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Variance linearity for real Gaussian zeros

Raphaël Lachièze-Rey∗

July 21, 2020

Abstract We investigate the zero set of a stationary Gaussian process on the real
line, and in particular give lower bounds for the variance of the number of points and of
linear statistics on a large interval, in all generality. We prove that this point process is
never hyperuniform, i.e. the variance is at least linear, and give a necessary condition
to have linear variance, which is close to be sufficient. We study the class of symmetric
Bernoulli convolutions and give an example where the zero set is maximally rigid, weakly
mixing, and not hyperuniform.

Keywords: Gaussian fields, point processes, crossings, nodal set, excursion, hyper-
uniformity, rigidity, chaos decomposition, linear statistics
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1 Background and motivation

We study here the zero set of a Gaussian stationary process X:

ZX := {t ∈ R : X(t) = 0}.

The study of Gaussian zeros has emerged in the fifties, with pioneering works of Kac
and Rice [17], and subsequent applications in the fields of telecommunications and signal
processing, ocean waves, and random mechanics. Rigorous results can be found in the
book of Cramer and Leadbetter [7], along with the first second order results. In the
following decades, most significant second order analyses have been made by Cuzick [8],
Slud [26], Kratz & Léon [19], see the survey [18] and references therein. The weakest
available condition for non-degenerate asymptotic variance is the square integrability of
the covariance function, in [26]. We give here a variance lower bound, under virtually no
hypotheses, that implies that the variance is always at least linear, and give a necessary
condition very close to known sufficient conditions for it to be actually linear. Linear
statistics on Gaussian nodal sets have also been the topic of many recent results, see
for instance [28] on the sphere, or [16, 23] for zeros of Gaussian entire functions; these
statistics can be used in particular to prove the rigidity of a point process, see [15]. We
also explore the class of symmetric Bernoulli convolutions and focus on an example whose
spectral measure has a Cantor nature.

Feldheim [11] has studied zeros of Gaussian analytic functions (GAFs) whose law is
invariant only under horizontal shifts, reduced to a horizontal strip of the form R× [a, b],
with −∞ < a < b < ∞. In a related work, Buckley and Feldheim [4] study the winding
number of a GAF X : R 7→ C. A strong motivation of their work is the analogy between
the winding number and the number of zeros. Some convenient identities coming from
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complex analysis can provide explicit expressions for these indexes and their moments,
whereas the number of zeros of a real Gaussian process is mostly studied in the literature
through its Wiener-Ito expansion, which is sometimes not amenable to analysis; one can
also use directly Kac-Rice formula [3] but this does not ease the task of estimating the
variance. In particular, we cannot obtain an expression as explicit as (6) in [4] or Section
3.2 in [11] for the number of zeros. It will be interesting to observe in Section 2.1 that
the results about GAFs are similar to the results we obtain here: the variance of the
number of zeros (or the winding number) is always at least linear, it is not linear if some
square integrability conditions related to the covariance functions are not satisfied, and
it is quadratic if the spectral measure has atoms. Very recently, Azäıs and Dalmao [2]
have studied the winding number of planar Gaussian fields on the real line, realising
the Wiener-Ito counterpart to the work [4], obtaining similar results without analyticity
assumptions.

Another motivation is to explore the behaviour of Gaussian zeros in the light of the
concepts of hyperuniformity and rigidity. Let us introduce more formally point processes
before going further. Let N (R) be the space of locally finite subsets of R, endowed with
the σ-algebra B(N (R)) generated by the mappings

ϕA : Z ∈ N (R) 7→ #Z ∩ A

for A a Borel subset of R, where # denotes the cardinality of a set. A point process Z is a
measurable mapping from an underlying probability space (Ω;A ,P) to (N (R),B(N (R)));

Z is furthermore stationary if Z + x
(d)
= Z for x ∈ R, and we denote by VZ(T ) =

Var(#Z ∩ [−T, T ]). In physics of condensed matters and statistical physics, a great
attention has been given recently to the phenomenon of fluctuation suppression of par-
ticle systems, which can be incarnated by the property of hyperuniformity: a stationary
point process Z on R is hyperuniform, or superhomegeneous, if

lim inf
T→∞

VZ(T )

T
= 0.

A striking property of many systems with suppressed fluctuations is their rigidity, i.e.
the complete determination of a feature of the point process in a bounded domain given
its configuration outside the domain: for a measurable mapping ϕ : N (R) → R, we say
a point process Z is ϕ-rigid if for all T > 0,

ϕ(Z ∩ [−T, T ]) ∈ σ(Z ∩ [−T, T ]c).

In particular, we say it is number-rigid if it is ϕ-rigid for ϕ = #, and maximally rigid if
it is ϕ-rigid for every bounded measurable ϕ, i.e. if Z∩ [−T, T ] is completely determined
by Z ∩ [−T, T ]c for T > 0.

This phenomenon has been much documented, with many rigourous results proven in
dimension 1 and 2, and recently in dimension 3 by Chatterjee on hierarchichal Coulomb
gases [5]. The link between rigidity and hyperuniformity is the topic of many works in the
recent years. Most notable examples of stationary hyperuniform models are determinantal
processes whose kernels are projection operators [14], zeros of planar Gaussian analytic
functions [15], some Coulomb systems [14], the β-sine processes for β > 0 [9], perturbed
lattices [24], and also many non-stationary models, with a more general definition of
hyperuniformity. In all these models, the point process is hyperuniform and ϕ-rigid, at
least for ϕ(Z) = #Z. It is widely believed that hyperuniformity is required to have rigidity
[14], and the usual method of proof of rigidity, introduced in [15], involves linear statistics
and implictly assumes hyperuniformity (see [9] for an alternative method involving DLR
equations). The phenomenon of rigidity, although mathematically intriguing, has also
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practical uses in some percolation models related to the underlying point process, see
[13].

