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RIGHT-ORDERABILITY VERSUS LEFT-ORDERABILITY

FOR MONOIDS

FRIEDRICH WEHRUNG

Abstract. We investigate the relationship between (total) left- and right-
orderability for monoids, in particular illustrating the finite case by various

structural observations and counterexamples, also highlighting the particu-
lar role played by positive orderability. Moreover, we construct a non-left-
orderable, positively right-orderable submonoid of the free product of the cyclic
group of order 7 with the free group on four generators. Any group extension
of that monoid has elements of order 7.

1. Introduction

The purpose of the present note is to remove an itch.
A monoid M is right-orderable if it has a right order, that is, a total order ≤

such that x ≤ y implies xz ≤ yz whenever x, y, z ∈ M . Left-orderability is right-
orderability applied to the opposite monoid of M (with multiplication defined by

x ·′ y
def
= yx). It is well known that right-orderability and left-orderability are

equivalent for groups (Proof : let x ≤′ y hold if y−1 ≤ x−1).
Are they equivalent for arbitrary monoids? A moment’s thought, backed up by

a few computations, shows that even for finite monoids this is not the case. In
Example 2.10(1) we describe a four-element counterexample.

However, this is not the main point of the above-mentioned itch. Owing to a
large existing corpus of works involving submonoids of groups, see in particular [6, 8],
we are asking the question for those particular monoids. One would expect that
question to have been answered long ago, however the author of the present note
has not been able to find such a result in the literature. Our counterexample M ,
constructed in Theorem 4.2, is in fact positively ordered (i.e., the unit of M is its
bottom element), and any group containing M has elements of order 7. Although
we first define M via generators and relations, we soon find it convenient to describe
it as the universal monoid of a finite category (with 30 non-identity arrows). The
universal group of M is the free product of Z/7Z with the free group on four
generators. The embeddability of M into a group (thus into that group) does not
follow a priori from usual sufficient conditions such as Adjan’s condition (cf. [1] or
[13, Theorem 4.6]) or Dehornoy’s 3-Ore condition [7]. Instead, we are applying our
criterion, stated in [19, Theorem 10.1], of embeddability of the universal monoid
of a category into its universal group. Further, the right-orderability of M follows
from a general result (Lemma 4.1) making it possible, under certain conditions,
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2 F. WEHRUNG

to extend a right order, from the canonical image of a category S in its universal
monoid Umon(S), to a right order on the full Umon(S).

Let us briefly mention some related works, whose results we will not use here but
that might help putting things into context. Johnson constructs in [10] cancellative
bi-orderable (i.e., having a two-sided order) monoids that cannot be embedded into
groups. Darnel, Glass, and Rhemtulla prove in [5] that if every right order on a
right-orderable group G is also a left order, then G is Abelian. For further insights
on ordered semigroups, see Tringali [17]. For the commutative case (which will be
of concern in Sections 2 and 3), see Evans et al. [9], Vetterlein [18], Whipple [20].

The finite model property for the variety of all distributive ℓ-monoids, estab-
lished in Section 4.2 of Almudena Colacito’s PhD thesis [3], highlights an interesting
connection between orderability in finite monoids and in infinite (e.g., free, lattice-
ordered. . . ) groups. Actually, the main (infinite, group-embeddable) example un-
derlying Section 4 was first obtained by testing, on finite right-orderable monoids,
variants of the defining equations (4.2) for that example. This helps motivating
our Sections 2 and 3, mostly focused on various aspects of finite orderable monoids.
Nonetheless, aside from the main definition (Definition 2.1), those sections can be
read independently from Section 4 (our group-embeddable counterexample).

We claim no particular depth for the results of this note, rather hoping that they
could, aside from removing a few itches, lead to further-reaching investigations, as
well on the finite case as on the group-embeddable case, and their connections.

We will denote by N, Z, and Q the additive monoids of all nonnegative integers,
integers, and rational numbers, respectively. We will also denote by Fgp(n) the free
group on n generators, and by G ∗H the free product of any two groups G and H .

A subset X in a partially ordered set P is a lower subset of P if for all x ∈ X
and all p ∈ P , p ≤ x implies that p ∈ X .

2. Right-orderable monoids

In this section we shall get started by formally stating the definition of a right
order (resp., a positive right order) on a monoid (Definition 2.1) and collect a few
observations about those, consisting of both positive results and counterexamples,
focusing on the finite case. As the existence of a translation-invariant partial order,
on any given monoid, is trivial (just take the diagonal), we shall follow tradition
and omit the qualifier “total” (or “linear”), for example saying “order”, “positive
order”, “partial order” instead of “total order”, “total positive order”, and “order”,
respectively.

Definition 2.1. A partial order ≤ on a monoid M is

— positive if 1 ≤ x for every x ∈ M ;
— a partial right order if x ≤ y implies that xz ≤ yz, for all x, y, z ∈ M (we

say that ≤ is right translation-invariant);
— a right order if it is both a total order and a partial right order.

