric
Bernoulli convolutions and focus on an example whose spectral measure has a Cantor
nature.

Feldheim [12] has studied zeros of Gaussian analytic functions (GAFs) whose law is
invariant only under horizontal shifts, reduced to a horizontal strip of the form R X [a, ],
with —0o < a < b < oo. In a related work, Buckley and Feldheim [5] study the winding
number of a GAF X : R — C. A strong motivation of their work is the analogy between
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the winding number and the number of zeros. Some convenient identities coming from
complex analysis can provide explicit expressions for these indexes and their moments,
whereas the number of zeros of a real Gaussian process is mostly studied in the literature
through its Wiener-Ito expansion, which is sometimes not amenable to analysis; one can
also use directly Kac-Rice formula [4] but this does not ease the task of estimating the
variance. In particular, we cannot obtain an expression as explicit as (6) in [5] or Section
3.2 in [I2] for the number of zeros. It will be instructive to observe in Section that
the results about GAFs are similar to the results presented here. Very recently, Azals,
Dalmao and Letendre [3] have studied the winding number of planar Gaussian fields on
the real line, realizing the Wiener-Ito counterpart to the work [5], obtaining similar results
without analyticity assumptions.

Another motivation is to explore the behavior of Gaussian zeros in the light of the
concepts of hyperuniformity and rigidity. Let us introduce more formally point processes
before going further. Let .4 (R) be the space of locally finite subsets of R, endowed with
the o-algebra Z(4 (R)) generated by the mappings

pa:ZeN(R) > HZNA

for A a Borel subset of R, where # denotes the cardinality of a set. A point process Z is a
measurable mapping from an underlying probability space (Q; 7, P) to (A (R), Z(A4 (R)));

Z is furthermore stationary if Z 4+ z D7 for x € R, and we denote by Vz(T) =

Var(#Z N [-T,T]). In physics of condensed matters and statistical physics, a great
attention has been given recently to the phenomenon of fluctuation suppression of par-
ticle systems, which can be incarnated by the property of hyperuniformity: a stationary
point process Z on R is hyperuniform, or superhomegeneous, if

Vz(T)

lim inf =0.
T— o0

A striking property of many systems with suppressed fluctuations is their rigidity, i.e.
the complete determination of a feature of the point process in a bounded domain given
its configuration outside the domain: for a measurable mapping ¢ : A (R) — R, we say
a point process Z is @-rigid if for all T > 0,

o(ZN[-T,T]) € o(ZN [-T,T]°).

In particular, we say it is number-rigid if it is @-rigid for ¢ = #, and mazimally rigid if
it is p-rigid for every bounded measurable ¢, i.e. if ZN[-T,T] is completely determined
by ZN[-T,T]° for T > 0.

This phenomenon has been much documented, with many rigorous results proven in
dimension 1 and 2, and recently in dimension 3 by Chatterjee on hierarchical Coulomb
gases [6]. The link between rigidity and hyperuniformity is the topic of many works in the
recent years. Most notable examples of stationary hyperuniform models are determinantal
processes whose kernels are projection operators [I5], zeros of planar Gaussian analytic
functions [I6], some Coulomb systems [15], the S-sine processes for 8 > 0 [10], perturbed
lattices [26], and also many non-stationary models, with a more general definition of
hyperuniformity. In all these models, the point process is hyperuniform and ¢-rigid, at
least for ¢(Z) = #Z. Tt is widely believed that hyperuniformity is required to have rigidity
[15], and the usual method of proof of rigidity, introduced in [I6], involves linear statistics
and implicitly assumes hyperuniformity (see [I0] for an alternative method involving
DLR equations). The phenomenon of rigidity, although mathematically intriguing, has
also practical uses in some percolation models related to the underlying point process,
see [I4].



We exploit the variance results derived in this paper to exhibit a non artificial example
of a point process in dimension 1 that experiences the strongest possible form of rigidity,
without being hyperuniform. Such examples are actually not so hard to build on R?, take
for instance the grid

Z,=L(Z+U)

where L is some non-trivial non-negative L? real random variable and U is independent
and uniformly distributed on [0,1)?. Tt is also clear that there is absolutely no form of
asymptotic independence in Z4, in the sense that given two events A, B, the events Z; € A
and Z +t € B have no reason to be uncorrelated for large T'. For this reason, we might
ask for additional desirable properties of such counter-examples.

Definition 1.1. We say that a stationary point process Z of R is weakly mizing if for all
events A, B € Z(A4(R)),

T—o0

T
lim T—l/ |P(Zc A, (Z+1t)eB)—P(Zc AP(Z < B)|dt =0.
0

The randomly scaled grid Z; does not satisfy this property because it is not even
ergodic. We prove the following result:

Corollary 1.2. Let X be the centered stationary Gaussian process with reduced covari-
ance function

+oo
C(t) = [ cos((k)~"t),t € R.
k=1

Then Zx is maximally rigid, weakly mixing, and for € > 0 there is ¢ > 0 such that
Var(#Zx N [-T,T]) > ¢I'*~¢. The process X is furthermore a.s. unbounded.