We exploit the variance results derived in this paper to exhibit a non artificial example
of a point process in dimension 1 that experiences the strongest possible form of rigidity,
without being hyperuniform. Such examples are actually not so hard to build on Rd, take
for instance the grid

Zd = L(Zd + U)

where L is some non-trivial non-negative L2 real random variable and U is independent
and uniformly distributed on [0, 1)d. It is also clear that there is absolutely no form of
asymptotic independence in Zd, in the sense that given two events A,B, the events Zd ∈ A
and Z+ t ∈ B have no reason to be uncorrelated for large T . For this reason, we might
ask for additional desirable properties of such counter-examples.

Definition 1. We say that a stationary point process Z of R is weakly mixing if for all
events A,B ∈ B(N (R)),

lim
T→∞

T−1

∫ T

0

|P(Z ∈ A, (Z+ t) ∈ B)−P(Z ∈ A)P(Z ∈ B)|dt = 0.

The randomly scaled grid Z1 does not satisfy this property because it is not even
ergodic. We give here a stationary Gaussian process X whose spectral measure belongs
to the class of symmetric Bernoulli convolutions and whose zero set ZX is weakly mixing,
maximally rigid, and not hyperuniform. See Theorem 2, Propositions 9 and 11.

Regarding rigidity and hyperuniformity, stationary point processes obtained as the
zeros of a random Gaussian functions have mainly been studied for Gaussian analytic
functions in the complex plane, see [16]. The joint requirements of complex Gaussianity,
analycity, and stationarity have reduced the class of zeros to essentially one model, up to
rescaling, which happens to be rigid and hyperuniform [16]. The links between Gaussian
zeros and rigidity is yet essentially to discover.

We present in Section 2 some results and definitions about Gaussian processes and
their zeros, variance lower bounds, and we give a condition for maximal rigidity. We also
properly explore the analogies with variance results for GAFs. In Section 3 we introduce
the class of symmetric Bernoulli convolutions, give some properties and examples, in
particular an example yielding maximally rigid non hyperuniform zeros. In Section 4 we
prove the lower bounds on the variance by using chaotic decompositions of the number
of zeros.

2 Gaussian zeroes

We introduce here basic notions about Gaussian processes. See the monograph of Azäıs &
Wschebor [3] for background material and advanced results about Gaussian processes and
their level sets. A real Gaussian process is a random function X : R → R for which any
finite dimensional distribution (X(t1), . . . ,X(tn)), t1, . . . , tn ∈ R, is a Gaussian vector with
covariance matrix (C(ti, tj))16i,j6n, where C is the covariance function of the process X.

The law of X is entirely determined by C, and the stationarity of X, defined by X(·+t) (d)
= X

for t ∈ R, is characterised by the existence of a function CX, called reduced covariance
function, such that C(t, s) = CX(t − s), t, s ∈ R. Such a function is known to admit a
spectral representation of the form

CX(t) =

∫

R

eixtµX(dx) = 2

∫ ∞

0

cos(xt)µX(dx), t ∈ R,
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where µX is the (symmetric) spectral measure of X on R. We say that X is degenerate
if CX(x) = A cos(ϕx) for some A > 0, ϕ ∈ R, or equivalently if µX is formed by two
symmetric atoms with same mass.

2.1 Zero set

We are primarily interested in the variance VZX
(T ) of #(ZX ∩ [−T, T ]), denoted by VX(T )

for short, where X is a Gaussian stationary process. The Kac-Rice formula, established
in the fourties [17], is the starting point of most rigourous subsequent works. Cramer and
Leadbetter [7] proved that it is necessary for VX(T ) to be finite for every T > 0 that CX

is twice differentiable in 0 and for some δ > 0,

∫ δ

0

1

t2
(C′

X(t)− C′′
X(0)t)dt <∞. (1)

Geman [12] then proved that the condition is actually necessary on any non-negligible
interval, and this condition is thus referred to as Geman’s condition. When this condition
is satisfied, we use without loss of generality the convention C′′

X
(0) = −1, equivalent to

replacing X(t) by X(αt) with α = (−C′′
X
(0))−1/2.

By using approximation by m-dependent fields, Cuzick [8] proves that the variance
is not super-linear, that is limT→∞ T−1VX(T ) exists and is finite, if Geman’s condition
holds, as well as

∫
CX(t)

2dx <∞,

∫
C′′

X(t)
2dx <∞. (2)

He actually proves a central limit theorem under the additional assumption that

lim
T→∞

T−1VX(T ) > 0.

Computing the decomposition of the number of zeros with respect to Wiener-Ito integrals
based on the field X, Slud [26] proves that (2) is sufficient for the asymptotic variance
to be finite and positive, and for the central limit theorem to hold. Kratz & Léon [19]
compute the chaos decomposition with respect to the joint process formed by the field X

and its derivative X
′ and ease some computations related to the decomposition, allowing

them to generalise the results to other crossing problems; this is the approach we will use
at Section 4.

