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Oscillations of Continuous Elastic Cylindrical Structures in Cross-Flow

The principal objective of this work is to model two-degree-of-freedom vortex-excited oscillations of a vertical cantilevered circular structure in a steady incompressible flow. We will develop a fundamental understanding of the dynamic behavior of vertical cantilevered structures as a class of less studied structures in cross-flow, and illuminate some aspects of the fluid-structure oscillator problem. The structure will not be limited to oscillate in one direction, single-degree-of-freedom oscillations, but will be allowed to vibrate in both the streamwise and transverse directions, two-degree-of-freedom oscillations.

When placed in a fluid flow, structures force the flow to separate and typically shed vortices in an alternate manner, which results in an oscillating force on the structure.

A net oscillating force normally results in vibrations of the structure, which are called vortex-induced vibrations (VIV). VIV are encountered in numerous engineering disciplines, such as offshore engineering (VIV of risers), wind engineering (VIV of meteorological towers), and nuclear engineering (VIV of tubes and cylinder arrays).

Systematically examining the free and forced vibrations of a vertical cantilevered beam, the effects of gravity on the natural frequencies are explored before adding the lateral force due to vortex shedding to the governing equations of motion. Characteristic equations are derived and appropriate methods are proposed to solve them. Discretized equations of motion are developed by implementing a finite element method; element stiffness, mass, and damping matrices for a fixed and linearly varying axial load are computed. Available analytical and numerical methods for studying forced oscillations of the beam under fluid-induced forces are discussed. Research highlights and an estimated timeline are presented at the end of the proposal.

Chapter 1 Introduction

The dynamic response of structures, man-made or natural, to fluid flow has always led human beings to ask questions, and be cautious. Investigating structures' responses to fluid flow has a long history dating back to, at least, the seventeenth century, when German scholar and mathematician Athanasius Kircher (1602-1680), described an instrument (Aeolian harps), already known in the ancient world, in his book Phonurgia nova (1673), which was placed where the wind could blow across the strings to produce sounds [4]. Later, periodic vortex shedding was found to be responsible for exciting the strings, and in turn to be influenced by the string's motion to create a continuous interaction. Lord Rayleigh was the first person to discover the relation between the natural frequency of the taut string and the frequency of sounds produced by the harp.

Oscillations were found to occur normal to the air flow [START_REF] Rayleigh | Theory of sound[END_REF].

To the best of our knowledge the first scientific description of the flow around a circular cylinder has been given by Strouhal [START_REF] Strouhal | Annalen der physik und chemie[END_REF]. He discovered one of the most important non-dimensional parameters in the field of flow-induced vibrations. Strouhal showed that the rate of vortex shedding multiplied by the diameter of the cylinder, divided by the velocity of the fluid constitute a dimensionless group, the Strouhal number. Studying vortex shedding, Rayleigh proved that the the rate of shedding is not only a function of the Strouhal number, but also of the most famous dimensionless group of fluid dynamics, the Reynolds number [START_REF] King | On vortex excitation of model piles in water[END_REF].

The importance of studying vortex-induced oscillations becomes clear when one tries to see the examples of the phenomenon in the daily life. Vortex-induced oscillations manifest in different engineering structures such as smoke stacks, heat exchangers, meteorological towers, bridges, offshore structures, marine risers, and other hydrodynamic and aerodynamic applications. The complexity of the domain comes from the fact that it lies at the cross-road of many engineering disciplines including structural dynamics, structural mechanics, fluid mechanics, computational fluid dynamics, and statistics to name a few.

Research motivation

Considering the state-of-the-art in the analysis of vortex-induced oscillations, this work aims at developing a new modeling approach for predicting vortex-induced responses of continuous cylindrical structures in two dimensions or the two-degree-of-freedom VIV. Most of the published works to date are concerned with the transverse oscillations of a rigid body in cross-flow. There have been a few studies associated with investigating combined motion of a bluff body in two dimensions, while there is a fundamental question which remains to be answered and that is "How an additional degree of freedom namely streamwise motion of the body will affect the dynamics of the structure and to what extent?" Browsing the literature to date, the question seems to be considerable, and in the following years will be in the core of the VIV analysis [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]2].

Cantilevered structures are the core structures to be considered in this work as a class of less studied structures in cross-flow, while an inverted pendulum case would be considered as a simplified model of the vertical cantilevered circular cylinder. Vertical cantilevered structures are seen in different applications such as different types of off/onshore meteorological towers, stacks, chimneys, and cellular towers. Although, practical applications are used to drive the research in any field of engineering, after more than a century of research there seems to be a great amount of work still to be done to reveal the cardinal features of the VIV.

Investigating coupled vortex-induced oscillations is gaining a lot of attentions nowadays. It seems quite logical following the research trend in this field. On the other hand, in practical terms, coupled oscillations are experienced by structures in most of the applications. Coupled streamwise transverse oscillations adds to the complexity of the vibrations of a vertical cantilever. Depending on the strength of the correlation between transverse and in-line oscillations of a cantilever an amplification of lift and drag coefficients might be observed, and phase difference between drag and lift coefficient would result in interesting trajectories of motion. If such amplification can be proved to exist, this might influence a structures' expected life, for example, due to fatigue.

Vortex-induced oscillations may result in destruction in a large range of structures from stacks, masts, meteorological towers, and nuclear reactor components to underwater and offshore structures such as extremely high-priced drilling systems and risers. Therefore, both academic researchers and professional engineers have browsed, thought, and investigated the phenomenon of vortex-induced oscillations. Indeed, academic researchers in all disciplines have delved into the issue of vortex-induced oscillations and the consequent damages from different view points.

The primary objective of the thesis is to study an elastic structures' response in steady incompressible flow.

While the goal is to examine the case of a uniform velocity profile, a linearly varying velocity profile might be considered by the end of the work, as well. The motivation for the present work is that we still do not have a full understanding of the vortex-excited oscillations of elastic slender structures. While the response of actual structures is a combination of in-line and cross-flow motion, most of the studies up to now have focused on the cross-flow or in-line oscillations, but not both of them simultaneously. On the other hand the particular case of a cantilevered vertical beam has not received enough attention, while it appears in some applications such as smoke stacks and off/onshore meteorological towers. In addition to that, most of the studies have considered an elastically mounted rigid cylinder, while in practice elastic cylindrical structures are commonly used. This makes it necessary to perform a thorough analysis to understand the behavior of elastic cylindrical structures undergoing two-degree-of-freedom oscillations in cross-flow.

Research approaches

Modeling of vortex-excited oscillations of a vertical cantilevered cylinder in steady uniform flow is the ultimate objective of this thesis. The structure will be considered to be linear and the thesis is started with a study of the free vibrations of an elastic vertical cantilevered beam under the effects of gravity. Gravitational force makes the structure less stable. The general case will be shown to be a difficult problem, still under investigation. Approximation methods are often going to be employed. Studying eigenvalues of the continuous system with a non/proportional damping is the next step before including forcing terms. Each cross-section of the structure will be allowed to oscillate in plane. The stiffness of the circular cylindrical structure will be kept similar in both directions. It will be shown that an additional term appears in the governing equations of motion of the cantilevered structure due to linearly varying self-weight, which is initially going to be approximated by a constant axial load.

Making an appropriate assumption for fluid forces comes next. There are a few studies regarding frequency of oscillations in the flowwise direction versus the cross-flow direction, section 3.4. Those results are going to be taken into account in assuming an acceptable form for the forcing terms. One method in modeling lift and drag forces is to use wake oscillator models, section 3.2.1. This approach has a long history in modeling lift force, and has been suggested to be applicable to model coupled forcing terms, i.e. lift and drag forces.

The first approximation will be to consider a two-degree-of-freedom linear oscillator to be excited by drag and lift forces. Structural damping will then be included in to the governing differential equations of motion.

While experimentation and numerical investigation are not primary tools of the proposed research, they are going to be used for verification. The dynamic of the structure is going to be fully examined using finite element analysis. Available data through literature studies are going to be used to verify the proposed model.

An experimental study may be performed to solidify the results at an appropriate time. Computational structural and/or fluid mechanics are considered to be helpful whenever analytical tools are not effective.

Besides the principal case of a cantilevered beam, an inverted rigid pendulum with end-stiffness will be likely considered. This configuration has been experimentally studied by a few researchers. This geometry is helpful in giving some insights to the cantilever case especially during experimental studies.

Proposal preview

Chapter two will include a concise review of the phenomena of vortex shedding and induced forces. In chapter three, relevant literature and previous studies are reviewed, mainly considering previous studies on two-degree-of-freedom oscillations of continuous structures in cross-flow. Research methods, and research contributions are presented in chapter four. Finally, along with preliminary computations the proposed work and major contributions will be accentuated.