We say that the monoid M is right-orderable (resp., positively right-orderable) if
it has a right order (resp., a positive right order).

Those concepts, applied to the opposite monoid ofM , yield (partial, positive) left
orders and (positively) left-orderable monoids, respectively. An order is a bi-order

if it is both a right- and left-order, and we define bi-orderability as the existence of
a bi-order.
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We will omit either prefix “right-”, “left-”, or “bi-” in the commutative case.

In many works, right-orderability is defined to mean the existence of a right
translation-invariant strict order on a monoid (i.e., x < y implies xz < yz). Our
current definition is thus weaker: as we will see shortly, it indeed produces finite
examples. For right cancellative monoids the two definitions are of course equiva-
lent.

Note. Bi-orderability, as defined above, is (strictly) stronger than the conjunction
of right- and left-orderability. A well known example illustrating this is the braid
group B3, which is right-orderable (thus, since it is a group, left-orderable as well)
but not bi-orderable (cf. Propositions II.1.2 and II.1.9 in [8]). Finite both right-
and left-orderable, but not bi-orderable, monoids are given in Examples 3.4 (which
is idempotent, that is, all of its elements are idempotent) and 3.5 (with is positively
left- and right-orderable).

The following observation shows that existence of translation-invariant orders
reflects on the idempotents. The specialization of Proposition 2.2(2) to idempotent
monoids follows from Couceiro et al. [4, Lemma 2.5].

Proposition 2.2. The following statements hold, for any monoid M :

(1) If M is idempotent and has both a positive partial right order ≤r and a positive

partial left order ≤l, then M is commutative. In particular, M is bi-orderable.

(2) If M is bi-orderable, then ab ∈ {a, b} for all idempotent a, b ∈ M .

(3) If M is positively bi-orderable, then ab = ba ∈ {a, b} for all idempotent a, b ∈ M
(we say that the idempotents of M form a chain).

Proof. Ad (1). Let x, y ∈ M . Then yx ≤r xyx ≤r yxyx = yx, whence xyx = yx.
Likewise, xy ≤l xyx ≤l xyxy = xy, whence xyx = xy. Therefore, xy = yx.

Ad (2). Let ≤ be a bi-order of M . We may replace ≤ by its dual order and thus
assume that 1 ≤ ab. If a ≤ b, then b = 1b ≤ ab2 = ab ≤ b2 = b, thus b = ab. If
b ≤ a, then a = a1 ≤ a2b = ab ≤ a2 = a, thus a = ab.

Ad (3). By (2), the set E of all idempotent elements in M is a submonoid of M ,
and ab ∈ {a, b}. By (1), E is commutative. �

Remark 2.3. Binary operations · satisfying x·y ∈ {x, y}, for all x, y in their domain,
are often called quasitrivial. Proposition 2.2(2) says that if M is bi-orderable, then
the restriction of the multiplication of M to its idempotents is quasitrivial. A qu-
asitrivial monoid arises in this way iff it is bi-orderable. A 4-element, quasitrivial,
non left-orderable monoid is given in [4, Fig.5]. A deep result of Saitô [14, Theo-
rem 4.11] characterizes the bi-orderability of an idempotent semigroup in terms of
a finite list of forbidden finite subsemigroups.

Proposition 2.2(2) implies that the Boolean semilattice {0, 1}2 is not orderable.
This is superseded by the following observation by George Bergman, which shows
an important difference between the general case and the cancellative case.

Proposition 2.4. Let M and M ′ be monoids. Then M × M ′ is right-orderable

iff M and M ′ are both right-orderable and at least one of them is right cancellative.

Proof. If M and M ′ are both right ordered and M is right cancellative, then the
lexicographical product on M × M ′ is a right order. Conversely, let M × M ′ be
right ordered and suppose, by way of contradiction, that there are x, y, z ∈ M such
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that x 6= y and xz = yz (denote that element by u), together with x′, y′, z′ ∈ M ′

such that x′ 6= y′ and x′z′ = y′z′ (denote that element by u′). We may assume
that (x, u′) < (y, u′). Since (x, u′) = (x, x′)(1, z′) = (x, y′)(1, z′) and (y, u′) =
(y, x′)(1, z′) = (y, y′)(1, z′), it follows that (x, x′) < (y, y′) and (x, y′) < (y, x′). If
(u, x′) < (u, y′), then, since (u, x′) = (y, x′)(z, 1) and (u, y′) = (x, y′)(z, 1), we get
(y, x′) < (x, y′), a contradiction. If (u, y′) < (u, x′), then, since (u, y′) = (y, y′)(z, 1)
and (u, x′) = (x, x′)(z, 1), we get (y, y′) < (x, x′), a contradiction again. �

Say that a monoid M is conical if it satisfies the implication1 xy = 1 ⇒ y = 1.