We present here our results regarding the variance lower bound for the number of
zeros. The method extends to linear statistics

NX(ϕ) :=
∑

z∈X

ϕ(z)

for ϕ in the space Cb of compactly supported piecewise continuous functions ϕ such that∫
R
ϕ(x)dx 6= 0. We are interested in the asymptotics of NX(ϕT ) for ϕT (·) = ϕ(T−1·) as

T → ∞. We abuse the notation VX(ϕ) = Var(NX(ϕ)), with VX(T ) = VX(ϕT ) if ϕ is the
indicator function of [−1, 1]. Say that µX is regular in x ∈ R if it admits a L2 density on
some neighbourhood of x.

Theorem 2. Let X be a non-degenerate stationary Gaussian field on R, ϕ ∈ Cb . Assume
either that ϕ is non-negative, or that Geman’s condition is satisfied. Then

(i) The variance is at least linear, i.e.

lim inf
T>0

T−1VX(ϕT ) ∈ (0,∞].
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(ii) the condition C′′ + C ∈ L2(R) is necessary for linear fluctuations, i.e. for

lim inf
T→∞

T−1VX(ϕT ) <∞.

If µX is regular in ±1, the condition C′′ +C ∈ L2(R) is equivalent to (2), which is
sufficient for linear fluctuations of VX(T ) ([8]).

(iii) If µX has an atom in R \ {−1, 1}, infT>0 T
−2VX(ϕT ) > 0.

The proof is at Section 4. We also give an example of a singular nonatomic spectral
measure µX for which T 2−ε = o(VX(T )) for ε > 0. Regarding the quadratic variance, as
soon as the variance is finite on some interval with non-empty interior (Geman’s condition
(1)), then the variance cannot be more than quadratic, see [3].

Related works. Even in the case VX(ϕT ) = VX(T ), it is not clear which of these
results already appeared in full generality, and in particular when µ does not have a
density. We could not locate a necessary condition other than (2) for linear variance
in the literature, see also Remark 1.2 in [11]. It remains open to find a necessary and
sufficient condition. In many practical studies of Gaussian zeros, the covariance is assumed
to be square integrable ([1, 3, 8, 19, 26]), it is in particular square integrable in the
neighbourhood of ±1, hence the linearity is equivalent to C,C′′ ∈ L2, and to C+C′′ ∈ L2.

For positive asymptotic variance to hold ((i) with ϕ = 1[−1,1]), we can notice that
Cuzick [8] needs

∫
(C′(t))2

1− C(t)2
dt <

π

2

√∫
x2µ(dx)

for limT→∞ T−1VX(T ) to be strictly positive, a requirement still present in [18]. Other
works aimed at proving central limit theorems with linear variance give various types of
conditions: C ∈ L2 in [26], C ∈ L1, C

′′ ∈ L2 in [19].
Linear statistics are classic functionals of interest for point processes, see for instance

[23] which focuses on complex Gaussian zeros, and references therein, as well as the
variance computed in [15] aimed at proving rigidity results. For linear statistics of real
Gaussian zeros, we were notified while revising the current work that Ancona and Le-
tendre [1] obtained asymptotic results under some integrability hypotheses on the reduced
covariance function. The condition

∫
R
ϕ(x)dx 6= 0 does not appear in their results, but

it is necessary in the current general framework, and in particular in the periodic case
(point (iii)).

The assumption that X is not degenerate cannot be removed, for if CX(t) = cos(t),
the variance is bounded (see the proof of Theorem 2). The presence of a singularity at

±1 muddies the waters anyway, for instance if CX(t) =
cos(t)+εe−t2/2

1+ε for some ε > 0, the
variance is at least linear.

Comparison with zeros of GAFs. It is interesting to compare the results above

to those obtained by Feldheim [11], who studied the zero set Z
[a,b]
X

of a Gaussian analytic
function (GAF) X on the infinite strip

Sa,b = {x+ ıy : x ∈ R, a 6 y 6 b},
for some −∞ < a < b < ∞, and those of Buckley and Feldheim [4] who study the
winding number WT of a GAF X : [0, T ] 7→ C. A GAF X is also characterised by its
reduced covariance CX and its spectral measure ρX along the real line:

CX(t− s) = E(X(t)X(s)) =

∫

R

e−2πi(t−s)xρX(dx), t, s ∈ R.
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Let us reproduce some of their results regarding the variances

V
[a,b]
X

(T ) = Var(#Z
[a,b]
X

∩ ([−T, T ]× [a, b])), V ′
X(T ) = Var(WT ).

The field X is called degenerate if ρX consists of a single atom.

Theorem 3 ([11, 4]). Let X be a non-degenerate GAF.

(i) If the differentiability condition (3) in [4] holds, for T > 0

T−1V ′
X
(T ) > C for some C > 0.

The left hand member has a limit in (0,∞) as T → ∞ if CX, C
′
X
∈ L2.

(ii) The limit

lim
T→∞

T−1V
[a,b]
X

(T )

exists and is strictly positive. It is finite if

∫
|CX(t+ iy)|2dt <∞,

∫
|C′′

X(t+ iy)|2dt <∞, y ∈ {a, b}

where CX is analytically continued to Sa,b,

(iii) the limits

lim
T→∞

T−2V
[a,b]
X

(T ), lim
T→∞

T−2V ′
X
(T )

exist and are finite, and are strictly positive iff ρX has an atom.