The proof is a direct consequence of Theorem Propositions and

Regarding rigidity and hyperuniformity, stationary point processes obtained as the
zeros of a random Gaussian function have mainly been studied for Gaussian analytic
functions in the complex plane, see [I7]. The joint requirements of complex Gaussianity,
analycity, and stationarity have reduced the class of zeros to essentially one model, up to
rescaling, which happens to be rigid and hyperuniform [I7]. The links between Gaussian
zeros and rigidity is yet essentially to discover.

We present in Section [2| some results and definitions about Gaussian processes and
their zeros, variance lower bounds, and we give a condition for maximal rigidity. We also
properly explore the analogies with variance results for GAFs. In Section [3| we introduce
the class of symmetric Bernoulli convolutions, give some properties and examples, in par-
ticular an example yielding maximally rigid non hyperuniform zeros. In Section [4] we
prove the lower bounds on the variance by using chaotic decompositions of the number
of zeros.

2 (Gaussian zeroes

We introduce here basic notions about Gaussian processes. See the monograph of Azais &
Wschebor [4] for background material and advanced results about Gaussian processes and
their level sets. A real Gaussian process is a random function X : R — R for which any



finite dimensional distribution (X(t1),...,X(ts)), t1,...,tn € R, is a Gaussian vector with

covariance matrix (C(t;,%;))1<i,j<n, Where C is the covariance function of the process X.

The law of X is entirely determined by C, and the stationarity of X, defined by X(-+t) @ X

for t € R, is characterised by the existence of a function Cyx, called reduced covariance
function, such that C(t,s) = Cx(t — s),t,s € R. Such a function is known to admit a
spectral representation of the form

Cx(t) = /Re”tux(dm) = 2/0OO cos(xt)ux(dz),t € R, (1)

where ux is the (symmetric) spectral measure of X on R. We say that X is degenerate
if Cx(x) = Acos(px) for some A > 0,9 € R, or equivalently if ux is formed by two
symmetric atoms with same mass.

2.1 Zero set

We are primarily interested in the variance Vz, (T') of #(Zx N [T, T]), denoted by Vx(T')
for short, where X is a Gaussian stationary process. The Kac-Rice formula, established
in the forties [I8], is the starting point of most rigorous subsequent works. Cramer and
Leadbetter [§] proved that it is necessary for Vx(T') to be finite for every T' > 0 that Cx
is twice differentiable in 0 and for some § > 0,

1
| &0k - conar < . @)
Geman [I3] then proved that the condition is actually necessary on any non-negligible
interval, and this condition is thus referred to as Geman’s condition. When this condition
is satisfied, we often use without loss of generality the convention C¥(0) = —1, equivalent
to replacing X(t) by X(at) with a = (—C¥(0))~/2.

By using approximation by m-dependent fields, Cuzick [9] proves that the variance
is not super-linear, that is limz_, ., T~ 1Vx(T) exists and is finite, if Geman’s condition
holds, as well as

/C’x(t)zda: < 00, [CY(t)*dx < co. (3)

He actually proves a central limit theorem under the additional assumption that

lim 7'V (T) > 0.

T—o0
Computing the decomposition of the number of zeros with respect to Wiener-Ito integrals
based on the field X, Slud [28] proves that is sufficient for the asymptotic variance
to be finite and positive, and for the central limit theorem to hold. Kratz & Léon [21]
compute the chaos decomposition with respect to the joint process formed by the field X
and its derivative X’ and ease some computations related to the decomposition, allowing
them to generalise the results to other crossing problems; this is the approach we will use
at Section [

We present here our results regarding the variance lower bound for the number of

zeros. The method extends to linear statistics

Nx(9) ==Y ()
zeX

for ¢ in the space Cp of compactly supported piecewise continuous functions ¢ such that
Jg o(@)dz # 0. We are interested in the asymptotics of Nx(¢r) for or() = o(T~') as



T — oo. We abuse the notation Vx(p) = Var(Nx(y)), with Vx(T) = Wx(er) if ¢ is the
indicator function of [—1,1]. Say that py is reqular in z € R if it admits a L? density on
some neighbourhood of .

Theorem 2.1. Let X be a non-degenerate stationary Gaussian field on R with covariance
C, and let ¢ € Cp. Assume either that ¢ is non-negative, or that Geman’s condition is
satisfied, in the latter case denote by z¢ = (—C"(0))*/2. Then

(i) The variance is at least linear, i.e.