Proposition 2.5. The following statements hold, for any finite right-orderable

monoid M :

(1) For every x ∈ M there exists m ∈ N such that xm = xm+1. Denoting2 that ele-

ment of M by xω, it is idempotent and it satisfies the equations

xxω = xωx = xω. Further, for any y ∈ M , xy = y iff xωy = y, and yx = y iff

yxω = y.
(2) M is conical.

(3) If, in addition, M is commutative, then it satisfies the implication xyz = z ⇒
yz = z.

Proof. Ad (1). If 1 ≤ x, then xn ≤ xn+1 for all n ∈ N. If x ≤ 1, then xn+1 ≤ xn

for all n ∈ N. In both cases, since M is finite, there exists m such that xm = xm+1.
Denoting this element by xω, it satisfies, by definition, xxω = xωx = xω = xωxω.
If xy = y, then xny = y for all n, whence xωy = y. Conversely, if xωy = y, then
xy = xxωy = xωy = y. Similarly, yx = y iff yxω = y.

Ad (2). If xy = 1, then xnyn = 1 for all n ∈ N; so xωyω = 1, and so y = 1y =
xωyωy = xωyω = 1.

Ad (3). Let xyz = z within M . Then (xy)
ω
z = z by (1). Since M is commuta-

tive, (xy)
ω
= yωxω , so yz = y(xy)

ω
z = yyωxωz = yωxωz = (xy)

ω
z = z. �

Remark 2.6. By using a more elaborate argument, Proposition 2.5(3) can be ex-
tended to the case where any two idempotents of M commute. (By Example 2.10(2),
the commuting idempotents assumption cannot be dispensed with.) That exten-
sion follows in turn from Proposition 2.2(2) together with a more general result, due
to Shevrin [16, Corollary 3.38], valid in the class of all epigroups (aka completely

π-regular semigroups).

Proposition 2.5(3) says that in the commutative case, the binary relation ≤+,
defined by letting x ≤+ y hold if there exists z such that x + z = y, is a positive
partial order of the monoid. In contrast to Remark 2.6, the following example,
obtained with the help of McCune’s wonderful Mace4 counterexample builder [12],
shows that this observation fails to extend to the non-commutative case, even if we
assume that the idempotents form a chain.

Example 2.7. A 10-element bi-orderable monoid, in which the idempotents form

a chain, without any positive partial bi-order.

1Here and elsewhere we use math sans serif fonts x, y, z to mark syntactic variables, as distinct
from monoid elements x, y, z.

2The notation x
ω is customary in semigroup theory, see for example Shevrin [16].
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Proof. The monoid M , with multiplication table represented in Table 2.1, can be
bi-ordered via the inequalities i < 1 < a < b < c < d < e < f < g < ∞. Its
idempotents, namely 1, i, a, ∞, form a chain (e.g., ia = ai = a).

· i 1 a b c d e f g ∞
i i i a b c d e f g ∞
1 i 1 a b c d e f g ∞
a a a a b d d e f g ∞
b b b e f f g ∞ ∞ ∞ ∞
c b c e f f g ∞ ∞ ∞ ∞
d b d e f f g ∞ ∞ ∞ ∞
e e e e f g g ∞ ∞ ∞ ∞
f f f ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
g f g ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 2.1. A bi-orderable monoid, in which the idempotents form
a chain, with no positive partial bi-order

Suppose that M has a positive partial bi-order ✂. Then c2 ✂ cac✂ caci = c2, so
f = c2 = cac = g, a contradiction. �

Let us now introduce a source of future examples.

Notation 2.8. For any set X , denote by X(1) the monoid obtained by adjoining
a unit to the right zero semigroup with universe X . Hence X(1) = X ∪ {1} and

xy =

{

x , if y = 1 ,

y , if y 6= 1
for all x, y ∈ X ∪ {1} .

The monoid X(1) is both conical and idempotent. More can be said.

Proposition 2.9. The following statements hold for any set X:

(1) X(1) is positively right-orderable.

(2) X(1) is orderable iff it is left-orderable iff cardX ≤ 2.
(3) X(1) is positively orderable iff it has a positive partial left order iff cardX ≤ 1.

Proof. Ad (1). Any total order of the set X ∪ {1} is a right order of X(1).
Ad (2), (3). IfX = ∅ orX is a singleton, thenX(1) is the one-element semilattice

or the two-element semilattice, respectively; thus it is positively orderable. If X =
{a, b} with a 6= b, then the inequalities a < 1 < b define a bi-order of X(1).

Let ≤ be a left order of X(1), and suppose that X has at least three distinct
elements. We may replace ≤ by its dual order and thus assume that there are
a, b ∈ X such that 1 < a < b. From 1 < a it follows that b ≤ ba, that is, b ≤ a, a
contradiction.