Hence the results are similar to ours regarding the quadratic variance and the linear
variance. Feldheim [11] also gives a lower bound which yields a sufficient condition for
asymptotic super linear variance, but leaves linearity undecided for some measures with
a singularity, such as for ρX(dx) = 1{|x|61}|x|−1/2dt, x ∈ R. This is analoguous to our
“dark spot” regarding linear variance, at the difference that we allow singularities as long
as they are not located at ±1 (under the convention C(0) = −C′′(0) = 1.)

Remark 4. A degenerate GAF is, up to rescaling and multiplication, X(t) = γe2iπt,
where γ = α+ ıβ is a Gaussian standard complex variable (i.e. α, β are i.i.d real Gaussian
variables), whereas a degenerate real Gaussian process in the sense of this paper is of the
form X0(t) = α cos(t) + β sin(t), up to rescaling and multiplication, and its reduced
covariance function is C0(t) = cos(t).

It is on the other hand difficult to infer results for zeros of Gaussian processes on
R from results about zeros of GAF because a GAF will typically take non-real values
on the real line, and hence have no real zeros (this is why the winding number might
be seen as a generalisation of the number of zeros). For instance, the unique (up to
rescaling/multiplication) GAF X such that for t ∈ R, E(X(0)X(t)) = 2 cos(t) is X =
X0 + iX′

0 where X
′
0 is an independent copy of X0.

2.2 Completely predictable real zeros

We will actually consider a property stronger than maximal rigidity.
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Definition 5. Say that a point process Z is completely predictable if

σ(Z) = ∩t∈Rσ(Z ∩ (−∞, t)).

This property yields that the knowledge of Z on any half line determines the whole
process. We have the obvious fact that if Z is completely predictable, it is maximally
rigid.

The problem of wether the data of a stationary Gaussian process on a half line
{X(t); t 6 0} determines the whole process has been widely investigated, see Szegö’s
alternative ([10, Section 4.2]). Such a behaviour does not imply that the knowledge
of the zeros on a half line determines all the zeros. One might also try to reconstruct
the whole process from the zeros, but Weierstrass factorisation theorem yields uncount-
ably many functions with a given infinite set of zeros (without accumulation point). It
would still be interesting to try to characterise processes whose zero set is completely
predictable, or exhibit a weaker form of rigidity. We give here a simple condition on CX

for the predictability of ZX.

Proposition 6. Assume X is almost surely of class C1, and there is a sequence tn → ∞
such that |CX(tn)| → 1. Then ZX is predicable.

Proof. Let us denote the shifted process by Xn = X(tn + ·). We have for t ∈ R,
±Cov(X(t),Xn(t)) → 1, hence ±Xn(t) → X(t) since these are Gaussian variables.

Let now I be a bounded interval of R. Denote by İ the interior of I and by Ī its
closure. Since ZX,ZXn are stationary point processes, with probability 1, they don’t have
zeros on ∂I = Ī \ İ. Hence a.s., for simultaneously all n,

(ZXn ∩ Ī 6= ∅) = (ZXn ∩ İ 6= ∅); (ZX ∩ Ī 6= ∅) = (ZX ∩ İ 6= ∅).

Since (X(0),X′(0)) is not degenerate, the zeros of X are almost all regular, i.e. X and
X
′ don’t vanish simultaneously (see [18, Th. 1.1]). Hence for each zero z of X we have

X(t)X(s) < 0 for some s, t arbitrarily close from z.
Then we have almost surely

ZX ∩ İ 6= ∅ ⇒X(t)X(s) < 0 for some t, s ∈ İ ∩Q

⇒∃t, s ∈ İ ∩Q : Xn(s)Xn(t) < 0 for n sufficiently large

because we have a.s. the simultaneous convergences Xn(t) → X(t), t ∈ Q, hence we can
conlude that if X vanishes in İ, so does Xn for n sufficiently large.

Let us prove the converse statement. We have by Fatou’s lemma, and using the
stationarity again,

E(lim inf
n

‖X′
n‖I) 6 lim inf

n
E(‖X′

n‖I) = E(‖X′‖I)

and the last quantity is finite since X
′ is a.s. bounded on I (see [3]). Hence

P(lim inf
n

|X′
n| = ∞) = 0

and there is a.s. L <∞ and N ⊂ N infinite such that ‖X′
n‖I 6 L for n ∈ N.

So let us assume that Xn(tn) = 0 with tn ∈ İ for n sufficiently large. Then it also
vanishes for n ∈ N sufficiently large, hence there is a subsequence n′ ∈ N such that
Xn′(tn′) = 0. Let us take another subsequence n′′ such that tn′′ → t ∈ Ī. We have

|X(t)| 6 |X(t)− Xn′′ (t)|+ |Xn′′(t)− Xn′′ (tn′′)| 6 |X(t)− Xn′′ (t)|+ L|t− tn′′ |,
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hence the latter a.s. converges to 0, and X vanishes in t ∈ Ī. since X does not vanish on
∂I a.s., we have proved the a.s. equivalence,

ZX ∩ I 6= ∅ ⇔ ZXn ∩ I 6= ∅ for n sufficiently large.

In particular, ZX ∩ I 6= ∅ is completely determined by

⋂

n

σ(ZXn ∩ I) =
⋂

n

σ((ZX + tn) ∩ I) =
⋂

n

σ(ZX ∩ (I − tn)) ⊂
⋂

t

σ((ZX ∩ [t,∞))),

which concludes the proof.