P 1
hrjp;(r)lfT W (1) € (0, 00].

(ii) The existence of C” satisfying C” + C' € L?(R) is necessary for linear fluctuations,
i.e. for
lim inf 77V (¢7) < o0.
T—o0

If C" exists and pux is regular in £, the condition C” 4+ C € L?(R) is equivalent
to ([3), which is sufficient for linear fluctuations of Vx(T) ([9]).

(iii) If pux has an atom in R\ {—=zq,z0}, infrso T2V (1) > 0.

The proof is at Section [d] We also give an example of a nonatomic spectral measure
px for which T27¢ = o(Vx(T)) for € > 0. Regarding the quadratic variance, as soon as
the variance is finite on some interval with non-empty interior (Geman’s condition (2)),
then the variance cannot be more than quadratic, see [4].

Related works. Even in the case Vx(pr) = Vx(T), it is not clear which of these
results already appeared in full generality, and in particular when g does not have a den-
sity. We could not locate a necessary condition other than for linear variance in the
literature, see also Remark 1.2 in [I2]. It remains open to find a necessary and sufficient
condition. During the revision of the present work, Assaf, Buckley and Feldheim [2] have
given an upper bound for the variance, and a mixing condition under which the condition
(C,C" € L?) is necessary and sufficient. Regarding point (iii), they also investigated the
behaviour of the variance when there is an atom at +x(, that they call a special atom.

In many practical studies of Gaussian zeros, the covariance is assumed to be square
integrable ([I, 4, @, 21 [2]]), it is in particular square integrable in the neighbourhood of
+1, hence the variance linearity is equivalent to C,C” € L?, and to C + C" € L2.

For positive asymptotic variance to hold ((i) with ¢ = 1;_;yj), we can notice that

Cuzick [9] needs
(C'(t)* T [
/1—0(t)2dt< 5 /J} wu(dx)

for limp_, o T71Vx(T) to be strictly positive, a requirement still present in [20]. Other
works aimed at proving central limit theorems with linear variance give various types of
conditions: C' € L? in [28], C € L',C" € L? in [21].

Linear statistics are classical functionals of interest for point processes, see for in-
stance [25] which focuses on complex Gaussian zeros, and references therein, as well as
the variance computed in [I6] aimed at proving rigidity results. For linear statistics of
real Gaussian zeros, we were notified while revising the current work that Ancona and
Letendre [I] obtained asymptotic results under some integrability hypotheses on the re-
duced covariance function. The condition [, ¢(x)dx # 0 does not appear in their results,



but it is necessary in the current general framework, and in particular in the periodic case
(point (iii)).

The assumption that X is not degenerate cannot be removed, for if Cx(t) = cos(t),
the variance is bounded (see the proof of Theorem . The presence of a singularity at

cos(t)+€eft2 /2

+x¢ muddies the waters anyway, for instance if Cx(t) = -

variance is at least linear.

for some ¢ > 0, the

Comparison with zeros of GAFs. It is interesting to compare the results above

to those obtained by Feldheim [I2], who studied the zero set ng * of a Gaussian analytic
function (GAF) X on the infinite strip

Sap={z+w:x€R,a<y<b},

for some —c0 < a < b < o0, and those of Buckley and Feldheim [5] who study the
winding number Wyp of a GAF X : [0,7] — C. A GAF X is also characterised by its
reduced covariance Cx and its spectral measure px along the real line:

Cx(t — 5) = E(X(t)X(s)) = /R e 2mit=s)2 p (dx),t, s € R,

Let us reproduce some of their results regarding the variances
Vi (T) = Var(#Z% 0 (=T, T) x [a, b)), Vi(T) = Var(Wry).
The field X is called degenerate if px consists of a single atom.

Theorem 2.2 ([12] 5]). Let X be a non-degenerate GAF.
(i) If the differentiability condition (3) in [5] holds, for T" > 0
T~ 'VY(T) > C for some C > 0.
The left hand member has a limit in (0,00) as T — oo if Cx, C% € L?.
(ii) The limit
Jim TV

exists and is strictly positive. It is finite if
ﬁOx(tJr iy)|2dt < oo,/|c;(’(t +iy)|?dt < oo,y € {a,b}

where Cx is analytically continued to Sqp,
(iii) the limits
lim T72Vi*N(T),  lim T-2V(T)
T—o0

T— 00
exist and are finite, and are strictly positive iff px has an atom.

Hence the results are similar to ours regarding the quadratic variance and the linear
variance. Feldheim [12] also gives a lower bound which yields a sufficient condition for
asymptotic super linear variance, but leaves linearity undecided for some measures with
a singularity, such as for px(dz) = cly;<1y|z|~1/2dt,x € R. This is analogous to our
“dark spot” regarding linear variance, at the difference that we allow singularities as long
as they are not located at +xq.