Chapter 2

Fundamentals of vortex-excited oscillations 2.1 Introduction

In this chapter the phenomenon of vortex shedding, induced oscillations, fluid forces on structures, synchronization, and combined streamwise and transverse oscillations are reviewed. Relevant effective physical parameters and non-dimensional groups are introduced in short. As one would expect there are a large number of non-dimensional groups of parameters used to describe the fluid field, structure's response, and fluid-structure interaction problem. Several terminologies are interchangeably used: transverse, crosswise, and cross-flow oscillations are used to refer to vibrations perpendicular to the free stream, streamwise, in-line and flowwise refer to the oscillations parallel to the free stream flow. Some of the non-dimensional parameters associated with VIV of structures are summarized in Table 2.1. Amplitude ratio, drag coefficient, and lift coefficient are measured functions of the reduced velocity. Lift coefficient

Parameter Definition Description

Amplitude ratio or dimensionless amplitude

C L = F L 1 2 ρ f V 2 HD Lift force Dynamic pressure×Projected area Drag coefficient C D = FD 1 2 ρ f V 2 HD
Drag force Dynamic pressure×Projected area

Flow around a circular cylinder

Flow around an object, particularly a circular cylinder, is one of the fundamental problems in fluid dynamics.

Having numerous examples of practical applications makes a circular cylinder the most popular case to study.

Vortex shedding from a smooth circular cylinder in a steady flow is a function of Reynolds number [START_REF] Blevins | Flow-induced vibration[END_REF]. For very small Reynolds numbers, Re < 5, no flow separation occurs. For 5 < Re < 40 a fixed vortex pair appears in the wake of the cylinder. As Re is increased the wake becomes unstable which may eventually give rise to the phenomenon of vortex shedding in which vortices are shed alternately from side-to-side portraying a vortex street. For 40 < Re < 200 the vortex street is laminar, and shedding is essentially two-dimensional, no span-wise variation is observed [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF]. The transition to turbulence starts in the range 200 < Re < 300 and vortices are shed in cells in the span-wise direction. For Re > 300 the wake is completely turbulent. This regime, 300 < Re < 3 × 10 5 , is known as the subcritical flow regime. Further description of the flow field around circular cylinders can be found in different texts and reference books, e.g. [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF][START_REF] Blevins | Flow-induced vibration[END_REF].

The phenomenon of vortex shedding

The boundary layer near the surface of the cylinder contains a significant amount of vorticity [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF][START_REF] Goswami | Vortex-induced vibration of circular cylinders. ii: New model[END_REF]. As Re is increased an adverse pressure gradient slows the flow down, and at some point forces the flow to separate from the surface of the cylinder. When the shear layer separates from the cylinder, vorticity is carried out by the shear layer to the wake and causes the shear layer to roll up into a vortex. A similar process happens in the opposite side of the cylinder leading to formation of a vortex with an opposite sign.

Mechanism of vortex shedding

The previously mentioned pair of vortices are actually unstable when influenced by small disturbances for Re > 40. Consequently one vortex grows larger than the other one. The larger vortex (vortex A in Fig. 2.1) will become strong and force the opposing vortex (vortex B in Fig. 2.1) across the wake [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF]. Vortex B rotates in an anti-clockwise direction. As the opposite sign vortex approaches vortex A, at some point it will cut off the further supply of vorticity to vortex A from the corresponding boundary layer. This is when vortex A is shed. The now free, vortex A is carried away by the flow. Next, a new vortex will be formed on the same side of the cylinder, namely vortex C. Vortex B will now act the same as vortex A during previous shedding period, namely vortex C and it is pulled across the wake by a stronger and larger vortex B. This now leads to the shedding of vortex B. This process will continue and a vortex is alternately shed from one side of the cylinder and then the other [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF].

It is valuable to note that the vortex shedding occurs only when the two shear layers interact with each other. In other words, blocking this interaction somehow or another, for example by putting a splitter plate at the downstream side of the cylinder, would remove shedding of vortices [START_REF] Sumer | Hydrodynamics around cylindrical structures[END_REF]. 

Vortex-induced vibrations

Structures shed vortices in low to moderate Reynolds numbers. The vortices are shed in the wake of the structure and make a fluidic structure which is very similar for different geometries. When vortices are shed the pressure profile around the body changes periodically, which results in fluctuating forces both in terms of amplitude and phase. Then the fluctuating force can cause the structure to vibrate and create sound as well [START_REF] Blevins | Flow-induced vibration[END_REF]. The complexity of the fluid-structure interaction becomes even more complicated if the structure is elastic or elastically mounted, introducing interactions between the dynamics of the downstream flow and the motion of the body itself. The resulting phenomenon of vortex-excited oscillations (or vortex-induced vibrations) involves a feedback loop, with the body vibration and vortex dynamics coupled to each other in a nonlinear way [START_REF] Goswami | Vortex-induced vibration of circular cylinders. ii: New model[END_REF]. Elastic structures such as marine risers, bridges, stacks, towers, offshore pipelines, and heat exchangers can be destroyed by VIV.

The Strouhal number, St, Table 2.1, relates the frequency of vortex shedding to the velocity and diameter of the cylinder. Experimental studies have disclosed that the oscillations in the lift force (force perpendicular to the flow) occur at the shedding frequency, but oscillations in the drag force (force parallel to the flow) occur at about twice the shedding frequency. The Strouhal number is mainly a function of Reynolds number for flow over a stationary circular structure, although surface roughness and free stream turbulence are influencing parameters [START_REF] Blevins | Flow-induced vibration[END_REF]. For a circular cylinder, either smooth or rough, the Strouhal number is about 0.2 for a large range of Reynolds numbers, namely 200 < Re < 2 × 10 5 . At this point roughness becomes a major player and the Stouhal number of a smooth cylinder rapidly diverges from that of a rough cylinder.

The two cases merge again at Re ≈ 2 × 10 6 .

Vortex shedding at higher Reynolds numbers does not necessarily occur at a single frequency even for a stationary cylinder. Furthermore, it will become an unsteady three-dimensional process, varying along the span of the structure. The three-dimensionality of vortex shedding can be described by a span-wise correlation length; typical values are given in Blevins [START_REF] Blevins | Flow-induced vibration[END_REF], a correlation of 1.0 implies two-dimensional flow.

Span-wise cells of vortices may also be developed due to a nonuniform velocity profile. VIV of cylinders also occur in oscillatory flows such as those induced by ocean waves over pilings and pipelines.

The oscillations of the cylinder increases the strength of the vortices, increases the span-wise correlation, increases the mean drag on the cylinder, alters the pattern of the vortices in the wake, and causes the vortex shedding frequency to be entrained by the cylinder's frequency. The last effect is called lock-in, synchronization or entrainment, and can be produced to a lesser extent if the frequency of oscillations of the cylinder equals a multiple or submultiple of the shedding frequency [START_REF] Blevins | Flow-induced vibration[END_REF][START_REF] Bishop | The lift and drag forces on a circular cylinder oscillating in a flowing fluid[END_REF]. The lock-in band is the range of frequencies over which the cylinder vibration controls the shedding frequency. A hysteresis effect is observed in the response of the cylinder; the range of synchronization and maximum attainable amplitude depends to a degree on whether the shedding frequency is being approached from above or below.

It must be mentioned that drag is also affected by VIV. The drag coefficient is increased with the amplitude of the transverse vibration of the cylinder. Some expressions for computing the drag coefficient have been proposed by different researchers as described in [START_REF] Blevins | Flow-induced vibration[END_REF]. King et al.'s [START_REF] King | On vortex excitation of model piles in water[END_REF] findings about drag force and oscillations in the in-line direction will be discussed in detail in Chapter 3. They identified two distinct regimes of subharmonic resonance in flowwise oscillations. The first one is associated with symmetric vortex shedding, and the latter with alternate shedding. However, they found that the in-line vibrations have low amplitudes.

Analysis of the response

The objectives of the researches in the field of VIV are, of course, understanding, prediction, and prevention of vortex-excited oscillations. Predicting the amplitude of vortex-induced vibration using the pressure distribution obtained from an exact analysis of the flow field, via analytical methods is an ultimate goal. Force on an object in the flow could be computed by direct integration of the pressure field about the cylinder.

The pressure field would be found via solving the time-dependent Navier-Stokes equation including fluidstructure interaction, and flow separation and vortex formation will appear as a part of the solution. The method requires very powerful computing resources, which does not seem to be accessible for the time being as the numerical solutions for two-dimensional cases are limited to low Reynolds numbers [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF].