Let us give simple examples of Gaussian processes that satisfy this assumption, see
[6] for the details. Say that a continuous function f : R → R is (Bohr)-almost periodic
if for each ε > 0 there exists T0(ε) > 0 such that every interval of length T0(ε) contains
a number τ with the following property: |f(t + τ) − f(t)| < ε for each t ∈ R. Bochner
came up with the following characterisation: f is almost periodic iff for every sequence
tn → ∞, there is a subsequence tn′ such that

‖f − f(tn′ + ·)‖ → 0.

Such functions are equivalently characterised as uniform limits of trigonometric polyno-
mials on the real line.

Proposition 7. Let a = (ai) be a summable sequence of non-negative numbers, ϕ = (ϕi)
a sequence of real numbers, and

C(x) =
∑

i

ai cos(ϕix). (3)

Then C is almost periodic, and it is the reduced covariance C = CX of a Gaussian
stationary process X which is a.s. bounded, almost periodic, and whose zero set ZX is
completely predictable.

Proof. C is obviously the uniform limit of trigonometric polynomials. Then X can be
represented by

X(x) =
∑

i

ai(αi cos(ϕix) + βi sin(ϕix))

where the αi, βi form a sequence of independent standard Gaussian variables, hence X is
a.s. periodic for the same reasons as C. Finally, ZX is completely predictable because
C(x) gets arbitrarily close to 1 as x→ ∞, hence the previous proposition applies.

Even if such processes could be useful for modelling pseudo-crystalline arrangments,
these periodicity properties prevent them from having the slightest form of asymptotic
independence, ergodicity, let alone mixing properties. We shall give in the next section
examples of fields whose zero set is weakly mixing and completely predictible.

The excursion volume of almost periodic fields have interesting properties. It is proved
in the forthcoming paper [20] that VX(T ) = Var(|[−T, T ]∩{X > 0}|) strongly depends on
the diophantine properties of the ϕi, where | · | denotes Lebesgue measure. If for instance
CX(x) = cos(x) + cos(ϕx), VX(T ) can either be bounded, or grow as an arbitrarily high
power of T , depending on weather ϕ has “good” or “bad” approximations by rational
numbers.
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3 Symmetric Bernoulli convolutions

Let λ = (λk) be a square summable family of R+, and

Cλ(t) =

∞∏

k=1

cos(λkt), t ∈ R.

This function converges for every t ([21, (3.7.9)]), and it is the reduced covariance of some
stationary Gaussian field denoted by X

λ. The order of multiplication does not matter
in the value Cλ(t), hence we can assume throughout that λk > λk+1. By studying the
uniform convergence on every compact, it is clear that X

λ is analytic, with an analytic
continuation to C.

The spectral measure µλ of Xλ is called a symmetric Bernoulli convolution because it
is the law of the random variable

Y λ :=
∞∑

k=1

λkεk

where the εk are iid Rademacher variables. Infinite products of characteristic functions
have been studied by Lukacs [21, Chapter 3.7], where basic results stated here are proved.
The main focus of study in the literature is the nature of µλ. It is known that µλ is
pure, i.e. either continuous, purely discrete, or purely singular [21, Th. 3.7.7]. Bernoulli
convolutions with geometric progression are a very active research subject, see for instance
[27], they are one of the most studied examples of self-similar measures, and they are
objects of great interest in fractal geometry.

Regarding ergodicity, let {X(t); t ∈ R} be a Gaussian stationary process with almost
surely continuous paths, and B = σ(X) the σ-algebra generated by the random variables
X(t), t ∈ R. For B ∈ B, t ∈ R, let B + t be the event B translated by t. The process X is
called weakly mixing if

lim
T→∞

T−1

∫ T

0

|P(A ∩ (B + t))−P(A)P(B)| dt = 0.

Proposition 8. Assume λn > Rn > 0 for every n. Then µλ has no atoms, its support
has Cantor type (compact, completely disconnected and without isolated points), and

lim
T→∞

1

T

∫ T

0

Cλ(t)dt = 0,

hence X
λ and its zero set Zλ are weakly mixing.

Proof. The support of µ is

Σ = {
∑

k

λkεk : ε = (εk) ∈ {−1, 1}N}.

Hence it is clear that given t =
∑

k λkεk ∈ Σ, η = λn for some n ∈ N,

(Σ \ {t}) ∩ [t− η, t+ η] ⊃ {
n∑

k=1

λkεk +
∑

k>n

λkε
′
k−n : ε′ ∈ {−1, 1}N}

is infinite. It follows that t is an accumulation point of Σ. To prove that Σ is completely
disconnected, let t =

∑
k εkλk, s =

∑
k ε

′
kλk ∈ Σ with t < s, and k0 = min{k : εk 6= ε′k}.

Then let

t+ =
∑

k<k0

εkλk +
∑

k>k0

λk, s− =
∑

k<k0

λkεk −
∑

k>k0

λk.

9



We have t 6 t+ < s− 6 s, where the strict inequality comes from Rk0 < λk0 . Noticing
that there is no point of Σ in (t+, s−), t and s are not connected through Σ.

To prove that there is no atom, symmetry considerations yield that µ({t}) = µ({s})
for every t, s ∈ Σ; since µ is finite, it follows that µ(t) = 0 for every t ∈ Σ. Hence
according to Maruyama’s theorem [22], X is ergodic, and according to Zak & Rosiński
[25], it is hence weakly mixing.

Since X is a.s. continuous, for I ∈ B(R) open, we have a.s.

#ZX ∩ I = lim
n>1

∞∑

k=−∞

1{X(k/n)X((k+1)/n)60},

hence any event A ∈ σ(ZX) is σ(X)-measurable. It readily follows that since X is weakly
mixing, so is ZX.