Remark 2.3. A degenerate GAF is, up to rescaling and multiplication, X(¢) = ye?",
where v = a+10 is a Gaussian standard complex variable (i.e. «, 8 are i.i.d real Gaussian
variables), whereas a degenerate real Gaussian process in the sense of this paper is of the
form Xo(t) = acos(t) + Bsin(t), up to rescaling and multiplication, and its reduced
covariance function is Co(t) = cos(t).

It is on the other hand difficult to infer results for zeros of Gaussian processes on
R from results about zeros of GAF because a GAF will typically take non-real values
on the real line, and hence have no real zeros (this is why the winding number might
be seen as a generalisation of the number of zeros). For instance, the unique (up to
rescaling /multiplication) GAF X such that for t € R, E(X(0)X(t)) = 2cos(t) is X =
Xo + iX{, where X, is an independent copy of Xg.

2.2 Completely predictable real zeros

We will consider a property stronger than maximal rigidity.

Definition 2.4. Say that a point process Z is completely predictable if
o(Z) = Niero(Z N (=00, t)).

This property yields that the knowledge of Z on any half line determines the whole
process. We have the obvious fact that if Z is completely predictable, it is maximally
rigid.

The problem of whether the data of a stationary Gaussian process on a half line
{X(t);t < 0} determines the whole process has been widely investigated, see Szegd’s
alternative ([I1], Section 4.2]). Such a behaviour does not imply that the knowledge of the
zeros on a half line determines all the zeros. One might also try to reconstruct the whole
process from the zeros, but Weierstrass factorisation theorem yields uncountably many
functions with a given infinite set of zeros (without accumulation point). It would still
be interesting to try to characterise processes whose zero set is completely predictable,
or exhibit a weaker form of rigidity. We give here a simple condition on Cx for the
predictability of Zx.

Proposition 2.5. Assume X is almost surely of class C!, and there is a sequence ¢,, — oo
such that |Cx(t,)| — 1. Then Zx is predictable.

Proof. Let us denote the shifted process by X, = X(t, + ). We have for t € R,
+Cov(X(t), X, (t)) — 1, hence £X,,(t) — X(t) a.s. since these are Gaussian variables.

Let now I be a bounded interval of R. Denote by I the interior of I and by I its
closure. Since Zx, Zx, are stationary point processes, with probability 1, they don’t have
zeros on O = I\ I. Hence a.s., for simultaneously all n,

(Zx, NT#0) = (Zx, N1 #0); (ZxNT#0) = (Zx N1 #0).

Since (X(0),X’(0)) is not degenerate, the zeros of X are almost all regular, i.e. X and
X" don’t vanish simultaneously (see [20, Th. 1.1]). Hence for each zero z of X we have
X(¢)X(s) < 0 for some s,t arbitrarily close from z.

Then we have almost surely

Zx N1 # 0 =X(t)X(s) < 0 for some t,s € I NQ
=3t,s € INQ: X, (s)X,(t) < 0 for n sufficiently large

because we have a.s. the simultaneous convergences X, (t) — X(t),t € Q, hence we can
conclude that if X vanishes in I, so does X,, for n sufficiently large.



Let us prove the converse statement. We have by Fatou’s lemma, and using the
stationarity again,

E(lim inf X, [[;) <liminf E([X[I1) = E([X[1)

and the last quantity is finite since X’ is a.s. bounded on I (see [4]). Hence
P(liminf [X/,| = 00) =0

and there is a.s. L < oo and N C N infinite such that ||X],||; < L for n € N.

So let us assume that X, (t,) = 0 with t,, € I for n sufficiently large. Then it also
vanishes for n € N sufficiently large, hence there is a subsequence n’ € N such that
Xy (tn) = 0. Let us take another subsequence n” such that t,,» — ¢ € I. We have

X < IXE) = Ko ()] + X (8) = X ()] < X(E) = X (8)] + LIt = o],

hence the latter a.s. converges to 0, and X vanishes in t € I. since X does not vanish on
01 a.s., we have proved the a.s. equivalence,

Zx NI # 0= Zx, N1 # () for n sufficiently large.

In particular, Zx N I # @ is completely determined by

(o(@Zx, N 1) =[)o((Zx+ta) N 1) =()o(Zx N ( ﬂ ((Zx N [t,0))),

n n n

which concludes the proof. O

Let us give simple examples of Gaussian processes that satisfy this assumption, see
[7] for the details. Say that a continuous function f : R — R is (Bohr)-almost periodic
if for each € > 0 there exists Tp(e) > 0 such that every interval of length Tp(e) contains
a number 7 with the following property: |f(t + 7) — f(t)| < € for each t € R. Bochner
came up with the following characterisation: f is almost periodic iff for every sequence
t, — 00, there is a subsequence t,+ such that

If = f(tn + )l = 0.