Vortex-induced vibration is an inherently nonlinear, self-excited, multi-degree-of-freedom phenomenon [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF].

Considering the nonlinear coupling, it is difficult to develop a mathematical model to predict the response of the structure even just for the lock-in range. However, there is something we can do for modeling reasons.

The simplest model is to consider harmonic force components as the vortex shedding is a harmonic process.

A second class of models are nonlinear oscillators or wake oscillators. There the coefficients of the lift force and the drag force are considered to satisfy appropriate differential equations. As a result of their nonlinear nature, wake oscillators are harder to solve, but are able to describe a larger range of phenomena. Experimental and/or numerical studies are required to determine the unknown coefficients of the model [START_REF] Blevins | Flow-induced vibration[END_REF].

Combined transverse and in-line vibrations

The canonical problem in the VIV of cylinders is referred to as single-degree-of-freedom (SDOF) oscillations of the cylinder in the across-flow direction. An early work by Feng [START_REF] Feng | The measurement of vortex-induced effects in flow past a stationary and oscillating circular and d-section cylinders[END_REF] at high mass ratios, demonstrates that the resonance of a body, when the oscillation frequency coincides with the vortex shedding frequency, will occur over a range of V red between 5 to 8. Later, two distinct response branches were identified by different researchers. A large number of studies have been published during the last two decades by Williamson's group at Cornell University dealing with investigating vortex patterns behind a cylinder and the response of the cylinder, for example see [2] and references. They identified a critical mass and damping under which three response branches are found to exist, namely the initial branch, the upper branch, and the lower branch each associated with a certain pattern of vortex shedding, Fig. 2.2.

Restricting motion of the cylinder to transverse motion ignores the possible effects of the in-line motion on vortex formation and interaction between the cylinder and the wake, and therefore on the induced forces on the cylinder. Although, adding an extra degree-of-freedom will increase the complexity of the currently Figure 2.2: An upper branch appears between the initial and lower branch for low mass and damping free vibration of the structure [2]. Open symbols show the contrasting high mass ratio response data of Feng [START_REF] Feng | The measurement of vortex-induced effects in flow past a stationary and oscillating circular and d-section cylinders[END_REF].

difficult problem, it is necessary as it happens in every case of elastic cylinders. Understanding the mechanism of two-degree-of-freedom VIV requires appreciating the importance of the in-line vibrations and coupling effects which might amplify the oscillations in either the across-flow or along-flow direction. The fundamental problem of two-dimensional VIV is commonly referred to as the elastically mounted cylinder, Fig. 2.3. In this configuration, flow along the span of the cylinder is essentially two dimensional. Recently, a number of studies have considered an elastic cylinder or an elastically mounted rigid cylinder to vibrate in both the transverse and in-line directions, see chapter 3.

In practice, most of the structures are elastic with stiffness, inertia and damping characteristics. These long flexible cylinders, such as slender towers or marine risers with large aspect ratios, behave in a more complicated fashion due to the spatially varying pressure distribution and relative position and velocity of the structure to the flow. This results in a very convoluted problem where vortices are shed at different frequencies at different locations and the structure responds in several modes. The complete problem includes both temporal and spatial variation of modes of the structure and vortex shedding. In general, cross-flow response is larger than the streamwise response, and more significantly contributes to the overall damage accumulation, however coupling effects might be considerable and change both in-line and transverse responses resulting in a larger response amplitude in both directions. This nonlinear problem can be approached from different view points. Our approach in looking at this problem is to predict the response of the system given excitation from the fluid. 

Chapter 3

Literature review 3.1 Introduction

Limiting motions of the cylinder to only cross-flow motions ignores any possible effects of in-line motions on forces exerted on the cylinder. Therefore, studying two-degree-of-freedom VIV seems necessary to understand behavior of real structures. However, even in the case of an elastically mounted rigid cylinder undergoing combined transverse and in-line vibrations, it is possible that just some of the results of previous analysis on the SDOF VIV of the cylinder can be applied to the more realistic two-degree-of-freedom VIV. Having an elastic cylinder will add more to the current state of the complexity of VIV of the elastically mounted cylinders. In the following a concise review of the relevant literature is presented. This will not be a comprehensive review of VIV, but a short presentation of some of the relevant works. Methods are categorized as: mathematical, numerical, and experimental. A short section on vortex patterns and conclusions will close the chapter.

Mathematical modeling

Bishop and Hassan [START_REF] Bishop | The lift and drag forces on a circular cylinder oscillating in a flowing fluid[END_REF] showed that forces due to vortex shedding can be decomposed into fluctuating lift in the cross-flow direction, and drag force in the parallel-flow direction. They found that the frequency of the lift force is the same as the vortex shedding frequency, f vs , and the frequency of the drag force is 2f vs for the case of a rigid cylinder. They observed that the periodic wake of the cylinder can be treated as an oscillator, therefore using a van der Pol type oscillator was proposed to model the phenomenon. The coefficients of the model were found by fitting the experimental data with the model. A different approach in modeling VIV is to use SDOF models. Single-degree-of-freedom models are primarily developed to predict the amplitude of the response. Such models use a single ordinary differential equation to describe the behavior of the structural system in one direction. Therefore, a system of differential equations with appropriate forcing terms could be used to describe two-degree-of-freedom VIV.

Wake oscillator models

Based on the assumption that resonant transverse oscillation occurs when the vortex shedding frequency coincides with the natural frequency of a bluff cylindrical structure, Skop and Griffin [START_REF] Skop | On a theory for the vortex -excited oscillations of flexible cylindrical structures[END_REF] developed an empirical model for predicting the response of elastic cylinders with different end conditions in cross-flow.

The model has essentially been developed to predict the transverse response and included several empirical parameters. The authors extend their previous works on the VIV of spring-mounted rigid cylinders to elastic cylinders. Fluctuating lift was modeled using a modified van der Pol equation, and the empirical parameters were related to the mass and damping of the structural system. The fluctuating lift coefficient was assumed to satisfy the differential equation

CL + ω 2 s C L -C 2 LO -C 2 L -ĊL /ω s 2 ω s G ĊL -ω 2 s HC L = ω s F ẇ/D (3.1)
The frequency coefficient ω s (rad/s) and the four dimensionless coefficients C LO , G, H, and F are to be evaluated from experimental results.

Using a wake oscillator model has been justified by Blevins [START_REF] Blevins | Flow-induced vibration[END_REF] using basic fluid mechanics' equations and assumptions. It is not hard to see that for a stationary cylinder, (3.1) has a self-excited self-limited solution.

The shedding frequency is determined from the Strouhal relation. The equation of motion of the rigid, elastically mounted cylinder shown in Fig. 2.3 is

ẅ + 2ζ s ω n ẇ + ω 2 n w = ρV 2 LD 2M C L (3.2)
where ω n denotes the natural frequency of the structure.

The solutions to (3.1) and (3.2) in the lock-in region are in the form of 

w D = A sin(ωt) (3.3) C L C LO = B sin(ωt + φ) (3.
Ψ i (x)Ψ j (x)dx = M i δ ij (3.5)
Ψ j (x) are orthogonal mode shapes with respect to a weight of 1. Using modal expansion of the vortex-induced displacement, the dynamical equations for the generalized coordinates are obtained from qi + 2ζ

s i ω n,i qi + ω 2 n,i q i = L 0 ρ f DV 2 C L Ψ i (x) dx 2M i (3.6)
The authors assumed that in the lock-in region the lift coefficient has the same spatial distribution as the mode shapes with an appropriate temporal dependence as

C L = i Q i (t)Ψ i (x) (3.7)
Substituting (3.7) into the dimensionless form of (3.6), (3.6) will include the lift expansion factor, Q i (t), as the forcing term. Substituting (3.7) and the modified form of (3.6) into (3.1) gives an equation for the lift expansion factor, Q i (t). Skop and Griffin [START_REF] Skop | On a theory for the vortex -excited oscillations of flexible cylindrical structures[END_REF] have specifically discussed uniform flow over a uniform cylinder which is often encountered in actual situations, and have found that the modal coupling only occurs

1 S G = ζs8π 2 St 2 M ρD 2 L
14 through the nonlinear terms in the lift equations. The equation of the generalized coordinate for this case is given by qi

+ 2ζ si ω n,i qi + ω 2 n,i q i = Dω 2 s μ ii Q ii (3.8)
where

μ ii = ρ f D 2 8π 2 St 2 M i (3.9)
is a constant, and the resulting equation for the lift response factor is

Qi + ω 2 s Q i -C 2 LO -I iiii Q 2 i + Q/ω s 2 ω s G i Qi -ω 2 s H i Q i + j k l I ijkl ω s G i Qj Q k Q l + G i /ω s Qj Qk Ql -ω 2 s H i Q j Q k Q l -H i Q j Qk Ql = ω s F i qi /D (3.10)
where

I ijkl = L 0 Ψ i Ψ j Ψ k Ψ l dx/ L 0 Ψ 2 i dx (3.11)
where j, k, l = i simultaneously. Finally, as the system goes under resonance the i th pure mode was assumed to be present and vortex-excited oscillations of the elastic cylinder are obtained as

w(x, t)/D = A i Ψ i (x) sin(ωt) (3.12)
where A i is a function of S G , and the response amplitude is independent of the normalization of the normal modes. The authors have tabulated the results of their computation for various elastic structures in transverse vibrations [START_REF] Skop | On a theory for the vortex -excited oscillations of flexible cylindrical structures[END_REF].