There are also many cases where Cλ has stronger mixing properties. Most available
results concern coefficients of the form λk = ak for some a ∈ (0, 1). The case a = 1/2, i.e.
λk = 2−k, actually yields the sine process thanks to Vieta’s formula:

sin(t)

t
=
2 sin(t/2) cos(t/2)

t
=

4 sin(t/4) cos(t/4) cos(t/2)

t
= . . .

= lim
n

2n sin(2−nt)

t

∏

k

cos(2−kt) = Cλ(t).

This example is central, as it is the only a for which Rn = λn, and it is the smallest a
for which µλ(dx) = 1{[−1,1]}(x)dx is continuous. Since Cλ(t) → 0 as t → ∞, Xλ and its

zero set Zλ are (strongly) mixing. For a < 1/2, the previous considerations yield that µλ

is Cantor-like with no atoms, hence weakly mixing. If a is not of the form m−k for some
m ∈ N, Cλ(t) = O(| log(t)|−γ) for some γ > 0 as t → ∞, whereas for a = m−k,m > 3,
lim supt→∞ Cλ(t) > 0, see [21].

There are many other examples of such products, with diverse behaviours. If for
instance λk = k−1,

Cλ(t) =
∏

k

cos

(
t

k

)
=
∏

n

sinc

(
t

2n+ 1

)

decreases faster than any polynomial. Let us give now an example of symmetric Bernoulli
convolution which has rigid zeros. As a further proof of asymptotic independence, we show
that this process is a.s. unbounded, at the contrary of almost periodic Gaussian fields
mentioned in the previous section.

Proposition 9. Assume λk = k!−1π. Then (−1)nCλ(n!) → 1 as n→ ∞. In particular,
the zero set Z of the Gaussian process X with reduced covariance Cλ is completely pre-
dictable, hence maximally rigid. Furthermore, µλ is purely singular without atoms, hence
X and Z are weakly mixing. Also, supt∈R |Xλ(t)| = ∞ a.s.

Proof. Let tn = n!. We have

n∏

k=1

cos(tnλk) =

n∏

k=1

cos(πn!/k!) = (−1)n.

For k > n+ 1,

cos

(
πn!

k!

)
> 1−

(
πn!

k!

)2

> 1−
(
π2

k2

)

10



hence the first result is proved with

1 > (−1)nC(tn) >

∞∏

k=n+1

(
1−

(π
k

)2)
> 1− c/n.

To prove the unboundedness of Xλ, consider the pseudo-metric on R

d(t, s) =
√

1− C(t− s).

We will prove that (R, d) cannot be covered by finitely many d-balls of some radius
ε > 0. Let t ∈ Bd(0, ε), and for k ∈ Z, let nk = nk(t) be the integer such that for some
εk = εk(t) ∈ [−1/2, 1/2)

k!−1t = nk + εk.

Then for some c > 0

d(t, 0)2 > 1− exp(
∑

k

ln(| cos(εkπ))|) > c
∑

k

ε2k

hence c
∑

k ε
2
k < ε2, and in particular each εk is smaller than δ :=

√
c−1ε. Up to dimin-

ishing ε, assume δ < 1/4. Let us now cover R+ by the sets

Am,k = {t = mk! + k!εk : εk ∈ [−1/2, 1/2]}
for k ∈ N, 0 < m 6 k. We have for t ∈ Am,k, 0 6 l 6 k, with k(l) = k(k− 1) . . . (k− l+1),

t

(k − l)!
= mk(l) + k(l)εk = nk−l(t) + εk−l(t),

hence εk ∈ Ck(l) , where

CK = {t ∈ [−1/2, 1/2] : d(Kt,Z) 6 δ},K > 0.

Let us then define E0 = [−δ, δ] and for 0 6 l < k,

El+1 = El ∩ Ck(l+1) .

Let nl be the number of maximal segments forming El. We prove by induction that
nl 6 (2δ)(4δ)l−1k(l) for k − l > δ−1, i.e. l 6 l∗ := [k − δ−1]. Indeed, through the
intersection with Ck(l) , El is made up of segments of length at most al := 2δk−(l), and
each segment of length al is intersected by at most

alk
(l+1) + 2 = 2δ(k − l) + 2 6 4δ(k − l)

segments of Ck(l+1) . It follows that

nl+1 6 nl4δ(k − l) 6 2δ(4δ)lk(l)(k − l);

which proves the induction. Hence the Lebesgue measure of El for l 6 l∗ is smaller than
2δ(4δ)lk(l)2δk−(l+1) 6 (4δ)l+1. We have for l > l∗, El ⊂ El∗ . It follows that

|Bd(0, ε) ∩ Am,k| 6|Ek| 6 |El∗ | 6 (4δ)l
∗+1.

It follows that for δ < 1/4

|Bd(0,
√
ε)| 6

∑

k

∑

m

(4δ)k−δ−1−1 <∞.

By stationarity, |Bd(t, ε)| = |Bd(0, ε)| < ∞ for t ∈ R, hence R cannot be covered by a
finite number of such balls, hence the sample paths of Xλ are a.s. unbounded (see for
instance [3, Th. 1.19]).
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4 Variance lower bounds

In this section we take X as a stationary Gaussian process whose reduced covariance
function C satisfies Geman’s condition (1). In particular, C′ and C′′(0) exist, hence
Fatou’s lemma yields that the spectral measure µ has a finite second moment, and

C′′(t) = −
∫
t2eitxµ(dx), t ∈ R. (4)

Recall that C is normalised so that C′′(0) = −1. If Geman’s condition is not satisfied
(and ϕ > 0), the variance is infinite because the support of ϕ has non-empty interior, and
the result of the theorem holds true.