Such functions are equivalently characterised as uniform limits of trigonometric polyno-
mials on the real line.

Proposition 2.6. Let a = (a;) be a summable sequence of non-negative numbers, ¢ =
(¢4) a sequence of real numbers, and

x) = Z a; cos(p;x). (4)

Then C is almost periodic, and it is the reduced covariance C = Cx of a Gaussian
stationary process X which is a.s. bounded, almost periodic, and whose zero set Zx is
completely predictable.

Proof. C is obviously the uniform limit of trigonometric polynomials. Then X can be
represented by

= Z a;(a; cos(p;x) + B sin(p;x))

where the «;, ; form a sequence of independent standard Gaussian variables, hence X is
a.s. periodic for the same reasons as C. Finally, Zx is completely predictable because
C(x) gets arbitrarily close to 1 as & — oo, hence the previous proposition applies. O



Even if such processes could be useful for modelling pseudo-crystalline arrangements,
these periodicity properties prevent them from having the slightest form of asymptotic
independence, ergodicity, let alone mixing properties. We shall give in the next section
examples of fields whose zero set is weakly mixing and completely predictable.

The excursion volume of almost periodic fields have interesting properties. It is proved
in [22] that Vx(T') = Var(|[-T,T] N {X > 0}|) strongly depends on the diophantine
properties of the ¢;, where | - | denotes Lebesgue measure. If for instance Cx(zr) =
cos(x) + cos(px), Vx(T') can either be bounded, or grow as an arbitrarily high power of
T, depending on weather ¢ has “good” or “bad” approximations by rational numbers.

3 Symmetric Bernoulli convolutions

Let A = (Ar) be a square summable family of R, and

CMt) = ﬁ cos(Axt),t € R.

k=1

This function converges for every ¢ (|23, (3.7.9)]), and it is the reduced covariance of some
stationary Gaussian field denoted by X*. The order of multiplication does not matter
in the value C*(t), hence we can assume throughout that Ay > Axi1. By studying the
uniform convergence on every compact, it is clear that X* is analytic, with an analytic
continuation to C.

The spectral measure p* of X is called a symmetric Bernoulli convolution because it
is the law of the random variable

YA = i )\k5k
k=1

where the ¢ are i.i.d. Rademacher variables. Infinite products of characteristic functions
have been studied by Lukacs [23, Chapter 3.7], where basic results stated here are proved.
The main focus of study in the literature is the nature of p*. It is known that p* is
pure, i.e. either continuous, purely discrete, or purely singular [23] Th. 3.7.7]. Bernoulli
convolutions with geometric progression are a very active research subject, see for instance
[29], they are one of the most studied examples of self-similar measures, and they are
objects of great interest in fractal geometry.

Regarding ergodicity, let {X(¢);t € R} be a Gaussian stationary process with almost
surely continuous paths, and & = o(X) the o-algebra generated by the random variables
X(t),t € R. For B € #,t € R, let B+t be the event B translated by ¢. The process X is
called weakly mizing if

T
lim 7! / [P(AN (B +1t)) —P(A)P(B)|dt = 0.
T—o00 0
Proposition 3.1. Let
Ry=> A
k>n

Assume )\, > R, > 0 for every n. Then p* has no atoms, its support has Cantor type
(compact, completely disconnected and without isolated points), and

1 T
lim f/ CA t)dt =0,
0

T—oo T

hence X* and its zero set Z* are weakly mixing.



Proof. The support of p is
S={> Mer:e=(ex) € {-1,1}"}.
k

Hence it is clear that given t = >, A\per, € X, = A, for some n € N, the set (X \ {t})N
[t — n,t + 7] is infinite because it contains

{Z AK€k + Z M€l i€ € {1,111}
k=1

k>n

using R, = Zk>n Ak < Ap. It follows that ¢ is an accumulation point of ¥. To prove
that ¥ is completely disconnected, let t = Y, exAg,s = >, ep A\ € X with ¢ < s, and
ko = min{k : e # €}, }. Then let

ty = ka)\k_)\ko+ ZM’ 5-= Z/\kg’“Jr/\kO_ Z/\k'

k<ko k>ko k<ko k>ko

We have ¢ < t4 < s_ < s, where the strict inequality comes from Ry, < Ag,. Noticing
that there is no point of ¥ in (¢4,s_), t and s are not connected through 3.

To prove that there is no atom, symmetry considerations yield that p({t}) = pu({s})
for every t,s € X; since p is finite, it follows that u(t) = 0 for every ¢t € 3. Hence
according to Maruyama’s theorem [24], X is ergodic, and according to Zak & Rosiriski
[27], it is hence weakly mixing.