Nayfeh et al. [START_REF] Nayfeh | Modeling the transient and steadystate flow over a stationary cylinder[END_REF] used a simplified form of the van der Pol equation to model lift and drag coefficients on a stationary cylinder. They extended the work by Hartlen and Currie [START_REF] Hartlen | Lift-oscillator model of vortex-induced vibration[END_REF] and Skop and Griffin [START_REF] Skop | On a theory for the vortex -excited oscillations of flexible cylindrical structures[END_REF] and that of some other researchers, by including the transient lift and drag in the model. Numerical simulation was used to provide pressure distribution over the surface, which was then integrated to determine the lift and drag forces over the cylinder. These forces were used as input to a reduced-order model. The authors findings showed that the lift force is always composed of the odd components of the shedding frequency. Their initial study showed that the van der Pol oscillator is superior to the Rayleigh oscillator. The oscillator was presented as

CL + ω 2 C L = μ ĊL -αC 2 L ĊL (3.13)
where ω is related but not equal to the shedding circular frequency, and μ and α represent the positive linear (negative damping) and nonlinear damping (positive damping) coefficients. Method of multiple scales was used to solve a modified form of (3.13). The frequency of vortex shedding is given by

ω vs = ω - μ 2 16ω (3.14)
which shows that the frequency of van der Pol oscillator is not the same as the circular frequency of vortex shedding. Hence, an improved second-order approximate expression for the steady-state lift is proposed as

C L (t) ≈ a 1 cos(ω vs t) + a 3 cos(3ω vs t + π/2) (3.15)
where

a 1 = 2 μ α and a 3 = μ 4ω μ α (3.16)
Then parameters, a 1 a 3 , and f vs were determined through numerical simulation and the time history of the lift coefficient. Having the parameters known, the lift equation (3.13) was integrated using a Runge-Kutta method and compared with CFD results. A comparison showed that the agreement between the van der Pol and CFD results was good for both transient and steady-state lift on a stationary cylinder in uniform flow.

It was assumed that drag consists of two components: a mean component independent of lift and a periodic component related to the unsteady periodic lift. Taking the phase relation into account, the drag coefficient was modeled as

C D (t) = CD -2 a 2 ω vs a 2 1 C L (t) ĊL (t) (3.17)
The mean part of the drag coefficient was found from CFD analysis, and added to the fluctuating component from (3.17). The model seems excellent for moderate, 10 4 , and high, 10 5 , Reynolds numbers having a small phase difference with the CFD solution. The proposed models by Nayfeh et al. [START_REF] Nayfeh | Modeling the transient and steadystate flow over a stationary cylinder[END_REF] describe the lift and drag coefficients on a stationary cylinder and does not account for fluid-structure interaction.

Single-degree-of-freedom models

Reviewing Simiu and Scanlan [START_REF] Simiu | Wind effects on structures : an introduction to wind engineering[END_REF] and Billah [START_REF] Billah | A study of vortex-induced vibration[END_REF], Goswami et al. [START_REF] Goswami | Vortex-induced vibration of circular cylinders. ii: New model[END_REF] combined and modified two models to propose a new SDOF model. Following the notation used in the paper, the general form of such models is given by

m ẅ + 2ζ s ω n ẇ + ω 2 n w = F (w, ẇ, ẅ, ω St t) (3.18)
where F is an aeroelastic forcing function. The coefficients in the SDOF model were assumed to be functions of the reduced frequency (K n = ω n D/V ), which made the coefficients flexible enough to match the response over a wide range of frequencies.The form of F incorporates the effect of the fluid on the structure via the Strouhal frequency. For a spring-mounted damped rigid cylinder, (3.18) must degenerate to a form with characteristics like the following

m ẅ + 2ζ s ω n ẇ + ω 2 n w = 1 2 ρ f V 2 DC L sin(ω St t + φ) (3.19)
For a model based on the concept of negative damping the basic mechanism of energy transfer from the wake to the body might be seen as a part of damping, and an instability would be created when the total damping crosses zero. To capture the self-limiting nature of the phenomenon of vortex-induced vibration such a mechanism should be accompanied by a higher order aeroelastic damping term that limits the large amplitudes of vibration. The Simiu-Scanlan [START_REF] Simiu | Wind effects on structures : an introduction to wind engineering[END_REF] (as described in [START_REF] Goswami | Vortex-induced vibration of circular cylinders. ii: New model[END_REF]) model includes a nonlinear damping term, a linear aeroelastic stiffness, and a direct forcing term at ω St . Billah [START_REF] Billah | A study of vortex-induced vibration[END_REF] (as described in [START_REF] Goswami | Vortex-induced vibration of circular cylinders. ii: New model[END_REF]) followed a different approach to choose a coupling variable representative of the wake and added an extra equation to describe the evolution of the variable. Billah chose the vortex formation length as the fluidic variable and expressed the final equations as a system of equations for w and the formation length. Goswami et al. [START_REF] Goswami | Vortex-induced vibration of circular cylinders. ii: New model[END_REF] proposed a model for VIV of an elastically supported cylinder that is a hybrid model of the nonlinear SDOF model of Simiu-Scanlan and the coupled wake oscillator model of Billah. The model then has the following

form ẅ + 2ζ s ω n ẇ + ω 2 n w = ρ f V 2 D 2m Y 1 (K) ẇ V + Y 2 (K) w 2 D 2 ẇ V + J 1 (K) w D + J 2 (K) w D cos(2ω vs t) (3.20)
The Y 1 and Y 2 terms are linear and nonlinear aeroelastic damping terms, the J 1 term is an aeroelastic stiffness term which provides for a shift in the mechanical response frequency from the zero-wind frequency, f n . The J 2 term is a parametric stiffness coupling between the wake and the cylinder. The parameters of the model were estimated using the method of slowly varying parameters and experimental data.

Numerical methods

Numerical methods are extensively used to solve the problem of VIV of structures. The response of the structure and the flow field are to be considered coupled through their interaction in using numerical methods for solving VIV problems. A major short-coming of the numerical simulation is that it mostly has been performed for low Reynolds numbers due to restricted computing resources especially for two-degree-offreedom VIV. However, accurate numerical solutions at low Reynolds numbers provide valuable information regarding structures' response, flow field, and vortex patterns. A discussion of the available methods and results are given in reviews by Williamson and Govardhan [2], and Gabbai and Benaroya [START_REF] Gabbai | An overview of modeling and experiments of vortex-induced vibration of circular cylinders[END_REF].

Watanabe and Kondo [3] examined in-line and transverse oscillations of a cylinder implementing the finite element method to solve the three-dimensional incompressible Navier-Stokes equations. A solid cylinder whose axis was normal to the flow direction, was assumed to be elastically supported in the streamwise and cross-flow directions. An incompressible Navier-Stokes equation along with the continuity equation was considered to represent the flow field,

∂ V ∂t + (V • ∇)V + ∇P -ν V = 0 (3.21) ∇ • V = 0 (3.22)
The motion of the cylinder was described with two linear damped oscillators in a plane perpendicular to the cylinder axis,

ü + 2ζω u + ω 2 u = 1 2 γC D (3.23) v + 2ζω v + ω 2 v = 1 2 γC L (3.24)
and the drag and lift coefficients were computed from

C D = F D 1 2 ρV 2 D (3.25) C L = F L 1 2 ρV 2 D (3.26)
The damping ratio and the mass ratio were fixed at 0.01 and 0.5, respectively. The simulation region was a cube, and a cylinder with a diameter of 1.0 was placed at different locations (the equations of motions had been non-dimensionalized). The slip and non-slip conditions were used at the side boundaries and on the cylinder surface, respectively. The Reynolds number was 500. In the case of in-line vibrations, while cross-flow motion was suppressed, the symmetric vortices were seen for V red = 2. The amplitude becomes zero and the cylinder motion is damped from V red = 2.6 to V red = 2.8. The cylinder motion appeared again for V red = 2.9, and damped again for V red > 4.0. For V red = 3, the trajectory of the cylinder was determined for the case with in-line and cross-flow oscillations under the alternating vortex condition.