Let ≤ be a positive partial left order of X(1). We prove that any two elements a,
b of X are equal. From 1 ≤ a it follows that b = b1 ≤ ba = a. Similarly, a ≤ b;
whence a = b. �

A direct application of Proposition 2.9 thus yields the following examples.
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Examples 2.10. Let a, b, c be distinct objects. Then

(1) {a, b, c}
(1)

is a positively right-orderable, but not left-orderable, idempotent
monoid.

(2) {a, b}
(1)

is a bi-orderable, positively right-orderable, idempotent monoid with-
out any positive partial left order.

Any positively partially right-orderable monoid is conical; in fact, it obviously
satisfies the more general implication xyz = z ⇒ yz = z (Proof : observe the
inequalities z ≤ yz ≤ xyz). In particular, the orderable monoid (group) Z is not
positively orderable. Our next example is commutative and we will thus write it
additively.

Example 2.11. An infinite, conical, orderable, commutative monoid without any

positive partial order.

Proof. We define a monoid congruence ≡ on N× N by the rule

(x1, y1) ≡ (x2, y2) if (x1, y1) = (x2, y2) or (0 /∈ {x1, y1, x2, y2} and y1−x1 = y2−x2) .

and we set M
def
= (N×N)/≡. We can identify M with the set of all bottom elements

(with respect to the componentwise order of N × N) of ≡-equivalence classes, so
M = {(x, y) ∈ N× N | {x, y} ∩ {0, 1} 6= ∅}. Whenever z1, z2 ∈ M , z1 + z2 is then
the bottom element of the ≡-equivalence class of the componentwise sum of z1
and z2. The binary relation ≤, defined on M by the rule

(x1, y1) ≤ (x2, y2) if either y1 − x1 < y2 − x2 or y1 − x1 = y2 − x2 and x1 ≤ x2 ,

is a translation-invariant order of M . (Notice that since M is not cancellative,

the associated strict order is not translation-invariant: for example, (0, 1) < (1, 2)

whereas (0, 1) + (1, 0) = (1, 2) + (1, 0) = (1, 1).) Setting a
def
= (1, 0), b

def
= (0, 1), and

e
def
= a+ b = (1, 1), we can illustrate the order of M by writing it as

· · · < 2a < 2a+ e < a < a+ e < 0 < e < b < b+ e < 2b < 2b+ e < · · ·

Suppose that M has a positive partial order ✂. From 0 ✂ a✂ a + b = e it follows
that e ✂ a+ e✂ 2e = e, thus a+ e = e, that is, (2, 1) = (1, 1), a contradiction. �

Example 2.11, being infinite, naturally induces further itches. Our next section
will be aimed at removing some of those.

3. More on positive orderability versus orderability

The existence of a finite analogue of Example 2.11 was stated as an open problem
in the preliminary version of the present note. A decisive clue was then quickly
provided by George Bergman, who suggested the author to try constructing an
orderable commutative monoid satisfying a more general form of the relations (3.1),
between the parameters a, b, p, q, appearing in the proof of the example below. The
rest of the work was performed by the Mace4 counterexample builder [12], which
returned the following example.

Example 3.1. A nine-element orderable commutative monoid without any positive

(total) order.
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+ 1 0 1 2 3 4 5 6 ∞

1 1 1 1 2 2 4 5 5 ∞

0 1 0 1 2 3 4 5 6 ∞

1 1 1 4 5 5 5 ∞ ∞ ∞
2 2 2 5 5 5 ∞ ∞ ∞ ∞
3 2 3 5 5 6 ∞ ∞ ∞ ∞
4 4 4 5 ∞ ∞ ∞ ∞ ∞ ∞
5 5 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞
6 5 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Table 3.1. An orderable, but not positively orderable, commuta-
tive monoid

Proof. The monoid M , with multiplication table represented in Table 3.1, can be
ordered via the inequalities 1 < 0 < 1 < 2 < 3 < 4 < 5 < 6 < ∞.

The elements a = 1, b = 3, p = 1, and q = 1 satisfy the relations

2a+ p = a+ b 6= 2a and 2b+ q = a+ b 6= 2b . (3.1)

Suppose that M has a positive order, with associated strict order ✁. From 2a+p =
a+ b 6= 2a it follows that 0✁ p and 2a✁ 2a+ p = a+ b, whence (since a and b are
comparable with respect to ✁) we get a✁ b. Similarly, from 2b+ q = a+ b 6= 2b we
get b✁ a; a contradiction. �

The idempotents in the example M above, namely 0, 1, ∞, form a chain, which
should be no surprise by Proposition 2.2(2) together with the commutativity of M .

Remark 3.2. A fundamental difference between Examples 2.7, 2.10(2), and 2.11 on
the one hand, and Example 3.1 on the other hand, is that the former examples all
state the non-existence of a positive partial order. Example 3.1 cannot be improved
in that direction (stating the non-existence of any positive partial order): indeed,
by Proposition 2.5(3), every finite orderable commutative monoid M satisfies the
implication x+ y + z = z ⇒ y + z = z, so the binary relation ≤+ on M , defined by
letting x ≤+ y hold if there exists z such that x+ z = y, is a positive partial order
of M .