Since X is a.s. continuous, for I € Z(R) open, we have a.s.

#2x 01 = lim kZ L0 (o /m)X((+1)/1) <0}

=—00

hence any event A € 0(Zx) is o(X)-measurable. It readily follows that since X is weakly
mixing, so is Zx. O

There are also many cases where C* has stronger mixing properties. Most available
results concern coefficients of the form )\, = a* for some a € (0,1). The case a = 1/2, i.e.
A\ = 27% actually yields the sine process thanks to Vieta’s formula:

sin(t)  2sin(t/2)cos(t/2)  4sin(t/4)cos(t/4) cos(t/2)

t t t

_ 2"sin(27"¢) . \
:h}Ln — 1;[cos(2 t) = C(¢).

This example is central, as it is the only a for which R, = A,, and it is the smallest a
for which p*(dz) = 1{_1 1} (z)dz is continuous. Since C*(t) — 0 as t — oo, X* and its
zero set Z* are (strongly) mixing. For a < 1/2, the previous considerations yield that u*
is Cantor-like with no atoms, hence weakly mixing. If a is not of the form m~=* for some
m € N, C*(t) = O(]log(t)|~7) for some v > 0 as t — oo, whereas for a = m=* m > 3,
lim sup,_, ., C*(t) > 0, see [23].

There are many other examples of such products, with diverse behaviours. If for

instance A\, = k1,
CAMt) = Hcos L Hsinc !
. k - 2n+1

10



decreases faster than any polynomial. Let us give now an example of symmetric Bernoulli
convolution which has rigid zeros. As a further proof of asymptotic independence, we show
that this process is a.s. unbounded, at the contrary of almost periodic Gaussian fields
mentioned in the previous section.

Proposition 3.2. Assume \; = k!"!7. Then (—1)"C*(n!) — 1 as n — oo. In particu-
lar, the zero set Z of the Gaussian process X with reduced covariance C* is completely
predictable, hence maximally rigid. Furthermore, p) is purely singular without atoms,
hence X and Z are weakly mixing. Also, sup,cg [Xx(t)| = 00 a.s.

Remark 3.3. It is proved at Proposition that the variance of #Z N [0,T] dominates
T2=¢ as T — oo, for any € > 0.

Proof. Let t,, = n!l. We have

H cos(tnAp) = H cos(mnl/k!) = (—1)".
k=1

k=1

mn! 51 7m!2>1 2
CNw )7 ) 2\

hence the first result is proved with

1> (—1)"C(t) > ﬁ (1 - (DQ) >1-c/n.

k=n-+1

Fork>2n+1,

To prove the unboundedness of X*, consider the pseudo-metric on R
d(t,s) =+/1—C(t —s).

We will prove that (R, d) cannot be covered by finitely many d-balls of some radius & > 0,
which implies that the sample paths of X* are a.s. unbounded (see for instance [4, Th.
1.19)).

Let t € B4(0,¢), and for k € Z, let ny = ng(t) be the integer such that for some

e = Ek(t) S [—1/2,1/2)
k!_lt:nk—i—sk.

Then for some ¢ > 0

d(t, 0> >1— exp(Zln(| cos(exm))|) = CZE%
k

k

hence ¢, e7 < €, and in particular each ¢, is smaller than § := V¢~ 'e. Up to dimin-
ishing €, assume § < 1/4. Let us now cover Ry by the sets

A = {t = mk! + kleg(t) : ex(t) € [-1/2,1/2]}
for k € N;0 < m < k. In the rest of the proof, we show that
1Ba(0,€) N Ay | < (40)"

where [* = [k — §71], which implies that the sum of the |B4(0,¢) N A,, x| is finite and
hence that By(0,¢) has finite measure. By stationarity, all By(t,e) have same measure,
hence R cannot be covered by finitely many such balls.

11



We have for t € A,, 1,0 <1<k, with kO = k(k —1)...(k -1+ 1),

t

= = mk® + k(l)Ek(t) = np_y(t) 4+ ep_i(t),

hence ex(t) € Crwy,0 <1 < k, where
Cx ={te[-1/2,1/2] : d(Kt,Z) < §}, K > 0.
Let us then define Ey = [—4, 6] and for 0 <1 < k,
Ei1=ENCra+y.
Let n; be the number of maximal segments forming F;. We prove by induction that
ny < (20)(40)" kW for k —1 > 671, ie. 1 < 1* := [k — 6 ']. Indeed, through the

intersection with Cj.), E; is made up of segments of length at most a; := 20k~ and
each segment of length a; is intersected by at most

arkMD) 12 =925(k — 1) +2 < 46(k — 1)
segments of Ca+1). It follows that
nipr < mdd(k —1) < 26(40)' kW (k —1);

which proves the induction. Hence the Lebesgue measure of E; for [ < [* is smaller than
20(46) k126K~ (+1) < (40)*+1. We have for [ > I*, E; C Ej-. Tt follows that

|Ba(0,€) N Ay i| <|Ex| < |Er-| < (46)7 1

It follows that for § < 1/4

1Ba(0,v2)] < D° 3 (46)F07 1 < o0,

k m<k

By stationarity, |Bq(t,e)| = |Ba(0,¢)| < oo for t € R, hence R cannot be covered by a
finite number of such balls.
O