The oscillation period of the drag coefficient was found to be the same as the streamwise oscillation of the cylinder. The minimum and maximum drag coefficients correspond to the maximum and minimum

x-locations in the in-line direction, respectively, Fig. 3.1. In contrast to the drag coefficient, maximum and found that the oscillation of the cylinder in the transverse direction was dominating the motion of the cylinder under the alternating vortex condition.

Experimental studies

Most of the early works on VIV have been completely focused on experimentation. Indeed, still most of the works in the field comprise experimental studies. There are many papers published on the problem of a cylinder vibrating transverse to a fluid flow, while there are few studies that also include in-line vibrations of the cylinder [2]. The lack of work on two-degree-of-freedom oscillations is amplified by the fact that elastic structures, and particularly elastic cantilevered structures have been less studied.

In an early study by Meier-Windhorst [START_REF] Meier-Windhorst | Flatterschwingungen von zylindern im gleichmassigen flussigkeitsstrom[END_REF] (as described in [START_REF] King | On vortex excitation of model piles in water[END_REF]) a rigid cylinder was tested in a water channel, and it was found that the response amplitude and frequency were functions of the mass ratio and the reduced velocity. At low values of mass ratio the frequency of oscillation in the cross-flow direction, f os , when in-line oscillation was suppressed, was not necessarily equal to the natural frequency of the cylinder, f n . Larger values of mass ratio caused a reduction in the deviation of f os from f n . Maximum amplitude of oscillation was recorded at V red = 6.2 and motion was first seen at V red = 4. In another study, a cantilevered flexible cylinder was examined by Scruton [START_REF] Scruton | On the wind-excited oscillation of stacks, towers and masts[END_REF] (as described in [START_REF] King | On vortex excitation of model piles in water[END_REF]). He found when V red > 4 and 2mΔ ρD 2 < 16, cross-flow vibrations could be exited.

Combined oscillations of circular cylindrical model piles in the transverse and in-line directions were studied by King et al. [START_REF] King | On vortex excitation of model piles in water[END_REF]. The fundamental as well as the second mode of oscillations of clamped-free structures were examined in water. The second mode of the cantilever with end-mass resembles the clamped-pinned condition which frequently appears in practical applications. The model piles were slender hollow cylinders mounted as vertical cantilevers from the floor of a water flume. An end-mass was added to the free-end to reduce the natural frequency, and increase the effective range of V red . Two piles with similar diameter of one inch made from aluminium and PVC with 41 in and 36 in length were tested (EI for the aluminium pile was 845 lbf ft 2 , and 95 lbf ft 2 for the PVC pile). The stiffer pile was found to oscillate in the fundamental mode in the in-line and transverse directions. The more flexible PVC pile was observed to oscillate in the fundamental mode in the in-line and cross-flow directions and also in the second normal mode in the in-line direction.

As an extension to the work, the authors filled the PVC pile with lead shot with the intention of reducing the natural frequencies and simulate the mode shape of the clamped-pinned conditions. The logarithmic decrement was up to three times higher in water than in air. They found that the response amplitude strongly depends on the magnitude of 2mΔ ρD 2 . Three regions of instability were discovered, V red < 9, two for in-line motion and one for cross-flow motion. Hysteresis was observed for 2mΔ ρD 2 > 0.5.

For free-ended pile, the transverse and in-line modes were not coupled, however adding tip-mass created some deviations in recorded results between constrained and unconstrained piles [START_REF] King | On vortex excitation of model piles in water[END_REF]. The overall trend of the results suggested that when motion was restricted to the in-line motion, the reduced velocity at which the pile was excited was reduced, and an increase in the amplitude was observed. In a comparison, they showed a close agreement between in-line oscillations of the free-end PVC pile, and the filled aluminium pile with tip mass of 0.3 lb. For the PVC pile with an end-mass a maximum amplitude of 2.1 diameters at 2mΔ ρD 2 = 0.32 was recorded. Instability was first recorded at V red in the range of 4 to 5.5, and maximum amplitude coincided with V red = 5.5 to 7.5. Second normal mode was excited for V red in the range 1.2 to 1.9 depending on 2mΔ ρD 2 = 0.32. Instability in the second mode could be excited in water levels which gave stable conditions for the fundamental mode. For the PVC pile with lead shot for the second normal mode the maximum in-line amplitude appeared at V red = 2.2, followed by a minimum response at V red = 2.5. [START_REF] Chen | Dynamic response of a circular cylinder subjected to liquid cross flow[END_REF] studied the response of a cantilevered beam in cross-flow for a range of reduced velocity less than 6. They characterized the response of the structure in both streamwise and cross-flow directions through experimental investigations. A tube was vertically soldered on a brass plate. Therefore, it responded as a cantilevered vertical beam. Tests were performed in two stages. In the first stage, flowinduced vibrations were investigated and displacement signals were recorded. Then, a sinusoidal signal with constant amplitude was employed to excite the structure. The frequency of excitation varied in a range covering the natural frequency of the tube. The authors mention that the fluctuating component of drag is one-tenth of the lift's counterpart. Therefore, the tube displacement is mainly due to steady deformation in the drag direction and oscillation in the lift direction. Large oscillations occurred when the natural frequency of the structure coincided with the frequency of flow excitation.

Chen and Jendrzejczyk

For V red ≤ 5, the in-line response always appeared at the natural frequency of the same direction. Increasing the velocity to V red ≥ 5, a second resonance appears at twice the natural frequency. This arises from vortex excitation in the drag direction which was considered to be twice the vortex shedding frequency. The transverse response includes several components; the natural frequency of the tube, vortex shedding frequency with St = 0.17, and one-half of the natural frequency in the drag direction. In-line tube displacement was found to increase from V red = 1.5 to 3 then decrease with increasing reduced velocity. It is reported that for 2.5 ≥ V red ≤ 4.5 vortex shedding frequency was controlled by the structure's motion and was kept about one-half of the natural frequency of the system. For V red = 1.5 to 3, the tube performed steady oscillations in the drag direction, and for V red = 2.5 to 4.5, vortex shedding synchronizes with the oscillations in the drag direction. In the transverse direction, when the tube natural frequency in the drag direction was equal to twice the vortex shedding frequency, the tube response in the transverse direction occurred at about one-half of the in-line natural frequency. For 5.0 < V red < 7, vortex shedding synchronizes with tube oscillations in the lift direction. For 3.0 < V red < 4.5, the trajectory of tube motion resembled a Lissajous figure, where the frequency of oscillation in the drag direction was twice the frequency of oscillation in the lift direction.

One last conclusion made by the authors is that for large reduced velocities, V red > 4.5, the tube motion is mostly dominated by the lift and can be treated as one-dimensional oscillation.

Forced vibration of cylinders following a figure-of-eight type motion was performed to study the phase behavior of the lift force [START_REF] Jeon | On circular cylinders undergoing two-degree-of-freedom forced motions[END_REF]. Jeon and Gharib [START_REF] Jeon | On circular cylinders undergoing two-degree-of-freedom forced motions[END_REF] express that the in-line motion must have some effect upon the wake. The streamwise amplitude was 0.1 diameter, the aspect ratio was 25, and the test was performed on a cantilever cylinder. The free stream velocities on the order of 4 -6 cm/s were used. Strain gauges were employed by the researchers to verify the results of the flow data used to compute lift and drag forces. They discovered that streamwise motion influences the phase of shedding, which in turn affects the lift curves. The relative phase of motions in two directions was strongly influenced by streamwise motion. Fujarra et al. [START_REF] Fujarra | Vortex-induced vibration of a flexible cantilever[END_REF] investigated the dynamic behavior of two cantilevered cylinders with two different measurement techniques. Cantilevered cylinders allowed much more flexibility in the cross-flow direction than in the in-line direction. Larger stiffness and natural frequency in the streamwise direction, shifted the regime of coupling to higher normalized flow speeds. The diameter of the cylinder was 10mm, giving an immersed aspect ratio of 41. Cylinders were made of an elastomeric material. Tests were performed in two different water channel facilities. The ratio of the streamwise stiffness to the transverse stiffness was 18 to 9. Cylinders had equal mass ratio, m * = 1.3, and mass-damping, and were identically clamped. The Reynolds number was varied between 10 3 to 2 × 10 3 , and St = 0.208. The response amplitude, A * , showed two distinct branches as a function of dimensionless velocity, V * = V/f n D. In a separate set of experiments on the cantilever fitted with strain gauges a large-amplitude transverse vibration was observed for V * > 12. This was attributed to the simultaneous presence of in-line and cross-flow vibrations. It was found that the frequency of transverse vibration is exactly half the frequency for the streamwise oscillations, and the cantilever tip followed a figure-of-eight trajectory. A large-amplitude response outside the main lock-in regime was observed which demonstrated the significance of coupling between transverse and streamwise directions.