It turns out that the situation is different in the cancellative case. Say that a
monoid M has unique roots if it satisfies the implication xn = yn ⇒ x = y, for
every positive integer n. The following result, slightly extending Levi’s classical
result [11] that every torsion-free Abelian group is orderable, shows that there is
no cancellative analogue of Example 2.11.

Proposition 3.3. The following are equivalent, for any cancellative commutative

monoid M :

(i) M is positively orderable;

(ii) M is conical and orderable;

(iii) M is conical and has unique roots.

Proof. The implications (i)⇒(ii)⇒(iii) are straightforward. It remains to establish
the implication (iii)⇒(i). Let thus M be a cancellative, conical, commutative mon-
oid with unique roots. In order to prove the positive orderability of M , it suffices,
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by a standard compactness argument, to consider the case where M is finitely gen-
erated. In such a case, since the universal group G of M is torsion-free (because M
has unique roots), G ∼= Zn for some positive integer n. Let K be the convex hull,
within Qn, of some finite generating subset of M \ {0}. From the conicality of M
it follows that 0 /∈ K. By the Farkas-Minkowski-Weyl Theorem (see, e.g., [15,
Corollary 7.1a]), there is a linear functional f : Qn → Q such that f(x) > 0 for
all x ∈ K; whence f(x) > 0 for all x ∈ M \ {0}. We may assume that f is the
projection on the first coordinate in Qn. The order of M , defined as the restriction
of the lexicographical order of Qn, is as required. �

The following Examples 3.4 and 3.5 were both obtained with the help of Mace4.

Example 3.4. A four-element, left-orderable, positively right-orderable, non bi-or-

derable idempotent monoid.

Proof. Consider the monoid M with multiplication table represented in Table 3.2.
The inequalities 1 <r a <r b <r c define a positive right order of M , while the

· 1 a b c
1 1 a b c
a a a b c
b b b b c
c c b b c

Table 3.2. A left-orderable, positively right-orderable, non bi-
orderable idempotent monoid

inequalities c <l 1 <l a <l b define a left order of M . Every element of M is
idempotent, and ca = b /∈ {a, c}. By Proposition 2.2(2), M is not bi-orderable. �

Example 3.5. A five-element, positively left- and right-orderable, non bi-orderable

monoid, in which the idempotents form a chain.

Proof. The monoid M , with multiplication table represented in Table 3.3, is pos-
itively right-orderable via the inequalities 1 <r a <r b <r c <r ∞, and posi-
tively left-orderable via the inequalities 1 <l a <l c <l b <l ∞. The idempotents
of M , namely 1, a, ∞, form a chain. Suppose that M has a bi-order ≤, say with

· 1 a b c ∞
1 1 a b c ∞
a a a ∞ c ∞
b b b ∞ ∞ ∞
c c ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞
Table 3.3. A positively left- and right-orderable, non bi-orderable monoid

b < c. Then ba ≤ bc, so b < ∞, and ab ≤ ac, so ∞ < c. Now if 1 < ∞, then
c = c1 ≤ c∞ = ∞, a contradiction. If ∞ < 1, then ∞ = b∞ ≤ b1 = b, a
contradiction again. �

By Proposition 2.2(1), there is no “best of two worlds” example combining
the idempotency of the monoid in Example 3.4 with the positive left- and right-
orderability of the monoid in Example 3.5.
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4. A counterexample that embeds into a group

The monoid underlying Example 2.10(1) (right-orderable but not left-orderable)
is finite, thus (since every nontrivial cancellative right-orderable monoid is infinite)
it cannot yield a cancellative example. Finding a cancellative, right-orderable,
but not left-orderable monoid turns out to require more work. Our construction,
detailed in the proof of Theorem 4.2, will in fact yield a submonoid of a group.

Let us briefly recall some background, on categories, required for our construc-
tion. All our categories will be small categories, viewed as certain partial semigroups
with identity elements (in short identities), for example in the sense of [6, § II.1.1]
or [19, Definition 3.1]. Following tradition from existing works such as [6], we will
understand categories in the source / target sense, as opposed to domain / range:
objects are identified with their identity morphisms, and morphisms are composed
like functions written to the right of their arguments. Hence every element x in a
category S has a source ∂0x and a target ∂1x, which are the only identities in S
satisfying x = ∂0x ·x = x ·∂1x. A product x ·y (in short xy) is defined iff ∂1x = ∂0y.
A product (xy)z is defined iff x(yz) is defined, iff both xy and yz are defined, and
then (xy)z = x(yz). A monoid is a category with a unique identity, and a func-
tor between categories is a homomorphism with respect to the partial product,
source, and target operations. For identities a and b in S, the hom-set S(a, b) is
{x ∈ S | ∂0x = a and ∂1x = b}. We will denote by εS : S → Umon(S) the natural

functor from S to its universal monoid, and we will set S
def
= εS [S]. The map εS

identifies two elements x and y of S iff either x = y or x and y are both identities
[19, Lemma 3.10]. Denoting by IdtS the set of all identities of S, it follows that S
can be identified with (S \ IdtS) ∪ {1}.