4 Variance lower bounds (Proof of Theorem [2.1))

If Geman’s condition is not satisfied (and ¢ > 0), the variance is infinite because the
support of ¢ has non-empty interior, and the result of the theorem holds true.

In the rest of this section we take X as a stationary Gaussian process whose reduced
covariance function C' satisfies Geman’s condition (2)). In particular, C’ and C"(0) exist,
hence Fatou’s lemma yields that the spectral measure u has a finite second moment, and

C"(t)=— /t%“"’%(dm),t eR. (5)
We work under the convention C”(0) = 1, i.e. 29 = 1, which amounts to a temporal
rescaling of the field.

Let us start by the case where C(1) = +1 for some 7 > 0. Recalling (1)), it implies
that e?*” = £1 p-a.s., hence u is supported by 27”2 and has (at least) an atom, and X

12



is a.s. 27-periodical. The behaviour of Nx(pr) as T — oo is determined by the zeros
21,...,2Q € Zx N[0, 27), for some random @ € N. We have

Q

T~ Nx(or) ZT ! Z(p Yz + 2k7)) = 2(27)_1 /gp(t)dt +0o(1)

i=1 keZ i=1

due to the hypotheses on ¢. If we upper bound ¢ by ||¢|| on its support, it easily follows

by Lebesgue’s Theorem that T2V (¢r) converges to Var(Q)(27) 2 (f<p)2. The only
case where Var(Q) = 0 is when C(t) = cos(t) up to rescaling and multiplication, which is
the degenerate case excluded from the theorem. Hence in all other cases we have indeed
a quadratic variance, and point (iii) is proved in this case.

Let us now assume that C(t) # +1 for ¢ # 0. Following Kratz & Léon, it is proved in
[4] that we have the decomposition

NX(T) = BONK(T)) + 3 Nxg(T)
with
NcalT) =Yy [ H(X(0)H, (X (1)t
k=0 0

where H,,,m € N is the m-th Hermite polynomial, and a,,,d,,, m € N are coefficients
that vanish for m odd. In particular,

1 1
ag = , g =
O Var T 2ver
1
do=1,dy = —3

and Nx 4(T) vanishes for odd ¢. (The decomposition also holds if we only assume that C
is four times differentiable in 0, see [20]).

By linearity, the decomposition still holds if ¢ is a piecewise constant compactly
supported function, and Nx () has the L?-orthogonal decomposition ZZ‘;O Nx (p), with

T
Neale) = 5= [/ <><HO<X<t>>H2<X'<t>>dt— / TH2<X<t>>Ho<X'<t>>dt>].

Then, with Hy = 1, Ho(z) = 22 — 1, since for two standard Gaussian variables «, 3
with correlation p, Cov(a?, %) = 2p?,

Vx(p) =Var(Nx2(#))

Tar

We can show that this bound can be extended to any ¢ € Cp by using Fatou’s lemma and
an approximating sequence of piecewise constant functions ¢,,n > 1.
Then, with z =t — s,w = —s,

Var(V(T) > [ 0GP + €792 - 20 [ [ ot =t dz

=L 02 + 022 - 20 (2 ()=

4 R2
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where x denotes the convolution product. Denote by
de) = [ etz R
R

the Fourier transform of a L? function . By ,

[ cCreez= [ ) [ eer panaa:

= /R ¢z +y)*u(dr)u(dy)
/22*2222 *22 i zwzlyz T 2
[ et~ [ o) [ e udnnda
_ /IR wy P + y)? p(de) u(dy)
[ etz = [ o) [ attener ot
= /R z*y? ¢z + y)* p(de) u(dy)

whence finally,

Velo) 2= [ (a2l + )Pudoutdy).