A series of experiments were performed on a flexibly mounted, towed, rigid cylinder capable of two-degree-offreedom oscillations [START_REF] Dahl | Two-degree-of-freedom vortex-induced vibrations using a force assisted apparatus[END_REF]. The cylinder was made of aluminum, smooth and hollow, with a diameter of 7.62 cm and aspect ratio of 26. Force sensors were used to measure lift and drag forces. The Reynolds number ranged from 1.1 × 10 4 to 6 × 10 4 . The frequency ratio was defined as the ratio between the in-line natural frequency and the transverse natural frequency. The system was set at six different frequency ratios and towed at nominal reduced velocities between 3 and 12. Drag is reported to be composed of a steady and an oscillating component. The oscillatory component induces in-line (parallel to the incoming flow) vibrations; however, a frequency-doubling occurs in the drag direction relative to the oscillatory lift force. Though smaller than in the transverse direction, significant amplitudes of motion were seen in the in-line direction. The effects of low mass ratio and damping on a two-degree-of-freedom oscillating cylinder with varying in-line to transverse frequency ratio were investigated by the researchers [START_REF] Dahl | Two-degree-of-freedom vortex-induced vibrations using a force assisted apparatus[END_REF]. A map is provided by the authors which summarizes the trajectory of motion (in-line versus transverse motion) for each experiment. In comparison with Sarpkaya [START_REF] Sarpkaya | Hydrodynamic damping, flow-induced oscillations, and biharmonic response[END_REF] and Jauvtis and Williamson [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF], Dahl et al. [START_REF] Dahl | Two-degree-of-freedom vortex-induced vibrations using a force assisted apparatus[END_REF] report comparable amplitudes with [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF] and higher amplitudes than [START_REF] Sarpkaya | Hydrodynamic damping, flow-induced oscillations, and biharmonic response[END_REF] for a frequency ratio of one. For a frequency ratio of 1.9, the transverse motion response showed two peaks in the response. Results suggested that a low mass ratio system undergoing two-degree-of-freedom oscillations can experience very large amplitude ratios in excess of 1.35 [START_REF] Dahl | Two-degree-of-freedom vortex-induced vibrations using a force assisted apparatus[END_REF].

A new study has been performed on an inverted pendulum like structure which experiences two-degree-offreedom oscillations. In this work, Leong and Wei [START_REF] Leong | Two-degree-of-freedom vortex-induced vibration of a pivoted cylinder below critical mass ratio[END_REF] tested a pivoted cylinder with low mass ratio and investigated the fluid-structure interaction at the cylinder mid-height for V red < 9. The external diameter was 2.54 cm, internal diameter 2.22 cm, height 109.22 cm and L/D = 43. The mass ratio was 0.45. The cylinder was immersed in a uniform flow of water 101.6 cm in depth. The damping ratio was 0.058 and the mass damping parameter was 0.026. Natural frequencies were identical in the x-and y-directions. An initial branch was observed by the researchers up to V red = 2.6, followed by an upper branch. A large amplitude, up to A * y ≈ 2, is reported for the first time in this work. Additionally, no lower branch was identified for an inverted pendulum with subcritical mass ratio, Fig. 2.2. Irregularities were observed in the transverse amplitude for V red > 5, meaning that the cylinder would oscillate about one deflection angle then oscillate around a different deflection angle, switching back and forth between these positions. A very large maximum in-line response A * x ≈ 2.5 is reported. A break appears at V red ≈ 4.4, and the streamwise response is reset to approximately 0.2 then the response increases again continuously. For small mass ratios there is a coupling between in-line and transverse motions, which results in experiencing maximum streamwise oscillation at the same natural frequency coinciding with the transverse frequency of maximum amplitude oscillation.

Trajectories of motion showed two types of oscillations patterns for the initial branch: 

Vortex patterns

Although, the objective of this thesis is not to investigate the vortex patterns in the wake of the cylinder as vortices are known to be the source of exciting forces, acquiring some knowledge of their behavior is beneficial. There are a few reviews on vortex modes and their relation with VIV of cylinders undergoing combined transverse and in-line oscillations [2].

When a pile was constrained to oscillate in the streamwise direction, King et al. [START_REF] King | On vortex excitation of model piles in water[END_REF] observed that in the first instability region vortices were shed symmetrically which resulted in the familiar vortex street configuration within a short distance downstream of the pile. The second instability region was delineated by vortices shed alternately from opposite sides of the pile. Symmetrical vortex shedding was correlated with very low Reynolds number flow.

Williamson and Roshko [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF] performed a comprehensive study on vortex modes for a forced vibration case.

The results were presented as a map which demonstrated different vortex patterns (2S, 2P, P+S, etc.) as a function of dimensionless amplitude, A * , and the reduced velocity, V red . The 2S notation is used to indicate that two single vortices were shed for each oscillation cycle; 2P means two pairs of vortices were shed for each oscillation cycle; P+S describes that a pair and a single vortex were shed during one oscillation cycle, etc. The map of vortex patterns was produced for forced vibration experiments.

Jeon and Gharib [START_REF] Jeon | On circular cylinders undergoing two-degree-of-freedom forced motions[END_REF] indicate that even a very small streamwise motion has appreciable effects on the wake.

They noted that in-line motion organized the vortex shedding frequency, and changed vortex patterns.

Some previously reported vortex modes for exclusively transverse motion, were not seen for the two-degreeof-freedom case. When dealing with the one-degree-of-freedom case 2P mode was observed in the experiment, however, adding in-line motion resulted in the disappearance of the pairing mode [START_REF] Jeon | On circular cylinders undergoing two-degree-of-freedom forced motions[END_REF].

Simulating in-line oscillations, Watanabe and Kondo [3] observed symmetric vortex patterns, while crossflow motion was removed. The vortex pattern changed at V red = 2.6 to the alternate vortex shedding which damped the cylinder motion from V red = 2.6 to 2.8. With three-dimensional simulation, it was observed that the vortex field had a structure, not only on a plane perpendicular to the cylinder but also in the direction along the cylinder axis. The vortex field was not much affected by in-line oscillation. However, for the case with transverse oscillation significant changes were observed. Finally it was found that the vortex field is to be affected more by the cross-flow oscillation than by the in-line oscillation [3].

The effect of Reynolds number was examined by Alturi et al. [START_REF] Atluri | A numerical investigation of the near-wake structure in the variable frequency forced oscillation of a circular cylinder[END_REF] by numerical study of a forced vibration problem. Their findings did not completely match the Williamson-Roshko map (as described in [START_REF] Dalton | A review of vortex-induced vibrations[END_REF]). Alturi et al. found that a variable frequency of oscillation at constant amplitude affects the vortex patterns. The result of the Alturi et al.'s study indicates that VIV problem is quite complicated and there is still a lot to be learned about the phenomenon [START_REF] Dalton | A review of vortex-induced vibrations[END_REF].

Conclusion

Vortex-excited oscillations of elastic cylinders has been less inspected by researchers. In fact, two-degree-offreedom VIV of structures, no matter elastically mounted rigid or continuous elastic, are not well understood.

No particular analytical study of two-degree-of-freedom oscillations of cantilevered vertical cylinder has been identified. Even though elastically mounted rigid cylinders under transverse vibrations have been studied

for several decades, there is no certain solution for this canonical case. Solutions are based on experimental works, and numerical simulations do not quantitatively support the experimental results. Chaplin et al. [START_REF] Chaplin | Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser[END_REF] highlight some discrepancies between available results. 

Proposed contributions

Analysis of the cylinder will be divided into several steps. In the first step an undamped system is analyzed and undamped natural frequencies are computed. A differential equation governing the vibration and buckling behavior of the vertical cantilevered cylinder is determined from an energy approach and confirmed using equilibrium equations. We highlight the effects of the self-weight on the natural frequencies and eigenfunctions.

Next, an appropriate damping model is to be added to the structure and the damped natural frequencies and modes are to be found. In finding the damped natural modes, each mode is to be represented by two shape functions as opposed to the conventional one shape approach. This method will be employed to consider the case of an arbitrary damping model rather than a proportional damping model [START_REF] Etkin | Effect of a damper on the wind-induced oscillations of a tall mast[END_REF].