By [19, Lemma 3.4], any element of Umon(S) can be uniquely written as a product
x1 · · ·xn (which will then be called a reduced word), where n is a nonnegative
integer, the xi are non-identities in S, and each product xixi+1 is undefined in S
(i.e., ∂1xi 6= ∂0xi+1). We set n = lh(x), the length of x.

As in [19], a category S is

• conical if any composition of two non-identities of S is a non-identity;
• right cancellative if for all x, y, z ∈ S, if xz and yz are both defined and
xz = yz, then x = y. By [19, Corollary 4.3], this is equivalent to saying
that the universal monoid Umon(S) of S is right cancellative.

Our next result states an extension result of a right order from a category to its
universal monoid.

Lemma 4.1. Let S be a conical, right cancellative category, and let ≤ be a partial

order on S, with least element 1, such that for all x, y, z ∈ S, x ≤ y and yz ∈ S
together imply that xz ∈ S and xz ≤ yz. Then ≤ is the restriction to S of a positive

partial right order ✂ on the monoid Umon(S), with respect to which S is a lower

subset of Umon(S), such that if ≤ is a total order on S, then ✂ is a total order

on Umon(S).

Note (Following a comment by George Bergman). The existence of an order ≤ on S
as above puts quite a constraint on the category S. Let an identity a of S be a
midway object if there are non-identities x and y such that a = ∂0x = ∂1y. Then S
has at most one midway object. Indeed, let a and b be midway objects. There
are non-identities x and y with targets a and b, respectively. We may assume that
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x ≤ y. Then for any non-identity z with source b, yz ∈ S, thus, by assumption,
xz ∈ S, whence a = ∂1x = ∂0z = ∂1y = b.

For example, the category S constructed in the proof of Theorem 4.2 has exactly
one midway object, namely v (cf. Figure 4.1).

Proof. For any elements x and y of Umon(S), respectively written in reduced form
as xm · · ·x1 and yn · · · y1 with all xi, yj ∈ S \ IdtS, we define ν(x, y) as the least
k ∈ {1, . . . ,min {m,n}} if it exists such that xk 6= yk. Let x ✁ y hold if either

m < n, or m = n and for k
def
= ν(x, y) it holds that xk < yk. Further, let x ✂ y

hold if either x ✁ y or x = y. Hence ✂ is just the shortlex order, with words
being read from right to left, on finite sequences from S \ IdtS. It is a partial
order on Umon(S) whose restriction to S is ≤. Since x ✂ y implies lh(x) ≤ lh(y),
S = {x ∈ Umon(S) | lh(x) ≤ 1} is a lower subset of Umon(S). If ≤ is total, then so
is ✂.

In order to prove that ✂ is right translation-invariant, it suffices to prove that
x ✁ y implies that xz ✁ yz, for all x, y ∈ Umon(S) and all z ∈ S \ IdtS. Write
again x and y as reduced words as above. In particular, m ≤ n. Moreover, from

x✁ y it follows that n > 0. If m = n, then k
def
= ν(x, y) exists and xk < yk.

Suppose first that y1z /∈ S. Then yn · · · y2·y1·z is the reduced word representation
of yz, thus lh(xz) ≤ m + 1 ≤ n + 1 = lh(yz). It follows that if either m < n or
x1z ∈ S, then lh(xz) < lh(yz), thus xz ✁ yz. If, on the other hand, m = n
and x1z /∈ S, then xn · · ·x2 · x1 · z is the reduced word representation of xz, so
ν(xz, yz) = k + 1 and (xz)k+1 = xk < yk = (yz)k+1, whence xz ✁ yz.

We may thus assume from now on that y1z ∈ S. It follows from the conicality of S
that yn · · · y2 · y1z is the reduced word representing yz, so lh(yz) = n. From 1 ≤ y1
(within S) it follows that z = 1z ≤ y1z. If z = y1z, that is, ∂0z ·z = y1z (within S),
then, since S is right cancellative, y1 = ∂0z is an identity, a contradiction. Hence,

z < y1z . (4.1)

In particular, if x = 1 (i.e., m = 0), then xz = z ✁ yz. We may thus assume from
now on that m > 0. In particular, if m+2 ≤ n, then lh(xz) ≤ m+1 < n = lh(yz),
so xz ✁ yz.