Let us start by the case where C(τ) = ±1 for some τ > 0. It implies that µ is
supported by 2π

τ Z and has (at least) an atom, and that X is a.s. 2τ -periodical. The
behaviour of NX(ϕT ) as T → ∞ is determined by the zeros z1, . . . , zQ ∈ ZX ∩ [0, 2τ), for
some random Q ∈ N. We have

T−1NX(ϕT ) =

Q∑

i=1

T−1
∑

k∈Z

ϕ(T−1(zi + 2kτ)) =

Q∑

i=1

(2τ)−1

∫
ϕ(t)dt + o(1)

due to the hypotheses on ϕ. If we upper bound ϕ by ‖ϕ‖ on its support, it easily follows

by Lebesgue’s Theorem that T−2VX(ϕT ) converges to Var(Q)(2τ)−2
(∫
ϕ
)2
. The only

case where Var(Q) = 0 is when C(t) = cos(t) up to rescaling and multiplication, which is
the degenerate case excluded from the theorem. Hence in all other cases we have indeed
a quadratic variance, and point (iii) is proved in this case.

Let us now assume that C(t) 6= ±1 for t 6= 0. Following Kratz & Léon, it is proved in
[3] that we have the decomposition

NX(T ) = E(NX(T )) +

∞∑

q=1

NX,q(T )

with

NX,q(T ) =

q∑

k=0

akdq−k

∫ T

0

Hk(X(t))Hq−k(X
′(t))dt

where Hm,m ∈ N is the m-th Hermite polynomial, and am, dm,m ∈ N are coefficients
that vanish for m odd. In particular,

a0 =
1√
2π
, a2 =

1

2
√
2π

d0 = 1, d2 = −1

2

and NX,q(T ) vanishes for odd q. (The decomposition also holds if we only assume that C
is four times differentiable in 0, see [18]).

By linearity, the decomposition still holds if ϕ is a piecewise constant compactly
supported function, and NX(ϕ) has the L

2-orthogonal decomposition
∑∞

q=0NX,q(ϕ), with

NX,2(ϕ) =
−1

2
√
2π

[∫

R

ϕ(t)

(
H0(X(t))H2(X

′(t))dt −
∫ T

−T

H2(X(t))H0(X
′(t))dt

)]
.
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Then, with H0 = 1, H2(x) = x2 − 1, since for two standard Gaussian variables α, β
with correlation ρ, Cov(α2, β2) = 2ρ2,

VX(ϕ) >Var(NX,2(ϕ))

=
1

4π

∫

R2

ϕ(t)ϕ(s)
[
Cov(X(t)2,X(s)2) +Cov(X′(t)2,X′(s)2)− 2Cov(X(t)2,X′(s)2)

]
dtds.

We can show that this bound can be extended to any ϕ ∈ Cb by using Fatou’s lemma and
an approximating sequence of piecewise constant functions ϕn, n > 1.

Then, with z = t− s, w = −s,

Var(NX(T )) >
1

4π

∫

R2

[C(z)2 + C′′(z)2 − 2C′(z)2]

[∫

R

ϕ(z − ω)ϕ(ω)dw

]
dz

=
1

4π

∫

R2

[C(z)2 + C′′(z)2 − 2C′(z)2]ϕ⋆2(z)dz

where ⋆ denotes the convolution product. Denote by

ψ̂(x) =

∫

R

eixtψ(t)dt, x ∈ R,

the Fourier transform of a L2 function ψ. By (4),

∫

R

C(z)2ϕ⋆2(z)dz =

∫

R

ϕ⋆2(z)

∫

R2

eixzeiyzµ(dx)µ(dy)dz

=

∫

R

ϕ̂(x+ y)2µ(dx)µ(dy)

∫

R

C′(z)2ϕ⋆2(z)dz =

∫

R

ϕ⋆2(z)

∫

R2

(ix)(iy)eixzeiyzµ(dx)µ(dy)dz

=−
∫

R

xy ϕ̂(x + y)2µ(dx)µ(dy)

∫

R

C′′(z)2ϕ⋆2(z)dz =

∫

R

ϕ⋆2(z)

∫

R2

x2y2eixzeiyzµ(dx)µ(dy)dz

=

∫

R

x2y2 ϕ̂(x+ y)2µ(dx)µ(dy)

whence finally,

VX(ϕ) >
1

4π

∫

R2

(1 + xy)2ϕ̂(x+ y)2µ(dx)µ(dy).

Then remark that ϕ̂T (x) = T ϕ̂(Tx). Since
∫
ϕ 6= 0, ϕ̂(0) 6= 0, by continuity there is α > 0

such that |ϕ̂(x)| > |
∫
ϕ|/2 > 0 for |x| 6 α. It simplifies the argument (without loss of

generality) to rescale ϕ so that α = 1. Then, for some cϕ > 0,

Var(NX(ϕT )) >cϕT
2

∫

R

1{|T (x+y)|<1}(1 + xy)2µ(dx)µ(dy). (5)

If µ has an atom x0 /∈ {−1, 1}, the right hand side is larger than cϕT
2(1− x20)

2µ({x0})2,
hence Theorem 2-(iii), is proved.