Forced vibration analysis comes next, and completes the theoretical segment of the work. Fluid forces are to be considered as harmonics in the first step, and modified based on the outcome of the analytical and finite element analysis of the structure. At the end, a computational and/or experimental study will be performed to provide an insight to our choices for fluidic forcing terms and the response of the structure.

Undamped vertical cantilevered beam

We derive the differential equation of motion and the associated boundary conditions by means of the extended Hamilton's principle

δ t2 t1 (E K + W ) dt = 0 (4.1)
in which E K is the kinetic energy, W is the work function, and δ denotes a variation [START_REF] Meirovitch | Analytical methods in vibrations[END_REF].

We are not ignoring the effects of the axial force due to gravity in the first place. However, it is assumed that due to the axial stiffness the axial motion is negligible. Hence, we will investigate the effects of an axial force F (z, t) upon the bending vibration of a beam, Fig. 4.2. The kinetic energy of the beam may be represented as

E K = 1 2 H 0 ρ s (z) ∂u(z, t) ∂t 2 dz (4.2)
where ρ s (z) is the distributed mass or mass per unit length of the vertical beam. The work function includes the effects of the bending moment, the axial force, and the transverse load. By taking gravity into account, for an inextensible beam, we intend to examine the effects of the self-weight on the dynamic behavior of the beam. Weight, the axial force, becomes an important parameter as the length of the structure is increased, and may become the dominant form of loading and/or a destabilizing factor increasing the chance of buckling.

The axial force is due to the weight of the structure and varies linearly along the height (span). The work done by the axial force is The total work function is

W F (t) = - 1 2 H 0 F (z, t) ∂u(z, t) ∂z 2 dz (4.3)
W T (t) = - 1 2 H 0 EI(z) ∂ 2 u(z, t) ∂z 2 2 dz - 1 2 H 0 F (z, t) ∂u(z, t) ∂z 2 dz + H 0 p(z, t)u(z, t) dz (4.4)
It is assumed that the transverse displacement does not influence the axial force, and transverse motion does not affect lateral forces. The variation in the kinetic energy is

t2 t1 δE K dt = - t2 t1 H 0 ρ s ∂ 2 u ∂t 2 δu dz dt (4.5)
because, δu(z, t) = 0 at t = t 1 and t = t 2 . Taking the first variation of the total work function, (4.4), and substituting (4.5) and the variation of the total work in (4.1) results in

t2 t1 H 0 -ρ s ∂ 2 u ∂t 2 -∂ 2 ∂z 2 EI ∂ 2 u ∂z 2 + ∂ ∂z F (z) ∂ u ∂z + p δu dz dt + t2 t1 -EI ∂ 2 u ∂z 2 δ ∂ u ∂z H 0 + -F (z) ∂ u ∂z + ∂ ∂z EI ∂ 2 u ∂z 2 δu H 0 dt = 0 (4.6)
For any arbitrary variation of displacement, δu, and its first derivative, δ ∂ u ∂z , the total variation must vanish. Therefore, the differential equation of motion becomes

∂ 2 ∂z 2 EI ∂ 2 u ∂z 2 - ∂ ∂z F (z) ∂ u ∂z + ρ s ∂ 2 u ∂t 2 = p (4.7)
Furthermore, the boundary conditions are described with

EI ∂ 2 u ∂z 2 δ ∂ u ∂z H 0 = 0 (4.8) F (z) ∂ u ∂z -∂ ∂z EI ∂ 2 u ∂z 2 δu H 0 = 0 (4.9)
Equation (4.8) is satisfied if either the slope is zero, ∂ u ∂z = 0, or the bending moment is zero, EI ∂ 2 u ∂z 2 = 0. The boundary condition in (4.9) means that either the horizontal force or the deflection is zero at either end.

Therefore, both types of the boundary conditions, natural and geometric types, are present. The differential equation of motion and the boundary conditions in y-direction are obtained in a similar way, except u(z, t) is replaced by v(z, t). Similar equations of motion have been found using Newton's method to confirm the previous results. The linearly varying load due to gravity could be expressed as

F (z) = gρ s (H -z), g < 0 (4.10)
which changes the governing equation, (4.7), to

∂ 2 ∂z 2 EI ∂ 2 u ∂z 2 - ∂ ∂z gρ s (H -z) ∂ u ∂z + ρ s ∂ 2 u ∂t 2 = p (4.11)
assuming the linear mass density and flexural rigidity are constant, the previous equation, (4.11), is recast to

EI ∂ 4 u ∂z 4 -W s (H -z) ∂ 2 u ∂z 2 + W s ∂u ∂z + ρ s ∂ 2 u ∂t 2 = p (4.12)
where W s is the weight per unit length of the structure.

Solution of the undamped system

Substituting a solution of the form u(z, t) = U (z)T (t) (4.13) in (4.12) and separating the variables results in

T (t) + λ 2 n EI ρ s T (t) = 0 (4.14) U (z) - W s EI (H -z)U (z) + W s EI U (z) -λ 2 n U (z) = 0 (4.15)
The first equation, (4.14), has a harmonic solution as was expected. The solution of (4.14) is given by

T (t) = A sin(ω n t) + B cos(ω n t) (4.16)
where ω 2 n = λ 2 n EI ρs . Finding a closed form solution for the second equation, (4.15), is a challenging task. While pursuing a solution for that, it is assumed that applying a portion of the total weight of the structure as a constant axial load will render the fundamental frequency the same as the fundamental frequency of the structure under the actual weight distribution. Therefore, (4.15) is re-written for a constant axial load as

U (z) - P EI U (z) -λ 2 n U (z) = 0 (4.17)
Taking β = P 2EI , (4.17) is recast to

U (z) -2βU (z) -λ 2 n U (z) = 0 (4.18)
Solutions of (4.18) are sought in terms of exponential functions, e rz , and characteristic equation becomes

r 4 -2βr 2 -λ 2 n = 0 (4.19)
which has two real roots and two complex roots as

± β 2 + λ 2 n + β, ± ı β 2 + λ 2 n -β (4.20)
Therefore, the solution of (4.17) can be presented as a sum of cos, sin, cosh, and sinh terms

U (z) = c 1 sinh(Ω 1 z) + c 2 cosh(Ω 1 z) + c 3 sin(Ω 2 z) + c 4 cos(Ω 2 z) (4.21)
where

Ω 1 = β 2 + λ 2 n + β, Ω 2 = β 2 + λ 2 n -β (4.22)
After applying boundary conditions, the following solvability condition is obtained

λ 2 n + βλ n sinh (Ω 1 H) sin (Ω 2 H) + 2β 2 + λ 2 n cosh (Ω 1 H) cos (Ω 2 H) = 0 (4.23)
The roots of (4.23), λ n , provoke the natural frequencies of the cantilevered beam under constant axial load.

Orthogonality conditions

In conventional modal analysis, the equations of motion are decoupled employing the mass and stiffness orthogonality conditions. Upon deriving mode shapes, it is required to derive similar equations to be used to uncouple the equations of forced oscillations for the vertical beam under gravity. The final form of the orthogonality relations are

H 0 ρ s (z)Φ j (z)Φ i (z) dz = 0 j = i (4.24) H 0 EI ∂ 2 Φj (z) ∂z 2 ∂ 2 Φi(z) ∂z 2 dz = H 0 W s (H -z) ∂ Φj (z) ∂z ∂ Φi(z) ∂z dz j = i (4.25)
Later the uncoupled equations of motion for the forced response will be obtained assuming a modal expansion of mode shapes. Upon obtaining equations of motion they will be put in reduced first order form implementing Foss'method [START_REF] Foss | Co-ordinates which uncouple the equations of motion of damped linear dynamic systems[END_REF].

Damped vertical cantilevered cylinder

The damped governing equation of motion can be obtained by adding a damping term to (4.12)

EI ∂ 4 u ∂z 4 -W s (H -z) ∂ 2 u ∂z 2 + W s ∂u ∂z + c s ∂u ∂t + ρ s ∂ 2 u ∂t 2 = p (4.26)
The solutions of homogenous system, i.e. p = 0, yields the eigenvalues and eigenfunctions, or damped frequencies and damped modes, of the structure. Considering a general damping term the modes can behave different from classical theory and there might be a phase difference between the points of the beam. In this case, the special form of the solution is

u(z, t) = Φ(z)e αt (4.27)
in which Φ(z) is a complex eigenfunction (mode shape) and α is a complex eigenvalue. Substituting (4.27) in (4.26) gives

EIΦ (z) -W s (H -z)Φ (z) + W s Φ (z) + c s α + ρ s α 2 Φ(z) = 0 (4.28)
A conventional approach may not find a solution of (4.28). As an alternative, we will formulate discritized equations of motion using finite element method (FEM) in section 4.3.5.