It thus remains to check all cases where y1z ∈ S and 0 < m ≤ n ≤ m+ 1.
Suppose first that y1z ∈ S and m = n. From x ✂ y it follows that x1 ≤ y1,

thus, since y1z ∈ S and by our assumption on the order ≤, we get x1z ∈ S; so
xn · · ·x2 · x1z is the reduced word representing xz, and so lh(xz) = n. If k ≥ 2,
then x1 = y1, so ν(xz, yz) = k and (xz)k = xk < yk = (yz)k, and so xz ✁ yz.
If k = 1, then x1 < y1, thus, since ≤ is right translation-invariant and S is both
conical and right cancellative, x1z < y1z, so ν(xz, yz) = 1 and xz ✁ yz.

It remains to deal with the case where y1z ∈ S and m+ 1 = n. If x1z ∈ S, then
xm · · ·x2 · x1z is the reduced word representing xz, so lh(xz) = m < n = lh(yz)
and so xz ✁ yz. If x1z /∈ S, then xm · · ·x1 · z is the reduced word representing xz
and lh(xz) = m + 1 = n = lh(yz). Using (4.1), we get (xz)1 = z < y1z = (yz)1,
so xz ✁ yz again. We have thus completed the proof that ✂ is a right order
of Umon(S). �

Theorem 4.2. There exists a positively right-orderable submonoid M , of the group

(Z/7Z)∗Fgp(4), containing a triple of elements with no smallest element with respect

to any partial left order of M . In particular, M is not left-orderable.
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Proof. Our monoid M is defined by the generators pi, qi, ri, ai, for i ∈ {0, 1, 2},
subjected to the relations

piai = riai+2 ; piai+1 = qiai ; qiai+1 = riai , for i ∈ {0, 1, 2} (4.2)

(where indices are taken modulo 3). It is convenient to representM as the universal
monoid of the finite category S consisting of the generating set

Σ
def
= {p0, q0, r0, p1, q1, r1, p2, q2, r2, a0, a1, a2}

together with the products piaj , qiaj , riaj for i, j ∈ {0, 1, 2}, and the five identities

ui
def
= ∂0pi = ∂0qi = ∂0ri, v

def
= ∂1pi = ∂1qi = ∂1ri = ∂0aj , and w = ∂1aj , for i, j ∈

{0, 1, 2}. In particular, S = {1} ∪ Σ ∪ {piaj , qiaj , riaj | i, j ∈ {0, 1, 2}}. By virtue

of the equations (4.2), S has 31 elements and S has 35 elements. The category S
is obviously both conical and right cancellative. It can be partly illustrated in
Figure 4.1 (which displays neither the equations (4.2) nor the elements of S(ui, w)).
We define G as the universal group of the category S.

w

v

u0 u2

u1

a0 a1 a2

p0

q0
r0 p2

q2
r2

p1 q1 r1

Figure 4.1. Illustrating the category S

Claim 1. The group G is isomorphic to (Z/7Z) ∗ Fgp(4).

Proof of Claim. If working in groups, we can eliminate qi and ri from the equa-
tions (4.2) and thus obtain the equivalent group presentation of G given by

qi = piai+1a
−1
i ; ri = piaia

−1
i+2 ; (4.3)

ai+1a
−1
i ai+1 = aia

−1
i+2ai , (4.4)

where i ranges over {0, 1, 2}. Now (4.4), for i = 0, yields a2 = a0a
−1
1 a0a

−1
1 a0,

which, combined with (4.4) for i = 1, yields

a0a
−1
1 a0a

−1
1 a0a

−1
1 a0a

−1
1 a0a

−1
1 a0 = a1a

−1
0 a1 ,

which is equivalent to (a−1
0 a1)

7 = 1. Setting c
def
= a−1

0 a1, it follows that c7 = 1
and a1 = a0c. Furthermore, a2 = a0a

−1
1 a0a

−1
1 a0 = a0c

5. Conversely, any triple
(a0, a1, a2, c) with c7 = 1, a1 = a0c, and a2 = a0c

5 satisfies the equations (4.4).
Taking into account the equations (4.3), it follows that G is the free product of the
cyclic group generated by c (which is isomorphic to Z/7Z) with the free group on
{p0, p1, p2, a0}. � Claim 1.
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Owing to (the proof of) Claim 1, we shall from now on identify G with the
free product of Z/7Z with the free group on generators {p0, p1, p2, a0}, with c the
canonical generator of Z/7Z, a1 = a0c, a2 = a0c

5, and the terms qi and ri given
by (4.3). Easy calculations then yield

q0 = p0a1a
−1
0 = p0a0ca

−1
0 ; r0 = p0a0a

−1
2 = p0a0c

2a−1
0 ; (4.5)

q1 = p1a2a
−1
1 = p1a0c

4a−1
0 ; r1 = p1a1a

−1
0 = p1a0ca

−1
0 ; (4.6)

q2 = p2a0a
−1
2 = p2a0c

2a−1
0 ; r2 = p2a2a

−1
1 = p2a0c

4a−1
0 . (4.7)

Claim 2. The natural monoid homomorphism ϕS : M → G is one-to-one.