Let now ε > 0 and a set A being either

(−∞,−1− ε], [−1 + ε, 1− ε] or [1 + ε,∞),
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the choice being made so that, with µε = µ1{A}: µε 6= 0 (recall that µ was assumed to
not be concentrated on {±1}), and if µ does not have a density on R \ {−1, 1}, µε does
not have a density either. Also define

Cε(t) =

∫

R

eixtµε(dx).

For T > 2ε−1, we have for some cε > 0, for x, y ∈ A,

(1 + xy)21{|T (x+y)|<1} >cε1{|T (x+y)|<1} > cε∆T (x + y)

where ∆T (x) := 1{|Tx|<1}(1 − |Tx|). The Fourier inversion formula yields for t ∈ R

∆T (x) =
2T−1

√
2π

∫
sinc(T−1t)2e2itxdt,

hence (5) yields for some c′ϕ > 0

Var(NX(ϕT )) >cϕT
2

∫ ∫
∆T (x + y)µε(dx)µε(dy)

=c′ϕT

∫ ∫ ∫
e2ixte2iytsinc(T−1t)2µε(dx)µε(dy)

=c′ϕT

∫

R

sinc2(T−1t)Cε(2t)
2dt

>c′ϕ sin(1)2T

∫

R

1{|t|<T}Cε(2t)
2dt (6)

and we have used the finiteness of µε and the integrability of sinc2. Since by construction
µε has positive mass, Cε is not identically zero and Theorem 2-(i) is proved.

In view of proving (ii), we assume that the variance is linear, hence we need to show
that C′′ + C ∈ L2(R). By (6), Cε is L2, hence µε has a L2 density, and µ also by
construction of µε. Let f be the density of µ. By (5), (after changing y to −y and using
the symmetry of µ)

Var(NX(ϕT )) >cϕT
2

∫ ∫
(1− xy)21{|x−y|<T−1}f(x)f(y)dxdy

lim inf
T

T−1Var(NX(ϕT )) >cϕ

∫

R\{−1,1}

(
lim inf

T
T

∫ x+1/T

x−1/T

(1− xy)2f(y)dy

)
f(x)dx

=cϕ

∫
(1− x2)2f(x)2dx

=cϕ

∫
(C′′ + C)2

by Parseval’s identity, hence C′′ + C ∈ L2.
To conclude the proof of (ii), let us assume now that µ has a L2 density f on a bounded

neighbourhood I of {−1, 1}, and show that (2) is equivalent to C + C′′ ∈ L2. If µ does

not have a density on all R, then C /∈ L2, otherwise Ĉ would be a L2 density of µ. Then,
if C + C′′ ∈ L2, Fourier’s inversion formula and (4) yield

C(t) + C′′(t) =
1√
2π

∫
̂(C + C′′)(x)eitxdx =

∫
(1 − x2)eitxµ(dx), t ∈ R,
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hence µ has density Ĉ + C′′(x)(1− x2)−1, which leads to a contradiction. Hence none of
the conditions hold if µ does not have a density.

Let us assume finally that µ’s density f can be extended to all R. Then

C(t) =

∫
eixtf(x)dx, C′′(t) = −

∫
x2f(x)eixtdx, (C + C′′)(t) =

∫
(1− x2)f(x)eixtdx.

The integrands are square integrable on I, so we need to prove the equivalence on B :=
R \ I. We have

C ∈ L2(B) ⇔ f ∈ L2(B), C′′ ∈ L2(B) ⇔
∫

B

x4f(x)2dx <∞, C′′+C ∈ L2(B) ⇔
∫

B

(1−x2)2f2(x)dx <∞,

hence the equivalence stems from the existence of c > 0 such that for x /∈ I

c(1 + x4) 6 (1− x2)2 6 1 + x4.

Remark 10. One might think that going for higher order chaoses could help replace
(ii) by the sufficient condition C,C′′ ∈ L2, but the gap present at ±1 is necessarily still
present at higher order chaoses because the zeros of C(t) = cos(t) satisfy the same chaotic
decomposition (see [18, Prop. 2.2]), hence the variance of every chaos is bounded in T.
It remains open to find a necessary and sufficient condition for linear variance.

Proposition 11. If

CX(t) =
∏

k

cos(t/k!),

then for all ε > 0,

T ε−2Var(NX(T )) → ∞

as T → ∞.

Proof. Let

RN =
∑

k>N

k!−1.

Recall that the spectral measure µ is the law of Y = limN YN where YN =
∑N

k=1
εk
k! , for

random iid Rademacher variables (εk). In particular, |Y −YN | < RN a.s. Two consecutive
points of the support of YN have distance 2/n! > 2RN (proved by induction) and they all
have mass 2−N . Let Y ′, Y ′

N , N ∈ N be iid copies of Y, YN . Since Y ’s support is in (−1, 1),
there is c > 0 such that for T sufficiently large, using (5),

Var(NX(T )) > cT 2P(|Y − Y ′| < 1/T ).

Let N = NT be the integer such that RN−1 >
1
4T > RN .

P(|Y − Y ′| < 1/T ) >P(|YN − Y ′
N | < 2RN)

=
∑

x∈Supp(YN )

P(YN = Y ′
N = x)

=2−N .
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Then we have by convexity

ln(4T ) > ln(R−1
N−1) > ln((N − 1)!) =

N−1∑

k=1

ln(k) > (N − 1) ln((N − 1)/2).

It follows that

(4T )ε−2Var(NX(T )) > exp[ε(N − 1) ln((N − 1)/2))]2−N → ∞.
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