Forced vibration analysis

Back to (4.26), in a normal coordinate transformation the response of the structure is expressed as a superposition of the mode shapes Φ j (z), each multiplied by corresponding time function (as a weighting function)

which is called modal or normal or generalized coordinate, i.e. we will apply Galerkin's method. Thus,

u(z, t) = ∞ j=1 Φ j (z)Ψ j (t) (4.29)
Substitution of (4.29) in (4.26) gives

∞ j=1 EIΦ j (z)Ψ j (t) -W s (H -z)Φ j (z) Ψ j (t) + c s (z)Φ j (z) Ψj (t) + ρ s (z)Φ j (z) Ψj (t) = p (4.30)
In conventional theory of normal modes, modes are assumed to be orthogonal. Therefore, if modes are orthogonal, by multiplying (4.30) through by Φ i (z), integrating along the span, and using orthogonality relations uncoupled equations of motion are obtained. The damping matrix will not in general have the orthogonality property, which could be resolved, for example, by assuming a proportional form of damping.

The most important outcome of having nonproportional damping is complex vibration modes. When all points do not move in unity and do not pass through their maxima/minima at the same time, nodes do not necessarily exist or are not constant in terms of location, and degrees of freedom are not essentially in-phase or 180 degrees out-of-phase, a mode shape cannot be described by one shape. Assuming all modes are damped oscillations, all mode shapes and eigenvalues occur in conjugate complex pairs [START_REF] Etkin | Effect of a damper on the wind-induced oscillations of a tall mast[END_REF]. Letting Φ j (z) and Φ j (z) be the conjugate pair of eigenfunctions associated with the eigenvalues α j and α j of the j th mode, the real mode is then

u(z, t) = Φ j (z)e αj t + Φ j (z)e αj t = 2e κt ϕ(z) cos ωt -ψ(z) sin ωt (4.31)
where κ, ω, ϕ, and ψ are real and imaginary parts of the corresponding eigenvalue, α j , and eigenfunction, Φ j , respectively.

Free vibration analysis using FEM

The discretized equations of motion for the vertical cantilevered beam could be developed using a modified form of the Lagrange's equation (Euler-Lagrange equations) [START_REF] Petyt | Introduction to finite element vibration analysis[END_REF][START_REF] Humar | Dynamics of structures[END_REF] d dt

∂L ∂ qj - ∂L ∂q j + ∂D f ∂ qj = Q j , j = 1, 2, ..., n (4.32)
where L is the system's Lagrangian, D f is an appropriate dissipation function, and Q j is the generalized force. The Lagrangian is defined by L = E K -E P where E K and E P are the kinetic and potential energies, respectively. The kinetic energy is given by (4.2). The total potential energy includes the strain energy and the gravitational potential energy. Initially, the dissipation function will be included in the form of the Rayleigh dissipation function. Therefore, the energy expressions are

E S = H 0 1 2 EI ∂ 2 u(z, t) ∂z 2 2 dz (4.33) E L = H 0 1 2 F (z) ∂u(z, t) ∂z 2 dz (4.34) D f = 1 2 H 0 c(z) ∂u(z, t) ∂t 2 dz (4.35)
where E S is the strain energy, E L is the potential energy due to axial load or gravitational potential energy, and c(z) is the damping force per unit length.

For now, we have considered a one-dimensional beam element with two nodes, which has four degrees of freedom at each node. Therefore, the initial element has eight degrees of freedom namely displacements, in the x-and y-directions, and corresponding slopes of the beam element. For clarity of notation, matrices are developed for one direction here which could be simply generalized to the motion in the other direction. The domain, z ∈ [0, H], is discretized to one-dimensional elements of length h i . The element local coordinate is chosen to vary between -1 and +1, therefore

ξ = z -z i2 z i2 -z i1 + z -z i1 z i2 -z i1 (4.36)
The element trial function is chosen to be a cubic polynomial

u(ξ, t) = a 1 + a 2 ξ + a 3 ξ 2 + a 4 ξ 2 = 1 ξ ξ 2 ξ 3 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a 1 a 2 a 3 a 4 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (4.37)
After applying displacement and slope boundary conditions at each node

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u i1 hi 2 θ i1 u i2 hi 2 θ i2 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 -1 1 -1 0 1 -2 3 1 1 1 1 0 1 2 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a 1 a 2 a 3 a 4 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (4.38)
The element trial function becomes

u(ξ, t) = N(ξ) u i (4.39)
where where M, D, and K are global mass, damping, and stiffness matrices of the vertical cantilevered beam in free vibration. Setting D equal to zero, the undamped system of equations of motion are obtained and will be solved to find approximate eigenvalues and eigenvectors. The finite element formulation provides an alternative method to the solutions of the eigenvalue problems posed in (4.17) and (4.28).

N 1 (ξ) = 1 4 (2 -3ξ + ξ 3 ) N 2 (ξ) = 1 4 
h i 2 (-1 -ξ -ξ 2 + ξ 3 ) N 3 (ξ) = 1 4 (2 + 3ξ -ξ 3 ) N 4 (ξ) = 1 4 h i 2 (-1 -ξ + ξ 2 + ξ 3 ) ( 4 

Forced vibration analysis using FEM

Our first approximation will be to model vortex-induced forces on the structure as harmonic forces in time at the shedding and twice shedding frequencies in the in-line and transverse directions. Thus

F D = 1 2 ρ f V 2 DC D sin(2ωt) (4.46) F L = 1 2 ρ f V 2 DC L sin(ωt) (4.47) 
where ω = ω vs , F D and F L are the drag and the lift force per unit length, respectively. The frequency of vortex shedding might be chosen to be equal to the Strouhal frequency as our first estimate. Therefore, assuming St = 0.2 and having a free stream velocity will determine the frequency of vortex shedding. In the process, forcing terms are to be modified and other models, such as wake oscillator models are to be examined as we look for better representation of the phenomena.

One way of including the effects of distributed and concentrated forces will be to add them as a consistent force vector in the finite element formulation. The consistent force vector for one element in the x-direction will then be

f ix = +1 -1
F L NJ dξ (4.48)

f iy = +1 -1 F D NJ dξ (4.49)
where the Jacobian determinant is simply J = hi 2 . Force vectors will be combined with each other to make one forcing vector for each element, which are then assembled into the global consistent force vector.

Synopsis of thesis

The main goal of this work is to study the dynamics of a vertical cantilevered circular structure undergoing two-degree-of-freedom oscillations in cross-flow (flow perpendicular to the initial axis of the beam). Both streamwise and transverse vibrations are taken into account. We are going to identify natural frequencies and mode shapes of a cantilevered structure with self-weight and non/proportional damping, and characterize the response of such a structure in a steady uniform flow. In the course of this research, we will address several fundamental issues associated with VIV of cantilevered structures. An estimated schedule of the activities are presented in Table 4.1. Research highlights are:

1. Assess the undamped natural frequencies and mode shapes of a vertical cantilevered structure under self-weight.

2. Select and add an appropriate form of damping and determine the damped frequencies and mode shapes of the structure.

3. Develop and implement an appropriate method to uncouple the equations of motions of the structure.

4. Analyze the forced response of the structure in an steady uniform flow.

5. Analyze the forced response of the system coupled with a wake oscillator model. [START_REF] Strouhal | Annalen der physik und chemie[END_REF]. Quantify the response of the structure in both cases and compare with available literature. 7. Study the response of the structure not only in the synchronization range, but also in the small oscillation range.

8. Develop an experimental procedure to verify the results of the analytical and numerical methods. 
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  (i) unsteady quasiin-line oscillations and (ii) figure C-like motions. No figure-eight-type motion was identified in the initial branch. Immediately beyond the initial branch, the upper branch was dominated by figure-8-like motions.
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Research methods and contributions

Introduction

In the following sections the objectives of the current research and approaches are introduced, extended and clarified. Developing a methodology in order to understand vortex-induced vibrations (VIV) of elastic cantilevered cylinders with constant cross-section in uniform steady flow is in the center of the thesis. This will require a considerable background preparation due to the intricacy of the subject. The objective of this project is to develop a theoretically validated model for elastic vertical cylinders undergoing two-degree-offreedom oscillations in each section. Available relevant information in the literature will be extracted during the work to evaluate the model. We will use computational methods such as finite element method, and possibly experimental methods to validate our analytical findings.

Problem statement

The major problem to be considered is composed of a clamped circular structure or a vertical cantilevered beam with circular cross-section in uniform velocity profile flow, Fig. 4.1. In addition to the canonical problem of a vertical cantilevered beam in uniform flow, a cantilevered beam in a flow with varying velocity profile might be investigated by the end of the work.