Proof of Claim. Composing the natural functor εS : S → M with ϕS yields the
natural functor ηS : S → G. By [19, Theorem 10.1], it suffices to prove that the
restriction of ηS to each hom-set of S is one-to-one. For i ∈ {0, 1, 2}, the elements of
S(ui, v) are pi, qi, ri, which are mapped under ηS to distinct elements of G since the
expressions given on the right hand sides of the equations in (4.5)–(4.7) are normal
forms within (Z/7Z) ∗ Fgp(4). Furthermore, the elements of S(v, w) are a0, a1, a2,
which are mapped under ηS to the distinct elements a0, a0c, a0c

5, respectively.
Finally, each S(ui, w) has exactly six elements, that can be listed as

piai+2 ; qiai+2 ; piai = riai+2 ; piai+1 = qiai ; qiai+1 = riai ; riai+1 , (4.8)

which, owing to the relations (4.3) and (4.4), are respectively mapped by ηS to

piai+2 ; piai+1a
−1
i ai+2 ; piai ; piai+1 ; piai+1a

−1
i ai+1 ; piaia

−1
i+2ai+1 .

Substituting in those equations the expressions a1 = a0c and a2 = a0c
5, we obtain

that those elements are respectively equal to

p0a0c
5 ; p0a0c

6 ; p0a0 ; p0a0c ; p0a0c
2 ; p0a0c

3 (for i = 0),

p1a0 ; p1a0c
4 ; p1a0c ; p1a0c

5 ; p1a0c
2 ; p1a0c

6 (for i = 1),

p2a0c ; p2a0c
3 ; p2a0c

5 ; p2a0 ; p2a0c
2 ; p2a0c

4 (for i = 2).

For each value of i ∈ {0, 1, 2}, those elements are pairwise distinct, so the restriction
of ηS to S(ui, w) is one-to-one. � Claim 2.

Claim 3. The monoid M has a positive right order, with respect to which S is a

lower subset.

Proof of Claim. We apply Lemma 4.1. We will construct the required order of S
by initializing the order on Σ ∪ {1}, by setting

1 < p0 < q0 < r0 < p1 < q1 < r1 < p2 < q2 < r2 < a0 < a1 < a2 , (4.9)

then extending ≤ to the whole S by using the right invariance of ≤. On elements
of the form piaj , qiaj , riaj for fixed i (listed in (4.8)), there is no choice, we need
to define

piai+2 < qiai+2 < piai = riai+2 < piai+1 = qiai < qiai+1 = riai < riai+1 (4.10)

(that part of the calculations does not involve the inequalities a0 < a1 < a2). We
complete the construction by linking the chains (4.10), in the order 012, atop the
chain (4.9), thus yielding the inequalities

1 < · · · < a2
︸ ︷︷ ︸

chain (4.9)

< p0a2 < · · · < r0a1
︸ ︷︷ ︸

chain (4.10) for i = 0

< p1a0 < · · · < r1a2
︸ ︷︷ ︸

chain (4.10) for i = 1

< p2a1 < · · · < r2a0
︸ ︷︷ ︸

chain (4.10) for i = 2

.

(4.11)
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We need to verify that for all x, y, z ∈ S, x ≤ y and yz ∈ S implies that xz ∈ S
and xz ≤ yz. Since this is vacuous if either z = 1 or z ∈ {pi, qi, ri} for some i
(only trivial products intervene there), the only interesting case is the one where

z = aj for some j and y belongs to the set Σ′
def
= {1, p0, q0, r0, p1, q1, r1, p2, q2, r2}.

By (4.9), Σ′ is a lower subset of S, thus x also belongs to Σ′, and thus xz = xaj
belongs to S. By the construction of the chain (4.11), we get xz ≤ yz. � Claim 3.

Claim 4. There is no partial left order of M for which {a0, a1, a2} has a smallest

element.

Proof of Claim. Since the defining equations (4.2) of M are invariant under trans-
lation (modulo 3) of the index i, it suffices to prove that there is no partial left
order ✂ of M for which a0 ✁ a1 and a0 ✁ a2. Using left invariance, we get

p0a0 ✂ p0a1 = q0a0 ✂ q0a1 = r0a0 ✂ r0a2 = p0a0 ,

thus p0a0 = p0a1, a contradiction. � Claim 4.

The conclusion of Theorem 4.2 follows from the Claims above. �

Remark 4.3. Recall from Bergman [2, Example 23] that there are monoids, em-
beddable into free groups, of which the universal group is not free—it may even
have torsion; by the results of [19], this is more the rule than the exception. Now
the proof of Theorem 4.2 above shows that each (aia

−1
j )7 = 1 within the universal

group of M—equivalently, within any group extension of M . Since a0, a1, a2 are
pairwise distinct, it follows that every group extension of M has torsion elements.
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