Then remark that ¢r(z) = T@(Tx). Since [¢ # 0, ¢(0) # 0, by continuity there is v > 0
such that |@(z)| > | [¢]/2 > 0 for |z| < . It simplifies the argument (without loss of
generality) to rescale ¢ so that a = 1. Then, for some ¢, > 0,

Var(Ne(er) 26,2 [ Lrieyjen 1+ an)Pudoutdy). (6)

If 1 has an atom zo ¢ {—1, 1}, the right hand side is larger than ¢, 72(1 — 23)%u({zo})?,
hence Theorem (iii), is proved.
Let now € > 0 and a set A being either

(=00, —1—¢|, [-1+¢e,1—¢]or [l +¢,00),

the choice being made so that, with . = pulgay: pe # 0 (recall that p was assumed to
not be concentrated on {£1}), and if x4 does not have a density on R\ {—1,1}, p. does
not have a density either. Also define

C.(t) = / e . (d).
R
For T > 2e~!, we have for some c. > 0, for z,y € A,
(L+29)* L7y <1} ZC L7 y)i<1) 2 AT (T +)
where A7 () := 1{j74<13(1 — |Tz|). The Fourier inversion formula yields for t € R

271

AT (.I) = m

sine(T~1t)%e? @ dt,

14



hence @ yields for some C:o >0

Var(Ni(pr) 2e,1° [ (e + pieldeua(dy)
=c,,T ///emzteziytsinc(T*1t)2u5(dz)us(dy)
:c:aT/Rsinc2(T*1t)Cs(2t)2dt
>d, sin(1)2T/R1{|ﬂ<T}cE(2t)2dt (7)

and we have used the finiteness of . and the integrability of sinc?. Since by construction
e has positive mass, C; is not identically zero and Theorem [2.1+(i) is proved.

In view of proving (ii), we assume that the variance is linear, hence we need to show
that C” + C € L*(R). By , C. is L?, hence p. has a L? density, and u also by
construction of u.. Let f be the density of pu. By @, (after changing y to —y and using
the symmetry of )

Var(Nx(¢r)) >c,T° / /(1 )y 1y (@) f(y)dady

z+1/T
lim inf T~ Var(Nx (¢1)) >c<p/ liminfT/ (1 —zy)?f(y)dy | f(z)dx
T R\{-1,1} T z—1/T

e, /1 2?2 f(2)2da
=c, /(C” +C)?

by Parseval’s identity, hence C"" + C € L2.
To conclude the proof of (ii), let us assume now that p has a L? density f on a bounded
neighbourhood I of {—1,1}, and show that is equivalent to C' + C” € L2. If u does

not have a density on all R, then C' ¢ L?, otherwise C would be a L2 density of p. Then,
if C 4+ C" € L2, Fourier’s inversion formula and yield

Clt) +C"(t) = \/% / (C T C") (@)™ da — /1 — 2t u(d) ¢ € R,

hence p has density c+Cv (z)(1 — 22)~!, which leads to a contradiction. Hence none of
the conditions hold if p does not have a density.
Let us assume finally that p’s density f can be extended to all R. Then

ct) = /e”tf(:c)dm, C"(t)=— /:CQf(x)ei‘”tdx, (C+C"\(t) = ﬁl —2%) f(x)e™da.

The integrands are square integrable on I, so we need to prove the equivalence on B :=
R\ I. We have

Cel*B)s fel*B),C"c*B) < / 2 f(z)?dr < 00, C"+C € L*(B) & / (1—2%)2 f*(x)dx < oo,
B B

hence the equivalence stems from the existence of ¢ > 0 such that for = ¢ I

c(l+2Y) < (1 -2 <1+2%
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Remark 4.1. One might think that going for higher order chaoses could help replace
(ii) by the sufficient condition C,C" € L?, but the gap present at 41 is necessarily still
present at higher order chaoses because the zeros of C(t) = cos(t) satisfy the same chaotic
decomposition (see [20, Prop. 2.2]), hence the variance of every chaos is bounded in T.
It remains open to find a necessary and sufficient condition for linear variance.

Proposition 4.2. If
Cx(t) = Hcos(t/kz!),
E

then for all € > 0,

T *Var(Nx(T)) — oo

as T — oo.
Proof. Let
Ry =Y K.
k>N
Recall that the spectral measure p is the law of Y = limy Yy where Yy = sz1 %,

for random i.i.d. Rademacher variables (¢;). In particular, |Y — Yy| < Ry a.s. Two
consecutive points of the support of Y have distance 2/n! > 2Ry (proved by induction)
and they all have mass 27V, Let Y/, Y}, N € N be i.i.d. copies of Y, Yy. Using (6], there
is ¢ > 0 such that for T' > 4,

Var(Ng(T)) > TP (\Y Y| < YT, |Y| < %) .
Let N = Nr be the integer such that Ry_1 > ﬁ > Ry. For T sufficiently large
P(Y - Y'| < 1/T,|Y| < %) SP(Yy = Y}, = 0) =272V,

Then we have by convexity

In(4T) > In(Ry',) > In((N — 1)!) = z_: In(k) > (N — 1) In((N —1)/2).
k=1

It follows that

(4T)*~*Var(Ng(T)) > cexple(N — 1) In((N — 1)/2))]272" — .
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